Ramification sequences of central simple algebras

Amit Kulshrestha and Mélanie Raczek

March 2, 2007

Abstract

In this paper, we study central simple algebras over function fields in one variable through their ramification sequence. We determine a sufficient condition under which the Faddeev index of algebras with a given degree four ramification sequence is two. Further, we study through several examples other related conditions concerning Faddeev index of central simple algebras over function fields.

1 Introduction

Let F be a field with characteristic zero and K = F(t), the function field in one variable over F. Let $x \in \mathbb{P}_F^1$ be a closed point and F_x be the residue of F at x. Let $_2\text{Br}(K)$ denote the 2-torsion part of the Brauer group Br(K) of K. By [10, II.§3] there is a map $\delta_x : \text{Br}(K) \to H^1(F_x, \mathbb{Z}/2) \cong F_x^{\times}/F_x^{\times 2}$ called the *residue* map. In 1956, Faddeev [2] gave the following description of $_2\text{Br}(K)$:

Theorem 1 With the notation as above, the following sequence is exact:

$$0 \longrightarrow {}_{2}\mathsf{Br}(F) \longrightarrow {}_{2}\mathsf{Br}(K) \xrightarrow{\oplus \delta_{x}} \bigoplus_{x \in \mathbb{P}_{F}^{1(1)}} H^{1}(F_{x}, \mathbb{Z}/2) \xrightarrow{cor} H^{1}(F, \mathbb{Z}/2) \longrightarrow 0$$

where ${}_{2}\mathsf{Br}(F)$ is the 2-torsion part of the Brauer group of F, $\mathbb{P}_{F}^{1(1)}$ is the set of closed point of \mathbb{P}_{F}^{1} and cor is the sum of corestriction maps $\operatorname{cor}_{x}: H^{1}(F_{x}, \mathbb{Z}/2) \to H^{1}(F, \mathbb{Z}/2).$

Under the isomorphisms $H^1(F_x, \mathbb{Z}/2) \simeq F_x^*/F_x^{*2}$ and $H^1(F, \mathbb{Z}/2) \simeq F^*/F^{*2}$, the map *cor* corresponds to $\prod_{x \in \mathbb{P}_F^1} N_{F_x/F} : F_x^*/F_x^{*2} \to F^*/F^{*2}$, where $N_{F_x/F}$ are norm maps from finite extensions F_x/F to F.

Let A be a central simple algebra of exponent two over K which represents $[A] \in {}_{2}Br(K)$. The residue $\delta_{x}([A])$ is trivial for all but finitely many $x \in \mathbb{P}_{F}^{1}$. The sequence $\{(x, \delta_{x}([A]))\}_{\delta_{x}([A])\neq 0}$ is called the *ramification sequence* of A. The following statements follows immediately from Theorem 1:

- (i) For arbitrary $a_x \in H^1(F_x, \mathbb{Z}/2)$, $a_x \neq 0$; the sequence $\{(x, a_x)\}$ is a ramification sequence for some 2-torsion central simple algebra if and only if $\sum_x cor_x(a_x) = 0 \in H^1(F, \mathbb{Z}/2)$. This allows us to talk of ramification sequences without explicit reference to the central simple algebra. We say therefore that the elements in the kernal of *cor* are *ramification sequences*.
- (ii) Two central simple algebras A and B of exponent two over K have the same ramification sequence if and only if there exists an exponent two central simple algebra C over F such that $A \otimes_F C \simeq B$.

For a central simple algebra A of exponent two, the notion of Faddeev index fi(A) is defined as follows:

 $fi(A) = \min\{ \operatorname{index}(A \otimes_F \mathcal{C}) : \mathcal{C} \text{ is an exponent two algebra over } F \}$

It follows in view of (ii) above that if two algebras over K have same ramification sequence, then their Faddeev indices are equal.

Let $\rho = \{(x, a_x)\}, a_x \neq 0 \in H^1(F_x)$ be an arbitrary ramification sequence. Then we define the *Faddeev index of* ρ to be the Faddeev index of a *K*-algebra whose ramification sequence is $\{(x, a_x)\}$. This index is independent of the choice of the *K*-algebra.

Let $\deg(x)$ denote the degree of the closed point x. Then $\sum_{\delta_x([A])\neq 0} \deg(x)$ is called the *degree of the ramification sequence of A*. In view of (i) above, it follows that the degree of ramification sequences is at least two.

It was proved in [5, Cor. 2.4] and [8, §4, §5] that the ramification sequences ρ of degree two or three have Faddeev index two. Also, it was shown in [8, Cor. 4.2, Cor. 4.3] that the quaternion algebras A with ρ of degree two as their ramification sequence forms 1-parameter family while for the case when $\deg(\rho) = 3$, such algebra is unique up to isomorphism [8, Cor 5.2].

It is therefore interesting to study similar questions when $\deg(\rho) = 4$. There are examples of ramification sequences with degree four and Faddeev index four. Thus we ask the following question:

Question 2 Which ramification sequences of degree four have Faddeev index two?

In section 2, we give a sufficient condition on degree four linear ramification sequences to have Faddeev index two. In section 3, we give a necessary condition on degree four linear ramification sequence over \mathbb{Q} , with two identical ramifications, to have Faddeev index two.

2 Ramification sequence of degree four over an arbitrary field

In this section, F is an arbitrary field of characteristic zero. We give several recalls. The notation \mathbb{P}_F^1 means $\operatorname{Proj}(F[u, v])$ which is the set of homogeneous prime ideals of F[u, v] which do not contain the ideal generated by u and v. There is a bijection between

 $\mathbb{P}^1_F \leftrightarrow \{\text{monic irreducible polynomials of } F[t]\} \cup \{\infty\}$

sending the ideal generated by p(u, v), where p(u, v) is a homogeneous irreducible polynomial such that v does not divide p(u, v) and p(t, 1) is a monic polynomial, to p(t, 1), and the ideal generated by v to ∞ . We identify an element of \mathbb{P}_F^1 with its image by this bijection. We say that $x \in \mathbb{P}_F^1$ is a rational point if $x = p(t) \in F[t]$ and deg p = 1 or if $x = \infty$. The rational points are in one to one correspondence with $F \cup \{\infty\}$. We have other isomorphisms $\mathrm{H}^1(F_x, \mathbb{Z}/2) \cong F_x^{\times}/F_x^{\times 2}$ and $\mathrm{H}^1(F, \mathbb{Z}/2) \cong F^{\times}/F^{\times 2}$ and we also identify elements with their image by these isomorphisms. Let x = p(t) be in \mathbb{P}_F^1 , then we denote by v_x the discrete valuation over F(t) define by

 $v_x(f(t)) =$ the biggest integer *n* such that $p(t)^n$ divides f(t),

for $f(t) \in F[t]$. We denote by v_{∞} the discrete valuation over F(t) define by $v_{\infty}(f(t)) = -\deg f(t)$, for $f(t) \in F[t]$. We may describe, for $x \in \mathbb{P}_F^1$, the residue field F_x and the map δ_x . Let $x \in \mathbb{P}_F^1$, then F_x is the residue field of the valuation v_x . If x = p(t), then $F_x = F[t]/(p(t))$. Let θ be a root of p(t) (in the algebraic closure of F), then there is an F-isomorphism between F_x and $F(\theta)$ define by $t \mapsto \theta$. If $x = \infty$, then

$$F_x = \{f(t)/g(t) \mid \deg f(t) \le \deg g(t)\} / \{f(t)/g(t) \mid \deg f(t) < \deg g(t)\},\$$

which is isomorphic to F sending the class of f(t)/g(t), where $\deg f(t) = \deg g(t)$, $f(t) = a_n t^n + \ldots + a_0$ and $g(t) = b_n t^n + \ldots + b_0$, to a_n/b_n . Let $x \in \mathbb{P}_F^1$ and $f(t), g(t) \in F(t)$, then

$$\delta_x(f(t),g(t))_{F(t)} = (-1)^{v_x(f(t))v_x(g(t))} f(t)^{v_x(g(t))} g(t)^{-v_x(f(t))} F_x^{\times 2}.$$

These definitions do not depend on the choice of homogeneous coordinates of \mathbb{P}_{F}^{1} . A transformation of \mathbb{P}_{F}^{1} (i.e. a linear change of homogeneous coordinates) is dertermined by its restriction on the rational points which is a homography of $F \cup \{\infty\}$. So given two triples of distinct rational points, there exists an unique transformation of \mathbb{P}_{F}^{1} sending a triple on the second one (see [Berger, 1994], 4.6.9). The cross ratio of a quadruple of distinct points $\{a, b, c, d\}$ of $F \cup \{\infty\}$, denoted by [a, b, c, d], is f(d) where f is the unique automorphism of

 $F \cup \{\infty\}$ such that $f(a) = \infty$, f(b) = 0 and f(c) = 1 (see [Berger, 1994], 6.1.2). So given two quadruples $\{a_i\}$ and $\{a'_i\}$ of distinct rational points, there exists an unique transformation f of \mathbb{P}^1_F such that $f(a_i) = a'_i$ for all i if and only if $[a_1, a_2, a_3, a_4] = [a'_1, a'_2, a'_3, a'_4]$. Suppose the homogeneous coordinates of a_i in an arbitrary basis are $(\lambda_i: \mu_i)$ then the cross ratio is

$$[a_1, a_2, a_3, a_4] = \frac{\begin{vmatrix} \lambda_3 & \lambda_1 \\ \mu_3 & \mu_1 \end{vmatrix} \begin{vmatrix} \lambda_4 & \lambda_2 \\ \mu_4 & \mu_2 \end{vmatrix}}{\begin{vmatrix} \lambda_3 & \lambda_2 \\ \mu_3 & \mu_2 \end{vmatrix} \begin{vmatrix} \lambda_4 & \lambda_1 \\ \mu_4 & \mu_1 \end{vmatrix}}$$

(see [Berger, 1994], 6.2.3). Given a quadruple of distinct rational points, we may find homogeneous coordinates such that the quadruple is $\{\infty, t, t-1, t-c\}$, for some $c \in F$.

Proposition 3 Let $\rho = \{(\infty, \alpha F^{\times 2}), (t, \beta F^{\times 2}), (t-1, \gamma F^{\times 2}), (t-c, \alpha \beta \gamma F^{\times 2})\}$ be a ramification sequence of degree four. Suppose there exists $x, y, z, w \in F^{\times}$ such that

$$c = \frac{(\alpha x^2 - \gamma z^2)(\beta y^2 - \alpha \beta \gamma w^2)}{(\beta y^2 - \gamma z^2)(\alpha x^2 - \alpha \beta \gamma w^2)}.$$
 (1)

Then the Faddeev index of ρ is two.

Proof: Let $x, y, z, w \in F^{\times}$ such that

$$c = \frac{(\alpha x^2 - \gamma z^2)(\beta y^2 - \alpha \beta \gamma w^2)}{(\beta y^2 - \gamma z^2)(\alpha x^2 - \alpha \beta \gamma w^2)}.$$

Then

$$[\infty, 0, 1, c] = c = \frac{(\alpha x^2 - \gamma z^2)(\beta y^2 - \alpha \beta \gamma w^2)}{(\beta y^2 - \gamma z^2)(\alpha x^2 - \alpha \beta \gamma w^2)} = [\alpha x^2, \beta y^2, \gamma z^2, \alpha \beta \gamma w^2],$$

and so there exist homogeneous variables u' and v' of \mathbb{P}^1_F such that

$$vF = (u' - \alpha x^2 v')F,$$

$$uF = (u' - \beta y^2 v')F,$$

$$(u - v)F = (u' - \gamma z^2 v')F,$$

$$(u - cv)F = (u' - \alpha \beta \gamma w^2 v')F.$$

Hence

$$\rho = \{ (t' - \alpha x^2, \alpha F^{\times 2}), (t' - \beta y^2, \beta F^{\times 2}), (t' - \gamma z^2, \gamma F^{\times 2}), (t' - \alpha \beta \gamma w^2, \alpha \beta \gamma F^{\times 2}) \}.$$

We consider the quaternion algebra

$$Q = \left(t', (t' - \alpha x^{2})(t' - \beta y^{2})(t' - \gamma z^{2})(t' - \alpha \beta \gamma w^{2})\right)_{F(t')}$$

Then

$$\delta_{t'-\alpha x^2}(Q) = t'(F_{t'-\alpha x^2})^{\times 2} = \alpha x^2 F^{\times 2} = \alpha F^{\times 2},$$

and, in the same way,

$$\begin{split} \delta_{t'-\beta y^2}(Q) &= \beta F^{\times 2}, \\ \delta_{t'-\gamma z^2}(Q) &= \gamma F^{\times 2}, \\ \delta_{t'-\alpha\beta\gamma w^2}(Q) &= \alpha\beta\gamma F^{\times 2}. \end{split}$$

Also

$$\begin{split} \delta_{t'}(Q) &= (t' - \alpha x^2)(t' - \beta y^2)(t' - \gamma z^2)(t' - \alpha \beta \gamma w^2)(F_{t'})^{\times 2} \\ &= \alpha^2 \beta^2 \gamma^2 x^2 y^2 z^2 w^2 F^{\times 2} \\ &= F^{\times 2} \end{split}$$

and

$$\delta_{\infty}(Q) = (-1)^4 \frac{(t' - \alpha x^2)(t' - \beta y^2)(t' - \gamma z^2)(t' - \gamma z^2)(t' - \alpha \beta \gamma w^2)}{t'^4} (F_{\infty})^{\times 2}$$

= $F^{\times 2}$.

So the ramification sequence of Q is ρ and the Faddeev index of ρ is equal to two. $\hfill \Box$

We remark that (1) implies

$$c = \frac{\left(x^2 - \alpha\gamma(z/\gamma)^2\right)\left(y^2 - \alpha\gamma w^2\right)}{\left(y^2 - \beta\gamma(z/\beta)^2\right)\left(x^2 - \beta\gamma w^2\right)}.$$

In particular, if $\alpha F^{\times 2} = \beta F^{\times 2}$ and $\alpha F^{\times 2} \neq \gamma F^{\times 2}$, then (1) implies that c is a norm over $F(\sqrt{\alpha\gamma})/F$. By the proposition 2.7 in [Kunyavskii et al, 2006], if one of the quaternion algebras $(\alpha, c)_{F(\sqrt{\gamma})}$ and $(\gamma, c)_{F(\sqrt{\alpha})}$ is not trivial $(\alpha F^{\times 2} = \beta F^{\times 2} \text{ and } \alpha F^{\times 2} \neq \gamma F^{\times 2}$ with the notation of the proposition 3), then the Faddeev index of ρ is equal to four. We remark that if c is a norme over $F(\sqrt{\alpha\gamma})$ i.e. the quaternion algebra $(\alpha\gamma, c)_F$ is trivial, then both the quaternion algebras $(\alpha, c)_{F(\sqrt{\gamma})}$ and $(\gamma, c)_{F(\sqrt{\alpha})}$ are trivial. Using the proposition 3, we may give examples of ramification sequences of degree four with Faddeev index two and construct a quaternion algebra having ρ as its ramification sequence.

Example 4 Let $\alpha = 3$, $\beta = -1$, $\gamma = 2$ and c = -5/27. Then (1) holds with x = y = z = w = 1 and the Faddeev index of

$$\rho = \{(\infty, \alpha F^{\times 2}), (t, \beta F^{\times 2}), (t-1, \gamma F^{\times 2}), (t-c, \alpha \beta \gamma F^{\times 2})\}$$

is equal to two. Let u' = 9u - v, v' = 3u + v and t' = u'/v'. Then

$$\rho = \{(t'-3, 3F^{\times 2}), (t'+1, -F^{\times 2}), (t'-2, 2F^{\times 2}), (t'+6, -6F^{\times 2})\}.$$

By the proposition, the ramification sequence of

$$Q = \left(t', (t'-3)(t'+1)(t'-2)(t'+6)\right)_{F(t')}$$

is ρ . Replacing t' by $\frac{9t-1}{3t+1}$ we obtain

$$Q = \left((9t-1)(3t+1), -t(t-1)(27t+5) \right)_{F(t)}.$$

Lemma 5 The quaternion algebra $(\alpha, c)_{F(\sqrt{\beta})}$ is trivial if and only if the quadratic form $\langle \beta, -\alpha, -c, \alpha c \rangle$ is isotropic.

Proof : The quaternion algebra $(\alpha, c)_{F(\sqrt{\beta})}$ is trivial if and only if $(\alpha, c)_F$ is Brauer equivalent to (β, d) for some $d \in F^{\times}$ (see [Knus et. al., 1998], (16.29)) i.e. the quadratic forms $\langle 1, -\alpha, -c, \alpha c \rangle$ and $\langle 1, -\beta, -d, \beta d \rangle$ are isometric. So $(\alpha, c)_{F(\sqrt{\beta})}$ is trivial if and only if $\langle \beta, -\alpha, -c, \alpha c \rangle$ is isometric to $\langle \beta, -\beta, -d, \beta d \rangle$ which is the case if and only if $\langle \beta, -\alpha, -c, \alpha c \rangle$ is isotropic. □

Using this lemma, we get a condition equivalent to the condition in the proposition 2.7 in [Kunyavskii et al., 2006] to have Faddeev index four.

Proposition 6 Let

$$\rho = \{ (\infty, \alpha F^{\times 2}), (t, \alpha F^{\times 2}), (t-1, \beta F^{\times 2}), (t-c, \beta F^{\times 2}) \}.$$

Suppose that one of the quadratic forms $\langle \beta, -\alpha, -c, \alpha c \rangle$ and $\langle \alpha, -\beta, -c, \beta c \rangle$ is anisotropic. Then the Faddeev index of ρ is equal to four. \Box

3 Ramification sequence of degree four over \mathbb{Q}

In this section, we assume $F = \mathbb{Q}$. We need some lemmas.

Lemma 7 Let A be an exponent 2 central simple algebra over \mathbb{Q} . Then A is Brauer equivalent to a quaternion algebra.

Proof : By Merkurjev in [1981], A is Brauer equivalent to a tensor product of quaternion algebras. By Albert's theorem (see [Knus et. al., 1998], (16.5)), a biquaternion algebra (over any field) is a division algebra if and only if its Albert form is anisotropic. But, the Hasse-Minkowski Principle ([Lam, 1973], VI.3.1) says that a quadratic form over \mathbb{Q} is isotropic if and only if it is isotropic over \mathbb{R} and over \mathbb{Q}_p , for all prime number p. On one hand, as an Albert form

is 6-dimensional, it isotropic over all \mathbb{Q}_p (see [Lam, 1973], VI.2.12). On the other hand, an Albert form is always isotropic over \mathbb{R} . So, there is no division biquaternion algebra over \mathbb{Q} and any exponent two central simple algebra over \mathbb{Q} is Brauer equivalent to a quaternion algebra.

Lemma 8 Let $\alpha, \beta, c \in \mathbb{Q}$ and

$$\rho = \{(\infty, \alpha F^{\times 2}), (t, \alpha F^{\times 2}), (t - 1, \beta F^{\times 2}), (t - c, \beta F^{\times 2})\}.$$

Then

$$fi(A) = \min \Big\{ \mathsf{index}\Big((\alpha, \lambda t)_K \otimes_K (\beta, (t-1)(t-c))_K \Big) \mid \lambda \in \mathbb{Z} \text{ square-free} \Big\}.$$

In consequence, the Faddeev index of ρ is two if there exists $\lambda \in \mathbb{Z}$ such that the quadratic form

$$\langle -\alpha, \beta, -\lambda t, \alpha \lambda t, (t-1)(t-c), -\beta(t-1)(t-c) \rangle$$

is isotropic and the Faddeev index of ρ is four otherwise.

Proof: Let $A = (\alpha, t)_K \otimes_K (\beta, (t-1)(t-c))_K$. Then the ramification sequence of A is equal to ρ . Let C be an exponent 2 F-algebra. By the lemma 7, we may assume that C is a quaternion algebra. If $C \otimes_F F(\sqrt{\alpha})$ is not trivial, then, by the proof of the proposition 2.7 in [Kunyavskii et. al., 2006], the index of $A \otimes_K C$ is greater or equal to four. So, we may assume that $C \otimes_F F(\sqrt{\alpha})$ is trivial. Using (16.29) in [Knus et. al., 1998], we obtain that $C = (\alpha, \lambda)_F$ for some $\lambda \in \mathbb{Q}$. We can assume that $\lambda \in \mathbb{Z}$ and is square-free. As

$$A \otimes_K C = (\alpha, \lambda t)_K \otimes_K (\beta, (t-1)(t-c))_K,$$

we have the result.

Lemma 9 Suppose $\alpha, \beta, p, x, y \in \mathbb{Z}$ are such that $p \neq 2$ is prime, $p \nmid \alpha\beta$, $\left(\frac{\alpha\beta}{p}\right) = -1$ and $p \mid -\alpha x^2 + \beta y^2$. Then $p \mid x$ and $p \mid y$.

Proof: Suppose $p \nmid x$. Then $\alpha \beta = (\beta y x^{-1})^2$ in \mathbb{Z}/p which contradicts $\left(\frac{\alpha \beta}{p}\right) = -1$. If $p \nmid y$, we also have a contradiction.

We introduce some notations. For a field k with a valuation v, we denote by \overline{k}^{v} the residue field of k with respect to the valuation v:

$$k^{\circ} = \mathcal{O}_v / \mathcal{M}_v,$$

where $\mathcal{O}_v = \{x \in k \mid v(x) \ge 0\}$ is the local ring of the units of k and $\mathcal{M}_v = \{x \in k \mid v(x) > 0\}$ is the unique maximal ideal of \mathcal{O}_v . So, we have a surjective

morphism $\mathcal{O}_v \to \overline{k}^v$. It induces a map from the Witt group of \mathcal{O}_v to the Witt group of \overline{k}^v . For a quadratic form q over \mathcal{O}_v , we denote by \overline{q}^v the image of q by this map.

Proposition 10 Let $\alpha, \beta, c \in \mathbb{Z}$ be square-free. Let

$$\rho = \{(\infty, \alpha F^{\times 2}), (t, \alpha F^{\times 2}), (t-1, \beta F^{\times 2}), (t-c, \beta F^{\times 2})\}.$$

Suppose there exists a prime $p \neq 2$ such that $p \nmid \alpha c$, $p \mid \beta$, $\left(\frac{\alpha}{p}\right) = -1$ and $\left(\frac{c}{p}\right) = -1$ or there exists a prime $p \neq 2$ such that $p \nmid \beta c$, $p \mid \alpha$, $\left(\frac{\beta}{p}\right) = -1$ and $\left(\frac{c}{p}\right) = -1$. Then the Faddeev index of ρ is four.

Proof: Suppose there exists a prime $p \neq 2$ such that $p \nmid \alpha c$, $p \mid \beta$, $\left(\frac{\alpha}{p}\right) = -1$ and $\left(\frac{c}{p}\right) = -1$. Let $A = (\alpha, t)_K \otimes_K (\beta, (t-1)(t-c))_K$. For $\lambda \in \mathbb{Z}$ square-free, we denote by q_λ the Albert form associated to $A \otimes_K (\alpha, \lambda)_K$, so

$$q_{\lambda} = \langle -\alpha, \beta, -\lambda t, \alpha \lambda t, (t-1)(t-c), -\beta(t-1)(t-c) \rangle$$

By the lemma 8, it is enough to show that q_{λ} is anisotropic, for all $\lambda \in \mathbb{Z}$, square-free. First we suppose that p divides λ . We may write $q = q_1 \perp p \cdot q_2$ over $\mathbb{Q}(t)$ with

$$q_1 = \langle -\alpha, (t-1)(t-c) \rangle$$

and

$$q_2 = \langle \frac{\beta}{p}, -\frac{\lambda}{p}t, \alpha \frac{\lambda}{p}t, -\frac{\beta}{p}(t-1)(t-c) \rangle,$$

 q_1 and q_2 being defined over the units with respect to the valutation $\hat{v_p}$ defined on $\mathbb{Q}(t)$ by

$$\widehat{v_p}(\sum_i a_i t^i) = \min_i v_p(a_i).$$

Over $\mathbb{F}_p(t)$,

$$\overline{q_1}^{\widehat{v_p}} = \langle -\alpha \rangle \perp (t-1) \cdot \langle t-c \rangle,$$

 $\overline{\langle -\alpha \rangle}^{v_{t-1}} = \langle -\alpha \rangle$ and $\overline{\langle t-c \rangle}^{v_{t-1}} = \langle 1-c \rangle$ are anisotropic over \mathbb{F}_p , so, using the Spinger's theorem with respect to the valuation v_{t-1} , $\overline{q_1}^{\widehat{v_p}}$ is anisotropic over $\mathbb{F}_p(t)$. Over $\mathbb{F}_p(t)$,

$$\overline{q_2}^{\widehat{v_p}} = \langle \frac{\beta}{p}, -\frac{\beta}{p}(t-1)(t-c) \rangle \perp t \cdot \langle -\frac{\lambda}{p}, \alpha \frac{\lambda}{p} \rangle$$

with

$$\overline{\langle \frac{\beta}{p}, -\frac{\beta}{p}(t-1)(t-c) \rangle}^{v_t} = \frac{\beta}{p} \langle 1, -c \rangle$$

$$\overline{\langle -\frac{\lambda}{p}, \alpha \frac{\lambda}{p} \rangle}^{v_t} = \frac{\lambda}{p} \langle -1, \alpha \rangle$$

anisotropic over \mathbb{F}_p since $\left(\frac{c}{p}\right) = -1$ and $\left(\frac{\alpha}{p}\right) = -1$. Hence, using the Springer's theorem with respect to the valuation v_t , $\overline{q_2}^{\widehat{v_p}}$ is anisotropic. Finally, by the same theorem used on q with repect to the valuation $\widehat{v_p}$, q is anisotropic. Now we assume that p does not divide λ . Then, over $\mathbb{Q}(t)$, we write $q = q_1 \perp p \cdot q_2$ with

$$q_1 = \langle -\alpha, -\lambda t, \alpha \lambda t, (t-1)(t-c) \rangle$$

and

$$q_2 = \langle \frac{\beta}{p}, -\frac{\beta}{p}(t-1)(t-c) \rangle$$

defined over the units of $\mathbb{Q}(t)$ with respect to the valuation \hat{v}_p . Since

$$\overline{q_1}^{\widehat{v_p}} = \langle -\alpha, 1 \rangle \perp \frac{1}{t} \cdot \langle -\lambda, \alpha \lambda \rangle$$

and $\left(\frac{\alpha}{p}\right) = -1$, by the Springer's theorem, $\overline{q_1}^{\widehat{v_p}}$ is anisotripic over $\mathbb{F}_p(t)$. We also prove that $\overline{q_2}^{\widehat{v_p}}$ is anisotropic over $\mathbb{F}_p(t)$ using the Springer's theorem with respect to the valuation v_{t-1} . So we conclude that q is anisotropic over $\mathbb{Q}(t)$. We proved that, if there exists a prime number $p \neq 2$, such that $p \nmid \alpha c$, $p \mid \beta$ and $\left(\frac{\alpha}{p}\right) = -1 = \left(\frac{c}{p}\right)$, then the Faddeev index of ρ is equal to four. Now we assume that there exists a prime number $p \neq 2$ such that $p \nmid \beta c$, $p \mid \alpha$ and $\left(\frac{\beta}{p}\right) = -1 = \left(\frac{c}{p}\right)$. Then we may change the homogeneous coordinates so that

$$\rho = \{(t'-1, \alpha F^{\times 2}), (t'-c, \alpha F^{\times 2}), (\infty, \beta F^{\times 2}), (t', \beta F^{\times 2})\}$$

since

$$[\infty, 0, 1, c] = c = [1, c, \infty, 0].$$

Using the first part of the proof, we also show that the Faddeev index of ρ is equal to four. \Box

In particular, the implication in the proposition 6 is not an equivalence. Indeed, if $\alpha = 2$, $\beta = 3$ and c = -1, then p = 3 is such that $p \nmid \alpha c$, $p \mid \beta$, $\left(\frac{\alpha}{p}\right) = -1$ and $\left(\frac{c}{p}\right) = -1$, so by the proposition 10, the Faddeev index of ρ is equal to four. But the quaternion algebras $(\alpha, c)_{F(\sqrt{\beta})}$ and $(\beta, c)_{F(\sqrt{\alpha})}$ are trivial $(\alpha = (1)^2 - c(1)^2$ and $\beta = (\sqrt{\alpha})^2 - c(1)^2$).

Proposition 11 Let

$$\rho = \{(\infty, \alpha F^{\times 2}), (t, \alpha F^{\times 2}), (t-1, \beta F^{\times 2}), (t-c, \beta F^{\times 2})\}$$

and

with $\alpha, \beta, c \in \mathbb{Z}$ square-free. Suppose there exists a prime number $p \neq 2$ such that $p \mid \beta, c, p \nmid \alpha, \left(\frac{-\alpha\beta c/p^2}{p}\right) = -1$ and $\left(\frac{\alpha}{p}\right) = -1$ or there exists a prime number $p \neq 2$ such that $p \mid \alpha, c, p \nmid \beta, \left(\frac{-\alpha\beta c/p^2}{p}\right) = -1$ and $\left(\frac{\beta}{p}\right) = -1$. Then the Faddeev index of ρ is equal to four.

Proof: Let $p \neq 2$ be a prime number such that $p \mid \beta, c, p \nmid \alpha, \left(\frac{-\alpha\beta c/p^2}{p}\right) = -1$ and $\left(\frac{\alpha}{p}\right) = -1$. Let

$$q_{\lambda} = \langle -\alpha, \beta, -\lambda t, \alpha \lambda t, (t-1)(t-c), -\beta(t-1)(t-c) \rangle$$

We want to prove that q_{λ} is anisotropic, for all $\lambda \in \mathbb{Z}$ square-free. Suppose there exist $a(t), b(t), c(t), d(t), e(t), f(t) \in F[t]$ such that

$$-\alpha a(t)^{2} + \beta b(t)^{2} - \lambda t c(t)^{2} + \alpha \lambda t d(t)^{2} + (t-1)(t-c)e(t)^{2} - \beta(t-1)(t-c)f(t)^{2} = 0.$$

We may assume that

$$a(t) = a_n t^n + \ldots + a_0, \ b(t) = b_n t^n + \ldots + b_0, \ c(t) = c_{n-1} t^{n-1} + \ldots + c_0,$$

 $d(t) = d_{n-1}t^{n-1} + \ldots + d_0, \quad e(t) = e_{n-1}t^{n-1} + \ldots + e_0, \quad f(t) = f_{n-1}t^{n-1} + \ldots + f_0,$

where $a_i, b_i, c_i, d_i, e_i, f_i \in \mathbb{Z}$ and the $gcd(\{a_i, b_i, c_i, d_i, e_i, f_i \mid i = 1, ..., n\}) = 1$. For all k = 0, ..., 2n, the coefficient of t^k in the isotropy relation is equal to zero, so

$$-\alpha \sum_{i=0}^{k} a_{i}a_{k-i} + \beta \sum_{i=0}^{k} b_{k}b_{k-i} - \lambda \sum_{i=0}^{k-1} c_{i}c_{k-1-i} + \alpha \lambda \sum_{i=0}^{k-1} d_{i}d_{k-1-i}$$
$$+ \sum_{i=0}^{k-2} e_{i}e_{k-2-i} - (c+1) \sum_{i=0}^{k-1} e_{i}e_{k-1-i} + c \sum_{i=0}^{k} e_{i}e_{k-i}$$
$$-\beta \sum_{i=0}^{k-2} f_{i}f_{k-2-i} + \beta(c+1) \sum_{i=0}^{k-1} f_{i}f_{k-1-i} - \beta c \sum_{i=0}^{k} f_{i}f_{k-i} = 0$$

(we let $a_i, b_i = 0$ for all i > n and $c_i = d_i = e_i = f_i = 0$ for all $i \ge n$). We denote by C_k the coefficient of t^k in the isotropy relation. First we assume that $p \mid \lambda$. As $C_{2n} = 0$ and $p \mid \beta$, we have $p \mid -\alpha a_n^2 + e_{n-1}^2$. By lemma 9, $p \mid a_n, e_{n-1}$, since $\left(\frac{\alpha}{p}\right) = -1$. We assume that $p \mid a_i, e_{i-1}$ for all $i \in \{n, \ldots, k+1\}$. Then, as p divides $C_{2k}, p \mid -\alpha a_k^2 + e_{k-1}^2$ and $p \mid a_k, e_{k-1}$. Hence $p \mid a_i, e_i$ for all i. Since $\left(\frac{-\alpha\beta c/p^2}{p}\right) = -1$ and $\left(\frac{\alpha}{p}\right) = -1$, we have

$$p^2 \mid C_0 \Rightarrow p^2 \mid \beta b_0^2 \Rightarrow p \mid b_0.$$

We assume that $p^{k+1-i} \mid a_i, b_i, e_i$ for all $i \in \{0, \ldots, k\}$, $p^{k-i} \mid f_i, c_i, d_i$ for all $i \in \{0, \ldots, k-1\}$ and we will prove that $p^{k+2-i} \mid a_i, b_i, e_i$ for all $i \in \{0, \ldots, k+1\}$ and $p^{k+1-i} \mid f_i, c_i, d_i$ for all $i \in \{0, \ldots, k\}$. We have

$$p^{2k+3} \mid C_0 \Rightarrow p^{2k+3} \mid -\alpha a_0^2 - \beta c f_0^2 \Rightarrow p^{k+2} \mid a_0, p^{k+1} \mid f_0,$$
$$p^{2k+2} \mid C_1 \Rightarrow p^{2k+2} \mid -\lambda c_0^2 + \alpha \lambda d_0^2 \Rightarrow p^{k+1} \mid c_0, d_0.$$

We assume that $p^{k+2-i} | a_i$ for all $i \in \{0, ..., l\}$ and $p^{k+1-i} | f_i, c_i, d_i$ for all $i \in \{0, ..., l\}$ (where $0 \le l < k - 1$). Then $p^{2k-2l+1} | a_i a_{2l+2-i}$ for all $i \in \{0, ..., l+1\}$. Indeed, let $i \in \{0, ..., l+1\}$, then $p^{k+2-i} | a_i$. We have

$$2l + 2 - i \le k \Rightarrow p^{k+1-(2l+2-i)} \mid a_{2l+2-i} \Rightarrow p^{2k-2l+1} \mid a_i a_{2l+2-i}$$

 $2l+2-i \geq k+1 \Rightarrow 2k-2l+1 \leq k+2-i \Rightarrow p^{2k-2l+1} \mid a_i a_{2l+2-i}.$

In the same way, we prove that, $\forall i \in \{0, \dots, l+1\}$,

$$p^{2k-2l+1} \mid \beta b_i b_{2l+2-i}, \ ce_i e_{2l+2-i},$$

and, $\forall i \in \{0, \ldots, l\},\$

$$p^{2k-2l+1} \mid \lambda c_i c_{2l+1-i}, \ \lambda d_i d_{2l+1-i}, \ e_i e_{2l-i}, \ e_i e_{2l+1-i},$$

 $p^{2k-2l+1} \mid f_i f_{2l-i}, \ \beta f_i f_{2l+1-i}, \ \beta c f_i f_{2l+2-i}.$

So $p^{2k-2l+1}$ divides C_{2l+2} implies $p^{2k-2l+1} \mid -\alpha a_{l+1}^2 - \beta c f_{l+1}^2$ and, by the lemma 9, $p^{k+1-l} \mid a_{l+1}, p^{k-l} \mid f_{l+1}$. In the same way, we prove that p^{2k-2l} divides C_{2l+3} implies that $p^{2k-2l} \mid -\lambda c_{l+1}^2 + \alpha \lambda d_{l+1}^2$ and $p^{k-l} \mid c_{l+1}, d_{l+1}$. By induction, we proved that $p^{k+2-i} \mid a_i$, for all $i \in \{0, \ldots, k+1\}$ and $p^{k+1-i} \mid f_i, c_i, d_i$ for all $i \in \{0, \ldots, k\}$. We have that $p \mid e_{k+1}$ and $p \mid b_{k+1}$ since p^2 divides C_{2k+2} . We assume that $p^{k+2-i} \mid b_i, e_i$ for all $i \in \{l+1, \ldots, k+1\}$ (where $0 \leq l \leq k$). Using the same kind of trick, we prove that

$$p^{2k-2l+3} \mid C_{2l+1} \Rightarrow p^{2k-2l+3} \mid -(c+1)e_l^2 \Rightarrow p^{k+2-l} \mid e_l,$$
$$p^{2k-2l+4} \mid C_{2l} \Rightarrow p^{2k-2l+4} \mid \beta t^{2l} \Rightarrow p^{k+2-l} \mid b_l.$$

Hence, we proved that $p^{k+2-i} | b_i, e_i$ for all $i \in \{0, \ldots, k+1\}$. By induction, we proved that $p^{n+1-i} | a_i, b_i, e_i$ for all $i \in \{0, \ldots, n\}$ and $p^{n-i} | f_i, c_i, d_i$ for all $i \in \{0, \ldots, n-1\}$. In particular, $p | a_i, b_i, c_i, d_i, e_i, f_i$ for all i and so we get a contradiction. Hence if $p | \lambda$, the quadratic form q_{λ} is anisotropic. Now we assume that $p \nmid \lambda$. Over $\mathbb{Q}(t), q_{\lambda} = q_1 \perp p \cdot q_2$, with

$$q_1 = \langle -\alpha, -\lambda t, \alpha \lambda t, (t-1)(t-c) \rangle$$

and

$$q_2 = \langle \frac{\beta}{p}, -\frac{\beta}{p}(t-1)(t-c) \rangle$$

defined over the units of $\mathbb{Q}(t)$ with respect to the valuation $\hat{v_p}$. Over $\mathbb{F}_p(t)$,

$$\overline{q_1}^{\widehat{v_p}} = \langle -\alpha, -\lambda t, \alpha \lambda t, t(t-1) \rangle = \langle -\alpha, 1 \rangle \perp \frac{1}{t} \langle -\lambda, \alpha \lambda \rangle$$

with $\overline{\langle -\alpha,1\rangle}^{v_{\frac{1}{t}}}$ and $\overline{\langle -\lambda,\alpha\lambda\rangle}^{v_{\frac{1}{t}}}$ anisotropic over \mathbb{F}_p , since $\left(\frac{\alpha}{p}\right) = -1$. So, by Springer's theorem with respect to the valuation $v_{\frac{1}{t}}$, $\overline{q_1}^{v_p}$ is anisotropic over $\mathbb{F}_p(t)$. We also prove, using Springer's theorem with respect to the valuation v_{t-1} , that $\overline{q_2}^{v_p}$ is anisotropic over $\mathbb{F}_p(t)$. So q_{λ} is anisotropic over $\mathbb{Q}(t)$. Hence, if $p \nmid \lambda$, then q_{λ} is anisotropic. So, if there exists a prime number $p \neq 2$ such that $p \mid \beta, c, p \nmid \alpha$ and $\left(\frac{-\alpha\beta c/p^2}{p}\right) = -1 = \left(\frac{\alpha}{p}\right)$, then the Faddeev index of ρ is equal to four. If there exists a prime number $p \neq 2$ such that $p \mid \alpha, c, p \nmid \beta$, $\left(\frac{-\alpha\beta c/p^2}{p}\right) = -1$ and $\left(\frac{\beta}{p}\right) = -1$, we change the homogeneous coordinates as in the proof of the proposition 10 and, using the first part of the proof, we obtain that the Faddeev index of ρ is equal to four. \Box

Proposition 12 Let

$$\rho = \{(\infty, \alpha F^{\times 2}), (t, \alpha F^{\times 2}), (t-1, \beta F^{\times 2}), (t-c, \beta F^{\times 2})\}$$

with $\alpha, \beta, c \in \mathbb{Z}$ square-free. Suppose there exists a prime number $p, p \neq 2$, such that $p \mid \alpha, \beta, c$ and $\left(\frac{\alpha\beta/p^2}{p}\right) = -1$, then the Faddeev index of ρ is equal to four.

Proof: Let

$$q_{\lambda} = \langle -\alpha, \beta, -\lambda t, \alpha \lambda t, (t-1)(t-c), -\beta(t-1)(t-c) \rangle$$

We want to prove that q_{λ} is anisotropic, for all $\lambda \in \mathbb{Z}$ square-free. We may assume that p divides λ . Indeed, if p does not divide λ , let $\lambda' = -\alpha\lambda$. Then p divides λ' and

$$q_{\lambda} = \langle -\alpha, \beta, \alpha \lambda' t, -\lambda' t, (t-1)(t-c), -\beta(t-1)(t-c) \rangle$$

Suppose that $\left(\frac{\beta\lambda/p^2}{p}\right) = -1$, then $q_{\lambda} = q_1 \perp p \cdot q_2$ with

$$q_1 = \langle \frac{\alpha \lambda}{p^2} t, (t-1)(t-c) \rangle$$

and

$$q_2 = \langle -\frac{\alpha}{p}, \frac{\beta}{p}, -\frac{\lambda}{p}t, -\frac{\beta}{p}(t-1)(t-c) \rangle$$

defined over the units of $\mathbb{Q}(t)$ with respect to the valuation $\hat{v_p}$. By the Springer's theorem with respect to the valuation v_{t-1} , $\overline{q_1}^{\hat{v_p}}$ is anisotropic over $\mathbb{F}_p(t)$. We

may write over $\mathbb{F}_p(t)$

$$\overline{q_2}^{\widehat{v_p}} = \langle -\frac{\alpha}{p}, \frac{\beta}{p}, -\frac{\lambda}{p}t, -\frac{\beta}{p}(t-1)t \rangle$$
$$= \langle -\frac{\alpha}{p}, \frac{\beta}{p} \rangle \perp t \cdot \langle -\frac{\lambda}{p}, -\frac{\beta}{p}(t-1) \rangle$$

As
$$\left(\frac{\alpha\beta/p^2}{p}\right) = -1$$
 and $\left(\frac{\beta\lambda/p^2}{p}\right) = -1$,
 $\overline{\langle -\frac{\alpha}{p}, \frac{\beta}{p} \rangle}^{v_t} = \langle -\frac{\alpha}{p}, \frac{\beta}{p} \rangle$ and $\overline{\langle -\frac{\lambda}{p}, -\frac{\beta}{p}(t-1) \rangle}^{v_t} = \langle -\frac{\lambda}{p}, \frac{\beta}{p} \rangle$

are anisotropic over \mathbb{F}_p . So q is anisotropic over $\mathbb{Q}(t)$. Now we assume that $\left(\frac{\beta\lambda/p^2}{p}\right) = 1$. Suppose that q_{λ} is isotropic. Then there exist a(t), b(t), c(t), d(t), e(t), f(t) in F[t] such that

$$-\alpha a(t)^{2} + \beta b(t)^{2} - \lambda tc(t)^{2} + \alpha \lambda td(t)^{2} + (t-1)(t-c)e(t)^{2} - \beta(t-1)(t-c)f(t)^{2} = 0.$$

We may assume that

$$a(t) = a_n t^n + \ldots + a_0, \ b(t) = b_n t^n + \ldots + b_0, \ c(t) = c_{n-1} t^{n-1} + \ldots + c_0,$$

 $d(t) = d_{n-1}t^{n-1} + \ldots + d_0, \quad e(t) = e_{n-1}t^{n-1} + \ldots + e_0, \quad f(t) = f_{n-1}t^{n-1} + \ldots + f_0,$ where $a_i, b_i, c_i, d_i, e_i, f_i \in \mathbb{Z}$ and the $gcd(\{a_i, b_i, c_i, d_i, e_i, f_i \mid i = 1, \ldots, n\}) = 1.$ For all $k = 0, \ldots, 2n$, the coefficient C_k of t^k in the isotropy relation is equal to zero:

$$-\alpha \sum_{i=0}^{k} a_{i}a_{k-i} + \beta \sum_{i=0}^{k} b_{k}b_{k-i} - \lambda \sum_{i=0}^{k-1} c_{i}c_{k-1-i} + \alpha \lambda \sum_{i=0}^{k-1} d_{i}d_{k-1-i} + \sum_{i=0}^{k-2} e_{i}e_{k-2-i} - (c+1) \sum_{i=0}^{k-1} e_{i}e_{k-1-i} + c \sum_{i=0}^{k} e_{i}e_{k-i} -\beta \sum_{i=0}^{k-2} f_{i}f_{k-2-i} + \beta(c+1) \sum_{i=0}^{k-1} f_{i}f_{k-1-i} - \beta c \sum_{i=0}^{k} f_{i}f_{k-i} = 0$$

(we let $a_i, b_i = 0$ for all i > n and $c_i = d_i = e_i = f_i = 0$ for all $i \ge n$). As p divides C_{2n} , $p \mid e_{n-1}^2$ and so $p \mid e_{n-1}$. As p divides C_{2n-1} , $p \mid \frac{\alpha\lambda}{p^2}d_{n-1}^2$ and so $p \mid d_{n-1}$. We assume that p divides e_i, d_i for all $i \in \{n-1, \ldots, k\}$. Then

$$p \mid C_{2k} \Rightarrow p \mid e_{k-1}^2 \Rightarrow p \mid e_{k-1},$$
$$p \mid C_{2k-1} \Rightarrow p \mid \frac{\alpha\lambda}{p^2} d_{k-1}^2 \Rightarrow p \mid d_{k-1}^2.$$

So $p \mid e_i, d_i$ for all *i*. We have

$$p^{2} \mid C_{0} \Rightarrow p^{2} \mid -\alpha a_{0}^{2} + \beta b_{0}^{2} \Rightarrow p \mid a_{0}, b_{0},$$

$$p^{3} \mid C_{0} \Rightarrow p^{3} \mid -\beta c f_{0}^{2} \Rightarrow p \mid f_{0},$$

$$p^{2} \mid C_{1} \Rightarrow p^{2} \mid -\lambda c_{0}^{2} \Rightarrow p \mid c_{0}.$$

Let $k \in \mathbb{N}$. We assume that p^{k+1-i} divides $a_i, b_i, c_i, d_i, e_i, f_i$ for all $i \in \{0, \ldots, k\}$. Then we know that $p \mid d_{k+1}, e_{k+1}$ and we have

$$p^2 \mid C_{2k+2} \Rightarrow p^2 \mid -\alpha a_{k+1}^2 + \beta b_{k+1}^2 \Rightarrow p \mid a_{k+1}, b_{k+1}.$$

Let $l \in \mathbb{N}$ such that $0 \leq l \leq k$ and suppose that $p^{k+2-i} \mid a_i, b_i, d_i, e_i$ for all $i \in \{l+1, \ldots, k+1\}$. Then

$$p^{2k-2l+3} \mid C_{2l+1} \Rightarrow p^{2k-2l+3} \mid \frac{\alpha\lambda}{p^2} d_l^2 - (c+1)e_l^2$$

As

$$\left(\frac{\alpha\lambda(c+1)/p^2}{p}\right) = \left(\frac{\alpha\beta/p^2}{p}\right)\left(\frac{\beta\lambda/p^2}{p}\right)\left(\frac{1}{p}\right) = -1,$$

 $p^{k+2-l} \mid d_l, e_l$. Also,

$$p^{2k-2l+4} \mid C_{2l} \Rightarrow p^{2k-2l+4} \mid -\alpha a_l^2 + \beta b_l^2 \Rightarrow p^{k+2-l} \mid a_l, b_l$$

Hence we proved by induction that $p^{k+2-i} \mid a_i, b_i, d_i, e_i$ for all $i \in \{0, \dots, k+1\}$. We have

$$p^{2k+5} \mid C_0 \Rightarrow p^{2k+5} \mid -\beta c f_0^2 \Rightarrow p^{k+2} \mid f_0,$$
$$p^{2k+4} \mid C_1 \Rightarrow p^{2k+4} \mid -\lambda c_0^2 \Rightarrow c_0.$$

Let $l \in \mathbb{N}$, $1 \leq l \leq k+1$, and assume that $p^{k+2-i} \mid c_i, f_i$ for all $i \in \{0, \dots, l-1\}$. Then

$$p^{2k-2l+5} \mid C_{2l} \Rightarrow p^{2k-2l+5} \mid -\beta c f_l^2 \Rightarrow p^{k+2-l} \mid f_l,$$

$$p^{2k-2l+4} \mid C_{2l+1} \Rightarrow p^{2k-2l+4} \mid -\lambda c_l^2 \Rightarrow p^{k+2-l} \mid c_l$$

Hence, we obtain that $p^{k+2-i} | a_i, b_i, c_i, d_i, e_i, f_i$ for all $i \in \{0, \ldots, k+1\}$. We proved by induction that, $p^{n+1-i} | a_i, b_i, c_i, d_i, e_i, f_i$, for all $i \in \{0, \ldots, n\}$. So, in particular, $p | a_i, \ldots, f_i$ for all i. We have a contradiction, thus q_{λ} is anisotropic.

Suppose that $\alpha, \beta, c \in \mathbb{Z}$ are square-free. One of the quadratic forms

$$\langle \beta, -\alpha, -c, \alpha c \rangle$$
 and $\langle \alpha, -\beta, -c, \beta c \rangle$

is anisotropic over \mathbb{Q} if and only if one of them is anisotropic over \mathbb{Q}_p , for some prime number p, or over \mathbb{R} i.e.

$$\alpha\beta < 0$$
 and $c < 0$ or

 $\exists p \neq 2 \text{ prime such that } p \mid \alpha, p \nmid \beta c, \left(\frac{\beta}{p}\right) = 1, \left(\frac{c}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \beta, p \nmid \alpha c, \left(\frac{\alpha}{p}\right) = 1, \left(\frac{c}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid c, p \nmid \alpha \beta, \left(\frac{\alpha \beta}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \alpha, c, \quad p \nmid \beta, \left(\frac{-\alpha \beta c/p^2}{p}\right) = -1, \left(\frac{\beta}{p}\right) = 1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \beta, c, \quad p \nmid \alpha, \left(\frac{-\alpha \beta c/p^2}{p}\right) = -1, \left(\frac{\alpha}{p}\right) = 1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \beta, c, \quad p \nmid \alpha, \left(\frac{-\alpha \beta c/p^2}{p}\right) = -1, \left(\frac{\alpha}{p}\right) = 1 \text{ or} \\ \langle \beta, -\alpha, -c, \alpha c \rangle \text{ is anisotropic over } \mathbb{Q}_2 \text{ or} \\ \langle \alpha, -\beta, -c, \beta c \rangle \text{ is anisotropic over } \mathbb{Q}_2. \end{cases}$

So, until now, we have the following result: if

$$\begin{cases} \alpha\beta < 0 \text{ and } c < 0 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \alpha, p \nmid \beta c, \left(\frac{c}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \beta, p \nmid \alpha c, \left(\frac{c}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid c, p \nmid \alpha\beta, \left(\frac{\alpha\beta}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \alpha, c, p \nmid \beta, \left(\frac{-\alpha\beta c/p^2}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \beta, c, p \nmid \alpha, \left(\frac{-\alpha\beta c/p^2}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \beta, c, p \nmid \alpha, \left(\frac{-\alpha\beta c/p^2}{p}\right) = -1 \text{ or} \\ \exists p \neq 2 \text{ prime such that } p \mid \alpha, \beta, c, \left(\frac{\alpha\beta/p^2}{p^2}\right) = -1 \text{ or} \\ \exists \rho, -\alpha, -c, \alpha c \rangle \text{ is anisotropic over } \mathbb{Q}_2 \text{ or} \\ \langle \alpha, -\beta, -c, \beta c \rangle \text{ is anisotropic over } \mathbb{Q}_2, \end{cases}$$

then the Faddeev index of

$$\rho = \{(\infty, \alpha F^{\times 2}), (t, \alpha F^{\times 2}), (t-1, \beta F^{\times 2}), (t-c, \beta F^{\times 2})\}$$

is equal to four. The conditions in 2 are equivalent to the condition $(\alpha\beta, c)_F \neq 1$. So we have the following theorem

Theorem 13 We assume that $F = \mathbb{Q}$. Let

$$\rho = \{(\infty, \alpha F^{\times 2}), (t, \alpha F^{\times 2}), (t-1, \beta F^{\times 2}), (t-c, \beta F^{\times 2})\}$$

with $\alpha, \beta, c \in \mathbb{Z}$, square-free. If $(\alpha\beta, c)_F$ is not trivial, then the Faddeev index of ρ is equal to four.

References

- [1] Berger, M.; Geometry I, Springer-Verlag, 1994.
- [2] Faddeev D.K., Simple algebras over a field of algebraic functions of one variable, AMS Translation (2), 3 (1956), pp. 15 – 38.
- [3] Gille P. and Szamuely T.; Central simple algebras and Galois cohomology, Cambridge University Press, 2006.
- [4] Knus M.-A., Merkurjev A.S., Rost M. and Tignol J.-P.; The Book of Involutions, AMS Colloquium Publication 44, 1998.
- [5] Kunyavski B., Rowen L.H., Tikhonov S. and Yanchevskii V.; Bicyclic algebras and prime exponent over number fields *Tran. of AMS* **358** (2006), pp.
- [6] Lam T.Y., Algebraic Theory of Quadratic Forms, W.A. Benjamin, 1973.
- [7] Merkurjev A.S., On the norm residue symbol of degree 2, *Dokl. Akad. Nauk* SSSR 261 (1981), no. 3, pp. 542–547.
- [8] Rowen L.H., Sivatski A.S. and Tignol J.-P.; Division algebras over rational function fields in one variable *Algebra and Number Theory*, Proceeding of Hyderabad Conference (2003), pp.
- [9] Scharlau W., Quadratic and Hermitian forms, Springer-Verlag, 1985.
- [10] Serre J.-P., Cohomologie galoisienne, Lecture Notes in Math. 5, Springer-Verlag, 1994.