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by Mélanie RACZEK and Jean-Pierre TIGNOL ∗ )

The configuration of inflection points on a nonsingular cubic curve in
the complex projective plane has a well-known remarkable feature : the line
by any two of the nine inflection points passes through a third inflection
point. Therefore, the inflection points and the 12 lines through them form a
tactical configuration (94, 123) , which is the configuration of points and lines
of the affine plane over the field with 3 elements ([3, p. 295], [7, p. 242]).
This property was used by Hesse to show that the inflection points of a
ternary cubic over the rationals are defined over a solvable extension, see
[11, §110]. As a result, any ternary cubic can be brought to a normal form
x3

1 + x3
2 + x3

3 − 3λx1x2x3 over a solvable extension of the base field. 1 ) The
purpose of this paper is to investigate this extension.

Throughout the paper, we denote by F an arbitrary field of characteristic
different from 3, by Fs a separable closure of F and by Γ = Gal(Fs/F) its
Galois group. Let V be a 3-dimensional F -vector space and let f ∈ S3(V∗)
be a cubic form on V . Assume that f has no singular zero in the projective
plane PV (Fs) . Then the set I(f ) ⊆ PV (Fs) of inflection points has 9 elements.
There are 12 lines in PV (Fs) that contain three points of I(f ) ; they are
called inflectional lines. Their set L(f ) is partitioned into four 3-element
subsets T0 , T1 , T2 , T3 called inflectional triangles, which have the property
that each inflection point is incident to exactly one line of each triangle.
Let T(f ) = {T0,T1,T2,T3} . There is a canonical map L(f ) → T(f ) , which
carries every inflectional line to the unique triangle that contains it. The Galois

∗ ) The second author is partially supported by the Fund for Scientific Research F.R.S.-FNRS
(Belgium).

1 ) We are grateful to the erudite anonymous referee who pointed out that the normal form of
cubics was obtained by Hesse in [5, §20, Aufgabe 2], before he proved (in [6]) that the equation
of inflection points is solvable by radicals.
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group Γ acts on I(f ) , hence also on L(f ) and T(f ) , and the canonical map
L(f ) → T(f ) is a triple covering of Γ -sets, in the terminology of [9, §2.2].
Galois theory associates to the Γ -set L(f ) a 12-dimensional étale F -algebra
L(f ) , which is a cubic étale extension of the 4-dimensional étale F -algebra
T(f ) associated to T(f ) . We show in §4 that if one of the inflectional triangles,
say T0 , is defined over F , hence preserved under the Γ -action, then there
are decompositions

T(f ) % F × N, L(f ) % K ×M

where N and K are cubic étale F -algebras whose corresponding Γ -sets are
X(N) = {T1,T2,T3} and X(K) = T0 respectively, and M is a 9-dimensional
étale F -algebra containing N , associated to K and a unit a ∈ K× . One can
then identify the vector space V with K in such a way that

(0.1) f (X) = TK(a−1X3)− 3λ NK(X) for some λ ∈ F ,

where TK and NK are the trace and the norm of the F -algebra K . Conversely,
if f can be reduced to the form (0.1), then one of the inflectional triangles
is defined over F and X(K) is isomorphic to the set of lines of the triangle.
Note that the (generalized) Hesse normal form

a1x3
1 + a2x3

2 + a3x3
3 − 3λx1x2x3

is the particular case of (0.1) where K = F × F × F (i.e., the Γ -action on
X(K) is trivial) and a = (a−1

1 , a−1
2 , a−1

3 ) . As an application, we show that the
form TK(X3) can be reduced over F to a generalized Hesse normal form if
and only if K has the form F[ 3

√
d] for some d ∈ F× , see Example 4.4.

The 9-dimensional étale F -algebra M associated to a cubic étale F -
algebra K and a unit a ∈ K× was first defined by Markus Rost in relation
with Morley’s theorem. We are grateful to Markus for allowing us to quote
from his private note [10] in §2.

For background information on cubic curves, we refer to [3], Chapter 11
of [7], or [2].

1. ÉTALE ALGEBRAS OVER A FIELD

An étale F -algebra is a finite-dimensional commutative F -algebra A such
that A⊗F Fs % Fs× · · · ×Fs ; see [1, Ch. 5, §6] or [8, §18] for various other
characterizations of étale F -algebras. For any étale F -algebra, we denote by
X(A) the set of F -algebra homomorphisms A → Fs . This is a finite set with
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cardinality |X(A)| = dimF A . Composition with automorphisms of Fs endows
X(A) with a Γ -set structure, and X is a contravariant functor that defines an
anti-equivalence of categories between the category EtF of étale F -algebras
and the category SetΓ of finite Γ -sets, see [1, Ch. 5, §10] or [8, (18.4)].

Let G be a finite group of automorphisms of an étale F -algebra A . The
group G acts faithfully on the Γ -set X(A) .

PROPOSITION 1.1. If G acts freely (i.e., without fixed points) on X(A) ,
then

H1(G, A×) = 1.

Proof. The G -action on X(A) maps each Γ -orbit on a Γ -orbit, since the
actions of G and Γ commute. We may thus decompose X(A) into a disjoint
union

X(A) = X1
∐

. . .
∐

Xn

where each Xi is a union of Γ -orbits permuted by G . Using the anti-
equivalence between EtF and SetΓ , we obtain a corresponding decomposition
of A into a direct product of étale F -algebras

A = A1 × · · · × An.

The G -action preserves each Ai , hence

H1(G, A×) = H1(G, A×1 )× · · · × H1(G, A×n ).

Therefore, it suffices to prove that H1(G, A×) = 1 when G acts transitively
on the Γ -orbits in X(A) . These Γ -orbits are in one-to-one correspondence
with the primitive idempotents of A . Let e be one of these idempotents and
let H ⊆ G be the subgroup of automorphisms that leave e fixed. Let also
B = eA . The map g⊗ b )→ g(b) for g ∈ G and b ∈ B induces isomorphisms
of G -modules

A = Z[G]⊗Z[H] B, A× = Z[G]⊗Z[H] B×,

hence the Eckmann–Faddeev–Shapiro lemma (see for instance [4, Prop. (6.2),
p. 73]) yields an isomorphism

H1(G, A×) % H1(H, B×).

Now, B is a field and each element h ∈ H restricts to an automorphism of
B . Let ξ ∈ X(A) be such that ξ(e) = 1, hence ξ(x) = ξ(ex) for all x ∈ A . If
h ∈ H restricts to the identity on B , then

e h(x) = h(ex) = ex for all x ∈ A ,
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hence
ξ
(
h(x)

)
= ξ(x) for all x ∈ A .

It follows that h leaves ξ fixed, hence h = 1 since G acts freely on X(A) .
Therefore, H embeds injectively in the group of automorphisms of B . Hilbert’s
Theorem 90 then yields H1(H, B×) = 1, see [8, (29.2)].

2. MORLEY ALGEBRAS

Let K be an étale F -algebra of dimension 3. To every unit a ∈ K× we
associate an étale F -algebra M(K, a) of dimension 9 by a construction due
to Markus Rost [10], which will be crucial for the description of the Γ -action
on inflectional lines of a nonsingular cubic, see Theorem 3.2.

DEFINITION 2.1. Let D be the discriminant algebra of K (see [8, p. 291]) ;
this is a 2-dimensional étale F -algebra such that K ⊗F D is the S3 -Galois
closure of K , see [8, §18.C]. We thus have F -algebra automorphisms σ , ρ
of K ⊗F D such that

σ|D = IdD, ρ|K = IdK , σ3 = ρ2 = IdK⊗D, and ρσ = σ2ρ.

We identify each element x ∈ K with its image x⊗ 1 in K ⊗ D and denote
its norm by NK(x) .

Now, fix an element a ∈ K× . Let s , t be indeterminates and consider the
quotient F -algebra

A = K ⊗F D[s, t]/
(
s3 − σ2(a)σ(a)−1, t3 − NK(a)

)
.

Since the characteristic is different from 3, every F -algebra homomorphism
K ⊗F D → Fs extends in 9 different ways to A , so A is an étale F -algebra.
Abusing notations, we also denote by s and t the images in A of the
indeterminates. Straightforward computations show that σ and ρ extend to
automorphisms of A by letting

σ(s) = stσ2(a)−1, σ(t) = t, ρ(s) = s−1, ρ(t) = t,

and that the extended σ , ρ satisfy σ3 = ρ2 = IdA and ρσ = σ2ρ , so they
generate a group G of automorphisms of A isomorphic to the symmetric
group S3 . The subalgebra of A fixed under G is called the Morley F -algebra
associated with K and a . It is denoted by M(K, a) .
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Since G acts freely on X(K ⊗F D) , it also acts freely on X(A) , hence

dimF M(K, a) = 9.

It readily follows from the definition that M(K, a) contains the 3-dimensional
étale F -algebra

N(K, a) = F[t] with t3 = NK(a) .

Clearly, if a′ = λk3a for some λ ∈ F× and k ∈ K× , then there
is an isomorphism M(K, a′) % M(K, a) induced by s′ )→ sσ2(k)σ(k)−1 ,
t′ )→ tλ NK(k) .

EXAMPLE 2.2. Let K = F × F × F and a = (a1, a2, a3) ∈ K× . Then
D % F × F , so K ⊗F D % F6 . We index the primitive idempotents of K ⊗D
by the elements in G , so that the G -action on the primitive idempotents
(eτ )τ∈G is given by

θ(eτ ) = eθτ for θ , τ ∈ G .

We identify K with a subalgebra of K ⊗ D by

(x1, x2, x3) = x1(eId + eρ) + x2(eσ + eρσ) + x3(eσ2 + eρσ2 )

for x1 , x2 , x3 ∈ F . Then A % F6[s, t] where

s3 =
σ2(a)
σ(a)

=
a2

a3
eId +

a3

a1
eσ +

a1

a2
eσ2 +

a3

a2
eρ +

a2

a1
eσρ +

a1

a3
eσ2ρ

and
t3 = a1a2a3.

Let r =
∑

τ∈G τ (s)eτ ∈ M(K, a) . Then r3 = a2
a3

and M(K, a) = F[r, t] . Note

that
(

r2t
a2

)3
= a1

a3
, so

M(K, a) % F
[

3

√
a1

a3
, 3

√
a2

a3

]
and N(K, a) % F[ 3

√
a1a2a3].

EXAMPLE 2.3. Let K be an arbitrary cubic étale F -algebra and let a = 1.
Let F[ω] be the quadratic étale F -algebra with ω2+ω+1 = 0. By the Chinese
remainder theorem we have

N(K, 1) = F[t]/(t3 − 1) % F × F[ω].

The corresponding orthogonal idempotents in N(K, 1) are

e1 = 1
3 (1 + t + t2) and e2 = 1

3 (2− t − t2).
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Let A1 = e1A and A2 = e2A , so A = A1⊕A2 and the G -action preserves A1

and A2 . Let

e11 = 1
3 (1 + s + s2)e1 ∈ A1, e12 = 1

3 (2− s− s2)e1 ∈ A1,

ε1 = 1
3 (1 + s + s2)e2 ∈ A2, ε2 = 1

3 (1 + st + s2t2)e2 ∈ A2,

ε3 = 1
3 (1 + st2 + s2t)e2 ∈ A2.

These elements are pairwise orthogonal idempotents, and we have

e1 = e11 + e12, e2 = ε1 + ε2 + ε3.

The G -action fixes e11 and e12 , while

σ(ε1) = ε2, σ(ε2) = ε3, σ(ε3) = ε1,

ρ(ε1) = ε1, ρ(ε2) = ε3, ρ(ε3) = ε2.

We have e1t = e1 and e11s = e11 , hence e11A % K⊗D and e11M(K, 1) % F .
On the other hand, e12s is a primitive cube root of unity in e12M(K, 1) . It is
fixed under σ and ρ(e12s) = e12s−1 . Therefore, we have

e12A % K ⊗ D⊗ F[ω] and e12M(K, 1) % (D⊗ F[ω])ρ,

where ρ acts non-trivially on D and F[ω] . The quadratic étale algebra
(D ⊗ F[ω])ρ is the composite of D and F[ω] in the group of quadratic
étale F -algebras, see [9, Prop. 3.11]. It is denoted by D ∗ F[ω] . Finally,
we have an isomorphism K ⊗ F[ω] % e2M(K, 1) by mapping x ∈ K to
xε1 + σ(x)ε2 + σ2(x)ε3 and ω to e2t , so

M(K, 1) % F × (D ∗ F[ω])× (K ⊗ F[ω]).

Under this isomorphism, the inclusion N(K, 1) ↪→ M(K, 1) is the map

F × F[ω] → F × (D ∗ F[ω])× (K ⊗ F[ω]), (x, y) )→ (x, x, y).

In particular, if F contains a cube root of unity, then F[ω] % F × F and

M(K, 1) % F × D× K × K.

The inclusion N(K, 1) ↪→ M(K, 1) is then given by

F × F × F → F × D× K × K, (x, y, z) )→ (x, x, y, z).

Details are left to the reader.
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In the rest of this section, we show how the Γ -set X
(
M(K, a)

)
can be

characterized as the fiber of a certain (ramified) covering of the projective
plane.

Viewing K as an F -vector space, we may consider the projective plane
PK , whose points over the separable closure Fs are

PK(Fs) = {x · F×s | x ∈ K ⊗F Fs, x ,= 0}.

Let

(2.1) π : PK(Fs) → PK(Fs), x · F×s )→ x3 · F×s for x ∈ K ⊗ Fs , x ,= 0 .

We show in Theorem 2.6 below that there is an isomorphism of Γ -sets

X
(
M(K, a)

)
% π−1(a · F×s ) for a ∈ K× .

In view of the anti-equivalence between EtF and SetΓ , this result characterizes
the Morley algebra M(K, a) up to isomorphism.

Until the end of this section, we fix a ∈ K× and denote simply M(K, a)
by M . We identify K ⊗M with the subalgebra of A fixed under ρ .

LEMMA 2.4. There exists u ∈ (K ⊗M)× such that s = σ2(u)σ(u)−1 .

Proof. Define a map c : G → A× by

c(Id) = c(σ2ρ) = 1, c(σ) = c(ρ) = s, c(σ2) = c(σρ) = σ2(s)−1.

Computation shows that sσ(s)σ2(s) = 1, and it follows that c is a 1-cocycle.
Proposition 1.1 yields an element v ∈ A× such that c(τ ) = vτ (v)−1 for all
τ ∈ G ; in particular, we have

s = vσ(v)−1 = vρ(v)−1.

Let u = σ2(v)−1 . The equations above yield

s = σ2(u)σ(u)−1 and ρ(u) = u.

Therefore, u ∈ K ⊗M , and this element satisfies the condition.

LEMMA 2.5. The set π−1(a · F×s ) has 9 elements if it is not empty.

Proof. Suppose x0 ∈ K⊗Fs is such that x3
0 · F×s = a · F×s . Then the map

y · F×s )→ x0y · F×s defines a bijection between π−1(1 · F×s ) and π−1(a · F×s ) ,
so it suffices to show |π−1(1 · F×s )| = 9. Identify K ⊗ Fs = Fs × Fs × Fs ,
and let ω ∈ F×s be a primitive cube root of unity. To simplify notation, write



8 M. RACZEK AND J.-P. TIGNOL

(z1 : z2 : z3) = (z1, z2, z3) · F×s for z1 , z2 , z3 ∈ Fs . It is easy to check that
π−1(1 · F×s ) consists of the following elements :

(1 : 1 : 1),
(1 : 1 : ω),
(1 : 1 : ω2),

(1 : ω : ω2),
(1 : ω : 1),
(1 : ω2 : 1),

(1 : ω2 : ω),
(ω : 1 : 1),
(ω2 : 1 : 1).

Each ξ ∈ X(M) extends uniquely to a K -algebra homomorphism

ξ̂ : K ⊗F M → K ⊗F Fs.

THEOREM 2.6 (Rost). Let u ∈ (K ⊗M)× be such that σ2(u)σ(u)−1 = s .
The map ξ )→ ξ̂(u) · F×s defines an isomorphism of Γ -sets

Φ : X(M) ∼→ π−1(a · F×s ).

Proof. If u ∈ (K ⊗M)× satisfies σ2(u)σ(u)−1 = s , then

σ2(u3)σ(u3)−1 = s3 = σ2(a)σ(a)−1,

so a−1u3 is fixed under σ , hence a−1u3 ∈ M× . Therefore, a−1ξ̂(u)3 ∈ F×s ,
hence ξ̂(u) · F×s lies in π−1(a · F×s ) .

Note that the map Φ does not depend on the choice of u : indeed, u
is determined uniquely up to a factor in M× , and for m ∈ M× we have
ξ̂(um) = ξ̂(u)ξ(m) , so ξ̂(um) · F×s = ξ̂(u) · F×s .

It is clear from the definition that the map Φ is Γ -equivariant. Since
|X(M)| = |π−1(a ·F×s )| = 9, it suffices to show that Φ is injective to complete
the proof. Extending scalars, we may assume K % F × F × F , and use the
notation of Example 2.2. Then, up to a factor in M× , we have

u = σ2ρ(s)eId + σ(s)eσ + eσ2 + σ(s)eρ + eσρ + σ2ρ(s)eσ2ρ

=
r2t
a2

(eId + eρ) + r(eσ + eσ2ρ) + (eσ2 + eσρ)

=
( r2t

a2
, r, 1

)
∈ K ⊗M = M ×M ×M.

If ξ , η ∈ X(M) satisfy ξ̂(u) · F×s = η̂(u) · F×s , then ξ
( r2t

a2

)
= η

( r2t
a2

)
and

ξ(r) = η(r) . Since M is generated by r and t , it follows that ξ = η .

REMARK 2.7. As pointed out by Rost [10], the map π factors through

W(Fs) = {(λ, x) · F×s | λ3 = NK(x)} ⊆ PF×K(Fs) :
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we have π = π1 ◦ π2 where

π2 : PK(Fs) → W(Fs), x · F×s )→ (NK(x), x3) · F×s

and
π1 : W(Fs) → PK(Fs), (λ, x) · F×s )→ x · F×s .

There is a commutative diagram

X
(
M(K, a)

) Φ−−−−→ PK(Fs)

X(i)
,

,π2

X
(
N(K, a)

) Φ′
−−−−→ W(Fs)

,
,π1

X(F) Φ′′
−−−−→ PK(Fs)

where X(i) is the map functorially associated to the inclusion i : N(K, a) ↪→
M(K, a) and Φ′′ maps the unique element of X(F) to a · F×s . The induced
map Φ′ is an isomorphism of Γ -sets

Φ′ : X
(
N(K, a)

) ∼→ π−1
1 (a · F×s ).

3. INFLECTION POINT CONFIGURATIONS

Let V be a 3-dimensional vector space over F . Let S3(V∗) be the third
symmetric power of the dual space V∗ , i.e., the space of cubic forms on V .
A cubic form f ∈ S3(V∗) is called triangular if its zero set in the projective
plane PV (Fs) form a triangle or, equivalently, if there exist linearly independent
linear forms ϕ1 , ϕ2 , ϕ3 ∈ V∗ ⊗F Fs such that f = ϕ1ϕ2ϕ3 in S3(V∗ ⊗ Fs) .
The sides of the triangle are the zero sets of ϕ1 , ϕ2 , and ϕ3 ; they form a
3-element Γ -set S(f ) .

PROPOSITION 3.1. Let f ∈ S3(V∗) be a triangular cubic form and let K
be the cubic étale F -algebra such that X(K) % S(f ) . Then we may identify
the F -vector spaces V and K so as to identify f with a multiple of the norm
form of K ,

f = λ NK for some λ ∈ F× .

In particular, the Γ -action on S(f ) is trivial if and only if f factors into a
product of three independent linear forms in V∗ .
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Proof. Let f = ϕ1ϕ2ϕ3 for some linearly independent linear forms ϕ1 ,
ϕ2 , ϕ3 ∈ V∗ ⊗ Fs . Since γϕ1

γϕ2
γϕ3 = ϕ1ϕ2ϕ3 for γ ∈ Γ , it follows by

unique factorization in S3(V∗) that there exist a permutation πγ of {1, 2, 3}
and scalars λπγ (i),γ ∈ F×s such that

γϕi = λπγ (i),γϕπγ (i) for i = 1, 2, 3.

Since γδϕi = γ(δϕi) for γ , δ ∈ Γ , we have

λπγδ(i),γδϕπγδ(i) = γ(λπδ(i),δ)λπγπδ(i),γϕπγπδ(i),

hence πγδ = πγπδ and

(3.1) λπγδ(i),γδ = γ(λπδ(i),δ)λπγπδ(i),γ .

The Γ -set S(f ) is {1, 2, 3} with the Γ -action γ )→ πγ ; therefore, we may
identify K with the F -algebra of Γ -equivariant maps

K = Map({1, 2, 3}, Fs)Γ.

For γ ∈ Γ , define aγ ∈ Map({1, 2, 3}, F×s ) = (K ⊗ Fs)× by

aγ(i) = λi,γ .

Clearly, aγ = 1 if γ fixes ϕ1 , ϕ2 , and ϕ3 ; moreover, by (3.1) we have
aγ

γaδ = aγδ for γ , δ ∈ Γ , hence (aγ)γ∈Γ is a continuous 1-cocycle. By
Hilbert’s Theorem 90 [8, (29.2)], we have H1(Γ, (K⊗Fs)×) = 1, hence there
exists b ∈ Map({1, 2, 3}, F×s ) such that aγ = b γb−1 for all γ ∈ Γ . For i = 1,
2, 3, let ψi = b(i)ϕi ∈ V∗ ⊗ Fs . Let also

λ =
(
b(1)b(2)b(3)

)−1
.

Computation shows that γψi = ψπγ (i) for γ ∈ Γ and i = 1, 2, 3, and
f = λψ1ψ2ψ3 in S3(V∗ ⊗ Fs) , hence λ ∈ F× . Define

Θ : V ⊗ Fs → Map({1, 2, 3}, Fs) = K ⊗ Fs

by
Θ(x) : i )→ ψi(x) for i = 1, 2, 3 and x ∈ V ⊗ Fs .

Since ψ1 , ψ2 , ψ3 are linearly independent, Θ is an Fs -vector space
isomorphism. It restricts to an isomorphism of F -vector spaces V ∼→ K
under which f is identified with λ NK .
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Now, let I ⊆ PV (Fs) be a 9-point set that has the characteristic property
of the set of inflection points of a nonsingular cubic curve : the line through
any two distinct points of I passes through exactly one third point of I . Let
L be the set of lines in PV (Fs) that are incident to three points of I . This set
has 12 elements, and I , L form an incidence geometry that is isomorphic to
the affine plane over the field with three elements, see [7, §11.1]. In particular,
there is a partition of L into four subsets T0 , . . . , T3 of three lines, which
we call triangles, with the property that each point of I is incident to one
and only one line of each triangle.

Assume I is stable under the action of Γ , and Γ preserves the triangle
T0 . Let K be the cubic étale F -algebra whose Γ -set X(K) is isomorphic to
T0 . By Proposition 3.1, we may identify V with K in such a way that the
union of the lines in T0 is the zero set of the norm NK .

THEOREM 3.2. There exists a ∈ K× such that the Γ -set of vertices of the
triangles T1 , T2 , T3 is π−1(a · F×s ) , where π : PK(Fs) → PK(Fs) is defined
in (2.1). The set I is the set of inflection points of the cubics in the pencil
spanned by the forms TK(a−1X3) and NK(X) , and we have isomorphisms of
Γ -sets

L % X(K)
∐

X
(
M(K, a)

)
, {T1,T2,T3} % X

(
N(K, a)

)
.

Proof. Fix an isomorphism K ⊗ Fs % Fs × Fs × Fs , and write simply
(x1 : x2 : x3) for (x1, x2, x3) · F×s . The sides of T0 then are the lines with
equation x1 = 0, x2 = 0, and x3 = 0. Let I = {p1, . . . , p9} . We label the
points so that the incidence relations can be read from the representation of
the affine plane over F3 in Figure 1.

Say the line through p1 , p2 , p3 is x1 = 0, and the line through p4 , p5 ,
p6 is x2 = 0. We may then find u1 , u2 , u3 , v ∈ F×s such that

pi = (0 : ui : 1) for i = 1, 2, 3, and p4 = (1 : 0 : v).

Since p7 lies at the intersection of x3 = 0 with the line through p1 and p4 ,
we have

p7 = (1 : −u1v : 0).

Similarly,

p8 = (1 : −u2v : 0) and p9 = (1 : −u3v : 0).

Finally, since p5 (resp. p6 ) lies at the intersection of x2 = 0 with the line
through p1 and p8 (resp. p9 ), we have



12 M. RACZEK AND J.-P. TIGNOL

•

•

•

•

•

•

•

•

•

T0

T2

T1

T3

p1

p4

p7 p9
p8

p6

p3p2

p5

FIGURE 1
Incidence relations on I
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p5 = (u1 : 0 : u2v) and p6 = (u1 : 0 : u3v).

Collinearity of the points p2 , p6 , p7 (resp. p2 , p5 , p9 ; resp. p3 , p6 , p8 )
yields

u2
1 = u2u3, (resp. u2

2 = u1u3 ; resp. u2
3 = u1u2 ).

Therefore,
u3

1 = u3
2 = u3

3 = u1u2u3.

Since u1 , u2 , u3 are pairwise distinct, it follows that there is a primitive cube
root of unity ω ∈ Fs such that

u2 = ωu1 and u3 = ω2u1.

Straightforward computations yield the vertices of the triangles T1 , T2 , T3 :

T1 : q1 = (1 : ω2u1v : −v), q′1 = (1 : u1v : −ω2v), q′′1 = (ω2 : u1v : −v),
T2 : q2 = (ω : u1v : −v), q′2 = (1 : u1v : −ωv), q′′2 = (1 : ωu1v : −v),
T3 : q3 = (1 : ωu1v : −ω2v), q′3 = (ω2 : ωu1v : −v), q′′3 = (1 : u1v : −v).

Let a0 = (1, u3
1v

3,−v3) ∈ (K ⊗ Fs)× . It is readily verified that

{q1, q′1, q′′1 , q2, q′2, q′′2 , q3, q′3, q′′3 } = π−1(a0 · F×s ).

Since I is stable under the action of Γ , the point a0 · F×s is fixed under Γ ,
hence for γ ∈ Γ there exists λγ ∈ F×s such that

γ(a0) = a0λγ in K ⊗ Fs .

Then (λγ)γ∈Γ is a continuous 1-cocycle of Γ in F×s . Hilbert’s Theorem 90
yields an element µ ∈ F×s such that λγ = µγ(µ)−1 for all γ ∈ Γ . Then
for a = a0µ we have a0 · F×s = a · F×s and γ(a) = a for all γ ∈ Γ , hence
a ∈ K× .

The inflection points of the cubics in the pencil spanned by TK(a−1X3)
and NK(X) are the points (x1 : x2 : x3) such that

{
x3

1 + (u1v)−3x3
2 − v−3x3

3 = 0,
x1x2x3 = 0

The solutions of this system are exactly the points p1 , . . . , p9 .
Finally, the Γ -set of sides of the triangle T0 is isomorphic to X(K)

by hypothesis, and the map that associates to each side of a triangle its
opposite vertex defines an isomorphism between the set of sides of T1 ,
T2 , T3 and the set {q1, . . . , q′′3 } = π−1(a · F×s ) . By Theorem 2.6, we have
π−1(a · F×s ) % X

(
M(K, a)

)
, hence
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L % X(K)
∐

X
(
M(K, a)

)
.

This isomorphism induces an isomorphism

{T1,T2,T3} % X
(
N(K, a)

)
,

which can be made explicit by the following observation : the triangular cubic
forms in the pencil spanned by TK(a−1X3) and NK(X) are the scalar multiples
of NK(X) (whose zero set is the triangle T0 ) and of TK(a−1X3)− 3z NK(X)
where z ∈ F×s is such that z3 = NK(a−1) . The zero set of the latter form is
T1 , T2 or T3 depending on the choice of z , and the three values of z are
in one-to-one correspondence with the elements in the fibre of the map π1 in
Remark 2.7.

4. NORMAL FORMS OF TERNARY CUBICS

Let V be a 3-dimensional vector space over F and let f ∈ S3(V∗) be a
nonsingular cubic form. Recall from the introduction the notation I(f ) (resp.
L(f ) , resp. T(f ) ) for the set of inflection points (resp. inflectional lines, resp.
inflectional triangles) of f . The following result is a direct application of
Theorem 3.2 :

COROLLARY 4.1. Let K be a cubic étale F -algebra. The following
conditions are equivalent :
(i) f is isometric to a cubic form TK(a−1X3)−3λ NK(X) for some unit a ∈ K×

and some scalar λ ∈ F ;
(ii) Γ has a fixed point T0 ∈ T(f ) with T0 % X(K) (as Γ -sets of 3 elements).
When these conditions hold, then

L(f ) % X(K)
∐

X
(
M(K, a)

)
, and T(f ) % {T0}

∐
X

(
N(K, a)

)
.

Proof. If f (X) = TK(a−1X3)−3λ NK(X) , then computation shows that the
zero set of NK is an inflectional triangle of f . This triangle is clearly preserved
under the Γ -action. Conversely, if T0 ∈ T(f ) is preserved under the Γ -action
and K is the cubic étale F -algebra such that X(K) % T0 , Theorem 3.2 yields
an element a ∈ K× such that the forms TK(a−1X3) and NK(X) span the
pencil of cubics whose set of inflection points is I(f ) .
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Applying Corollary 4.1 in the case where F is a finite field yields a direct
proof of the following result from [7, p. 276] :

COROLLARY 4.2. Suppose F is a finite field with q elements. For any
nonsingular cubic form f , the number of inflectional triangles of f defined
over F is 0 , 1 , or 4 if q ≡ 1 mod 3 ; it is 0 or 2 if q ≡ −1 mod 3 .

Proof. Since F is finite, the action of Γ on T(f ) factors through a cyclic
group. If there is at least one fixed triangle T0 , then Corollary 4.1 yields a
decomposition

T(f ) % {T0}
∐

X
(
N(K, a)

)

where N(K, a) = F[t] with t3 = NK(a) . If N(K, a) is a field, then it must be
a cyclic extension of F , hence F contains a primitive cube root of unity and
therefore q ≡ 1 mod 3. Similarly, if N(K, a) % F × F × F , then F contains
a primitive cube root of unity. Thus, if q ≡ −1 mod 3, the Γ -action on T(f )
has either 0 or 2 fixed points. If q ≡ 1 mod 3 then F contains a primitive
cube root of unity and either the polynomial x3 − NK(a) is irreducible or it
splits into linear factors. Therefore, the Γ -action on T(f ) has either 0, 1, or
4 fixed points.

We next spell out the special case of Corollary 4.1 where the cubic étale
F -algebra K is the split algebra F × F × F :

COROLLARY 4.3. There is a basis of V in which f takes the generalized
Hesse normal form a1x3

1 + a2x3
2 + a3x3

3 − 3λx1x2x3 for some a1 , a2 , a3 ∈ F×

and λ ∈ F if and only if Γ has a fixed point T0 ∈ T(f ) and acts trivially on
T0 (viewed as a 3 -element subset of L(f ) ).

EXAMPLE 4.4. Let K be a cubic étale F -algebra and let f (X) = TK(X3) .
By Corollary 4.1 we have

L(f ) % X(K)
∐

X
(
M(K, 1)

)
and T(f ) % {T0}

∐
X

(
N(K, 1)

)
.

The Γ -sets X
(
M(K, 1)

)
and X

(
N(K, 1)

)
are determined in Example 2.3 :

X
(
M(K, 1)

)
% X(F)

∐
X(D ∗ F[ω])

∐
X(K ⊗ F[ω])

and
X

(
N(K, 1)

)
% X(F)

∐
X(F[ω]).

The map X(i) : X
(
M(K, 1)

)
→ X

(
N(K, 1)

)
functorially associated to the

inclusion i : N(K, 1) ↪→ M(K, 1) maps X(F)
∐

X(D ∗ F[ω]) to X(F) and
X(K ⊗ F[ω]) to X(F[ω]) .
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If K % F × F × F , then f (x1, x2, x3) = x3
1 + x3

2 + x3
3 so f has a Hesse

normal form. If K ,% F × F × F , then the Γ -action on X(K) , hence also
on X(K ⊗ F[ω]) , is nontrivial. Therefore, it follows from Corollary 4.3 that
f has a generalized Hesse normal form over F if and only if the Γ -action
on X(D ∗ F[ω]) is trivial. This happens if and only if D % F[ω] , which is
equivalent to K % F[ 3

√
d] for some d ∈ F× , by [8, (18.32)]. Indeed, for

X = x1 + x2
3
√

d + x3
3
√

d2 , computation yields

f (X) = 3(x3
1 + dx3

2 + d2x3
3 + 6dx1x2x3).

Corollary 4.3 applies in particular when F is the field R of real numbers :

COROLLARY 4.5. Every nonsingular cubic form over R can be reduced
to a generalized Hesse normal form.

Proof. It is clear from the Weierstrass normal form that every nonsingular
cubic over R has three real collinear inflection points, see [3, Prop. 14, p. 305].
The inflectional line through these points is fixed under Γ , hence the Γ -action
on T(f ) has at least one fixed point. The same argument as in Corollary 4.2
then shows that Γ has exactly two fixed points in T(f ) . Let T0 , T1 ∈ T(f )
be the fixed inflectional triangles. Assume the Γ -action on T0 (viewed as a
3-element set) is not trivial, hence K % R×C in the notation of Corollary 4.1;
we shall prove that the Γ -action on T1 is trivial. By Corollary 4.1, there is
a unit a = (a1, a2) ∈ R× C such that

L(f ) % X(R× C)
∐

X
(
M(R× C, a)

)
.

By Theorem 2.6, we have an isomorphism of Γ -sets

Φ : X
(
M(R× C, a)

) ∼→ π−1(a · C×) ⊂ PR×C(C).

We identify (R×C)⊗R C with C×C×C by mapping (r, x)⊗y to (ry, xy, xy)
for r ∈ R and x , y ∈ C . Then the Γ -action on PR×C = P3

C is such that the
complex conjugation acts by

(x1 : x2 : x3) )→ (x1 : x3 : x2).

If ξ ∈ R and η ∈ C satisfy ξ3 = a1 and η3 = a2 , and if ω ∈ C is
a primitive cube root of unity, then the proof of Lemma 2.5 shows that
π−1(a · C×) consists of the following elements :

(ξ : η : η),
(ξ : η : ωη),
(ξ : η : ωη),

(ξ : ωη : ωη),
(ξ : ωη : η),
(ξ : ωη : η),

(ξ : ωη : ωη),
(ωξ : η : η),
(ωξ : η : η).
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The three points in the first row of this table are fixed under the Γ -action,
whereas the Γ -action interchanges the second and third row. Therefore, the
first row corresponds to T1 under Φ , and the proof is complete.

When the conditions in Corollary 4.1 do not hold, we may still consider
the 4-dimensional étale F -algebra T(f ) such that X

(
T(f )

)
= T(f ) , and the

12-dimensional étale F -algebra L(f ) such that X
(
L(f )

)
= L(f ) , which is a

cubic étale extension of T(f ) . The separability idempotent e ∈ T(f ) ⊗F T(f )
satisfies e ·

(
T(f )⊗ T(f )

)
% T(f ) , hence it yields a decomposition

T(f )⊗F T(f ) % T(f )× T(f )0

for some cubic algebra T(f )0 over T(f ) . Likewise, multiplication in L(f )
yields an isomorphism

e ·
(
L(f )⊗ T(f )

)
% L(f ),

hence
L(f )⊗F T(f ) % L(f )× L(f )0

for some cubic algebra L(f )0 over T(f )0 . By functoriality of the construction
of L and T , the cubic form fT(f ) over V ⊗F T(f ) obtained from f by scalar
extension to T(f ) satisfies

L(fT(f )) % L(f )⊗F T(f ) and T(fT(f )) % T(f )⊗F T(f ).

Corollary 4.1 applied to fT(f ) shows that fT(f ) is isometric to TL(f )(a−1X3)−
3λ NL(f )(X) for some λ ∈ T(f )× and some a ∈ L(f )× such that L(f )0 is a
Morley T(f ) -algebra L(f )0 % M(L(f ), a) .
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