TERNARY CUBIC FORMS AND ETALE ALGEBRAS

by Mélanie RACZEK and Jean-Pierre TIGNOL *)

The configuration of inflection points on a nonsingular cubic curve in
the complex projective plane has a well-known remarkable feature: the line
by any two of the nine inflection points passes through a third inflection
point. Therefore, the inflection points and the 12 lines through them form a
tactical configuration (94, 123), which is the configuration of points and lines
of the affine plane over the field with 3 elements ([3, p. 295], [7, p. 242]).
This property was used by Hesse to show that the inflection points of a
ternary cubic over the rationals are defined over a solvable extension, see
[11, §110]. As a result, any ternary cubic can be brought to a normal form
x} 4+ x3 +x3 — 3\xixpx; over a solvable extension of the base field.!) The
purpose of this paper is to investigate this extension.

Throughout the paper, we denote by F an arbitrary field of characteristic
different from 3, by F; a separable closure of F and by T' = Gal(F,/F) its
Galois group. Let V be a 3-dimensional F-vector space and let f € S3(v*)
be a cubic form on V. Assume that f has no singular zero in the projective
plane Py (Fy). Then the set J(f) C Py(F;) of inflection points has 9 elements.
There are 12 lines in Py(F,) that contain three points of J(f); they are
called inflectional lines. Their set £(f) is partitioned into four 3-element
subsets %y, T, T, %3 called inflectional triangles, which have the property
that each inflection point is incident to exactly one line of each triangle.
Let T(f) = {%0,%1,%2,%3}. There is a canonical map £(f) — T(f), which
carries every inflectional line to the unique triangle that contains it. The Galois
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group I' acts on J(f), hence also on £(f) and Z(f), and the canonical map
L£(f) — Z(f) is a triple covering of I'-sets, in the terminology of [9, §2.2].
Galois theory associates to the I'-set £(f) a 12-dimensional étale F-algebra
L(f), which is a cubic étale extension of the 4-dimensional étale F'-algebra
T(f) associated to T(f). We show in §4 that if one of the inflectional triangles,
say %, is defined over F, hence preserved under the I'-action, then there
are decompositions

Tf)~FxN, Lfi~KxM

where N and K are cubic étale F-algebras whose corresponding I'-sets are
X(N) = {%1,%,,%3} and X(K) = T, respectively, and M is a 9-dimensional
étale F-algebra containing N, associated to K and a unit @ € K*. One can
then identify the vector space V with K in such a way that

0.1) fX) = Tx(@ 'X?) —3ANg(X)  for some \ € F,

where Tg and Nk are the trace and the norm of the F-algebra K. Conversely,
if f can be reduced to the form (0.1), then one of the inflectional triangles
is defined over F and X(K) is isomorphic to the set of lines of the triangle.
Note that the (generalized) Hesse normal form

a]x? + azxg + agxg — 3 x1x0x3

is the particular case of (0.1) where K = F x F x F (i.e., the T'-action on
X(K) is trivial) and a = (arl, a, 17a; 1. As an application, we show that the
form Tg(X?) can be reduced over F to a generalized Hesse normal form if
and only if K has the form F [v/d] for some d € F*, see Example 4.4.

The 9-dimensional étale F-algebra M associated to a cubic étale F-
algebra K and a unit a € K* was first defined by Markus Rost in relation
with Morley’s theorem. We are grateful to Markus for allowing us to quote
from his private note [10] in §2.

For background information on cubic curves, we refer to [3], Chapter 11
of [7], or [2].

1. ETALE ALGEBRAS OVER A FIELD

An étale F-algebra is a finite-dimensional commutative F-algebra A such
that AQp F, ~ Fy x ---x Fy; see [1, Ch. 5, §6] or [8, §18] for various other
characterizations of étale F-algebras. For any étale F-algebra, we denote by
X(A) the set of F-algebra homomorphisms A — Fy. This is a finite set with
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cardinality |¥(A)| = dimpA. Composition with automorphisms of F; endows
X(A) with a T'-set structure, and X is a contravariant functor that defines an
anti-equivalence of categories between the category Etp of étale F-algebras
and the category Setr of finite I'-sets, see [1, Ch. 5, §10] or [8, (18.4)].

Let G be a finite group of automorphisms of an étale F-algebra A. The
group G acts faithfully on the I'-set X(A).

PROPOSITION 1.1. If G acts freely (i.e., without fixed points) on X(A),
then
HY(G,A*) = 1.

Proof. The G-action on X(A) maps each I'-orbit on a I'-orbit, since the
actions of G and I' commute. We may thus decompose X(A) into a disjoint
union

XA =% 1]... 1 %,

where each X; is a union of I'-orbits permuted by G. Using the anti-
equivalence between Etr and Setr, we obtain a corresponding decomposition
of A into a direct product of étale F-algebras

A=A x---XA,.
The G-action preserves each A;, hence
H'(G,A™) = H(G,A[) x --- x H(G,A)).

Therefore, it suffices to prove that H'(G,A*) = 1 when G acts transitively
on the T'-orbits in X(A). These I'-orbits are in one-to-one correspondence
with the primitive idempotents of A. Let e be one of these idempotents and
let H C G be the subgroup of automorphisms that leave e fixed. Let also
B =e¢A. The map g ® b +— g(b) for g € G and b € B induces isomorphisms
of G-modules

A =Z[G] ®zm B, A* = Z[G] Qzm B™,

hence the Eckmann—Faddeev—Shapiro lemma (see for instance [4, Prop. (6.2),
p. 73]) yields an isomorphism

H'(G,A*) ~ H'(H,B®).

Now, B is a field and each element & € H restricts to an automorphism of
B. Let £ € X(A) be such that £(e) = 1, hence £(x) = &(ex) for all x € A. If
h € H restricts to the identity on B, then

eh(x) = h(ex) = ex for all x € A,
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hence
§(h(x)) =£x) for all x € A.

It follows that i leaves ¢ fixed, hence h = 1 since G acts freely on X(A).
Therefore, H embeds injectively in the group of automorphisms of B. Hilbert’s
Theorem 90 then yields H'(H,B*) =1, see [8, (29.2)].

2. MORLEY ALGEBRAS

Let K be an étale F-algebra of dimension 3. To every unit a € K* we
associate an étale F-algebra M(K,a) of dimension 9 by a construction due
to Markus Rost [10], which will be crucial for the description of the I'-action
on inflectional lines of a nonsingular cubic, see Theorem 3.2.

DEFINITION 2.1. Let D be the discriminant algebra of K (see [8, p. 291]);
this is a 2-dimensional étale F-algebra such that K ®p D is the S;3-Galois
closure of K, see [8, §18.C]. We thus have F-algebra automorphisms o, p
of K ®r D such that

olp=1dp, plg =1dg, o°=p?=Idggp, and po = o’p.

We identify each element x € K with its image x® 1 in K ® D and denote
its norm by Ng(x).

Now, fix an element a € K*. Let s, ¢ be indeterminates and consider the
quotient F-algebra

A=K®®fr D[s,t]/(s3 —oXa)o(a) ', P — NK(a)).

Since the characteristic is different from 3, every F-algebra homomorphism
K ®p D — F; extends in 9 different ways to A, so A is an étale F-algebra.
Abusing notations, we also denote by s and ¢ the images in A of the
indeterminates. Straightforward computations show that ¢ and p extend to
automorphisms of A by letting

o(s) =sto*(@) ', o=t ps)=s", pt)=t,

and that the extended o, p satisfy o> = p> =1Id4 and po = o2p, so they
generate a group G of automorphisms of A isomorphic to the symmetric
group S3. The subalgebra of A fixed under G is called the Morley F-algebra
associated with K and a. It is denoted by M(K,a).
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Since G acts freely on X(K ®F D), it also acts freely on X(A), hence
dimgp M(K,a) = 9.

It readily follows from the definition that M(K, a) contains the 3-dimensional
étale F-algebra
N(K,a) = F[f]  with £ = Ng(a).

Clearly, if a = M3a for some A € F* and k € K*, then there
is an isomorphism M(K,a') ~ M(K,a) induced by s — so(k)ok)~",
t — tANg(k).

EXAMPLE 2.2. Let K = F X F x F and a = (aj,a»>,a3) € K*. Then
D~F xF,so K®pD ~ F°. We index the primitive idempotents of K ® D
by the elements in G, so that the G-action on the primitive idempotents
(er)rec is given by

O(er) = epr for 6, T €G.
We identify K with a subalgebra of K ® D by
(x1,X2,x3) = x1(e1a + €p) + X2(e5 + €p5) + x3(e52 + €,02)

for x;, xp, x3 € F. Then A ~ F%[s,1] where

2
;3 o(a) a as ay as ar a
= = —ed+ —e;+ —ex+ —e,+ —esp+ —es2,
o@ a3 a a az a as
and
l3 = a|apas.

Let r = ETGG 7(s)e; € M(K,a). Then r* = Z—j and M(K,a) = F[r,t]. Note

2\ 3
that (’—’) =4 50
ay as
MK, a) ~ F[g/i‘, ,3/@} and  N(K,a) ~ FlY/araa).
as as

EXAMPLE 2.3. Let K be an arbitrary cubic étale F-algebra and let a = 1.
Let F[w] be the quadratic étale F-algebra with w?+w+1 = 0. By the Chinese
remainder theorem we have

N(K,1) = F[1]/( — 1) ~ F x F[w].
The corresponding orthogonal idempotents in N(K, 1) are

er=11+1+) and e=12-1-7).
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Let A =ejA and A; = e;A, so A =A; @A, and the G-action preserves A
and A,. Let

ey = %(1+S+S2)€1 €A 612:%(2—S—S2)el €A,
€1 = %(1 + 54 5D)es € Ay, &y = %(1 + st + 52H)es € Ay,
=1 2 2 A
63—3( + 517 4+ s°t)ey € Aj.
These elements are pairwise orthogonal idempotents, and we have
el = ej1 + e, e =€+ & +e3.
The G-action fixes e;; and ey, while

o(er) = e, o(e2) = €3, o(e3) = 1,

pler) = €1, pler) = €3, p(e3) = ea.

We have et =e; and e;15s = eq1, hence ¢jjA 2 K®D and e;)M(K,1) ~ F.
On the other hand, ejs is a primitive cube root of unity in e, M(K,1). It is
fixed under o and p(ejzs) = e12s~ L. Therefore, we have

epA ~K®DQ F[w] and enM(K, 1) ~ (D ® Flw])”,

where p acts non-trivially on D and F[w]. The quadratic étale algebra
(D ® Flw])? is the composite of D and F[w] in the group of quadratic
étale F-algebras, see [9, Prop. 3.11]. It is denoted by D x F[w]. Finally,
we have an isomorphism K ® Flw] ~ e;,M(K,1) by mapping x € K to
xe| + o(x)er + 02(x)e3 and w to est, sO

M(K,1) ~ F x (D x Flw]) X (K® F[w]).
Under this isomorphism, the inclusion N(K, 1) — M(K, 1) is the map
F X Flw] — F x (D x Flw]) X (K ® F[w]), (x,y) — (x,x,).
In particular, if F contains a cube root of unity, then Flw] ~ F x F and
M(K,1)~F xD x K xK.
The inclusion N(K, 1) — M(K, 1) is then given by
FXFxXF—-FxDxKXxK, x,y,2) — (x,x,y,2).

Details are left to the reader.
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In the rest of this section, we show how the I'-set X(M(K,a)) can be
characterized as the fiber of a certain (ramified) covering of the projective
plane.

Viewing K as an F-vector space, we may consider the projective plane
Py, whose points over the separable closure F; are

Px(F,) ={x-F} | x € K®F F;, x # 0}.
Let
(2.1)  m: Px(F,) — Px(F,), x-F*—x-F for xc K®F,, x#0.
We show in Theorem 2.6 below that there is an isomorphism of I'-sets

X(MK,a)) ~7"'(a-F) for ae K*.

In view of the anti-equivalence between Etr and Setr, this result characterizes
the Morley algebra M(K,a) up to isomorphism.

Until the end of this section, we fix a € K* and denote simply M(K,a)
by M. We identify K ® M with the subalgebra of A fixed under p.

LEMMA 2.4. There exists u € (K ® M)* such that s = o*(u)ou)~".

Proof. Define a map ¢: G — A* by

cdd)=c(’p)=1, clo)=clp)=s,  c(0®)=clop)=0o>(s)""

Computation shows that so(s)o2(s) = 1, and it follows that ¢ is a 1-cocycle.
Proposition 1.1 yields an element v € AX such that ¢(7) = v7(v)~! for all
7 € G; in particular, we have

s = va(v)71 = vp(v)fl.
Let u = 0*(v)~!. The equations above yield
s = az(u)cr(u)*1 and p(u) = u.

Therefore, u € K ® M, and this element satisfies the condition.

LEMMA 2.5. The set 7~ '(a-F}) has 9 elements if it is not empty.

Proof.  Suppose xog € K ® Fy is such that x3 - F = a- F)*. Then the map
y- FX + xoy- F) defines a bijection between 7~ !'(1-FX) and 7~ '(a- FX),
so it suffices to show |7~!(1-FX)| = 9. Identify K ® F, = F, x F, x Fj,
and let w € F be a primitive cube root of unity. To simplify notation, write
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(zi 22t z3) = (21, 20,23) - FY for z1, z2, z3 € F,. It is easy to check that
7~ 1(1 - FX) consists of the following elements:

(1:1:1), (1:w:w?), (1:w?:w),
(1:1:w), 1:w:1), w:1:1),
(1:1:w?), (1:w?: 1), (W?:1:1).

Each £ € X(M) extends uniquely to a K -algebra homomorphism
& K®rM — K ®p F,.

THEOREM 2.6 (Rost). Let u € (K ® M)* be such that o*(u)o(u)™' = s.
The map & — E(u) - F) defines an isomorphism of T -sets

O: XM) S 7 Na- FY).
Proof. If u € (K® M)* satisfies o?(u)o(u)~' = s, then
Awow’) ' =5 = o (@)o(@) !,

so a 'u? is fixed under o, hence a~'u® € M*. Therefore, cflé\(u)3 €FS,
hence &(u)- FX lies in 7~ '(a- FX).

Note that the map & does not depend on the choice of u: indeed, u
is determined uniquely up to a factor in M %, and for m € M* we have
Eum) = Ewém), so Eum) - F) = Eu) - F .

It is clear from the definition that the map & is I'-equivariant. Since
|X(M)| = |7~ (a-F)| =9, it suffices to show that @ is injective to complete
the proof. Extending scalars, we may assume K ~ F X F x F, and use the
notation of Example 2.2. Then, up to a factor in M*, we have

U= azp(s)eld +o(s)es + ex2 + o(s)e, + eqp + sz(s)e(,zp
2
ret

= ai(eld + ep) + r(es + eazp) + (60.2 + en’p)

2

2t
- (—,r,l) EKQM=MxMxM.

a

If € n € X(M) satisfy Eu)- FX = f) - FX, then ¢(Z!) = n(£!) and

az

&(r) =n(r). Since M is generated by r and ¢, it follows that £ = 5.

REMARK 2.7. As pointed out by Rost [10], the map 7 factors through

W(F,) = {(\x) - FX | X = Ng()} C Pryk(Fy) :
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we have m = 7 o mp where
m: Pe(F) — W(F),  x-F) — (Ng(x),x)) - F)f
and
w1 W(F,) — Px(Fy), MNx)-FS—x-FX.

There is a commutative diagram

X(M(K,a)) —2— Px(Fy)

%(i)l iﬂz

X(NK, @) —2— W(F,)

l -

xF) -2 Pu(Fy)

where X(i) is the map functorially associated to the inclusion i: N(K,a) —
M(K,a) and ®” maps the unique element of X(F) to a- F). The induced
map ®’ is an isomorphism of I'-sets

®': X(N(K,a)) = m (a- F)).

3. INFLECTION POINT CONFIGURATIONS

Let V be a 3-dimensional vector space over F. Let S*(V*) be the third
symmetric power of the dual space V*, i.e., the space of cubic forms on V.
A cubic form f € S*(V*) is called triangular if its zero set in the projective
plane Py (F;) form a triangle or, equivalently, if there exist linearly independent
linear forms ¢y, 2, @3 € V* ®f Fy such that f = @203 in S}V @ Fy).
The sides of the triangle are the zero sets of ¢, ¢y, and (3 ; they form a
3-element I'-set S&(f).

PROPOSITION 3.1. Let f € S*(V*) be a triangular cubic form and let K
be the cubic étale F-algebra such that X(K) ~ &(f). Then we may identify
the F-vector spaces V and K so as to identify f with a multiple of the norm
form of K,

f=ANg for some \ € F*.

In particular, the T -action on S(f) is trivial if and only if f factors into a
product of three independent linear forms in V*.
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Proof. Let f = p1p2p3 for some linearly independent linear forms ¢,
w2, 3 € VF® F,. Since "p17p Y03 = prpaps for v € T, it follows by
unique factorization in S’(V*) that there exist a permutation my of {1,2,3}
and scalars A\ .~ € FJ such that

'YQO,‘ = /\ﬂ—w(,‘)ﬂ(pﬂ—w(i) for i = 1, 2, 3.
Since “f‘scp,- = 7(590,-) for v, § € I', we have
A58 Prys ) = Y Ars(,6) Aoy s i),y Py s (i)
hence 7,5 = m,ms and
(31) )\w,y{s(i),'yﬁ = ’Y(Aﬂg(i),(s))\ﬂ"yﬂ'(s(i),’}/'

The T'-set &(f) is {1,2,3} with the I'-action 7 +— 7 ; therefore, we may
identify K with the F-algebra of I'-equivariant maps

K =Map({1,2,3},F)".
For v €T, define a, € Map({1,2,3},F)) = (K ® Fy)* by
a,y(i) = >\i,’y'

Clearly, a, = 1 if v fixes @1, 2, and 3 ; moreover, by (3.1) we have
ay"as = ays for v, 6 € I', hence (a,),er is a continuous 1-cocycle. By
Hilbert’s Theorem 90 [8, (29.2)], we have H'(T', (K ® F,;)*) = 1, hence there
exists b € Map({1,2,3}, F)) such that a, = b7b~! forall y €. For i =1,
2, 3, let ¢; = b(i)p; € V* ® F;. Let also

A= (B(BBB)) .

Computation shows that 7i; = ¢m(,~) for y € I' and i = 1, 2, 3, and
f = Mpirts in SP(VF @ Fy), hence X\ € F*. Define

0: V®F, — Map({1,2,3},F,) =K QF|

by
O): i — Pi(x) for i=1,2,3 and x€ VR F;.
Since 1, 1, 3 are linearly independent, © is an F-vector space

isomorphism. It restricts to an isomorphism of F-vector spaces V = K
under which f is identified with A Ng.
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Now, let J C Py(F,) be a 9-point set that has the characteristic property
of the set of inflection points of a nonsingular cubic curve: the line through
any two distinct points of J passes through exactly one third point of J. Let
£ be the set of lines in Py(Fy) that are incident to three points of J. This set
has 12 elements, and J, £ form an incidence geometry that is isomorphic to
the affine plane over the field with three elements, see [7, § 11.1]. In particular,
there is a partition of £ into four subsets Tg, ..., %3 of three lines, which
we call triangles, with the property that each point of J is incident to one
and only one line of each triangle.

Assume J is stable under the action of I', and I' preserves the triangle
Tp. Let K be the cubic étale F-algebra whose I'-set X(K) is isomorphic to
%o. By Proposition 3.1, we may identify V with K in such a way that the
union of the lines in T, is the zero set of the norm Ng.

THEOREM 3.2. There exists a € K* such that the T"-set of vertices of the
triangles Ty, %, %3 is ﬂ"l(a-FSX), where T: Px(F;) — Py (Fy) is defined
in (2.1). The set J is the set of inflection points of the cubics in the pencil
spanned by the forms Tg(a~'X?) and Ng(X), and we have isomorphisms of
I -sets

£~ XK[[X(MK,a)), {21, %, %3} ~ X(N(K, a)).

Proof.  Fix an isomorphism K ® Fy ~ F; x Fy; x Fy, and write simply
(x1 : xp : x3) for (xp,x2,x3) - F. The sides of % then are the lines with
equation x; =0, x; =0, and x3 = 0. Let J = {py,...,po}. We label the
points so that the incidence relations can be read from the representation of
the affine plane over F3 in Figure 1.

Say the line through p;, p», p3 is x; = 0, and the line through p4, ps,
De is xo = 0. We may then find u;, up, uz, v € F such that

pi=Q:u;:1) fori=1,2,3, and ps=(1:0:0).

Since p; lies at the intersection of x3; = 0 with the line through p; and py4,
we have
p7=0:—uwv:0).

Similarly,
ps=0:—uwpv:0) and po=(1:—uzv:0).

Finally, since ps (resp. p¢) lies at the intersection of x, = 0 with the line
through p; and pg (resp. py), we have
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Incidence relations on J
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ps = (u1 : 0 : upv) and Pe = (11 : 0 : uzv).

Collinearity of the points p,, ps, p7 (tesp. p2, pPs, Po; resp. ps, Pe, Ps)
yields
u% = w3, (resp. u% = ujusz; resp. u% = uuy).
Therefore,
M% = M% = u% = Ujurus.

Since u;, up, us are pairwise distinct, it follows that there is a primitive cube
root of unity w € F such that

Uy = wiy and uz = wluy.
Straightforward computations yield the vertices of the triangles T;, %, %5

T =0 :uv: —v), ¢ =0:umv:—w™), ¢ = uv:—v),
T g = (w:uv: —v), ¢ =~0:uv:—wv), ¢ =:wuv:—v),

Tz =1 wwv: —w?), ¢4 =W wuv:—v), ¢§=1:umv:—v).
Let ap = (1,ujv’, —v’) € (K ® Fy)* . It is readily verified that

{qlaqllvqlllvq2>qqulzlvq%qg’qg} - Wﬁl(ao : va)

Since J is stable under the action of I', the point ap - F)* is fixed under I',
hence for v € I' there exists A, € F;* such that

Y(ap) = apAy  in KQF;.

Then (A,)yecr is a continuous 1-cocycle of I' in F;*. Hilbert’s Theorem 90
yields an element p € FY such that A\, = pvy(u)~! for all v € I'. Then
for a = app we have ay - F = a-F} and 7(a) = a for all v € I', hence
a€K*.

The inflection points of the cubics in the pencil spanned by Tx(a~'X?)
and Ng(X) are the points (x; : xp : x3) such that

3 -3.3 -3.3 _
{x1+(u1v) X, — v "x3 =0,

X1X2X3 = 0

The solutions of this system are exactly the points pi, ..., pg.

Finally, the I'-set of sides of the triangle ¥, is isomorphic to X(K)
by hypothesis, and the map that associates to each side of a triangle its
opposite vertex defines an isomorphism between the set of sides of ¥,
T, T3 and the set {qi,...,q4} = 7 '(a - F}). By Theorem 2.6, we have
7 a-F})~X(M(K,a)), hence
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L~ XX (MK, a).
This isomorphism induces an isomorphism
{21,%, %} ~ X(NK, ),

which can be made explicit by the following observation: the triangular cubic
forms in the pencil spanned by Tg(a~'X?) and Nx(X) are the scalar multiples
of Ng(X) (whose zero set is the triangle Ty) and of Tr(a 'X3) — 3zNg(X)
where z € F is such that z> = Ng(a™"). The zero set of the latter form is
%1, T or T3 depending on the choice of z, and the three values of z are
in one-to-one correspondence with the elements in the fibre of the map 7; in
Remark 2.7.

4. NORMAL FORMS OF TERNARY CUBICS

Let V be a 3-dimensional vector space over F and let f € S3(V*) be a
nonsingular cubic form. Recall from the introduction the notation J(f) (resp.
L£(f), resp. X(f)) for the set of inflection points (resp. inflectional lines, resp.
inflectional triangles) of f. The following result is a direct application of
Theorem 3.2:

COROLLARY 4.1. Let K be a cubic étale F-algebra. The following
conditions are equivalent :
(i) f is isometric to a cubic form Tg(a~'X*)—3XNg(X) for some unit a € K*
and some scalar \ € F ;
(ii) T has a fixed point Ty € Z(f) with Ty ~ X(K) (as ['-sets of 3 elements).
When these conditions hold, then

£(f) ~ XK X (MK, a)), and () ~ {TH I X(N(K, a)).

Proof. If f(X) = Tr(a 'X3)—=3ANg(X), then computation shows that the
zero set of Nk is an inflectional triangle of f. This triangle is clearly preserved
under the I'-action. Conversely, if Ty € T(f) is preserved under the I'-action
and K is the cubic étale F-algebra such that X(K) ~ ¥, Theorem 3.2 yields
an element a € K* such that the forms Tg(a~'X?) and Ng(X) span the
pencil of cubics whose set of inflection points is J(f).
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Applying Corollary 4.1 in the case where F is a finite field yields a direct
proof of the following result from [7, p. 276]:

COROLLARY 4.2. Suppose F is a finite field with q elements. For any
nonsingular cubic form f, the number of inflectional triangles of f defined
over F is 0, 1, or 4 if g=1mod3; itis 0 or 2 if ¢g= —1 mod 3.

Proof. Since F is finite, the action of I' on ‘Z(f) factors through a cyclic
group. If there is at least one fixed triangle %, then Corollary 4.1 yields a
decomposition

() ~ {T}H X (N (K, a))

where N(K,a) = F[t] with ©* = Ng(a). If N(K,a) is a field, then it must be
a cyclic extension of F, hence F contains a primitive cube root of unity and
therefore ¢ = 1 mod 3. Similarly, if N(K,a) ~ F X F x F, then F contains
a primitive cube root of unity. Thus, if ¢ = —1 mod 3, the I'-action on Z(f)
has either 0 or 2 fixed points. If ¢ = 1 mod 3 then F contains a primitive
cube root of unity and either the polynomial x* — Ng(a) is irreducible or it
splits into linear factors. Therefore, the I'-action on %(f) has either 0, 1, or
4 fixed points.

We next spell out the special case of Corollary 4.1 where the cubic étale
F-algebra K is the split algebra FF X F X F:

COROLLARY 4.3. There is a basis of V in which f takes the generalized
Hesse normal form alx? + azx% —|—a3x§ —3M\xixpx3 for some ay, ap, az € F*
and X\ € F if and only if T’ has a fixed point Ty € T(f) and acts trivially on
%o (viewed as a 3-element subset of £(f)).

EXAMPLE 4.4. Let K be a cubic étale F-algebra and let f(X) = Tg(X?).

By Corollary 4.1 we have
£(f) ~ X(K)][] 3€(M(K7 1)) and T(f) ~ {%o}1 %(N(K, 1)).
The T'-sets X (M(K , 1)) and X (N(K , 1)) are determined in Example 2.3:
X (MK, 1)) ~ X[ XD = FlwD[[ X(K @ Flw])
and
X(N(K, 1)) ~ X(PO]] X(F[w).

The map X(i): X (M(K , 1)) — X(N (K, 1)) functorially associated to the
inclusion i: N(K,1) — M(K,1) maps X(F)[[X(D x Flw]) to X(F) and
X(K ® Flw]) to X(F[w]).
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If K~ FxFxF, then f(x;,x,x) = x; +x3 + x3 so f has a Hesse
normal form. If K %2 F x F x F, then the I'-action on X(K), hence also
on X(K ® F[w]), is nontrivial. Therefore, it follows from Corollary 4.3 that
f has a generalized Hesse normal form over F if and only if the I'-action
on X(D x F[w]) is trivial. This happens if and only if D ~ F[w], which is
equivalent to K ~ F[v/d] for some d € F*, by [8, (18.32)]. Indeed, for
X =x +xvd+ x3\3/cﬁ , computation yields

fX)= 3(x? + dx% + dzxg + 6dx1x2x3).
Corollary 4.3 applies in particular when F is the field R of real numbers:

COROLLARY 4.5. Every nonsingular cubic form over R can be reduced
to a generalized Hesse normal form.

Proof. 1t is clear from the Weierstrass normal form that every nonsingular
cubic over R has three real collinear inflection points, see [3, Prop. 14, p. 305].
The inflectional line through these points is fixed under I', hence the I'-action
on Z(f) has at least one fixed point. The same argument as in Corollary 4.2
then shows that ' has exactly two fixed points in T(f). Let Ty, % € T(f)
be the fixed inflectional triangles. Assume the I'-action on ¥, (viewed as a
3-element set) is not trivial, hence K ~ Rx C in the notation of Corollary 4.1;
we shall prove that the I'-action on ¥, is trivial. By Corollary 4.1, there is
a unit a = (a;,a;) € R x C such that

L)~ XR x OI[X(MR x C,a)).
By Theorem 2.6, we have an isomorphism of I'-sets
®: X(MR x C,a)) = 7 (a- C*) C Pryc(C).

We identify (R x C)®grC with Cx C x C by mapping (r,x)®y to (ry,xy,xy)
for r € R and x, y € C. Then the I'-action on Pryc = P3C is such that the
complex conjugation — acts by

(x1 :x2 1x3) — (X7 1 X3 1 X2).

If £ € R and n € C satisfy & = a; and 1’ = ap, and if w € C is
a primitive cube root of unity, then the proof of Lemma 2.5 shows that
7~ (a- C*) consists of the following elements :

E:n:m), (€ wn : wn), (€ = wn = wip),

(€ :n:wi, (€ :wn:m), (W€ :n 1,
(§:m:owm), (§:wn 1), @& :m:m).
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The three points in the first row of this table are fixed under the I'-action,
whereas the I'-action interchanges the second and third row. Therefore, the
first row corresponds to ¥, under @, and the proof is complete.

When the conditions in Corollary 4.1 do not hold, we may still consider
the 4-dimensional étale F-algebra T(f) such that X(7(f)) = T(f), and the
12-dimensional étale F-algebra L(f) such that X(L(f)) = L£(f), which is a
cubic étale extension of T'(f). The separability idempotent e € T(f) @p T(f)
satisfies e - (T(f) @ T(f)) ~ T(f), hence it yields a decomposition

T(f) @r T(f) =~ T(f) < T(fo

for some cubic algebra T(f)y over T(f). Likewise, multiplication in L(f)
yields an isomorphism

e (L(H @ T()) ~ L(f),
hence
L(f) ®F T(f) ~ L(f) x L(f)o

for some cubic algebra L(f)y over T(f)o. By functoriality of the construction
of L and T, the cubic form fry) over V ®@p T(f) obtained from f by scalar
extension to T'(f) satisfies

L(fr¢) ~= L(f) ®F T(f) and T(fr¢)) = T(f) @ T(f).

Corollary 4.1 applied to fr¢, shows that fry) is isometric to Trp(a™'X3) —
3ANgp)(X) for some A € T(f)* and some a € L(f)* such that L(f)y is a
Morley T(f)-algebra L(f)o ~ M(L(f),a).
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