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Abstract

In this paper, we study central simple algebras over function fields in

one variable through their ramification sequence. We determine a suffi-

cient condition under which the Faddeev index of algebras with a given

degree four ramification sequence is two. Further, we study through sev-

eral examples other related conditions concerning Faddeev index of central

simple algebras over function fields.

1 Introduction

Let F be a field with characteristic zero and K = F (t), the function field in one
variable over F . Let x ∈ P1

F be a closed point and Fx be the residue of F at x.
Let 2Br(K) denote the 2-torsion part of the Brauer group Br(K) of K. By [10,
II.§3] there is a map δx : Br(K) → H1(Fx,Z/2) ∼= F×x /F

×2
x called the residue

map. In 1956, Faddeev [2] gave the following description of 2Br(K):

Theorem 1 With the notation as above, the following sequence is exact:

0 −→ 2Br(F ) −→ 2Br(K) ⊕δx−→
⊕

x∈P1(1)
F

H1(Fx,Z/2) cor−→ H1(F,Z/2) −→ 0

where 2Br(F ) is the 2-torsion part of the Brauer group of F , P1(1)
F is the set of

closed point of P1
F and cor is the sum of corestriction maps corx : H1(Fx,Z/2)→

H1(F,Z/2). �

Under the isomorphisms H1(Fx,Z/2) ' F ∗x/F ∗2x and H1(F,Z/2) ' F ∗/F ∗2,
the map cor corresponds to

∏
x∈P1

F
NFx/F : F ∗x/F

∗2
x → F ∗/F ∗2, where NFx/F

are norm maps from finite extensions Fx/F to F .

Let A be a central simple algebra of exponent two over K which represents
[A] ∈ 2Br(K). The residue δx([A]) is trivial for all but finitely many x ∈ P1

F .
The sequence {(x, δx([A]))}δx([A])6=0 is called the ramification sequence of A.
The following statements follows immediately from Theorem 1:
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(i) For arbitrary ax ∈ H1(Fx,Z/2), ax 6= 0; the sequence {(x, ax)} is a ram-
ification sequence for some 2-torsion central simple algebra if and only if∑
x corx(ax) = 0 ∈ H1(F,Z/2). This allows us to talk of ramification

sequences without explicit reference to the central simple algebra. We say
therefore that the elements in the kernal of cor are ramification sequences.

(ii) Two central simple algebras A and B of exponent two over K have the
same ramification sequence if and only if there exists an exponent two
central simple algebra C over F such that A⊗F C ' B.

For a central simple algebra A of exponent two, the notion of Faddeev index
fi(A) is defined as follows:

fi(A) = min{index(A⊗F C) : C is an exponent two algebra over F}

It follows in view of (ii) above that if two algebras over K have same rami-
fication sequence, then their Faddeev indices are equal.

Let ρ = {(x, ax)}, ax 6= 0 ∈ H1(Fx) be an arbitrary ramification sequence.
Then we define the Faddeev index of ρ to be the Faddeev index of a K-algebra
whose ramification sequence is {(x, ax)}. This index is independent of the choice
of the K-algebra.

Let deg(x) denote the degree of the closed point x. Then
∑
δx([A]) 6=0 deg(x)

is called the degree of the ramification sequence of A. In view of (i) above, it
follows that the degree of ramification sequences is at least two.

It was proved in [5, Cor. 2.4] and [8, §4, §5] that the ramification sequences
ρ of degree two or three have Faddeev index two. Also, it was shown in [8,
Cor. 4.2, Cor. 4.3] that the quaternion algebras A with ρ of degree two as
their ramification sequence forms 1-parameter family while for the case when
deg(ρ) = 3, such algebra is unique upto isomorphism [8, Cor 5.2].

It is therefore interesting to study similar questions when deg(ρ) = 4. There
are examples of ramification sequences with degree four and Faddeev index four.
Thus we ask the following question:

Question 2 Which ramification sequences of degree four have Faddeev index
two?

In section 2, we give a sufficient condition on degree four linear ramification
sequences to have Faddeev index two. In section 3, we give a necessary con-
dition on degree four linear ramification sequence over Q, with two identical
ramifications, to have Faddeev index two.
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2 Ramification sequence of degree four over an

arbitrary field

In this section, F is an arbitrary field of characteristic zero. We give several
recalls. The notation P1

F means Proj(F [u, v]) which is the set of homogeneous
prime ideals of F [u, v] which do not contain the ideal generated by u and v.
There is a bijection between

P1
F ↔ {monic irreducible polynomials of F [t]} ∪ {∞}

sending the ideal generated by p(u, v), where p(u, v) is a homogeneous irre-
ducible polynomial such that v does not divide p(u, v) and p(t, 1) is a monic
polynomial, to p(t, 1), and the ideal generated by v to ∞. We identify an ele-
ment of P1

F with its image by this bijection. We say that x ∈ P1
F is a rational

point if x = p(t) ∈ F [t] and degp = 1 or if x = ∞. The rational points are
in one to one correspondance with F ∪ {∞}. We have other isomorphisms
H1(Fx,Z/2) ∼= F×x /F

×2
x and H1(F,Z/2) ∼= F×/F×2 and we also identify ele-

ments with their image by these isomorphisms. Let x = p(t) be in P1
F , then we

denote by vx the discrete valuation over F (t) define by

vx(f(t)) = the biggest integer n such that p(t)n divides f(t),

for f(t) ∈ F [t]. We denote by v∞ the discrete valuation over F (t) define by
v∞(f(t)) = −degf(t), for f(t) ∈ F [t]. We may describe, for x ∈ P1

F , the residue
field Fx and the map δx. Let x ∈ P1

F , then Fx is the residue field of the valuation
vx. If x = p(t), then Fx = F [t]/(p(t)). Let θ be a root of p(t) (in the algebraic
closure of F ), then there is an F -isomorphism between Fx and F (θ) define by
t 7→ θ. If x =∞, then

Fx = {f(t)/g(t) | degf(t) ≤ degg(t)}/{f(t)/g(t) | degf(t) < degg(t)},

which is isomorphic to F sending the class of f(t)/g(t), where degf(t) = degg(t),
f(t) = ant

n + . . . + a0 and g(t) = bnt
n + . . . + b0, to an/bn. Let x ∈ P1

F and
f(t), g(t) ∈ F (t), then

δx(f(t), g(t))F (t) = (−1)vx(f(t))vx(g(t))f(t)vx(g(t))g(t)−vx(f(t))F×2
x .

These definitions do not depend on the choice of homogeneous coordinates of
P1
F . A transformation of P1

F (i.e. a linear change of homogeneous coordinates)
is dertermined by its restriction on the rational points which is a homography
of F ∪ {∞}. So given two triples of distinct rational points, there exists an
unique transformation of P1

F sending a triple on the second one (see [Berger,
1994], 4.6.9). The cross ratio of a quadruple of distinct points {a, b, c, d} of
F ∪ {∞}, denoted by [a, b, c, d], is f(d) where f is the unique automorphism of
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F ∪ {∞} such that f(a) =∞, f(b) = 0 and f(c) = 1 (see [Berger, 1994], 6.1.2).
So given two quadruples {ai} and {a′i} of distinct rational points, there exists
an unique transformation f of P1

F such that f(ai) = a′i for all i if and only if
[a1, a2, a3, a4] = [a′1, a

′
2, a
′
3, a
′
4]. Suppose the homogeneous coordinates of ai in

an arbritrary basis are (λi:µi) then the cross ratio is

[a1, a2, a3, a4] =

∣∣∣∣ λ3 λ1

µ3 µ1

∣∣∣∣ ∣∣∣∣ λ4 λ2

µ4 µ2

∣∣∣∣∣∣∣∣ λ3 λ2

µ3 µ2

∣∣∣∣ ∣∣∣∣ λ4 λ1

µ4 µ1

∣∣∣∣
(see [Berger, 1994], 6.2.3). Given a quadruple of distinct rational points, we may
find homogeneous coordinates such that the quadruple is {∞, t, t− 1, t− c}, for
some c ∈ F .

Proposition 3 Let ρ = {(∞, αF×2), (t, βF×2), (t− 1, γF×2), (t− c, αβγF×2)}
be a ramification sequence of degree four. Suppose there exists x, y, z, w ∈ F×
such that

c =
(αx2 − γz2)(βy2 − αβγw2)
(βy2 − γz2)(αx2 − αβγw2)

. (1)

Then the Faddeev index of ρ is two.

Proof : Let x, y, z, w ∈ F× such that

c =
(αx2 − γz2)(βy2 − αβγw2)
(βy2 − γz2)(αx2 − αβγw2)

.

Then

[∞, 0, 1, c] = c =
(αx2 − γz2)(βy2 − αβγw2)
(βy2 − γz2)(αx2 − αβγw2)

= [αx2, βy2, γz2, αβγw2],

and so there exist homogeneous variables u′ and v′ of P1
F such that

vF = (u′ − αx2v′)F,

uF = (u′ − βy2v′)F,

(u− v)F = (u′ − γz2v′)F,

(u− cv)F = (u′ − αβγw2v′)F.

Hence

ρ = {(t′−αx2, αF×2), (t′−βy2, βF×2), (t′−γz2, γF×2), (t′−αβγw2, αβγF×2)}.

We consider the quaternion algebra

Q =
(
t′, (t′ − αx2)(t′ − βy2)(t′ − γz2)(t′ − αβγw2)

)
F (t′)

.
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Then
δt′−αx2(Q) = t′(Ft′−αx2)×2 = αx2F×2 = αF×2,

and, in the same way,

δt′−βy2(Q) = βF×2,

δt′−γz2(Q) = γF×2,

δt′−αβγw2(Q) = αβγF×2.

Also

δt′(Q) = (t′ − αx2)(t′ − βy2)(t′ − γz2)(t′ − αβγw2)(Ft′)×2

= α2β2γ2x2y2z2w2F×2

= F×2

and

δ∞(Q) = (−1)4
(t′ − αx2)(t′ − βy2)(t′ − γz2)(t′ − γz2)(t′ − αβγw2)

t′4
(F∞)×2

= F×2.

So the ramification sequence of Q is ρ and the Faddeev index of ρ is equal to
two. 2

We remark that (1) implies

c =

(
x2 − αγ(z/γ)2

)(
y2 − αγw2

)
(
y2 − βγ(z/β)2

)(
x2 − βγw2

) .
In particular, if αF×2 = βF×2 and αF×2 6= γF×2, then (1) implies that c is a
norm over F (

√
αγ)/F . By the proposition 2.7 in [Kunyavskii et al, 2006], if one

of the quaternion algebras (α, c)F (
√
γ) and (γ, c)F (

√
α) is not trivial (αF×2 =

βF×2 and αF×2 6= γF×2 with the notation of the proposition 3), then the
Faddeev index of ρ is equal to four. We remark that if c is a norme over F (

√
αγ)

i.e. the quaternion algebra (αγ, c)F is trivial, then both the quaternion algebras
(α, c)F (

√
γ) and (γ, c)F (

√
α) are trivial. Using the proposition 3, we may give

examples of ramification sequences of degree four with Faddeev index two and
construct a quaternion algebra having ρ as its ramification sequence.

Example 4 Let α = 3, β = −1, γ = 2 and c = −5/27. Then (1) holds with
x = y = z = w = 1 and the Faddeev index of

ρ = {(∞, αF×2), (t, βF×2), (t− 1, γF×2), (t− c, αβγF×2)}
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is equal to two. Let u′ = 9u− v, v′ = 3u+ v and t′ = u′/v′. Then

ρ = {(t′ − 3, 3F×2), (t′ + 1,−F×2), (t′ − 2, 2F×2), (t′ + 6,−6F×2)}.

By the proposition, the ramification sequence of

Q =
(
t′, (t′ − 3)(t′ + 1)(t′ − 2)(t′ + 6)

)
F (t′)

is ρ. Replacing t′ by 9t−1
3t+1 we obtain

Q =
(

(9t− 1)(3t+ 1),−t(t− 1)(27t+ 5)
)
F (t)

.

Lemma 5 The quaternion algebra (α, c)F (
√
β) is trivial if and only if the qua-

dratic form 〈β,−α,−c, αc〉 is isotropic.

Proof : The quaternion algebra (α, c)F (
√
β) is trivial if and only if (α, c)F is

Brauer equivalent to (β, d) for some d ∈ F× (see [Knus et. al., 1998], (16.29))
i.e. the quadratic forms 〈1,−α,−c, αc〉 and 〈1,−β,−d, βd〉 are isometric. So
(α, c)F (

√
β) is trivial if and only if 〈β,−α,−c, αc〉 is isometric to 〈β,−β,−d, βd〉

which is the case if and only if 〈β,−α,−c, αc〉 is isotropic. 2

Using this lemma, we get a condition equivalent to the condition in the propo-
sition 2.7 in [Kunyavskii et al., 2006] to have Faddeev index four.

Proposition 6 Let

ρ = {(∞, αF×2), (t, αF×2), (t− 1, βF×2), (t− c, βF×2)}.

Suppose that one of the quadratic forms 〈β,−α,−c, αc〉 and 〈α,−β,−c, βc〉 is
anisotropic. Then the Faddeev index of ρ is equal to four. 2

3 Ramification sequence of degree four over Q
In this section, we assume F = Q. We need some lemmas.

Lemma 7 Let A be an exponent 2 central simple algebra over Q. Then A is
Brauer equivalent to a quaternion algebra.

Proof : By Merkurjev in [1981], A is Brauer equivalent to a tensor product of
quaternion algebras. By Albert’s theorem (see [Knus et. al., 1998], (16.5)),
a biquaternion algebra (over any field) is a division algebra if and only if its
Albert form is anisotropic. But, the Hasse-Minkowski Principle ([Lam, 1973],
VI.3.1) says that a quadratic form over Q is isotropic if and only if it is isotropic
over R and over Qp, for all prime number p. On one hand, as an Albert form
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is 6-dimensional, it isotropic over all Qp (see [Lam, 1973], VI.2.12). On the
other hand, an Albert form is always isotropic over R. So, there is no division
biquaternion algebra over Q and any exponent two central simple algebra over
Q is Brauer equivalent to a quaternion algebra. 2

Lemma 8 Let α, β, c ∈ Q and

ρ = {(∞, αF×2), (t, αF×2), (t− 1, βF×2), (t− c, βF×2)}.

Then

fi(A) = min
{

index
(

(α, λt)K ⊗K (β, (t− 1)(t− c))K
)
| λ ∈ Z square-free

}
.

In consequence, the Faddeev index of ρ is two if there exists λ ∈ Z such that the
quadratic form

〈−α, β,−λt, αλt, (t− 1)(t− c),−β(t− 1)(t− c)〉

is isotropic and the Faddeev index of ρ is four otherwise.

Proof : Let A = (α, t)K ⊗K (β, (t− 1)(t− c))K . Then the ramification sequence
of A is equal to ρ. Let C be an exponent 2 F -algebra. By the lemma 7, we
may assume that C is a quaternion algebra. If C ⊗F F (

√
α) is not trivial, then,

by the proof of the proposition 2.7 in [Kunyavskii et. al., 2006], the index of
A ⊗K C is greater or equal to four. So, we may assume that C ⊗F F (

√
α) is

trivial. Using (16.29) in [Knus et. al., 1998], we obtain that C = (α, λ)F for
some λ ∈ Q. We can assume that λ ∈ Z and is square-free. As

A⊗K C = (α, λt)K ⊗K (β, (t− 1)(t− c))K ,

we have the result. 2

Lemma 9 Suppose α, β, p, x, y ∈ Z are such that p 6= 2 is prime, p - αβ,(
αβ
p

)
= −1 and p | −αx2 + βy2. Then p | x and p | y.

Proof : Suppose p - x. Then αβ = (βyx−1)2 in Z/p which contradicts
(
αβ
p

)
=

−1. If p - y, we also have a contradiction. 2

We introduce some notations. For a field k with a valuation v, we denote by k
v

the residue field of k with respect to the valuation v:

k
v

= Ov/Mv,

where Ov = {x ∈ k | v(x) ≥ 0} is the local ring of the units of k and Mv =
{x ∈ k | v(x) > 0} is the unique maximal ideal of Ov. So, we have a surjective
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morphism Ov → k
v
. It induces a map from the Witt group of Ov to the Witt

group of k
v
. For a quadratic form q over Ov, we denote by qv the image of q by

this map.

Proposition 10 Let α, β, c ∈ Z be square-free. Let

ρ = {(∞, αF×2), (t, αF×2), (t− 1, βF×2), (t− c, βF×2)}.

Suppose there exists a prime p 6= 2 such that p - αc, p | β,
(
α
p

)
= −1 and(

c
p

)
= −1 or there exists a prime p 6= 2 such that p - βc, p | α,

(
β
p

)
= −1 and(

c
p

)
= −1. Then the Faddeev index of ρ is four.

Proof : Suppose there exists a prime p 6= 2 such that p - αc, p | β,
(
α
p

)
= −1

and
(
c
p

)
= −1. Let A = (α, t)K ⊗K (β, (t− 1)(t− c))K . For λ ∈ Z square-free,

we denote by qλ the Albert form associated to A⊗K (α, λ)K , so

qλ = 〈−α, β,−λt, αλt, (t− 1)(t− c),−β(t− 1)(t− c)〉.

By the lemma 8, it is enough to show that qλ is anisotropic, for all λ ∈ Z,
square-free. First we suppose that p divides λ. We may write q = q1 ⊥ p · q2
over Q(t) with

q1 = 〈−α, (t− 1)(t− c)〉

and
q2 = 〈β

p
,−λ

p
t, α

λ

p
t,−β

p
(t− 1)(t− c)〉,

q1 and q2 being defined over the units with respect to the valutation v̂p defined
on Q(t) by

v̂p(
∑
i

ait
i) = min

i
vp(ai).

Over Fp(t),
q1

cvp = 〈−α〉 ⊥ (t− 1) · 〈t− c〉,

〈−α〉
vt−1 = 〈−α〉 and 〈t− c〉

vt−1 = 〈1− c〉 are anisotropic over Fp, so, using the
Spinger’s theorem with respect to the valuation vt−1, q1cvp is anisotropic over
Fp(t). Over Fp(t),

q2
cvp = 〈β

p
,−β

p
(t− 1)(t− c)〉 ⊥ t · 〈−λ

p
, α
λ

p
〉

with

〈β
p
,−β

p
(t− 1)(t− c)〉

vt

=
β

p
〈1,−c〉
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and

〈−λ
p
, α
λ

p
〉
vt

=
λ

p
〈−1, α〉

anisotropic over Fp since
(
c
p

)
= −1 and

(
α
p

)
= −1. Hence, using the Springer’s

theorem with respect to the valuation vt, q2cvp is anisotropic. Finally, by the
same theorem used on q with repect to the valuation v̂p, q is anisotropic. Now
we assume that p does not divide λ. Then, over Q(t), we write q = q1 ⊥ p · q2
with

q1 = 〈−α,−λt, αλt, (t− 1)(t− c)〉

and
q2 = 〈β

p
,−β

p
(t− 1)(t− c)〉

defined over the units of Q(t) with respect to the valuation v̂p. Since

q1
cvp = 〈−α, 1〉 ⊥ 1

t
· 〈−λ, αλ〉

and
(
α
p

)
= −1, by the Springer’s theorem, q1cvp is anisotripic over Fp(t). We

also prove that q2cvp is anisotropic over Fp(t) using the Springer’s theorem with
respect to the valuation vt−1. So we conlude that q is anisotropic over Q(t).
We proved that, if there exists a prime number p 6= 2, such that p - αc, p | β
and

(
α
p

)
= −1 =

(
c
p

)
, then the Faddeev index of ρ is equal to four. Now we

assume that there exists a prime number p 6= 2 such that p - βc, p | α and(
β
p

)
= −1 =

(
c
p

)
. Then we may change the homogeneous coordinates so that

ρ = {(t′ − 1, αF×2), (t′ − c, αF×2), (∞, βF×2), (t′, βF×2)}

since
[∞, 0, 1, c] = c = [1, c,∞, 0].

Using the first part of the proof, we also show that the Faddeev index of ρ is
equal to four. 2

In particular, the implication in the proposition 6 is not an equivalence. Indeed,
if α = 2, β = 3 and c = −1, then p = 3 is such that p - αc, p | β,

(
α
p

)
= −1 and(

c
p

)
= −1, so by the proposition 10, the Faddeev index of ρ is equal to four. But

the quaternion algebras (α, c)F (
√
β) and (β, c)F (

√
α) are trivial (α = (1)2− c(1)2

and β = (
√
α)2 − c(1)2).

Proposition 11 Let

ρ = {(∞, αF×2), (t, αF×2), (t− 1, βF×2), (t− c, βF×2)}
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with α, β, c ∈ Z square-free. Suppose there exists a prime number p 6= 2 such
that p | β, c, p - α,

(
−αβc/p2

p

)
= −1 and

(
α
p

)
= −1 or there exists a prime

number p 6= 2 such that p | α, c, p - β,
(
−αβc/p2

p

)
= −1 and

(
β
p

)
= −1. Then

the Faddeev index of ρ is equal to four.

Proof : Let p 6= 2 be a prime number such that p | β, c, p - α,
(
−αβc/p2

p

)
= −1

and
(
α
p

)
= −1. Let

qλ = 〈−α, β,−λt, αλt, (t− 1)(t− c),−β(t− 1)(t− c)〉.

We want to prove that qλ is anisotropic, for all λ ∈ Z square-free. Suppose there
exist a(t), b(t), c(t), d(t), e(t), f(t) ∈ F [t] such that

−αa(t)2+βb(t)2−λtc(t)2+αλtd(t)2+(t−1)(t−c)e(t)2−β(t−1)(t−c)f(t)2 = 0.

We may assume that

a(t) = ant
n + . . .+ a0, b(t) = bnt

n + . . .+ b0, c(t) = cn−1t
n−1 + . . .+ c0,

d(t) = dn−1t
n−1+. . .+d0, e(t) = en−1t

n−1+. . .+e0, f(t) = fn−1t
n−1+. . .+f0,

where ai, bi, ci, di, ei, fi ∈ Z and the gcd({ai, bi, ci, di, ei, fi | i = 1, . . . , n}) = 1.
For all k = 0, . . . , 2n, the coefficient of tk in the isotropy relation is equal to
zero, so

−α
k∑
i=0

aiak−i + β

k∑
i=0

bkbk−i − λ
k−1∑
i=0

cick−1−i + αλ

k−1∑
i=0

didk−1−i

+
k−2∑
i=0

eiek−2−i − (c+ 1)
k−1∑
i=0

eiek−1−i + c

k∑
i=0

eiek−i

−β
k−2∑
i=0

fifk−2−i + β(c+ 1)
k−1∑
i=0

fifk−1−i − βc
k∑
i=0

fifk−i = 0

(we let ai, bi = 0 for all i > n and ci = di = ei = fi = 0 for all i ≥ n). We
denote by Ck the coefficient of tk in the isotropy relation. First we assume that
p | λ. As C2n = 0 and p | β, we have p | −αa2

n+e2n−1. By lemma 9, p | an, en−1,

since
(
α
p

)
= −1. We assume that p | ai, ei−1 for all i ∈ {n, . . . , k+ 1}. Then, as

p divides C2k, p | −αa2
k + e2k−1 and p | ak, ek−1. Hence p | ai, ei for all i. Since(

−αβc/p2
p

)
= −1 and

(
α
p

)
= −1, we have

p2 | C0 ⇒ p2 | βb20 ⇒ p | b0.

10



We assume that pk+1−i | ai, bi, ei for all i ∈ {0, . . . , k}, pk−i | fi, ci, di for all
i ∈ {0, . . . , k−1} and we will prove that pk+2−i | ai, bi, ei for all i ∈ {0, . . . , k+1}
and pk+1−i | fi, ci, di for all i ∈ {0, . . . , k}. We have

p2k+3 | C0 ⇒ p2k+3 | −αa2
0 − βcf2

0 ⇒ pk+2 | a0, p
k+1 | f0,

p2k+2 | C1 ⇒ p2k+2 | −λc20 + αλd2
0 ⇒ pk+1 | c0, d0.

We assume that pk+2−i | ai for all i ∈ {0, . . . , l} and pk+1−i | fi, ci, di for
all i ∈ {0, . . . , l} (where 0 ≤ l < k − 1). Then p2k−2l+1 | aia2l+2−i for all
i ∈ {0, . . . , l + 1}. Indeed, let i ∈ {0, . . . , l + 1}, then pk+2−i | ai. We have

2l + 2− i ≤ k ⇒ pk+1−(2l+2−i) | a2l+2−i ⇒ p2k−2l+1 | aia2l+2−i

2l + 2− i ≥ k + 1⇒ 2k − 2l + 1 ≤ k + 2− i⇒ p2k−2l+1 | aia2l+2−i.

In the same way, we prove that, ∀i ∈ {0, . . . , l + 1},

p2k−2l+1 | βbib2l+2−i, ceie2l+2−i,

and, ∀i ∈ {0, . . . , l},

p2k−2l+1 | λcic2l+1−i, λdid2l+1−i, eie2l−i, eie2l+1−i,

p2k−2l+1 | fif2l−i, βfif2l+1−i, βcfif2l+2−i.

So p2k−2l+1 divides C2l+2 implies p2k−2l+1 | −αa2
l+1 − βcf2

l+1 and, by the
lemma 9, pk+1−l | al+1, p

k−l | fl+1. In the same way, we prove that p2k−2l

divides C2l+3 implies that p2k−2l | −λc2l+1 +αλd2
l+1 and pk−l | cl+1, dl+1. By in-

duction, we proved that pk+2−i | ai, for all i ∈ {0, . . . , k+1} and pk+1−i | fi, ci, di
for all i ∈ {0, . . . , k}. We have that p | ek+1 and p | bk+1 since p2 divides C2k+2.
We assume that pk+2−i | bi, ei for all i ∈ {l + 1, . . . , k + 1} (where 0 ≤ l ≤ k).
Using the same kind of trick, we prove that

p2k−2l+3 | C2l+1 ⇒ p2k−2l+3 | −(c+ 1)e2l ⇒ pk+2−l | el,

p2k−2l+4 | C2l ⇒ p2k−2l+4 | βt2l ⇒ pk+2−l | bl.

Hence, we proved that pk+2−i | bi, ei for all i ∈ {0, . . . , k + 1}. By induction,
we proved that pn+1−i | ai, bi, ei for all i ∈ {0, . . . , n} and pn−i | fi, ci, di for
all i ∈ {0, . . . , n− 1}. In particular, p | ai, bi, ci, di, ei, fi for all i and so we get
a contradiction. Hence if p | λ, the quadratic form qλ is anisotropic. Now we
assume that p - λ. Over Q(t), qλ = q1 ⊥ p · q2, with

q1 = 〈−α,−λt, αλt, (t− 1)(t− c)〉

and
q2 = 〈β

p
,−β

p
(t− 1)(t− c)〉

11



defined over the units of Q(t) with respect to the valuation v̂p. Over Fp(t),

q1
cvp = 〈−α,−λt, αλt, t(t− 1)〉 = 〈−α, 1〉 ⊥ 1

t
〈−λ, αλ〉

with 〈−α, 1〉
v 1

t and 〈−λ, αλ〉
v 1

t anisotropic over Fp, since
(
α
p

)
= −1. So, by

Springer’s theorem with respect to the valuation v 1
t
, q1cvp is anisotropic over

Fp(t). We also prove, using Springer’s theorem with respect to the valuation
vt−1, that q2cvp is anisotropic over Fp(t). So qλ is anisotropic over Q(t). Hence,
if p - λ, then qλ is anisotropic. So, if there exists a prime number p 6= 2 such
that p | β, c, p - α and

(
−αβc/p2

p

)
= −1 =

(
α
p

)
, then the Faddeev index of ρ

is equal to four. If there exists a prime number p 6= 2 such that p | α, c, p - β,(
−αβc/p2

p

)
= −1 and

(
β
p

)
= −1, we change the homogeneous coordinates as in

the proof of the proposition 10 and, using the first part of the proof, we obtain
that the Faddeev index of ρ is equal to four. 2

Proposition 12 Let

ρ = {(∞, αF×2), (t, αF×2), (t− 1, βF×2), (t− c, βF×2)}

with α, β, c ∈ Z square-free. Suppose there exists a prime number p, p 6= 2, such
that p | α, β, c and

(
αβ/p2

p

)
= −1, then the Faddeev index of ρ is equal to four.

Proof : Let

qλ = 〈−α, β,−λt, αλt, (t− 1)(t− c),−β(t− 1)(t− c)〉.

We want to prove that qλ is anisotropic, for all λ ∈ Z square-free. We may
assume that p divides λ. Indeed, if p does not divide λ, let λ′ = −αλ. Then p

divides λ′ and

qλ = 〈−α, β, αλ′t,−λ′t, (t− 1)(t− c),−β(t− 1)(t− c)〉.

Suppose that
(
βλ/p2

p

)
= −1, then qλ = q1 ⊥ p · q2 with

q1 = 〈αλ
p2
t, (t− 1)(t− c)〉

and
q2 = 〈−α

p
,
β

p
,−λ

p
t,−β

p
(t− 1)(t− c)〉

defined over the units of Q(t) with respect to the valuation v̂p. By the Springer’s
theorem with respect to the valutation vt−1, q1cvp is anisotropic over Fp(t). We

12



may write over Fp(t)

q2
cvp = 〈−α

p
,
β

p
,−λ

p
t,−β

p
(t− 1)t〉

= 〈−α
p
,
β

p
〉 ⊥ t · 〈−λ

p
,−β

p
(t− 1)〉.

As
(
αβ/p2

p

)
= −1 and

(
βλ/p2

p

)
= −1,

〈−α
p
,
β

p
〉
vt

= 〈−α
p
,
β

p
〉 and 〈−λ

p
,−β

p
(t− 1)〉

vt

= 〈−λ
p
,
β

p
〉

are anisotropic over Fp. So q is anisotropic over Q(t). Now we assume that(
βλ/p2

p

)
= 1. Suppose that qλ is isotropic. Then there exist a(t), b(t), c(t),

d(t), e(t), f(t) in F [t] such that

−αa(t)2+βb(t)2−λtc(t)2+αλtd(t)2+(t−1)(t−c)e(t)2−β(t−1)(t−c)f(t)2 = 0.

We may assume that

a(t) = ant
n + . . .+ a0, b(t) = bnt

n + . . .+ b0, c(t) = cn−1t
n−1 + . . .+ c0,

d(t) = dn−1t
n−1+. . .+d0, e(t) = en−1t

n−1+. . .+e0, f(t) = fn−1t
n−1+. . .+f0,

where ai, bi, ci, di, ei, fi ∈ Z and the gcd({ai, bi, ci, di, ei, fi | i = 1, . . . , n}) = 1.
For all k = 0, . . . , 2n, the coefficient Ck of tk in the isotropy relation is equal to
zero:

−α
k∑
i=0

aiak−i + β

k∑
i=0

bkbk−i − λ
k−1∑
i=0

cick−1−i + αλ

k−1∑
i=0

didk−1−i

+
k−2∑
i=0

eiek−2−i − (c+ 1)
k−1∑
i=0

eiek−1−i + c

k∑
i=0

eiek−i

−β
k−2∑
i=0

fifk−2−i + β(c+ 1)
k−1∑
i=0

fifk−1−i − βc
k∑
i=0

fifk−i = 0

(we let ai, bi = 0 for all i > n and ci = di = ei = fi = 0 for all i ≥ n). As p
divides C2n, p | e2n−1 and so p | en−1. As p divides C2n−1, p | αλp2 d

2
n−1 and so

p | dn−1. We assume that p divides ei, di for all i ∈ {n− 1, . . . , k}. Then

p | C2k ⇒ p | e2k−1 ⇒ p | ek−1,

p | C2k−1 ⇒ p | αλ
p2
d2
k−1 ⇒ p | d2

k−1.

13



So p | ei, di for all i. We have

p2 | C0 ⇒ p2 | −αa2
0 + βb20 ⇒ p | a0, b0,

p3 | C0 ⇒ p3 | −βcf2
0 ⇒ p | f0,

p2 | C1 ⇒ p2 | −λc20 ⇒ p | c0.

Let k ∈ N. We assume that pk+1−idivides ai, bi, ci, di, ei, fi for all i ∈ {0, . . . , k}.
Then we know that p | dk+1, ek+1 and we have

p2 | C2k+2 ⇒ p2 | −αa2
k+1 + βb2k+1 ⇒ p | ak+1, bk+1.

Let l ∈ N such that 0 ≤ l ≤ k and suppose that pk+2−i | ai, bi, di, ei for all
i ∈ {l + 1, . . . , k + 1}. Then

p2k−2l+3 | C2l+1 ⇒ p2k−2l+3 | αλ
p2
d2
l − (c+ 1)e2l .

As (
αλ(c+ 1)/p2

p

)
=
(
αβ/p2

p

)(
βλ/p2

p

)(
1
p

)
= −1,

pk+2−l | dl, el. Also,

p2k−2l+4 | C2l ⇒ p2k−2l+4 | −αa2
l + βb2l ⇒ pk+2−l | al, bl.

Hence we proved by induction that pk+2−i | ai, bi, di, ei for all i ∈ {0, . . . , k+1}.
We have

p2k+5 | C0 ⇒ p2k+5 | −βcf2
0 ⇒ pk+2 | f0,

p2k+4 | C1 ⇒ p2k+4 | −λc20 ⇒ c0.

Let l ∈ N, 1 ≤ l ≤ k+1, and assume that pk+2−i | ci, fi for all i ∈ {0, . . . , l−1}.
Then

p2k−2l+5 | C2l ⇒ p2k−2l+5 | −βcf2
l ⇒ pk+2−l | fl,

p2k−2l+4 | C2l+1 ⇒ p2k−2l+4 | −λc2l ⇒ pk+2−l | cl.

Hence, we obtain that pk+2−i | ai, bi, ci, di, ei, fi for all i ∈ {0, . . . , k + 1}. We
proved by induction that, pn+1−i | ai, bi, ci, di, ei, fi, for all i ∈ {0, . . . , n}. So, in
particular, p | ai, . . . , fi for all i. We have a contradiction, thus qλ is anisotropic.

2

Suppose that α, β, c ∈ Z are square-free. One of the quadratic forms

〈β,−α,−c, αc〉 and 〈α,−β,−c, βc〉

is anisotropic over Q if and only if one of them is anisotropic over Qp, for some
prime number p, or over R i.e.

αβ < 0 and c < 0 or

14



∃p 6= 2 prime such that p | α, p - βc,
(
β

p

)
= 1,

(
c

p

)
= −1 or

∃p 6= 2 prime such that p | β, p - αc,
(
α

p

)
= 1,

(
c

p

)
= −1 or

∃p 6= 2 prime such that p | c, p - αβ,
(
αβ

p

)
= −1 or

∃p 6= 2 prime such that p | α, c, p - β,
(
−αβc/p2

p

)
= −1,

(
β

p

)
= 1 or

∃p 6= 2 prime such that p | β, c, p - α,
(
−αβc/p2

p

)
= −1,

(
α

p

)
= 1 or

〈β,−α,−c, αc〉 is anisotropic over Q2 or

〈α,−β,−c, βc〉 is anisotropic over Q2.

So, until now, we have the following result: if

αβ < 0 and c < 0 or

∃p 6= 2 prime such that p | α, p - βc,
(
c
p

)
= −1 or

∃p 6= 2 prime such that p | β, p - αc,
(
c
p

)
= −1 or

∃p 6= 2 prime such that p | c, p - αβ,
(
αβ
p

)
= −1 or

∃p 6= 2 prime such that p | α, c, p - β,
(
−αβc/p2

p

)
= −1 or

∃p 6= 2 prime such that p | β, c, p - α,
(
−αβc/p2

p

)
= −1 or

∃p 6= 2 prime such that p | α, β, c,
(
αβ/p2

p2

)
= −1 or

〈β,−α,−c, αc〉 is anisotropic over Q2 or
〈α,−β,−c, βc〉 is anisotropic over Q2,

(2)

then the Faddeev index of

ρ = {(∞, αF×2), (t, αF×2), (t− 1, βF×2), (t− c, βF×2)}

is equal to four. The conditions in 2 are equivalent to the condition (αβ, c)F 6= 1.
So we have the following theorem

Theorem 13 We assume that F = Q. Let

ρ = {(∞, αF×2), (t, αF×2), (t− 1, βF×2), (t− c, βF×2)}

with α, β, c ∈ Z, square-free. If (αβ, c)F is not trivial, then the Faddeev index
of ρ is equal to four.
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