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Abstract

Let F be a separably closed field of characteristic different from 2

and 3. We consider 3-dimensional subspaces V of trace zero cube-central

order 3 matrices with coefficients in F . Each such vector space gives rise

to a ternary cubic form, mapping an element of V to its cube. We use

geometric properties of cubic curves to determine V up to conjugacy in

the case where the cubic form is nonsingular.

1. Introduction

Consider a separably closed field F of characteristic different from 2 and 3. Let
M3(F ) denote the algebra of order 3 matrices with coefficients in F and let
M3(F )0 the subspace of M3(F ) of trace zero elements. We say that a matrix
x ∈ M3(F ) is cube-central if x3 ∈ F . Let V be a 3-dimensional subspace of
M3(F )0 of cube-central elements. Then for all x ∈ V , we have x3 = det(x) ∈ F .
Hence V gives rise to a ternary cubic form on V

fV : V → F : x 7→ x3.

We call V a cubic subspace of M3(F ).
It is now a natural question to try to classify up to conjugacy the cubic

subspaces V of M3(F ) for which the cubic form fV is nonsingular, i.e to give,
for each class of conjugacy, vectors which span a representative of the class. In
this paper, we shall prove the following explicit answer:

Theorem 1.1 Each nonsingular cubic subspace of M3(F ) is conjugate to the
F -subspace of M3(F ) spanned by 0 1 0

0 0 1
0 0 0

 ,

 0 0 0
1 0 0
1 −1 0

 ,

 α − 1
2 1

3α2 −2α 1
2

0 −3α2 α
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for some α ∈ F \ {0, 1/8, 1/9}.

Our proof of this theorem crucially depends on particular geometric prop-
erties of nonsingular cubic curves. Therefore, in Section 2 of this paper, we
first recall well-known definitions and results on cubic curves, and we define and
study particular lines and points associated to a nonsingular cubic curve. Then
in Section 3 we classify the cubic subspaces which induce a nonsingular cubic
form using precisely their particular lines and points.

In a previous publication [Raczek, 2009] we already classified cubic subspaces
of arbitrary degree 3 central simple algebras over a field of characteristic different
from 2 and 3 (not necessarily separably closed). For that classification we used
a quite different method, depending solely on algebraic manipulations using the
so-called Okubo product. In this paper, on the contrary, we show that we can
use geometric arguments to obtain algebraic results. Restricting moreover our
attention to matrix algebras, we end up with the explicit classification of cubic
subspaces as spelled out in Theorem 1.1. But we should remark that, in fact,
the general classification of cubic subspaces of arbitrary degree 3 central simple
algebras follows from this theorem: in [Raczek, 2007] we achieved this using
Galois descent. It is then a corollary, as explained in [Raczek, 2007, 2009], that
a cubic form associated to an algebra determines that algebra up to isomorphism
or anti-isomorphism.

Throughout the paper, F denotes a separably closed field of characteristic
different from 2 and 3. Let F denote an algebraic closure of F . For an F -vector
space V , we write V for V ⊗F F and PV (F ) (resp. PV (F )) for the projective
space of V (resp. V ).

2. Geometry of plane cubic curves

2.1. Preliminaries

For the reader’s convenience and to fix notation we first recall well-known re-
sults on plane cubic curves, using an algebraic presentation. For background
information on cubic curves, we refer to [Bretagnolle-Nathan, 1958], [Brieskorn
and Knörrer, 1986] and [Hirschfeld, 1979].

Let V be a 3-dimensional vector space over F and let f be a cubic form on
V . Let t : V × V × V → F denote the symmetric trilinear form such that

t(x, x, x) = f(x)

for all x ∈ V . Let t : V × V × V → F be the symmetric trilinear form on V

that we obtain when we extend the scalars to F . Let f : V → F be defined
by f(x) = t(x, x, x) for all x ∈ V . We say that f is singular if there exists a
nonzero u ∈ V such that t(u, u, x) = 0 for all x ∈ V . In that case, the point
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uF ∈ PV (F ) is a singular zero of f . If uF is a nonsingular zero of f , then the
set

{xF ∈ PV (F ) | t(u, u, x) = 0}

(which is a line in PV (F )) is called the tangent to f at uF . The tangent at uF
is the only line such that the intersection multiplicity (as defined in [Hirschfeld,
1979, page 52]) with the cubic curve f = 0 at uF is greater than or equal to 2.
If (e1, e2, e3) is a basis of V and P (X1, X2, X3) ∈ F [X1, X2, X3] is the degree 3
homogeneous polynomial such that

P (x1, x2, x3) = f(x1e1 + x2e2 + x3e3)

for all x1, x2, x3 ∈ F , then

3t(u, u, ei) =
∂P

∂Xi
(a1, a2, a3)

for all i ∈ {1, 2, 3} and u = a1e1 + a2e2 + a3e3 ∈ V . If f is a nonsingular cubic
form, then the intersection multiplicity of the curve f = 0 with a line at a point
is less than or equal to 3; moreover, there are exactly three intersection points
of the cubic curve f = 0 with a line, counting multiplicities.

The set

{uF ∈ PV (F ) | the form V × V → F : (x, y) 7→ t(u, x, y) is singular}

is called the Hessian curve of f and is denoted by Hf . Suppose that (e1, e2, e3)
is a basis of V , then a point uF is on the Hessian curve if and only if

h(u) := det

 t(u, e1, e1) t(u, e1, e2) t(u, e1, e3)
t(u, e2, e1) t(u, e2, e2) t(u, e2, e3)
t(u, e3, e1) t(u, e3, e2) t(u, e3, e3)


is equal to zero. Hence the Hessian curve is the cubic curve formed by the
zeros of the cubic form h : V → F : x 7→ h(x). Observe that if P (X1, X2, X3) ∈
F [X1, X2, X3] is such that

P (x1, x2, x3) = f(x1e1 + x2e2 + x3e3)

for all x1, x2, x3 ∈ F , then

6t(u, ei, ej) =
∂2P

∂Xi∂Xj
(a1, a2, a3)

for all i, j ∈ {1, 2, 3}, where a1, a2, a3 are the coordinates of u ∈ V in (e1, e2, e3).
We say that uF is an inflection point of f if uF is a nonsingular zero of f which
is on the Hessian curve of f . It is equivalent to say that uF is a nonsingular zero
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of f such that the intersection multiplicity of its tangent with the curve with
equation f = 0 at uF is greater than or equal to 3 (see [Walker, 1950, page 71,
Theorem 6.3]). Since

f(u+ λx) = f(u) + 3λt(u, u, x) + 3λ2t(u, x, x) + λ3f(x)

for all x ∈ V , one can also say that uF is an inflection point if and only if uF
is nonsingular and t(u, u, x) = 0 implies t(u, x, x) = 0 for all x ∈ V .

If f is a nonsingular cubic form on V , then there exist exactly 9 distinct
inflection points of f in PV (F ) ⊂ PV (F ) with a special configuration: any line
through two inflection points passes through a third inflection point. The 9
inflection points and the 12 lines through them form the configuration of the
points and lines of the affine plane over the field with 3 elements (see [Hirschfeld,
1979, §11.1]).

2.2. Special points and special lines

Let V be a 3-dimensional vector space over F and f a nonsingular cubic form
on V . Let uF be an inflection point of f . Then the conic

{xF ∈ PV (F ) | t(u, x, x) = 0}

consists of two lines. We shall prove that the lines are distinct, i.e. the conic
has a unique singular point.

Lemma 2.1 Let f be a nonsingular cubic form on V and uF an inflection point
of f . There exists a unique u′F ∈ PV (F ) such that t(u, u′, x) = 0 for all x ∈ V .
This point u′F is distinct from uF .

Proof : Since the form V × V → F : (x, y) 7→ t(u, x, y) is singular, there exists
a nonzero u′ ∈ V such that t(u, u′, x) = 0 for all x ∈ V . Clearly u′F 6= uF

because uF is nonsingular; hence the tangent at uF is the line through uF and
u′F . Suppose that u′′ ∈ V is nonzero such that t(u, u′′, x) = 0 for all x ∈ V ,
then u′′F ∈ PV (F ) is on the tangent at uF . So there exist α, β ∈ F such that
u′′ = αu+ βu′. If α 6= 0, then t(u, u, x) = 0 for all x ∈ V which contradicts the
fact that uF is nonsingular. Thus α = 0 and u′F = u′′F . 2

The unique point u′F ∈ PV (F ) is in particular a point of the Hessian curve of
f . We call it the Hessian point of the inflection point uF .

Since the Hessian point of uF is the only singular point of the conic

{xF ∈ PV (F ) | t(u, x, x) = 0},

this conic consists of two distinct lines which intersect at the Hessian point. One
of these lines is the tangent at uF , because t(u, u, x) = 0 implies t(u, x, x) = 0
for all x. The second line is called the harmonic polar at uF .
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Proposition 2.2 Let f be a nonsingular cubic form on V and uF an inflection
point of f . There are exactly three distinct zeros of f which are on the harmonic
polar at uF .

Proof : Suppose that there are less than three distinct zeros of f on the harmonic
polar at uF . There are exactly three intersection points between the cubic curve
f = 0 and the harmonic polar at uF counting multiplicities. Hence, there exists
a zero vF of f such that the tangent to f at vF is the harmonic polar at uF .
Since the harmonic polar at uF is contained in the conic

{xF ∈ PV (F ) | t(u, x, x) = 0}

we have in particular t(u, v, v) = 0. So uF is on the tangent to f at vF . But
this line is the harmonic polar at uF . Thus uF is an intersection point of the
tangent at uF and the harmonic polar at uF . This contradicts Lemma 2.1.
Therefore, there are exactly three distinct zeros of f which are on the harmonic
polar at uF . 2

We call these points the harmonic points of uF .

2.3. Remarkable properties

As we recalled earlier, the inflection points of a nonsingular cubic form have the
configuration of the affine plane over the field with three elements. We shall
prove that the harmonic points and the harmonic polars too verify remarkable
geometric properties. For the classification of cubic subspaces, only Proposi-
tion 2.3 will be needed (for the construction of a particular matrix). We include
Proposition 2.7 here as well for it is interesting in its own right: it shows that,
quite surprisingly, the configuration of the harmonic polars is dual to that of
the inflection points.

First we recall that fixing a zero o of a nonsingular cubic form, we may
define a group law on the zeros of f : for zeros a, b of f , a +o b is the third
zero of f on the line through o and c, where c is the third zero of f on the
line through a and b. It is a commutative group law with o as neutral element.
In the particular case where o is an inflection point of f , then zeros a1, a2, a3

of f are the intersection points of the curve f = 0 with some line, counting
multiplicities, if and only if a1 +o a2 +o a3 = o (see [Walker, 1950, page 192,
Theorem 9.2]).

Proposition 2.3 Let f be a nonsingular cubic form on V , p1, p2, p3 distinct
collinear inflection points of f and q1 a harmonic point of p1. Then the third
zero of f on the line through q1 and p2 is a harmonic point of p3.

Proof : We use the group law on the zeros of f with o := p1. We set q3 :=
q1 +o p3. We shall prove that q3 is a harmonic point of p3 and that it is the
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third zero of f on the line through q1 and p2. Let u1, v1, u3, v3 ∈ V be such
that pi = uiF and qi = viF . Since q1 is a harmonic point of p1, we have in
particular t(u1, v1, v1) = 0. Thus p1 is on the tangent at q1 and 2q1 = o. We
have p2 +op3 = o because p1, p2, p3 are distinct collinear zeros of f . The tangent
at p3 intersects the curve f = 0 with a multiplicity equal to 3 (it is not greater
than 3 because f is nonsingular), so 3p3 = o. Since

q1 +o p2 +o q3 = q1 +o p2 +o q1 +o p3 = o,

q3 is the third zero of f on the line through q1 and p2. We have

2q3 +o p3 = 2q1 +o 2p3 +o p3 = o,

so p3 is on the tangent at q3 and t(v3, v3, u3) = 0. Thus q3 is on the conic

{xF ∈ PV (F ) | t(u3, x, x) = 0}

which consists of the tangent at p3 and the harmonic polar at p3. The only zero
of f on the tangent at p3 is p3. Since q1 6= p1, we have q3 6= p3 and q3 is on the
harmonic polar at p3. Hence the third zero of f on the line through q1 and p2

is a harmonic point of p3. 2

We shall prove that the configuration of the harmonic polars is dual to the
configuration of the inflection points of a nonsingular cubic form. First we need
three lemmas.

Lemma 2.4 Let f be a nonsingular cubic form on V and p, q distinct inflection
points of f . Then the harmonic polar at p is distinct from the harmonic polar
at q.

Proof : Let u, v ∈ V be such that p = uF and q = vF . Suppose that the
harmonic polar at p is equal to the harmonic polar at q. Then these two lines
contain a common zero wF of f . In particular, we have

t(u,w,w) = 0 = t(v, w,w).

Then p and q are on the tangent at wF . Observe that wF is distinct from
p and q. We obtain at least four zeros of f on the tangent at wF , counting
multiplicities, which is impossible. Hence the harmonic polar at p is distinct
from the harmonic polar at q. 2

Lemma 2.5 Let f be a nonsingular cubic form on V , uF an inflection point
of f and u′F its Hessian point. Then uF and u′F are the unique intersection
points of the Hessian curve and the tangent to f at uF , and the intersection
multiplicity at u′F is equal to 2.
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Proof : Let v ∈ V be such that u, u′, v are linearly independent. Then xF ∈
PV (F ) is on the Hessian curve of f if and only if

h(x) := det

 t(u, u, x) t(u, u′, x) t(u, v, x)
t(u, u′, x) t(u′, u′, x) t(u′, v, x)
t(u, v, x) t(u′, v, x) t(v, v, x)


is equal to zero. The tangent to f at uF is the line through uF and u′F . Thus,
the intersection points of the Hessian curve and the tangent at uF are the points
(λu+ µu′)F ∈ PV (F ) such that

h(λu+ µu′) = −λ2µf(u′)t(u, u, v)2 = 0.

If the Hessian point u′F of uF is a zero of f , then, counting multiplicities, there
would be at least 4 zeros of f on the tangent at uF ; hence f(u′) 6= 0. Since
u, u′, v are linearly independent, the point vF is not on the tangent to f at uF
and so t(u, u, v) 6= 0. Therefore, we obtain that the only intersection points of
the Hessian curve and the tangent at uF are uF and u′F , and the intersection
multiplicity is equal to 2 at u′F . 2

We say that a cubic curve is a triangle if it consists of 3 non-concurrent lines.
If the Hessian curve of a nonsingular cubic form f is a triangle then each line
of the triangle passes through exactly 3 distinct inflection points of f . Indeed,
the Hessian curve contains all the inflection points of f and there are at most 3
zeros of f on each line of the triangle.

Lemma 2.6 Let f be a nonsingular cubic form on V . Then the Hessian curve
is singular if and only if there exist distinct inflection points of f with the same
Hessian point. In this case, the Hessian curve is a triangle with the property
that, for each line of the triangle, the 3 inflection points on this line have the
same Hessian point, namely the intersection point of the other two lines of the
triangle.

Proof : For an inflection point uF of f , we denote by u′F its Hessian point.
Suppose that the Hessian curve is singular. Then by [Brieskorn and Knörrer,
1986, pages 293-294], it is a triangle. Let u1F , u2F , u3F be distinct inflection
points of f which are on the same line of the Hessian curve. By Lemma 2.5,
the intersection multiplicity of the tangent at uiF and the Hessian curve is
equal to 2 at u′iF . Thus u′iF is a singular zero of the Hessian curve and it is
the intersection point of two lines of the triangle. If uiF and u′iF are on the
same line of the Hessian curve, then the tangent at uiF is contained in the
Hessian curve; this contradicts Lemma 2.5. Thus, for all i ∈ {1, 2, 3}, u′iF is
the intersection point of the two lines of the Hessian curve which do not pass
through uiF ; in particular u′1F = u′2F = u′3F .

7



Conversely, assume that there exist distinct inflection points uF , vF of f
with the same Hessian point u′F . The point vF does not lie on the tangent at
uF because uF is the only zero of f on the tangent at uF . Therefore u, u′, v
are linearly independent. Let h : V → F be defined by

h(x) := det

 t(u, u, x) t(u, u′, x) t(u, v, x)
t(u, u′, x) t(u′, u′, x) t(u′, v, x)
t(u, v, x) t(u′, v, x) t(v, v, x)


so that the Hessian curve of f consists of the zeros of h. The coefficient of λ in
h(u′ + λx) is equal to

t(u, u, x)
(
f(u′)t(u′, v, v)− t(u′, u′, v)2

)
= 0.

Hence u′F is a singular zero of h and the Hessian curve is singular. 2

To simplify notation, we write p? for the harmonic polar at an inflection
point p.

Proposition 2.7 Let f be a nonsingular cubic form on V and p, q, r distinct
inflection points of f . Then the harmonic polars p?, q? and r? are concurrent
if and only if the inflection points p, q and r are collinear.

Proof : Suppose that p, q, r are collinear. Let p′, q′, r′ denote the Hessian points
of p, q, r and Tp,Tq,Tr the tangents at p, q, r respectively. Let u, u′, v ∈ V be
such that p = uF , q = vF and p′ = u′F . Observe that t(u, u, v) 6= 0 and
t(u, v, v) 6= 0 because q is not on Tp and p is not on Tq. Since p, q and r are
collinear, we have r = wF with w = t(u, v, v)u − t(u, u, v)v. Let h : V → F be
defined by

h(x) := det

 t(u, u, x) t(u, u′, x) t(u, v, x)
t(u, u′, x) t(u′, u′, x) t(u′, v, x)
t(u, v, x) t(u′, v, x) t(v, v, x)

 .

Since
h(v) = −t(u, v, v)2t(u′, u′, v)− t(u, u, v)t(u′, v, v)2 = 0,

the nonzero vector

v′ = −t(u, v, v)t(u′, v, v)u+ t(u, v, v)2u′ + t(u, u, v)t(u′, v, v)v

is such that t(v, v′, x) = 0 for all x ∈ V , so q′ = v′F . If the Hessian curve is
singular, then by Lemma 2.6, we have p′ = q′ = r′ and the harmonic polars p?,
q? and r? intersect at p′. Now we assume that the Hessian curve is nonsingular,
then p′, q′, r′ are pairwise distinct. Let x0F be the intersection point of p? and
q?. Then we have in particular

t(u, x0, x0) = 0 = t(v, x0, x0),
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so t(w, x0, x0) = 0 and x0F is either on Tr or on r?. Suppose that x0F ∈ Tr
and let α, β, γ ∈ F be such that x0 = αu + βu′ + γv. If x0F ∈ Tp, then
x0F ∈ Tp ∩ p? = {p′}; then we would have p′ = x0F ∈ Hf ∩ Tr = {r, r′} which
is impossible. Hence x0F 6∈ Tp and γ 6= 0. Similarly x0F 6∈ Tq. Furthermore,
t(u′, v, v) 6= 0 because otherwise p′ ∈ Hf ∩ Tq = {q, q′} which is impossible.
Since t(u, x0, x0) = 0, t(w,w, x0) = 0 and t(u, u, v) 6= 0, we have

2αγt(u, u, v) + γ2t(u, v, v) = 0,

−αt(u, v, v)t(u, u, v) + βt(u, u, v)t(u′, v, v)− γt(u, v, v)2 = 0.

It implies that x0F is equal to(
− t(u′, v, v)t(u, v, v)u+ t(u, v, v)2u′ + 2t(u, u, v)t(u′, v, v)v

)
F

because γ 6= 0. We obtain that x0F =
(
v′ + t(u, u, v)t(u′, v, v)v

)
F is on Tq

which is impossible. Therefore p?, q? and r? are concurrent at x0F .
Conversely, suppose that p?, q? and r? are concurrent at a point x0F and

p, q and r are non-collinear. Let u, v, w ∈ V be such that p = uF , q = vF and
r = wF . Then

t(u, x0, x0) = t(v, x0, x0) = t(w, x0, x0) = 0.

Since p, q, r are non-collinear, the vectors u, v, w are linearly independent. Thus
t(x, x0, x0) = 0 for all x ∈ V and x0F is a singular zero of f . This is impossible
because f is nonsingular. 2

Let us summarize the properties which we obtained on the harmonic polars.
For a nonsingular cubic form on V , there are exactly 9 distinct harmonic polars
of f . Through the intersection point of two harmonic polars passes a third one;
through any given point pass at most 3 harmonic polars. There are 4 triples
of points which satisfy the following property: a harmonic polar passes through
one and only one point of the triple. Hence the configuration of the harmonic
polars is dual to the configuration of the 9 inflection points. Moreover the two
configurations are connected: the harmonic polars at 3 inflection points are
concurrent if and only if the inflection points are collinear.

3. Classification of cubic subspaces

3.1. Definition

We say that V is a cubic subspace of M3(F ) if V is a 3-dimensional subspace
of M3(F )0 of cube-central elements. Such a subspace V induces a ternary cubic
form

fV : V → F : x 7→ x3 = det(x).
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Observe that if V, V ′ are cubic subspaces of M3(F ) and Θ: M3(F ) → M3(F )
is an F -algebra automorphism such that Θ(V ) = V ′ then the cubic forms fV
and fV ′ are isometric (two cubic forms f : V → F and g : W → F are isometric
if there exists a vector space isomorphism Φ: V → W such that f = g ◦ Φ).
Moreover, by the Skolem-Noether Theorem, an algebra automorphism of M3(F )
is an inner automorphism

int(m) : M3(F )→ M3(F ) : x 7→ mxm−1.

We say that a cubic subspace V of M3(F ) is nonsingular if fV is nonsingular.
If V is a nonsingular cubic subspace of M3(F ), then every conjugate of V (i.e.
every mVm−1 for some m ∈ GL3(F )) is also a nonsingular cubic subspace of
M3(F ).

We shall classify the nonsingular cubic subspaces of M3(F ) up to conjugacy,
by describing explicitly a representative of each conjugacy class of nonsingular
cubic subspaces, as in Theorem 1.1. However, before we proceed with the proof
of that theorem, we shall first exhibit some simple but useful properties of
nonsingular cubic subspaces.

3.2. Preliminary lemmas

Let V be a nonsingular cubic subspace of M3(F ) and let tV : V ×V ×V → F be
the symmetric trilinear form on V such that tV (x, x, x) = fV (x) for all x ∈ V :
we have

tV (x, y, z) =
1
6
tr(xyz + xzy).

Lemma 3.1 For all x, y ∈ V , we have tr(xy) = 0.

Proof : By Cayley-Hamilton Theorem,

x3 − tr(x)x2 +
1
2
(
tr(x)2 − tr(x2)

)
x− det(x) = 0

for all x ∈ M3(F ). Hence tr(x2) = 0 for all x ∈ V . It implies that tr(xy) = 0 for
all x, y ∈ V . 2

Lemma 3.2 For all nonzero x ∈ V , we have x2 6= 0.

Proof : Let x ∈ V be nonzero. The form fV is nonsingular, so there exists y ∈ V
such that

tV (x, x, y) =
1
6
tr(2x2y) 6= 0;

hence x2 6= 0. 2

Next we give equivalent conditions for xF to be a zero of fV .
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Lemma 3.3 Let x ∈ V \ {0}. Then the following statements are equivalent:

1. fV (x) = 0,

2. the rank of x is equal to 2,

3. im(x) = ker(x2).

Proof : Suppose that fV (x) = 0. Because x3 = 0 and x2 6= 0, the Jordan normal
form of x is  0 1 0

0 0 1
0 0 0

 .

Thus (1) implies (2) and (3). Conversely, it is easy to see that (2) and (3) each
implies det(x) = 0. 2

We need another preliminary result.

Lemma 3.4 Let x, y ∈ V \ {0} be determinant zero matrices. Suppose that
tr(xy2) = 0 and tr(x2y) 6= 0, then ker(y) 6⊂ ker(x2).

Proof : We have x3 = 0 and x2 6= 0. So, replacing x and y by conjugates in
M3(F ) if necessary, we may assume that

x =

 0 1 0
0 0 1
0 0 0

 .

Suppose that ker(y) = ker(x), then

y =

 0 x12 x13

0 x22 x23

0 x32 x33


for some xij ∈ F and tr(x2y) = 0 which contradicts the hypothesis; hence
ker(y) 6= ker(x). Suppose that ker(y) ⊂ ker(x2), then by Lemma 3.3, there
exists a nonzero a ∈ F 3 such that

ker(y) = xa · F.

Because x3 = 0 and ker(y) 6= ker(x), we have x3a = 0 and x2a 6= 0. So
x2a ∈ ker(x) \ {0}, xa ∈ ker(x2) \ ker(x) and a 6∈ ker(x2). Thus (x2a, xa, a) is a
basis of F 3. Let m be the matrix with column x2a, xa, a. Then

m−1xm =

 0 1 0
0 0 1
0 0 0

 and m−1ym =

 y11 0 y13
y21 0 y23
y31 0 y33


11



for some yij ∈ F because ker(y) = xa · F . Since tr(y) = 0 and tr(xy) = 0, we
have y33 = −y11 and y21 = 0. Thus

m−1y2m =

 y2
11 + y13y31 0 0
y23y31 0 −y23y11

0 0 y31y13 + y2
11

 .

Then we have y2
11 + y13y31 = 0 and y23 = 0 because tr(y2) = 0, tr(xy2) = 0 and

tr(x2y) 6= 0. We obtain that y2 = 0 which is impossible. Therefore ker(y) 6⊂
ker(x2). 2

3.3. Proof of Theorem 1.1

We are now in a position to prove the classification of nonsingular cubic sub-
spaces of M3(F ) as stated in Theorem 1.1.

Let V be a nonsingular cubic subspace of M3(F ) and let tV be the symmetric
trilinear form on V such that tV (x, x, x) = fV (x) for all x ∈ V . We shall describe
V up to conjugacy. We use particular zeros of the nonsingular cubic form fV .
Let ũ, ṽ, w̃ ∈ V be such that ũF is an inflection point of fV , w̃F its Hessian
point and ṽF a harmonic point of ũF . Let π : PV (F )→ PV (F ) be the inclusion
defined by π(xF ) = xF . We say that a point xF ∈ PV (F ), (resp. a line L
of PV (F ), resp. a conic C of PV (F )) is defined over F if there exists a point
x′F ∈ PV (F ) (resp. a line L′ of PV (F ), resp. a conic C′ of PV (F )) such that
π(x′F ) = xF (resp. π(L′) = L, resp. π(C′) = C). Since the inflection points of
a nonsingular cubic form are defined over F , the point ũF is defined over F .
Then the tangent to fV at ũF and the conic

{xF ∈ PV (F ) | tV (ũ, x, x) = 0}

are defined over F ; hence so is the harmonic polar at ũF . Therefore ṽF and
w̃F are defined over F (the fact that ṽF is defined over F follows from Propo-
sition 2.2). We may thus assume that ũ, ṽ, w̃ ∈ V .

Since ũF is an inflection point of fV and ṽF is a harmonic point of ũF , the
points ũF and ṽF are zeros of f such that ṽF is on the conic

{xF ∈ PV (F ) | tV (ũ, x, x) = 0}

and ṽF is not on the tangent to f at ũF (because the unique zero of f on the
tangent at ũF is ũF ). Hence ũ, ṽ ∈ V \ {0} are determinant zero matrices such
that tr(ũṽ2) = 0 and tr(ũ2ṽ) 6= 0. The next proposition determines ũ and ṽ up
to conjugacy.

12



Proposition 3.5 There exists an m ∈ GL3(F ) and λ, µ ∈ F× such that

mũm−1 = λ

 0 1 0
0 0 1
0 0 0

 and mṽm−1 = µ

 0 0 0
1 0 0
1 −1 0

 .

Moreover if m′ ∈ GL3(F ) and λ′, µ′ ∈ F× satisfy the same conditions, then
mF× = m′F×, λ = λ′ and µ = µ′.

Proof : Let a ∈ F 3 be such that ker(ṽ) = aF . By Lemma 3.4, we have a 6∈
ker(ũ2). Thus (ũ2a, ũa, a) is a basis of F 3. Let m1 be the matrix with columns
ũ2a, ũa, a, then

m−1
1 ũm1 =

 0 1 0
0 0 1
0 0 0

 and m−1
1 ṽm1 =

 x11 x12 0
x21 x22 0
x31 x32 0


for some xij ∈ F . Since tr(ṽ) = 0 and tr(ũṽ) = 0, we have x22 = −x11 and
x32 = −x21. Hence

m−1
1 ṽ2m1 =

 x2
11 + x12x21 0 0

0 x21x12 + x2
11 0

x31x11 − x2
21 x31x12 + x21x11 0

 .

Then tr(ṽ2) = 0 and tr(ũṽ2) = 0 imply

x2
11 + x12x21 = 0,

x31x12 + x21x11 = 0.

Therefore, we have x31x11 − x2
21 6= 0 because ṽ2 6= 0. Since

x12(x31x11 − x2
21) = x11(x31x12 + x21x11)− x21(x2

11 + x12x21) = 0

we have x12 = 0, so x11 = 0 and x21 6= 0. Hence

m−1
1 ṽm1 =

 0 0 0
x21 0 0
x31 −x21 0


with x31 6= 0 because tr(ũ2ṽ) 6= 0. Choosing

m :=

 x−2
21 x

2
31 0 0

0 x−1
21 x31 0

0 0 1

m−1
1

we get

mũm−1 =
x31

x21

 0 1 0
0 0 1
0 0 0

 and mṽm−1 =
x2

21

x31

 0 0 0
1 0 0
1 −1 0

 .
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For the uniqueness, it is easy to check that if n ∈ GL3(F ) and α, β ∈ F× are
such that

n

 0 1 0
0 0 1
0 0 0

 = α

 0 1 0
0 0 1
0 0 0

n

and

n

 0 0 0
1 0 0
1 −1 0

 = β

 0 0 0
1 0 0
1 −1 0

n

then n ∈ F× and α = β = 1. 2

Before describing V up to conjugacy, we fix some notation. Let ω denote a
primitive cube root of unity in F . We set

u :=

 0 1 0
0 0 1
0 0 0

 , v :=

 0 0 0
1 0 0
1 −1 0

 , w1(α) :=

 α − 1
2 1

3α2 −2α 1
2

0 −3α2 α



w2(α) :=

 α 1
2

(
(ω2 − 1)α− 1

)
1

0 ωα 1
2

(
(ω2 − 1)α+ 1

)
0 0 ω2α

 ,

w3(α) :=

 α 1
2

(
(ω − 1)α− 1

)
1

0 ω2α 1
2

(
(ω − 1)α+ 1

)
0 0 ωα

 ,

for α ∈ F .

Proposition 3.6 Let V be a nonsingular cubic subspace of M3(F ). Let ũ, ṽ, w̃ ∈
V be such that ũF is an inflection point of fV , w̃F its Hessian point and ṽF a
harmonic point of ũF . Let mF× be the unique element of PGL3(F ) such that

mũm−1F = uF and mṽm−1F = vF.

Then mw̃m−1F = wi(α)F for some α ∈ F and i ∈ {1, 2, 3}. In particular, V
is conjugate to the F -vector subspace of M3(F ) spanned by u, v, wi(α).

Proof : The point ṽF is not on the tangent at ũF which is the line through
the distinct points ũF and w̃F . Hence ũF , ṽF and w̃F are not collinear and
(ũ, ṽ, w̃) is a basis of V .

By Proposition 3.5, we may assume that ũ = u and ṽ = v. Because w̃ ∈ V ,
we have tr(w̃) = 0, tr(uw̃) = 0 and tr(vw̃) = 0; thus

w̃ =

 x11 x12 x13

x21 x22 x12 + x13

x31 −x21 −x11 − x22
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for some xij ∈ F . Observe that x13 6= 0 because otherwise tV (v, v, x) = 0 for
all x ∈ V and vF would be a singular zero of fV . Replacing w̃ by a multiple if
necessary, we may assume that x13 = 1. Because tr(w̃2) = 0, we have

x21 = x2
11 + x2

22 + x11x22 + x31.

Since w̃F is the Hessian point of uF , we have tV (u, w̃, x) = 0 for all x ∈ V .
Replacing x by u, v and w̃ successively, we get

x31 = 0,

x12 = − 1
2 (2x11 + x22 + 1),

(2x11 + x22)(x2
11 + x2

22 + x11x22) = 0.

If x22 = −2x11, then w̃ = w1(x11). Otherwise we have x2
11 + x2

22 + x11x22 = 0
which implies x22 = ωx11 or x22 = ω2x11; hence w̃ = w2(x11) or w̃ = w3(x11).

2

We call a nonsingular cubic subspace of M3(F ) which is spanned by u, v and
wi(α) for some α ∈ F and some i ∈ {1, 2, 3}, a special subspace of M3(F ).
To improve the previous proposition, we give a geometric condition for special
subspaces of M3(F ) to be conjugate.

Proposition 3.7 Let V be a special subspace of M3(F ). Suppose that mVm−1

is special for some m ∈ GL3(F ). Then m−1umF is an inflection point of fV
and m−1vmF is a harmonic point of m−1umF .

Proof : Let α ∈ F and i ∈ {1, 2, 3} be such that wi(α) ∈ mVm−1, then wi(α)F is
the Hessian point of uF . Set ũ := m−1um, ṽ := m−1vm and w̃ := m−1wi(α)m.
Then ũ3 = m−1u3m = 0 and

tr
(
(ũw̃ + w̃ũ)x

)
= tr

((
uwi(α) + wi(α)u

)
mxm−1

)
= 0

for all x ∈ V . Hence ũF is an inflection point of fV and w̃F is its Hessian point.
We can prove similarly that ṽ3 = 0, tr(ũṽ2) = 0 and tr(ũ2ṽ) 6= 0, so ṽF is a
harmonic point of ũF . 2

Hence, to find the conjugates of V which are special subspaces of M3(F ), it
suffices to find the inflection points of fV and their harmonic points and, for each
couple (ũF , ṽF ) which consists of an inflection point and one of its harmonic
points, to find the mF× ∈ PGL3(F ) such that{

mũm−1F = uF,

mṽm−1F = vF.

Then, by Proposition 3.6, mVm−1 is a special subspace which is a conjugate of
V .
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To simplify notation we write Vi,α for the subspace of M3(F ) spanned by u,
v and wi(α). We shall work out the case where V is equal to V1,α and prove
that it is conjugate to V2,β for some β ∈ F . Set

P (X1, X2, X3) := α3(1− 9α)X3
3 +X2

1X2 −X2
2X3 − (6α2 − 3α+ 1/4)X2X

2
3

and let H(X1, X2, X3) be equal to

det


∂2P
∂X2

1
(X1, X2, X3) ∂2P

∂X1∂X2
(X1, X2, X3) ∂2P

∂X1∂X3
(X1, X2, X3)

∂2P
∂X1∂X2

(X1, X2, X3) ∂2P
∂X2

2
(X1, X2, X3) ∂2P

∂X2∂X3
(X1, X2, X3)

∂2P
∂X1∂X3

(X1, X2, X3) ∂2P
∂X2∂X3

(X1, X2, X3) ∂2P
∂X2

3
(X1, X2, X3)


so that P (x1, x2, x3) = fV

(
x1u + x2v + x3w1(α)

)
for all x1, x2, x3 ∈ F and a

point xF =
(
x1u + x2v + x3w1(α)

)
F ∈ PV (F ) is on the Hessian curve if and

only if H(x1, x2, x3) = 0. The cubic form fV is nonsingular if and only if the
system of equations

∂P

∂Xi
(X1, X2, X3) = 0, for all i = 1, 2, 3

has no nontrivial solutions; thus α 6= 0, 1/8, 1/9.
In the next proposition, we prove that in the couple (ũF , ṽF ), the choice

of ṽF among the harmonic points of ũF is not important to find an invertible
matrix m such that mV1,αm

−1 = V2,β .

Proposition 3.8 Let V be a nonsingular cubic subspace of M3(F ). Suppose
that ũF is an inflection point of fV , ṽF , ṽ′F are harmonic points of ũF and
m,m′ ∈ GL3(F ) are such that

mũm−1F = uF, mṽm−1F = vF, m′ũm′−1F = uF, m′ṽ′m′−1F = vF,

mVm−1 = Vj,β , m′V m′−1 = Vj′,β′ .

Then we have j = j′.

Proof : We have m′m−1u(m′m−1)−1F = uF and m′m−1Vj,β(m′m−1)−1 =
Vj′,β′ . Set n := m′m−1, then nun−1 = λu implies that

nF× =

 λ2 λa b

0 λ a

0 0 1

F×

for some a, b ∈ F . Observe that nwj(β)n−1F is the Hessian point of uF in
PVj′,β′ (F ); hence nwj(β)n−1F = wj′(β′)F . If j = 1, then j′ = 1, because oth-
erwise n−1wj′(β′)n is an upper triangular matrix and n−1wj′(β′)nF 6= w1(β)F
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(β 6= 0 because V1,β is nonsingular). If j = 2, then

nwj(β)n−1 =

 β ? ?

0 ωβ ?

0 0 ω2β

 ,

so nwj(β)n−1F = wj(β′)F for some β′, and j = j′. Clearly we obtain the same
conclusion if j = 3. 2

Suppose that ũF is an inflection point of fV1,α with ũ = a1u+a2v+a3w1(α),
then ũF = uF if and only if a3 = 0. By Proposition 3.8, for all harmonic points
ṽF of uF , the matrix m ∈ GL3(F ) such that mum−1F = uF and mṽm−1F =
vF , conjugates V into V1,α′ for some α′ ∈ F . Therefore we may assume that
ũF 6= uF and a3 = 1. Observe that a2 6= 0. Since

a2
1a2 = α3(9α− 1) + a2

2 + (6α2 − 3α+
1
4

)a2 (1)

and a2H(a1, a2, a3) = 0, we have(
a2 − α(9α− 1)

)(
a3
2 + α(9α− 1)a2

2 + α2(3α− 1)(9α− 1)a2 + 3α5(9α− 1)
)

= 0.

Thus, either a2 = α(9α − 1) or a2 = α/3(−2θ2 + θ + 1 − 9α) for some θ ∈ F
such that θ3 = 1 − 9α. Let θ ∈ F be a cube root of 1 − 9α in F and set
a2 := α/3(−2θ2 + θ + 1− 9α). Then the relation (1) implies that

a2
1 =

(ω − ω2

18
(−4θ2 + 2θ − 1)

)2

.

We set a1 := (ω − ω2)/18(−4θ2 + 2θ − 1). Observe that the third inflection
point on the line through uF and ũF is the point

(
− a1u+ a2v+w1(α)

)
F . By

Proposition 2.3, the third zero of f on the line through
(
−a1u+a2v+w1(α)

)
F

and vF is a harmonic point of ũF ; let ṽF be this point. The points on the line
through

(
−a1u+a2v+w1(α)

)
F and vF are of the form

(
−a1λu+µv+λw1(α)

)
F .

Because
P (−a1λ, µ, λ) = −λ(µ− a2λ)(µ− b2λ)

with b2 := 1/9
(
(6α − 1)θ2 + (9α − 1)θ − (9α − 1)(3α − 1)

)
, we obtain that

ṽF =
(
− a1u+ b2v+w1(α)

)
F . With the help of the software Mathematica, we

find that the matrix

m :=

 1 ωθ2+ω2θ+1−9α
3α

(1−ω2)(θ2+9α−1)
3α

(ω−1)(θ−1)
3 ω2θ −ω2θ2+(9α−1)θ+ω(9α−1)

3α
−ω2θ2−θ+3(ω−ω2)α−ω

3
θ2+9α−1
ω−ω2 −ω2θ2 + ω(9α− 1)


is invertible and is such that m−1ũmF = uF and m−1ṽmF = vF . Now we
find the Hessian point w̃F of ũF . We have w̃F =

(
c1u+ c2v + c3w1(α)

)
F with
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c1 = −a1a
−1
2

(
3α3(1−9α)+a2

2

)
, c2 = 3α3(1−9α)+a2

2 and c3 = α3(1−9α)a−1
2 −a2

because it satisfies the relations tV (ũ, w̃, x) = 0 for all x ∈ V . We obtain that
m−1w̃mF = w2(β)F with β = −ω2α(9α − 1)−1. Hence V1,α is conjugate to
V2,−ω2α(9α−1)−1 for all α 6= 0, 1/8, 1/9.

Observe that fV2,β is singular if and only if β ∈ {0,−ω2/3,−ω2/9} and
(9α − 1)β = −ω2α if and only if (9β + ω2)α = β. Therefore, for all β 6∈
{0,−ω2/3,−ω2/9}, V2,β is conjugate to V1,β(9β+ω2)−1 . Replacing ω by ω2, we
obtain that, for all β 6∈ {0,−ω/3,−ω/9}, V3,β is conjugate to V1,β(9β+ω)−1 .
Hence we can improve the classification of nonsingular cubic subspaces of M3(F ):
every nonsingular cubic subspace of M3(F ) is conjugate to V1,α for some α ∈
F \ {0, 1/8, 1/9}. This proves Theorem 1.1 as stated in the introduction.
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caractéristique quelconque, Ann. Fac. Sci. Univ. Toulouse (4) 22, pp. 175–
234.

[2] [Egbert Brieskorn and Horst Knörrer, 1986] Plane algebraic curves, Birk-
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