TERNARY CUBIC FORMS AND ÉTALE ALGEBRAS

by Mélanie RACZEK and Jean-Pierre TIGNOL*)

The configuration of inflection points on a nonsingular cubic curve in the complex projective plane has a well-known remarkable feature: the line by any two of the nine inflection points passes through a third inflection point. Therefore, the inflection points and the 12 lines through them form a tactical configuration (9₄, 12₃), which is the configuration of points and lines of the affine plane over the field with 3 elements ([3, p. 295], [7, p. 242]). This property was used by Hesse to show that the inflection points of a ternary cubic over the rationals are defined over a solvable extension, see [11, §110]. As a result, any ternary cubic can be brought to a normal form $x_1^3 + x_2^3 + x_3^3 - 3\lambda x_1 x_2 x_3$ over a solvable extension of the base field.¹) The purpose of this paper is to investigate this extension.

Throughout the paper, we denote by F an arbitrary field of characteristic different from 3, by F_s a separable closure of F and by $\Gamma = \text{Gal}(F_s/F)$ its Galois group. Let V be a 3-dimensional F-vector space and let $f \in S^3(V^*)$ be a cubic form on V. Assume that f has no singular zero in the projective plane $\mathbf{P}_V(F_s)$. Then the set $\Im(f) \subseteq \mathbf{P}_V(F_s)$ of inflection points has 9 elements. There are 12 lines in $\mathbf{P}_V(F_s)$ that contain three points of $\Im(f)$; they are called *inflectional lines*. Their set $\Im(f)$ is partitioned into four 3-element subsets \Im_0 , \Im_1 , \Im_2 , \Im_3 called *inflectional triangles*, which have the property that each inflection point is incident to exactly one line of each triangle. Let $\Im(f) = {\{\Im_0, \Im_1, \Im_2, \Im_3\}}$. There is a canonical map $\pounds(f) \to \Im(f)$, which carries every inflectional line to the unique triangle that contains it. The Galois

 $^{^{*}}$) The second author is partially supported by the Fund for Scientific Research F.R.S.-FNRS (Belgium).

¹) We are grateful to the erudite anonymous referee who pointed out that the normal form of cubics was obtained by Hesse in [5, §20, Aufgabe 2], *before* he proved (in [6]) that the equation of inflection points is solvable by radicals.

group Γ acts on $\mathfrak{I}(f)$, hence also on $\mathfrak{L}(f)$ and $\mathfrak{T}(f)$, and the canonical map $\mathfrak{L}(f) \to \mathfrak{T}(f)$ is a triple covering of Γ -sets, in the terminology of [9, §2.2]. Galois theory associates to the Γ -set $\mathfrak{L}(f)$ a 12-dimensional étale *F*-algebra L(f), which is a cubic étale extension of the 4-dimensional étale *F*-algebra T(f) associated to $\mathfrak{T}(f)$. We show in §4 that if one of the inflectional triangles, say \mathfrak{T}_0 , is defined over *F*, hence preserved under the Γ -action, then there are decompositions

$$T(f) \simeq F \times N, \qquad L(f) \simeq K \times M$$

where *N* and *K* are cubic étale *F*-algebras whose corresponding Γ -sets are $\mathfrak{X}(N) = {\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3}$ and $\mathfrak{X}(K) = \mathfrak{T}_0$ respectively, and *M* is a 9-dimensional étale *F*-algebra containing *N*, associated to *K* and a unit $a \in K^{\times}$. One can then identify the vector space *V* with *K* in such a way that

(0.1)
$$f(X) = \mathsf{T}_K(a^{-1}X^3) - 3\lambda \,\mathsf{N}_K(X) \quad \text{for some } \lambda \in F,$$

where T_K and N_K are the trace and the norm of the *F*-algebra *K*. Conversely, if *f* can be reduced to the form (0.1), then one of the inflectional triangles is defined over *F* and $\mathfrak{X}(K)$ is isomorphic to the set of lines of the triangle. Note that the (generalized) Hesse normal form

$$a_1x_1^3 + a_2x_2^3 + a_3x_3^3 - 3\lambda x_1x_2x_3$$

is the particular case of (0.1) where $K = F \times F \times F$ (i.e., the Γ -action on $\mathfrak{X}(K)$ is trivial) and $a = (a_1^{-1}, a_2^{-1}, a_3^{-1})$. As an application, we show that the form $T_K(X^3)$ can be reduced over F to a generalized Hesse normal form if and only if K has the form $F[\sqrt[3]{d}]$ for some $d \in F^{\times}$, see Example 4.4.

The 9-dimensional étale *F*-algebra *M* associated to a cubic étale *F*-algebra *K* and a unit $a \in K^{\times}$ was first defined by Markus Rost in relation with Morley's theorem. We are grateful to Markus for allowing us to quote from his private note [10] in §2.

For background information on cubic curves, we refer to [3], Chapter 11 of [7], or [2].

1. ÉTALE ALGEBRAS OVER A FIELD

An *étale F*-algebra is a finite-dimensional commutative *F*-algebra *A* such that $A \otimes_F F_s \simeq F_s \times \cdots \times F_s$; see [1, Ch. 5, §6] or [8, §18] for various other characterizations of étale *F*-algebras. For any étale *F*-algebra, we denote by $\mathfrak{X}(A)$ the set of *F*-algebra homomorphisms $A \to F_s$. This is a finite set with

cardinality $|\mathfrak{X}(A)| = \dim_F A$. Composition with automorphisms of F_s endows $\mathfrak{X}(A)$ with a Γ -set structure, and \mathfrak{X} is a contravariant functor that defines an anti-equivalence of categories between the category Et_F of étale *F*-algebras and the category Set_{Γ} of finite Γ -sets, see [1, Ch. 5, §10] or [8, (18.4)].

Let G be a finite group of automorphisms of an étale F-algebra A. The group G acts faithfully on the Γ -set $\mathfrak{X}(A)$.

PROPOSITION 1.1. If G acts freely (i.e., without fixed points) on $\mathfrak{X}(A)$, then

$$H^1(G, A^{\times}) = 1.$$

Proof. The G-action on $\mathfrak{X}(A)$ maps each Γ -orbit on a Γ -orbit, since the actions of G and Γ commute. We may thus decompose $\mathfrak{X}(A)$ into a disjoint union

$$\mathfrak{X}(A) = \mathfrak{X}_1 [] \dots [] \mathfrak{X}_n$$

where each \mathfrak{X}_i is a union of Γ -orbits permuted by G. Using the antiequivalence between Et_F and Set_{Γ} , we obtain a corresponding decomposition of A into a direct product of étale F-algebras

$$A = A_1 \times \cdots \times A_n.$$

The G-action preserves each A_i , hence

$$H^1(G, A^{\times}) = H^1(G, A_1^{\times}) \times \cdots \times H^1(G, A_n^{\times}).$$

Therefore, it suffices to prove that $H^1(G, A^{\times}) = 1$ when *G* acts transitively on the Γ -orbits in $\mathfrak{X}(A)$. These Γ -orbits are in one-to-one correspondence with the primitive idempotents of *A*. Let *e* be one of these idempotents and let $H \subseteq G$ be the subgroup of automorphisms that leave *e* fixed. Let also B = eA. The map $g \otimes b \mapsto g(b)$ for $g \in G$ and $b \in B$ induces isomorphisms of *G*-modules

$$A = \mathbf{Z}[G] \otimes_{\mathbf{Z}[H]} B, \qquad A^{\times} = \mathbf{Z}[G] \otimes_{\mathbf{Z}[H]} B^{\times},$$

hence the Eckmann–Faddeev–Shapiro lemma (see for instance [4, Prop. (6.2), p. 73]) yields an isomorphism

$$H^1(G, A^{\times}) \simeq H^1(H, B^{\times}).$$

Now, *B* is a field and each element $h \in H$ restricts to an automorphism of *B*. Let $\xi \in \mathfrak{X}(A)$ be such that $\xi(e) = 1$, hence $\xi(x) = \xi(ex)$ for all $x \in A$. If $h \in H$ restricts to the identity on *B*, then

$$e h(x) = h(ex) = ex$$
 for all $x \in A$,

hence

$$\xi(h(x)) = \xi(x)$$
 for all $x \in A$.

It follows that *h* leaves ξ fixed, hence h = 1 since *G* acts freely on $\mathfrak{X}(A)$. Therefore, *H* embeds injectively in the group of automorphisms of *B*. Hilbert's Theorem 90 then yields $H^1(H, B^{\times}) = 1$, see [8, (29.2)].

2. MORLEY ALGEBRAS

Let K be an étale F-algebra of dimension 3. To every unit $a \in K^{\times}$ we associate an étale F-algebra M(K, a) of dimension 9 by a construction due to Markus Rost [10], which will be crucial for the description of the Γ -action on inflectional lines of a nonsingular cubic, see Theorem 3.2.

DEFINITION 2.1. Let *D* be the discriminant algebra of *K* (see [8, p. 291]); this is a 2-dimensional étale *F*-algebra such that $K \otimes_F D$ is the *S*₃-Galois closure of *K*, see [8, §18.C]. We thus have *F*-algebra automorphisms σ , ρ of $K \otimes_F D$ such that

$$\sigma|_D = \mathrm{Id}_D, \quad \rho|_K = \mathrm{Id}_K, \quad \sigma^3 = \rho^2 = \mathrm{Id}_{K\otimes D}, \quad \text{and} \quad \rho\sigma = \sigma^2 \rho.$$

We identify each element $x \in K$ with its image $x \otimes 1$ in $K \otimes D$ and denote its norm by $N_K(x)$.

Now, fix an element $a \in K^{\times}$. Let *s*, *t* be indeterminates and consider the quotient *F*-algebra

$$A = K \otimes_F D[s,t] / \left(s^3 - \sigma^2(a)\sigma(a)^{-1}, t^3 - \mathsf{N}_K(a)\right).$$

Since the characteristic is different from 3, every *F*-algebra homomorphism $K \otimes_F D \to F_s$ extends in 9 different ways to *A*, so *A* is an étale *F*-algebra. Abusing notations, we also denote by *s* and *t* the images in *A* of the indeterminates. Straightforward computations show that σ and ρ extend to automorphisms of *A* by letting

$$\sigma(s) = st\sigma^2(a)^{-1}, \quad \sigma(t) = t, \quad \rho(s) = s^{-1}, \quad \rho(t) = t,$$

and that the extended σ , ρ satisfy $\sigma^3 = \rho^2 = \text{Id}_A$ and $\rho\sigma = \sigma^2\rho$, so they generate a group *G* of automorphisms of *A* isomorphic to the symmetric group *S*₃. The subalgebra of *A* fixed under *G* is called the *Morley F*-algebra associated with *K* and *a*. It is denoted by M(K, a).

Since G acts freely on $\mathfrak{X}(K \otimes_F D)$, it also acts freely on $\mathfrak{X}(A)$, hence

 $\dim_F M(K, a) = 9.$

It readily follows from the definition that M(K, a) contains the 3-dimensional étale *F*-algebra

$$N(K, a) = F[t]$$
 with $t^3 = N_K(a)$.

Clearly, if $a' = \lambda k^3 a$ for some $\lambda \in F^{\times}$ and $k \in K^{\times}$, then there is an isomorphism $M(K, a') \simeq M(K, a)$ induced by $s' \mapsto s\sigma^2(k)\sigma(k)^{-1}$, $t' \mapsto t\lambda N_K(k)$.

EXAMPLE 2.2. Let $K = F \times F \times F$ and $a = (a_1, a_2, a_3) \in K^{\times}$. Then $D \simeq F \times F$, so $K \otimes_F D \simeq F^6$. We index the primitive idempotents of $K \otimes D$ by the elements in *G*, so that the *G*-action on the primitive idempotents $(e_{\tau})_{\tau \in G}$ is given by

$$\theta(e_{\tau}) = e_{\theta\tau}$$
 for $\theta, \ \tau \in G$.

We identify K with a subalgebra of $K \otimes D$ by

$$(x_1, x_2, x_3) = x_1(e_{\mathrm{Id}} + e_{\rho}) + x_2(e_{\sigma} + e_{\rho\sigma}) + x_3(e_{\sigma^2} + e_{\rho\sigma^2})$$

for $x_1, x_2, x_3 \in F$. Then $A \simeq F^6[s, t]$ where

$$s^{3} = \frac{\sigma^{2}(a)}{\sigma(a)} = \frac{a_{2}}{a_{3}}e_{\mathrm{Id}} + \frac{a_{3}}{a_{1}}e_{\sigma} + \frac{a_{1}}{a_{2}}e_{\sigma^{2}} + \frac{a_{3}}{a_{2}}e_{\rho} + \frac{a_{2}}{a_{1}}e_{\sigma\rho} + \frac{a_{1}}{a_{3}}e_{\sigma^{2}\rho}$$

and

$$t^3 = a_1 a_2 a_3.$$

Let $r = \sum_{\tau \in G} \tau(s) e_{\tau} \in M(K, a)$. Then $r^3 = \frac{a_2}{a_3}$ and M(K, a) = F[r, t]. Note that $\left(\frac{r^2 t}{a_2}\right)^3 = \frac{a_1}{a_3}$, so

$$M(K,a) \simeq F\left[\sqrt[3]{\frac{d_1}{a_3}}, \sqrt[3]{\frac{d_2}{a_3}}\right]$$
 and $N(K,a) \simeq F\left[\sqrt[3]{a_1a_2a_3}\right].$

EXAMPLE 2.3. Let K be an arbitrary cubic étale F-algebra and let a = 1. Let $F[\omega]$ be the quadratic étale F-algebra with $\omega^2 + \omega + 1 = 0$. By the Chinese remainder theorem we have

$$N(K,1) = F[t]/(t^3 - 1) \simeq F \times F[\omega].$$

The corresponding orthogonal idempotents in N(K, 1) are

$$e_1 = \frac{1}{3}(1+t+t^2)$$
 and $e_2 = \frac{1}{3}(2-t-t^2)$.

Let $A_1 = e_1A$ and $A_2 = e_2A$, so $A = A_1 \oplus A_2$ and the *G*-action preserves A_1 and A_2 . Let

$$e_{11} = \frac{1}{3}(1+s+s^2)e_1 \in A_1, \qquad e_{12} = \frac{1}{3}(2-s-s^2)e_1 \in A_1,$$

$$\varepsilon_1 = \frac{1}{3}(1+s+s^2)e_2 \in A_2, \qquad \varepsilon_2 = \frac{1}{3}(1+st+s^2t^2)e_2 \in A_2,$$

$$\varepsilon_3 = \frac{1}{3}(1+st^2+s^2t)e_2 \in A_2.$$

These elements are pairwise orthogonal idempotents, and we have

$$e_1 = e_{11} + e_{12}, \qquad e_2 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3.$$

The G-action fixes e_{11} and e_{12} , while

$$\sigma(\varepsilon_1) = \varepsilon_2, \qquad \sigma(\varepsilon_2) = \varepsilon_3, \qquad \sigma(\varepsilon_3) = \varepsilon_1,$$

$$\rho(\varepsilon_1) = \varepsilon_1, \qquad \rho(\varepsilon_2) = \varepsilon_3, \qquad \rho(\varepsilon_3) = \varepsilon_2.$$

We have $e_1t = e_1$ and $e_{11}s = e_{11}$, hence $e_{11}A \simeq K \otimes D$ and $e_{11}M(K, 1) \simeq F$. On the other hand, $e_{12}s$ is a primitive cube root of unity in $e_{12}M(K, 1)$. It is fixed under σ and $\rho(e_{12}s) = e_{12}s^{-1}$. Therefore, we have

$$e_{12}A \simeq K \otimes D \otimes F[\omega]$$
 and $e_{12}M(K,1) \simeq (D \otimes F[\omega])^{\rho}$,

where ρ acts non-trivially on D and $F[\omega]$. The quadratic étale algebra $(D \otimes F[\omega])^{\rho}$ is the *composite* of D and $F[\omega]$ in the group of quadratic étale F-algebras, see [9, Prop. 3.11]. It is denoted by $D * F[\omega]$. Finally, we have an isomorphism $K \otimes F[\omega] \simeq e_2 M(K, 1)$ by mapping $x \in K$ to $x\varepsilon_1 + \sigma(x)\varepsilon_2 + \sigma^2(x)\varepsilon_3$ and ω to e_2t , so

$$M(K,1) \simeq F \times (D * F[\omega]) \times (K \otimes F[\omega]).$$

Under this isomorphism, the inclusion $N(K, 1) \hookrightarrow M(K, 1)$ is the map

$$F \times F[\omega] \to F \times (D * F[\omega]) \times (K \otimes F[\omega]), \qquad (x, y) \mapsto (x, x, y).$$

In particular, if F contains a cube root of unity, then $F[\omega] \simeq F \times F$ and

$$M(K, 1) \simeq F \times D \times K \times K.$$

The inclusion $N(K, 1) \hookrightarrow M(K, 1)$ is then given by

$$F \times F \times F \to F \times D \times K \times K$$
, $(x, y, z) \mapsto (x, x, y, z)$.

Details are left to the reader.

In the rest of this section, we show how the Γ -set $\mathfrak{X}(M(K, a))$ can be characterized as the fiber of a certain (ramified) covering of the projective plane.

Viewing K as an F-vector space, we may consider the projective plane \mathbf{P}_K , whose points over the separable closure F_s are

$$\mathbf{P}_K(F_s) = \{ x \cdot F_s^{\times} \mid x \in K \otimes_F F_s, \ x \neq 0 \}.$$

Let

(2.1)
$$\pi: \mathbf{P}_{K}(F_{s}) \to \mathbf{P}_{K}(F_{s}), \quad x \cdot F_{s}^{\times} \mapsto x^{3} \cdot F_{s}^{\times} \text{ for } x \in K \otimes F_{s}, \ x \neq 0.$$

We show in Theorem 2.6 below that there is an isomorphism of Γ -sets

$$\mathfrak{X}(M(K,a)) \simeq \pi^{-1}(a \cdot F_s^{\times}) \quad \text{for } a \in K^{\times}.$$

In view of the anti-equivalence between Et_F and Set_{Γ} , this result characterizes the Morley algebra M(K, a) up to isomorphism.

Until the end of this section, we fix $a \in K^{\times}$ and denote simply M(K, a) by M. We identify $K \otimes M$ with the subalgebra of A fixed under ρ .

LEMMA 2.4. There exists $u \in (K \otimes M)^{\times}$ such that $s = \sigma^2(u)\sigma(u)^{-1}$.

Proof. Define a map $c: G \to A^{\times}$ by

 $c(\mathrm{Id}) = c(\sigma^2 \rho) = 1, \qquad c(\sigma) = c(\rho) = s, \qquad c(\sigma^2) = c(\sigma \rho) = \sigma^2(s)^{-1}.$

Computation shows that $s\sigma(s)\sigma^2(s) = 1$, and it follows that c is a 1-cocycle. Proposition 1.1 yields an element $v \in A^{\times}$ such that $c(\tau) = v\tau(v)^{-1}$ for all $\tau \in G$; in particular, we have

$$s = v\sigma(v)^{-1} = v\rho(v)^{-1}.$$

Let $u = \sigma^2(v)^{-1}$. The equations above yield

$$s = \sigma^2(u)\sigma(u)^{-1}$$
 and $\rho(u) = u$.

Therefore, $u \in K \otimes M$, and this element satisfies the condition.

LEMMA 2.5. The set $\pi^{-1}(a \cdot F_s^{\times})$ has 9 elements if it is not empty.

Proof. Suppose $x_0 \in K \otimes F_s$ is such that $x_0^3 \cdot F_s^{\times} = a \cdot F_s^{\times}$. Then the map $y \cdot F_s^{\times} \mapsto x_0 y \cdot F_s^{\times}$ defines a bijection between $\pi^{-1}(1 \cdot F_s^{\times})$ and $\pi^{-1}(a \cdot F_s^{\times})$, so it suffices to show $|\pi^{-1}(1 \cdot F_s^{\times})| = 9$. Identify $K \otimes F_s = F_s \times F_s \times F_s$, and let $\omega \in F_s^{\times}$ be a primitive cube root of unity. To simplify notation, write

 $(z_1: z_2: z_3) = (z_1, z_2, z_3) \cdot F_s^{\times}$ for $z_1, z_2, z_3 \in F_s$. It is easy to check that $\pi^{-1}(1 \cdot F_s^{\times})$ consists of the following elements:

(1:1:1),	$(1:\omega:\omega^2),$	$(1:\omega^2:\omega),$
$(1:1:\omega),$	$(1:\omega:1),$	$(\omega: 1: 1),$
$(1:1:\omega^2),$	$(1:\omega^2:1),$	$(\omega^2:1:1).$

Each $\xi \in \mathfrak{X}(M)$ extends uniquely to a *K*-algebra homomorphism

$$\xi\colon K\otimes_F M\to K\otimes_F F_s$$

THEOREM 2.6 (Rost). Let $u \in (K \otimes M)^{\times}$ be such that $\sigma^2(u)\sigma(u)^{-1} = s$. The map $\xi \mapsto \widehat{\xi}(u) \cdot F_s^{\times}$ defines an isomorphism of Γ -sets

$$\Phi: \mathfrak{X}(M) \xrightarrow{\sim} \pi^{-1}(a \cdot F_s^{\times}).$$

Proof. If $u \in (K \otimes M)^{\times}$ satisfies $\sigma^2(u)\sigma(u)^{-1} = s$, then

$$\sigma^{2}(u^{3})\sigma(u^{3})^{-1} = s^{3} = \sigma^{2}(a)\sigma(a)^{-1}$$

so $a^{-1}u^3$ is fixed under σ , hence $a^{-1}u^3 \in M^{\times}$. Therefore, $a^{-1}\widehat{\xi}(u)^3 \in F_s^{\times}$, hence $\widehat{\xi}(u) \cdot F_s^{\times}$ lies in $\pi^{-1}(a \cdot F_s^{\times})$.

Note that the map Φ does not depend on the choice of u: indeed, u is determined uniquely up to a factor in M^{\times} , and for $m \in M^{\times}$ we have $\widehat{\xi}(um) = \widehat{\xi}(u)\xi(m)$, so $\widehat{\xi}(um) \cdot F_s^{\times} = \widehat{\xi}(u) \cdot F_s^{\times}$.

It is clear from the definition that the map Φ is Γ -equivariant. Since $|\mathfrak{X}(M)| = |\pi^{-1}(a \cdot F_s^{\times})| = 9$, it suffices to show that Φ is injective to complete the proof. Extending scalars, we may assume $K \simeq F \times F \times F$, and use the notation of Example 2.2. Then, up to a factor in M^{\times} , we have

$$u = \sigma^2 \rho(s) e_{\mathrm{Id}} + \sigma(s) e_{\sigma} + e_{\sigma^2} + \sigma(s) e_{\rho} + e_{\sigma\rho} + \sigma^2 \rho(s) e_{\sigma^2 \rho}$$
$$= \frac{r^2 t}{a_2} (e_{\mathrm{Id}} + e_{\rho}) + r(e_{\sigma} + e_{\sigma^2 \rho}) + (e_{\sigma^2} + e_{\sigma\rho})$$
$$= \left(\frac{r^2 t}{a_2}, r, 1\right) \in K \otimes M = M \times M \times M.$$

If ξ , $\eta \in \mathfrak{X}(M)$ satisfy $\widehat{\xi}(u) \cdot F_s^{\times} = \widehat{\eta}(u) \cdot F_s^{\times}$, then $\xi\left(\frac{r^2t}{a_2}\right) = \eta\left(\frac{r^2t}{a_2}\right)$ and $\xi(r) = \eta(r)$. Since *M* is generated by *r* and *t*, it follows that $\xi = \eta$.

REMARK 2.7. As pointed out by Rost [10], the map π factors through

$$W(F_s) = \{ (\lambda, x) \cdot F_s^{\times} \mid \lambda^3 = \mathsf{N}_K(x) \} \subseteq \mathbf{P}_{F \times K}(F_s) :$$

we have $\pi = \pi_1 \circ \pi_2$ where

$$\pi_2 \colon \mathbf{P}_K(F_s) \to W(F_s), \qquad x \cdot F_s^{\times} \mapsto (\mathsf{N}_K(x), x^3) \cdot F_s^{\times}$$

and

$$\pi_1\colon W(F_s)\to \mathbf{P}_K(F_s), \qquad (\lambda,x)\cdot F_s^\times\mapsto x\cdot F_s^\times.$$

There is a commutative diagram

$$\begin{array}{ccc} \mathfrak{X}(M(K,a)) & \stackrel{\Psi}{\longrightarrow} & \mathbf{P}_{K}(F_{s}) \\ \mathfrak{X}(i) \downarrow & & \downarrow \pi_{2} \\ \mathfrak{X}(N(K,a)) & \stackrel{\Phi'}{\longrightarrow} & W(F_{s}) \\ \downarrow & & \downarrow \pi_{1} \\ \mathfrak{X}(F) & \stackrel{\Phi''}{\longrightarrow} & \mathbf{P}_{K}(F_{s}) \end{array}$$

where $\mathfrak{X}(i)$ is the map functorially associated to the inclusion $i: N(K, a) \hookrightarrow M(K, a)$ and Φ'' maps the unique element of $\mathfrak{X}(F)$ to $a \cdot F_s^{\times}$. The induced map Φ' is an isomorphism of Γ -sets

$$\Phi': \mathfrak{X}(N(K,a)) \xrightarrow{\sim} \pi_1^{-1}(a \cdot F_s^{\times}).$$

3. INFLECTION POINT CONFIGURATIONS

Let *V* be a 3-dimensional vector space over *F*. Let $S^3(V^*)$ be the third symmetric power of the dual space V^* , i.e., the space of cubic forms on *V*. A cubic form $f \in S^3(V^*)$ is called *triangular* if its zero set in the projective plane $\mathbf{P}_V(F_s)$ form a triangle or, equivalently, if there exist linearly independent linear forms φ_1 , φ_2 , $\varphi_3 \in V^* \otimes_F F_s$ such that $f = \varphi_1 \varphi_2 \varphi_3$ in $S^3(V^* \otimes F_s)$. The sides of the triangle are the zero sets of φ_1 , φ_2 , and φ_3 ; they form a 3-element Γ -set $\mathfrak{S}(f)$.

PROPOSITION 3.1. Let $f \in S^3(V^*)$ be a triangular cubic form and let K be the cubic étale F-algebra such that $\mathfrak{X}(K) \simeq \mathfrak{S}(f)$. Then we may identify the F-vector spaces V and K so as to identify f with a multiple of the norm form of K,

$$f = \lambda \, \mathsf{N}_K$$
 for some $\lambda \in F^{\times}$.

In particular, the Γ -action on $\mathfrak{S}(f)$ is trivial if and only if f factors into a product of three independent linear forms in V^* .

Proof. Let $f = \varphi_1 \varphi_2 \varphi_3$ for some linearly independent linear forms φ_1 , φ_2 , $\varphi_3 \in V^* \otimes F_s$. Since ${}^{\gamma} \varphi_1 {}^{\gamma} \varphi_2 {}^{\gamma} \varphi_3 = \varphi_1 \varphi_2 \varphi_3$ for $\gamma \in \Gamma$, it follows by unique factorization in $S^3(V^*)$ that there exist a permutation π_{γ} of $\{1, 2, 3\}$ and scalars $\lambda_{\pi_{\gamma}(i), \gamma} \in F_s^{\times}$ such that

$${}^{\gamma}\varphi_i = \lambda_{\pi_{\gamma}(i),\gamma}\varphi_{\pi_{\gamma}(i)} \quad \text{for } i = 1, 2, 3.$$

Since $\gamma^{\delta}\varphi_i = \gamma(^{\delta}\varphi_i)$ for $\gamma, \ \delta \in \Gamma$, we have

$$\lambda_{\pi_{\gamma\delta}(i),\gamma\delta}\varphi_{\pi_{\gamma\delta}(i)} = \gamma(\lambda_{\pi_{\delta}(i),\delta})\lambda_{\pi_{\gamma}\pi_{\delta}(i),\gamma}\varphi_{\pi_{\gamma}\pi_{\delta}(i)},$$

hence $\pi_{\gamma\delta} = \pi_{\gamma}\pi_{\delta}$ and

(3.1)
$$\lambda_{\pi_{\gamma\delta}(i),\gamma\delta} = \gamma(\lambda_{\pi\delta}(i),\delta)\lambda_{\pi_{\gamma}\pi_{\delta}(i),\gamma}$$

The Γ -set $\mathfrak{S}(f)$ is $\{1, 2, 3\}$ with the Γ -action $\gamma \mapsto \pi_{\gamma}$; therefore, we may identify K with the F-algebra of Γ -equivariant maps

$$K = \text{Map}(\{1, 2, 3\}, F_s)^{\Gamma}.$$

For $\gamma \in \Gamma$, define $a_{\gamma} \in \text{Map}(\{1,2,3\}, F_s^{\times}) = (K \otimes F_s)^{\times}$ by

$$a_{\gamma}(i) = \lambda_{i,\gamma}.$$

Clearly, $a_{\gamma} = 1$ if γ fixes φ_1 , φ_2 , and φ_3 ; moreover, by (3.1) we have $a_{\gamma}{}^{\gamma}a_{\delta} = a_{\gamma\delta}$ for γ , $\delta \in \Gamma$, hence $(a_{\gamma})_{\gamma\in\Gamma}$ is a continuous 1-cocycle. By Hilbert's Theorem 90 [8, (29.2)], we have $H^1(\Gamma, (K \otimes F_s)^{\times}) = 1$, hence there exists $b \in \text{Map}(\{1, 2, 3\}, F_s^{\times})$ such that $a_{\gamma} = b^{\gamma}b^{-1}$ for all $\gamma \in \Gamma$. For i = 1, 2, 3, let $\psi_i = b(i)\varphi_i \in V^* \otimes F_s$. Let also

$$\lambda = \left(b(1)b(2)b(3)\right)^{-1}.$$

Computation shows that $\gamma \psi_i = \psi_{\pi_{\gamma}(i)}$ for $\gamma \in \Gamma$ and i = 1, 2, 3, and $f = \lambda \psi_1 \psi_2 \psi_3$ in $S^3(V^* \otimes F_s)$, hence $\lambda \in F^{\times}$. Define

$$\Theta\colon V\otimes F_s\to \operatorname{Map}(\{1,2,3\},F_s)=K\otimes F_s$$

by

$$\Theta(x): i \mapsto \psi_i(x)$$
 for $i = 1, 2, 3$ and $x \in V \otimes F_s$

Since ψ_1 , ψ_2 , ψ_3 are linearly independent, Θ is an F_s -vector space isomorphism. It restricts to an isomorphism of F-vector spaces $V \xrightarrow{\sim} K$ under which f is identified with λN_K .

Now, let $\mathfrak{I} \subseteq \mathbf{P}_V(F_s)$ be a 9-point set that has the characteristic property of the set of inflection points of a nonsingular cubic curve: the line through any two distinct points of \mathfrak{I} passes through exactly one third point of \mathfrak{I} . Let \mathfrak{L} be the set of lines in $\mathbf{P}_V(F_s)$ that are incident to three points of \mathfrak{I} . This set has 12 elements, and \mathfrak{I} , \mathfrak{L} form an incidence geometry that is isomorphic to the affine plane over the field with three elements, see [7, §11.1]. In particular, there is a partition of \mathfrak{L} into four subsets $\mathfrak{T}_0, \ldots, \mathfrak{T}_3$ of three lines, which we call *triangles*, with the property that each point of \mathfrak{I} is incident to one and only one line of each triangle.

Assume \mathfrak{I} is stable under the action of Γ , and Γ preserves the triangle \mathfrak{T}_0 . Let *K* be the cubic étale *F*-algebra whose Γ -set $\mathfrak{X}(K)$ is isomorphic to \mathfrak{T}_0 . By Proposition 3.1, we may identify *V* with *K* in such a way that the union of the lines in \mathfrak{T}_0 is the zero set of the norm N_K .

THEOREM 3.2. There exists $a \in K^{\times}$ such that the Γ -set of vertices of the triangles \mathfrak{T}_1 , \mathfrak{T}_2 , \mathfrak{T}_3 is $\pi^{-1}(a \cdot F_s^{\times})$, where $\pi : \mathbf{P}_K(F_s) \to \mathbf{P}_K(F_s)$ is defined in (2.1). The set \mathfrak{I} is the set of inflection points of the cubics in the pencil spanned by the forms $\mathsf{T}_K(a^{-1}X^3)$ and $\mathsf{N}_K(X)$, and we have isomorphisms of Γ -sets

$$\mathfrak{L} \simeq \mathfrak{X}(K) \coprod \mathfrak{X}(M(K,a)), \qquad \{\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3\} \simeq \mathfrak{X}(N(K,a)).$$

Proof. Fix an isomorphism $K \otimes F_s \simeq F_s \times F_s \times F_s$, and write simply $(x_1 : x_2 : x_3)$ for $(x_1, x_2, x_3) \cdot F_s^{\times}$. The sides of \mathfrak{T}_0 then are the lines with equation $x_1 = 0$, $x_2 = 0$, and $x_3 = 0$. Let $\mathfrak{I} = \{p_1, \ldots, p_9\}$. We label the points so that the incidence relations can be read from the representation of the affine plane over \mathbf{F}_3 in Figure 1.

Say the line through p_1 , p_2 , p_3 is $x_1 = 0$, and the line through p_4 , p_5 , p_6 is $x_2 = 0$. We may then find u_1 , u_2 , u_3 , $v \in F_s^{\times}$ such that

$$p_i = (0: u_i: 1)$$
 for $i = 1, 2, 3,$ and $p_4 = (1: 0: v)$.

Since p_7 lies at the intersection of $x_3 = 0$ with the line through p_1 and p_4 , we have

$$p_7 = (1 : -u_1v : 0).$$

Similarly,

$$p_8 = (1: -u_2v: 0)$$
 and $p_9 = (1: -u_3v: 0).$

Finally, since p_5 (resp. p_6) lies at the intersection of $x_2 = 0$ with the line through p_1 and p_8 (resp. p_9), we have

$$p_5 = (u_1 : 0 : u_2 v)$$
 and $p_6 = (u_1 : 0 : u_3 v).$

Collinearity of the points p_2 , p_6 , p_7 (resp. p_2 , p_5 , p_9 ; resp. p_3 , p_6 , p_8) yields

$$u_1^2 = u_2 u_3$$
, (resp. $u_2^2 = u_1 u_3$; resp. $u_3^2 = u_1 u_2$).

Therefore,

$$u_1^3 = u_2^3 = u_3^3 = u_1 u_2 u_3.$$

Since u_1 , u_2 , u_3 are pairwise distinct, it follows that there is a primitive cube root of unity $\omega \in F_s$ such that

$$u_2 = \omega u_1$$
 and $u_3 = \omega^2 u_1$

Straightforward computations yield the vertices of the triangles $\mathfrak{T}_1,\ \mathfrak{T}_2,\ \mathfrak{T}_3:$

$$\begin{split} \mathfrak{T}_1 : \ q_1 &= (1:\omega^2 u_1 v:-v), \qquad q_1' = (1:u_1 v:-\omega^2 v), \qquad q_1'' = (\omega^2:u_1 v:-v), \\ \mathfrak{T}_2 : \ q_2 &= (\omega:u_1 v:-v), \qquad q_2' = (1:u_1 v:-\omega v), \qquad q_2'' = (1:\omega u_1 v:-v), \\ \mathfrak{T}_3 : \ q_3 &= (1:\omega u_1 v:-\omega^2 v), \qquad q_3' = (\omega^2:\omega u_1 v:-v), \qquad q_3'' = (1:u_1 v:-v). \end{split}$$

Let $a_0 = (1, u_1^3 v^3, -v^3) \in (K \otimes F_s)^{\times}$. It is readily verified that

$$\{q_1, q_1', q_1'', q_2, q_2', q_2'', q_3, q_3', q_3''\} = \pi^{-1}(a_0 \cdot F_s^{\times}).$$

Since \mathfrak{I} is stable under the action of Γ , the point $a_0 \cdot F_s^{\times}$ is fixed under Γ , hence for $\gamma \in \Gamma$ there exists $\lambda_{\gamma} \in F_s^{\times}$ such that

$$\gamma(a_0) = a_0 \lambda_\gamma \qquad \text{in } K \otimes F_s.$$

Then $(\lambda_{\gamma})_{\gamma \in \Gamma}$ is a continuous 1-cocycle of Γ in F_s^{\times} . Hilbert's Theorem 90 yields an element $\mu \in F_s^{\times}$ such that $\lambda_{\gamma} = \mu \gamma(\mu)^{-1}$ for all $\gamma \in \Gamma$. Then for $a = a_0 \mu$ we have $a_0 \cdot F_s^{\times} = a \cdot F_s^{\times}$ and $\gamma(a) = a$ for all $\gamma \in \Gamma$, hence $a \in K^{\times}$.

The inflection points of the cubics in the pencil spanned by $T_K(a^{-1}X^3)$ and $N_K(X)$ are the points $(x_1 : x_2 : x_3)$ such that

$$\begin{cases} x_1^3 + (u_1v)^{-3}x_2^3 - v^{-3}x_3^3 = 0, \\ x_1x_2x_3 = 0 \end{cases}$$

The solutions of this system are exactly the points p_1, \ldots, p_9 .

Finally, the Γ -set of sides of the triangle \mathfrak{T}_0 is isomorphic to $\mathfrak{X}(K)$ by hypothesis, and the map that associates to each side of a triangle its opposite vertex defines an isomorphism between the set of sides of \mathfrak{T}_1 , \mathfrak{T}_2 , \mathfrak{T}_3 and the set $\{q_1, \ldots, q_3''\} = \pi^{-1}(a \cdot F_s^{\times})$. By Theorem 2.6, we have $\pi^{-1}(a \cdot F_s^{\times}) \simeq \mathfrak{X}(M(K, a))$, hence

$$\mathfrak{L} \simeq \mathfrak{X}(K) [] \mathfrak{X}(M(K, a)).$$

This isomorphism induces an isomorphism

$$\{\mathfrak{T}_1,\mathfrak{T}_2,\mathfrak{T}_3\}\simeq\mathfrak{X}(N(K,a)),$$

which can be made explicit by the following observation: the triangular cubic forms in the pencil spanned by $T_K(a^{-1}X^3)$ and $N_K(X)$ are the scalar multiples of $N_K(X)$ (whose zero set is the triangle \mathfrak{T}_0) and of $T_K(a^{-1}X^3) - 3z N_K(X)$ where $z \in F_s^{\times}$ is such that $z^3 = N_K(a^{-1})$. The zero set of the latter form is \mathfrak{T}_1 , \mathfrak{T}_2 or \mathfrak{T}_3 depending on the choice of z, and the three values of z are in one-to-one correspondence with the elements in the fibre of the map π_1 in Remark 2.7.

4. NORMAL FORMS OF TERNARY CUBICS

Let V be a 3-dimensional vector space over F and let $f \in S^3(V^*)$ be a nonsingular cubic form. Recall from the introduction the notation $\Im(f)$ (resp. $\mathfrak{L}(f)$, resp. $\mathfrak{T}(f)$) for the set of inflection points (resp. inflectional lines, resp. inflectional triangles) of f. The following result is a direct application of Theorem 3.2:

COROLLARY 4.1. Let K be a cubic étale F-algebra. The following conditions are equivalent:

(i) f is isometric to a cubic form $T_K(a^{-1}X^3) - 3\lambda N_K(X)$ for some unit $a \in K^{\times}$ and some scalar $\lambda \in F$;

(ii) Γ has a fixed point $\mathfrak{T}_0 \in \mathfrak{T}(f)$ with $\mathfrak{T}_0 \simeq \mathfrak{X}(K)$ (as Γ -sets of 3 elements). When these conditions hold, then

 $\mathfrak{L}(f) \simeq \mathfrak{X}(K) [] \mathfrak{X}(M(K,a)), \quad and \quad \mathfrak{T}(f) \simeq \{\mathfrak{T}_0\} [] \mathfrak{X}(N(K,a)).$

Proof. If $f(X) = \mathsf{T}_K(a^{-1}X^3) - 3\lambda \mathsf{N}_K(X)$, then computation shows that the zero set of N_K is an inflectional triangle of f. This triangle is clearly preserved under the Γ -action. Conversely, if $\mathfrak{T}_0 \in \mathfrak{T}(f)$ is preserved under the Γ -action and K is the cubic étale F-algebra such that $\mathfrak{X}(K) \simeq \mathfrak{T}_0$, Theorem 3.2 yields an element $a \in K^{\times}$ such that the forms $\mathsf{T}_K(a^{-1}X^3)$ and $\mathsf{N}_K(X)$ span the pencil of cubics whose set of inflection points is $\mathfrak{I}(f)$.

Applying Corollary 4.1 in the case where F is a finite field yields a direct proof of the following result from [7, p. 276]:

COROLLARY 4.2. Suppose F is a finite field with q elements. For any nonsingular cubic form f, the number of inflectional triangles of f defined over F is 0, 1, or 4 if $q \equiv 1 \mod 3$; it is 0 or 2 if $q \equiv -1 \mod 3$.

Proof. Since F is finite, the action of Γ on $\mathfrak{T}(f)$ factors through a cyclic group. If there is at least one fixed triangle \mathfrak{T}_0 , then Corollary 4.1 yields a decomposition

$$\mathfrak{T}(f) \simeq \{\mathfrak{T}_0\} \prod \mathfrak{X}(N(K,a))$$

where N(K, a) = F[t] with $t^3 = N_K(a)$. If N(K, a) is a field, then it must be a cyclic extension of *F*, hence *F* contains a primitive cube root of unity and therefore $q \equiv 1 \mod 3$. Similarly, if $N(K, a) \simeq F \times F \times F$, then *F* contains a primitive cube root of unity. Thus, if $q \equiv -1 \mod 3$, the Γ -action on $\mathfrak{T}(f)$ has either 0 or 2 fixed points. If $q \equiv 1 \mod 3$ then *F* contains a primitive cube root of unity and either the polynomial $x^3 - N_K(a)$ is irreducible or it splits into linear factors. Therefore, the Γ -action on $\mathfrak{T}(f)$ has either 0, 1, or 4 fixed points.

We next spell out the special case of Corollary 4.1 where the cubic étale F-algebra K is the split algebra $F \times F \times F$:

COROLLARY 4.3. There is a basis of V in which f takes the generalized Hesse normal form $a_1x_1^3 + a_2x_2^3 + a_3x_3^3 - 3\lambda x_1x_2x_3$ for some $a_1, a_2, a_3 \in F^{\times}$ and $\lambda \in F$ if and only if Γ has a fixed point $\mathfrak{T}_0 \in \mathfrak{T}(f)$ and acts trivially on \mathfrak{T}_0 (viewed as a 3-element subset of $\mathfrak{L}(f)$).

EXAMPLE 4.4. Let K be a cubic étale F-algebra and let $f(X) = T_K(X^3)$. By Corollary 4.1 we have

$$\mathfrak{L}(f) \simeq \mathfrak{X}(K) \coprod \mathfrak{X}(M(K, 1))$$
 and $\mathfrak{T}(f) \simeq \{\mathfrak{T}_0\} \coprod \mathfrak{X}(N(K, 1))$.

The Γ -sets $\mathfrak{X}(M(K,1))$ and $\mathfrak{X}(N(K,1))$ are determined in Example 2.3:

 $\mathfrak{X}(M(K,1)) \simeq \mathfrak{X}(F) \coprod \mathfrak{X}(D * F[\omega]) \coprod \mathfrak{X}(K \otimes F[\omega])$

and

$$\mathfrak{X}(N(K,1)) \simeq \mathfrak{X}(F) \coprod \mathfrak{X}(F[\omega]).$$

The map $\mathfrak{X}(i)$: $\mathfrak{X}(M(K,1)) \to \mathfrak{X}(N(K,1))$ functorially associated to the inclusion $i: N(K,1) \hookrightarrow M(K,1)$ maps $\mathfrak{X}(F) \coprod \mathfrak{X}(D * F[\omega])$ to $\mathfrak{X}(F)$ and $\mathfrak{X}(K \otimes F[\omega])$ to $\mathfrak{X}(F[\omega])$.

If $K \simeq F \times F \times F$, then $f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$ so f has a Hesse normal form. If $K \not\simeq F \times F \times F$, then the Γ -action on $\mathfrak{X}(K)$, hence also on $\mathfrak{X}(K \otimes F[\omega])$, is nontrivial. Therefore, it follows from Corollary 4.3 that f has a generalized Hesse normal form over F if and only if the Γ -action on $\mathfrak{X}(D * F[\omega])$ is trivial. This happens if and only if $D \simeq F[\omega]$, which is equivalent to $K \simeq F[\sqrt[3]{d}]$ for some $d \in F^{\times}$, by [8, (18.32)]. Indeed, for $X = x_1 + x_2\sqrt[3]{d} + x_3\sqrt[3]{d^2}$, computation yields

$$f(X) = 3(x_1^3 + dx_2^3 + d^2x_3^3 + 6dx_1x_2x_3).$$

Corollary 4.3 applies in particular when F is the field **R** of real numbers:

COROLLARY 4.5. Every nonsingular cubic form over \mathbf{R} can be reduced to a generalized Hesse normal form.

Proof. It is clear from the Weierstrass normal form that every nonsingular cubic over **R** has three real collinear inflection points, see [3, Prop. 14, p. 305]. The inflectional line through these points is fixed under Γ , hence the Γ -action on $\mathfrak{T}(f)$ has at least one fixed point. The same argument as in Corollary 4.2 then shows that Γ has exactly two fixed points in $\mathfrak{T}(f)$. Let \mathfrak{T}_0 , $\mathfrak{T}_1 \in \mathfrak{T}(f)$ be the fixed inflectional triangles. Assume the Γ -action on \mathfrak{T}_0 (viewed as a 3-element set) is not trivial, hence $K \simeq \mathbf{R} \times \mathbf{C}$ in the notation of Corollary 4.1; we shall prove that the Γ -action on \mathfrak{T}_1 is trivial. By Corollary 4.1, there is a unit $a = (a_1, a_2) \in \mathbf{R} \times \mathbf{C}$ such that

$$\mathfrak{L}(f) \simeq \mathfrak{X}(\mathbf{R} \times \mathbf{C}) [] \mathfrak{X}(M(\mathbf{R} \times \mathbf{C}, a)).$$

By Theorem 2.6, we have an isomorphism of Γ -sets

$$\Phi: \mathfrak{X}(M(\mathbf{R} \times \mathbf{C}, a)) \xrightarrow{\sim} \pi^{-1}(a \cdot \mathbf{C}^{\times}) \subset \mathbf{P}_{\mathbf{R} \times \mathbf{C}}(\mathbf{C}).$$

We identify $(\mathbf{R} \times \mathbf{C}) \otimes_{\mathbf{R}} \mathbf{C}$ with $\mathbf{C} \times \mathbf{C} \times \mathbf{C}$ by mapping $(r, x) \otimes y$ to $(ry, xy, \overline{x}y)$ for $r \in \mathbf{R}$ and $x, y \in \mathbf{C}$. Then the Γ -action on $\mathbf{P}_{\mathbf{R} \times \mathbf{C}} = \mathbf{P}_{\mathbf{C}}^3$ is such that the complex conjugation – acts by

$$(x_1:x_2:x_3)\mapsto (\overline{x_1}:\overline{x_3}:\overline{x_2}).$$

If $\xi \in \mathbf{R}$ and $\eta \in \mathbf{C}$ satisfy $\xi^3 = a_1$ and $\eta^3 = a_2$, and if $\omega \in \mathbf{C}$ is a primitive cube root of unity, then the proof of Lemma 2.5 shows that $\pi^{-1}(a \cdot \mathbf{C}^{\times})$ consists of the following elements:

$$\begin{array}{ll} (\xi:\eta:\overline{\eta}), & (\xi:\omega\eta:\overline{\omega\eta}), & (\xi:\overline{\omega}\eta:\omega\overline{\eta}), \\ (\xi:\eta:\omega\overline{\eta}), & (\xi:\omega\eta:\overline{\eta}), & (\omega\xi:\eta:\overline{\eta}), \\ (\xi:\eta:\overline{\omega\eta}), & (\xi:\overline{\omega\eta}:\overline{\eta}), & (\overline{\omega}\xi:\eta:\overline{\eta}). \end{array}$$

The three points in the first row of this table are fixed under the Γ -action, whereas the Γ -action interchanges the second and third row. Therefore, the first row corresponds to \mathfrak{T}_1 under Φ , and the proof is complete.

When the conditions in Corollary 4.1 do not hold, we may still consider the 4-dimensional étale *F*-algebra T(f) such that $\mathfrak{X}(T(f)) = \mathfrak{T}(f)$, and the 12-dimensional étale *F*-algebra L(f) such that $\mathfrak{X}(L(f)) = \mathfrak{L}(f)$, which is a cubic étale extension of T(f). The separability idempotent $e \in T(f) \otimes_F T(f)$ satisfies $e \cdot (T(f) \otimes T(f)) \simeq T(f)$, hence it yields a decomposition

$$T(f) \otimes_F T(f) \simeq T(f) \times T(f)_0$$

for some cubic algebra $T(f)_0$ over T(f). Likewise, multiplication in L(f) yields an isomorphism

$$e \cdot (L(f) \otimes T(f)) \simeq L(f),$$

hence

$$L(f) \otimes_F T(f) \simeq L(f) \times L(f)_0$$

for some cubic algebra $L(f)_0$ over $T(f)_0$. By functoriality of the construction of *L* and *T*, the cubic form $f_{T(f)}$ over $V \otimes_F T(f)$ obtained from *f* by scalar extension to T(f) satisfies

$$L(f_{T(f)}) \simeq L(f) \otimes_F T(f)$$
 and $T(f_{T(f)}) \simeq T(f) \otimes_F T(f)$.

Corollary 4.1 applied to $f_{T(f)}$ shows that $f_{T(f)}$ is isometric to $\mathsf{T}_{L(f)}(a^{-1}X^3) - 3\lambda \mathsf{N}_{L(f)}(X)$ for some $\lambda \in T(f)^{\times}$ and some $a \in L(f)^{\times}$ such that $L(f)_0$ is a Morley T(f)-algebra $L(f)_0 \simeq M(L(f), a)$.

REFERENCES

- [1] N. Bourbaki, Algèbre, Chapitres 4 à 7, Masson, Paris, 1981.
- [2] J. Bretagnolle-Nathan, Cubiques définies sur un corps de caractéristique quelconque, Ann. Fac. Sci. Univ. Toulouse (4) 22 (1958), 175–234 (1961).
- [3] E. Brieskorn, H. Knörrer, *Plane Algebraic Curves*, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1986.
- [4] K.S. Brown, Cohomology of Groups, Springer-Verlag, New York Heidelberg Berlin, 1982.
- [5] O. Hesse, Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln, J. reine angew. Math. 28 (1844), 68–96.

- [6] O. Hesse, Algebraische Auflösung derjenigen Gleichungen 9ten Grades, deren Wurzeln die Eigenschaft haben, daß eine gegebene rationale und symmetrische Function θ(x_λ, x_μ) je zweier Wurzeln x_λ, x_μ eine dritte Wurzel x_κ giebt, so daß gleichzeitig: x_κ = θ(x_λ, x_μ), x_λ = θ(x_μ, x_κ), x_μ = θ(x_κ, x_λ), J. reine angew. Math. **34** (1847), 193–208.
- [7] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, Clarendon Press, Oxford, 1979.
- [8] M.-A. Knus, A.S. Merkurjev, M. Rost, J.-P. Tignol, *The Book of Involutions*, Coll. Pub. 44, Amer. Math. Soc., Providence, RI, 1998.
- [9] M.-A. Knus and J.-P. Tignol, Quartic exercises, Int. J. Math. Math. Sci. 2003, no. 68, 4263–4323.
- [10] M. Rost, Notes on Morley's theorem, private notes dated July 22, 2003.
- [11] H. Weber, Lehrbuch der Algebra, Bd. II, F. Vieweg u. Sohn, Braunschweig, 1899.

Mélanie Raczek, Jean-Pierre Tignol

Département de Mathématique Université catholique de Louvain chemin du cyclotron 2 B-1348 Louvain-la-Neuve Belgique *e-mail*: melanie.raczek@uclouvain.be, jean-pierre.tignol@uclouvain.be