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Introduction

Statement of the problem

There is a well-known relation between quaternion algebras and quadra-
tic forms. Suppose that F' is a field of characteristic not 2, for a,b € F*,
let (a,b)r be the quaternion algebra generated by ¢ and j such that
i? = a, j2 = b and ij = —ji. We may define a quadratic form over
(a,b)p, called the norm form, as follows:

N: (a,b)p — F: & £

where xg + x17 + T2j + x37j = 9 — X1 — T2j —x3ij. The norm form has
interesting properties: two quaternion algebras are isomorphic if and
only if their respective norm forms are isometric (see Proposition 2.5,
page 57 in [Lam, 1973]); a quaternion algebra is isomorphic to My(F')
if and only if its norm form is isotropic (see Theorem 2.7, page 58, in
op. cit.); and the Clifford algebra of the norm form of a quaternion
algebra A is isomorphic to A®p Ms(F) (see Theorem 1.8, page 106, and
Corollary 3.3, page 116, in op. cit). We observe that

N(E) = ¢

for all £ in the subspace of (a, b) p spanned by ¢, j and ij, i.e. the subspace
of reduced trace zero elements of (a,b)r. A natural question is then: Is
it possible to extend these results and establish a similar relation between
central simple algebras of degree 3 and cubic forms?

One way to proceed, as did D. Haile in [1984], is to study the Clifford
algebra of a binary cubic form. Considering a field F' of characteristic
neither 2 nor 3 and a binary cubic form with a non-zero discriminant
over F', Haile proves that the Clifford algebra of this cubic form is always
an Azumaya algebra. Moreover each homomorphic image of the Clifford
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algebra is a degree 3 simple algebra over its center, and there exists a
correspondence between the simple homomorphic images and the points
of the curve y? = 23 — 27D in an algebraic closure of F', where D denotes
the discriminant of the binary cubic form.

We favor however a different approach. Suppose that F' is a field of
characteristic neither 2 nor 3 and let A be a central simple algebra of
degree 3 over F'. By Cayley-Hamilton’s Theorem

€3 —Trd s (6)€* + %(deA(f)2 —Trda(£%))€ — Nrd4(£) =0

for all £ € A, where Trd4 and Nrd4 denote respectively the reduced trace
and the reduced norm of A. So the cube of a reduced trace zero element
€ of A is not necessarily in F; it is in F if and only if Trd4(£2) = 0. Let

ga: A—>F:§»—>TrdA(£2)

denote the so-called trace quadratic form of A. The restriction of g4 to
the subspace A° of reduced trace zero elements of A is isometric to

<1a _17 17 _la 1) _17 1’ 3>

over an extension of degree 3 over F' which splits A. Therefore there
exist 3-dimensional subspaces!' of A° which are totally isotropic for ¢4.
Such a subspace V gives rise to a cubic form

fA_,V:V—>F:§»—>§3.

So a more precise formulation of the problem of generalizing the situation
for quaternion algebras and quadratic norm forms is: Does the cubic form
fa,v as above determine the algebra A?

D. Haile and J.-P. Tignol partly answered this question in a hand-
written note, dated April 2002. They consider a central division algebra
A of degree 3 over I’ and assume that F' contains a primitive cube root
of unity w. Then they prove that if f4 1 is semi-diagonal, i.e.

fay = a193 + asps + azps — 3Np102003

for some a,as, a3, A € F and linearly independent 1, 2, 03 € V*, then
either ajazaz = A* or there exists one and only one i € {1,2,3} such
that

ajao0a3 — )\3

2
a;

e F*3,

IThere exist 4-dimensional totally isotropic subspaces of A° if and only if F con-
tains a primitive cube root of unity.
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If aiasas = A3 then A is isomorphic to

(a1,a2)px1 p = (a1,a3) 21 p = (a2,03) =1 -

If a; % (ayazaz — A3) € F*3 for some i € {1,2,3} then A is isomorphic to
(ai,aj) 1 g for all j € {1,2,3} such that j # i.

Observe that for a semi-diagonal cubic form f4  as above we can
write

fA,V(f) = T"FS/F (a@(f)g) - 3)‘NF3/F (@(5))

where a = (a1,as,a3) € F3, ©: V — F3 is the F-vector space isomor-
phism defined by

0(8) = (£1(8), ¥2(8), ¢3(8))

and Trps, g, respectively Ngs,p, denotes the trace, respectively norm, of
the F-algebra F3. The result of Haile and Tignol can then be reformu-
lated as follows: let A be a central division algebra of degree 3 over F
and suppose that there exists a subspace V' of A° such that

fA,v(f) = T"F3/F (a@(f)g) - 3/\NF3/F (@(5))

for some a = (a1, as,a3) € F3, then either Nps/p(a) = A3 or there exists
one and only one i € {1,2,3} such that a; *(Nps,p(a) —A%) is a non-zero
cube in F. This suggests the following generalization of semi-diagonal
forms: say that f: V — F is a semi-trace form if

F(&) =Tri/r(a©(€)?) — 3ANk /7 (0())

for some cubic étale F-algebra K, elements a € K and A € F, and an
F-vector space isomorphism ©: V' — K. Our problem then becomes:
Is it possible to extend the preceding result on semi-diagonal forms to
semi-trace forms?

However, note that ai_2(NK/p(a) — /\3) does not make sense in an
arbitrary cubic étale F-algebra: indeed, we cannot talk about the coor-
dinates a1, as,a3 of a € K because there does not exist a “canonical”
basis of K. But since a cubic form f4 y is completely determined by A
and V, we can reformulate once more our problem, this time avoiding
the cubic form fa v: Is it possible to classify the pairs (A, V) where A
is a degree 3 central simple algebra over F and V is a 3-dimensional
subspace of A° which is totally isotropic for the trace quadratic form?
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Classification of cubic pairs

In this thesis we answer this question in the affirmative: we give a com-
plete classification of those so-called cubic pairs (A4,V) over F (up to
isomorphism).

The next two theorems summarize the classification of non-singular
cubic pairs?. We let F be a field of characteristic neither 2 nor 3 such
that F either contains a primitive cube root of unity or is infinite; let
Fiep denote a separable closure of F'. We prove that the automorphism
group of a non-singular cubic pair over Fg, is either Z/3 or Z/3 X Z/3 as
an abstract group (see p. 66), and we say that a non-singular cubic pair
(A, V) is of the first kind if (A ®p Feep, V @F Fsep) has automorphism
group Z/3 and it is of the second kind otherwise. Fix w € Fip a primitive
cube root of unity.

Theorem I (cf. p. 131) Suppose that F contains a primitive cube root
of unity. Up to F-isomorphism, the non-singular cubic pairs over F are
the pairs

((a,b)w, r, span (€0, 1m0, Eomg + &ang))

for alla,b € F* and o € F with a® # —a™', where £, 1m0 are generators
of the symbol algebra such that & = a, n3 = b and &mno = wnolo. Such
a cubic pair is of the second kind if and only if a = 0. The associated
cubic form is always semi-diagonal and it is diagonal if the pair is of the
second kind:

3
(z& +yno + z(Eomg + a&ing))” = az® + by® + c2® — 3hayz

where ¢ = ab® 4+ a3a?b?, A\ = w?aab and a=2(abc— \3) = b* is a non-zero
cube in F.

Theorem II (cf. p. 133) Suppose that F does not contain a primitive
cube root of unity and is infinite. Up to F-isomorphism, the non-singular
cubic pairs over F are the pairs

2
( @ Le’,spanp (&0, o, Co>)
=0

for all Galois Z/3-algebras (L,p) and a,a € F such that a # 0 and
a® # a2, where €3 = a, e = p(¢£)e for all € € L,

bo=e, mo=(a+tatle+e’)t, (o= (a+a tale+e?)p(t),

2A cubic pair is non-singular if its associated cubic form is non-singular.
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and t € L is such that 1,t, p(t) span L and
(z—t)(z—p(t))(z—p*(t)) =2° =3z + A

for some A € F. Such a cubic pair is of the second kind if and only if
a = 0. The associated cubic form is semi-trace, and we may choose the
cubic étale algebra over F to be F x F(w). However the cubic form is
not semi-diagonal.

For the classification of singular cubic pairs, we use the fact that
there are nine different kinds of singular cubic curves: the zero curve,
a triple line, a double line plus simple line, three concurrent lines, a
triangle, a conic plus tangent, a conic plus chord, a cuspidal curve and
a nodal curve. Thus we split the classification of singular cubic pairs
into nine parts. We prove that the cubic curve associated to a singular
pair (A, V) where A is division, is necessarily a triangle: to classify the
singular cubic pairs over F' such that the associated cubic curve is not
a triangle, we can therefore make computations in the matrix algebra
Ms(F). We find in particular the following results:

Theorem III (cf. p. 134) There is no cubic pair over F' such that the
associated cubic curve is three concurrent lines or a conic plus tangent.
There exists at least one cubic pair over F' such that the associated cubic
curve is cuspidal if and only if F' contains a primitive cube root of unity.
There always exists at least one cubic pair over F' such that the associated
cubic curve is the zero curve, a triple line, a double line plus simple line,
a conic plus chord or a nodal curve.

For the classification of cubic pairs with a triangle as associated cubic
curve, we prove:

Theorem IV (cf. p. 134) Suppose that F contains a primitive cube
root of unity. Then, up to F-isomorphism, the F-cubic pairs with a
triangle as associated cubic curve are the pairs

((a7 b)w,F7 spanF<§0a Mo, 5377(2)»

for all a,b € F*, where & and ng are generators of the symbol algebra
such that £ = a, n§ = b and &ono = wnolo. The associated cubic form
1s semi-diagonal:

(x€o + yno + 25377(2))3 =az® 4+ by® + ¢2® — 3\ayz

where ¢ = a2b?, A = w?ab and abc = \3.
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Theorem V (cf. p. 136) Suppose that F is infinite and does not con-
tain a primitive cube root of unity. Up to F-isomorphism, the F-cubic
pairs with a triangle as associated cubic curve, are the pairs

( é Le', spany(e, et, ep(t)))
=0

for all Galois Z/3-algebras (L, p) and a € F*, where €3 = a, e = p(€)e
forall€ € L, and t € L is such that 1,t, p(t) span L and

(z—t)(z—p))(z—p*(t)) =2° — 3z + A

for some A € F. The associated cubic form is semi-trace, and we may
choose the cubic étale F-algebra to be F x F(w).

Our classification implies in particular the following result on division
algebras:

Theorem VI (cf. p. 136) Let (A,V) be a cubic pair over F such that
A is a division algebra. If F' contains a primitive cube root of unity then
the associated cubic form fa v is semi-diagonal. If F' is infinite and does
not contain a primitive cube root of unity then fayv is semi-trace, and
we may choose the cubic étale algebra over F to be F' x F(w).

This allows us to sharpen the result of Haile and Tignol mentioned ear-
lier:

Theorem VII (cf. p. 136) Suppose that (A, V) is a cubic pair over
F where F' contains a primitive cube root of unity and A is a division
algebra, and let (p1,92,p3) be a basis of V*, a1, az2,a3, A € F such that

[ = a1} + axpl + aspl — 3Ap1203,

Then either aiasas = A\ or there exists one and only one i € {1,2,3}
such that (ajagas — )\3)a;2 1s a non-zero cube in F; in the first case
necessarily

A= (a1,a2)p+1 F = (a1,03) 01, F = (a2,03) 041 F;
in the second case necessarily A = (a;,a;) for all j € {1,2,3}, i # j.

Moreover our classification of cubic pairs and the result of Haile and
Tignol imply the following result:
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Theorem VIII (cf. p. 137) Let A, A’ be division algebras of degree &
over F. If V.V’ are such that (A,V) and (A, V') are F-cubic pairs
and fav is equivalent to far v+, then the algebras A and A’ are either
isomorphic or anti-isomorphic.

Overview of contents

In Chapter 1 we state well-known results on ternary cubic forms and
projective cubic curves. We present them by means of the symmetric
trilinear form associated to a cubic form. These results are used in the
other chapters.

We study the geometry of particular points and lines of a non-singular
cubic curve in Chapter 2. We define the Hessian point, the harmonic
points and the harmonic polar of a flex of a non-singular cubic curve,
and prove some remarkable properties of these points and lines. Further
on we shall use the Hessian point and the harmonic points to classify
the non-singular cubic pairs.

In the third chapter we give criterions for a non-singular cubic form
to be semi-diagonal or semi-trace. These criterions involve the flexes of
the associated cubic curve, and shall be used to describe the cubic form
associated to a non-singular cubic pair further on.

In Chapter 4 we classify the non-singular cubic pairs over a field F.
First we classify up to isomorphism the non-singular cubic pairs over
the separable closure of F'; next we compute the automorphism group of
an arbitrary cubic pair over Fyp; finally, we use Galois cohomology to
obtain the non-singular cubic pairs over F'.

In the fifth chapter we classify the singular cubic pairs over F. Since
we have nine different kinds of singular cubic curves we split the classi-
fication into nine parts. In all cases except the triangle, the algebra of a
singular cubic pair is split. Since we classify the cubic pairs up to iso-
morphism, we may assume in those cases that the algebra is the matrix
algebra M3(F'). In the remaining case we use the same method as for
the classification of non-singular cubic pairs.

In the Conclusion we summarize our results on the classification of
cubic pairs and their associated cubic forms.

Some heavy computations in Chapter 4 were done with the aid of
Mathematica: in a short Appendix we explain this on a couple of ex-
amples. Finally we have of course included a bibliography, an index of
notation and an index of terms.
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Ternary cubic forms

and cubic curves

We define cubic forms and cubic curves and we give their
properties that we need in the following chapters. We present
these notions and the results by means of the symmetric tri-
linear form associated to a cubic form. The main purpose
of this chapter is to fix notation and not to present original
results. Whenever the stated results are well-known we omit
a detailed proof but we give an appropriate reference.

1.1 Forms and curves

In this chapter, as well as in all following chapters, F' is a field of char-
acteristic neither 2 nor 3. We denote by F an algebraic closure of F' and
by Fiep the separable closure of F' in F'. For a commutative F-algebra R
and an F-vector space V, we put Vg := V ®pr R. We have an injection
V < Vg defined by v — u© ® 1 and we identify an element of V' with its
image by this injection. For brevity we write V instead of V&, and Viep
instead of Vg,,. As usual, V* is the dual space of V. Henceforth V is a
3-dimensional F-vector space.

If d is a strictly positive integer, we denote by S?(V*) the d-th sym-
metric power of the vector space V* and we put S°(V*) := F. For all
strictly positive integers d and d’, we have a map

SUV*) x ST(V*) — s+ (v)
sending (1 ... @d, %1 ... Ya) to ©1... 0411 ... Ye. This endows

S(V*) = @405 (V™)



10 Ternary cubic forms and cubic curves

with a structure of graded F-algebra.
In general, an element of S%(V*) is called a degree d form over V.

Definition 1.1.1 We say that an element of S*(V*) is a ternary cubic
form over V', or more briefly a cubic form.

If feS3V*), thus f = Z;o pih;0; for some @;,9;0; € V* | we can
define for every F-algebra R, a map Vg — R by

U@ N\ Z A (u) s (u)0; (u)

=0

which we also denote by f.

Let (e, €2, e3) be a basis of V. We consider the element ze;+yes+zes
of V®p Flx,y,z]. One can check that f(xze; + yes + zes) is a degree 3
homogeneous polynomial in the variables z,y, z over F.

If f € S3(V*) can be written as [ - ¢ for some [ € V" and ¢ € S2(V"),
we call f reducible and f is irreducible otherwise.

Definition 1.1.2 Given f € S*(V*) there exists a unique symmetric
trilinear form t over V such that t(£,£,€) = f(§) for all§ € V.. Namely,

(&, ¢) = é(f(£+77+C)—f(€+77)—f(€+é)—f(n+()+f(€)+f(77)+f(€))-

We call t the symmetric trilinear form associated to f.

For f € S3(V*), w denote by t; the symmetric trilinear form associated
to f. For any commutative algebra R, we can also define a trilinear form
over Vg using the map f: Vg — R, and we also denote it by ¢.

We denote by P(V') the projective space associated to V, i.e. the set
of non-zero elements of V' quotiented by the equivalence relation u ~ Au
for u € V'\ {0} and A € F*. For u € V \ {0}, we write uF for the
equivalence class of u in P(V). Let Extr denote the category of field
extensions of F' and Set the category of sets.

Definition 1.1.3 Let f € S3(V*). The projective cubic curve associ-
ated to f over I is the functor F: Extp — Set defined by

F(L) ={uL e P(VL) | f(u) = 0}

for an object L of Extp and Fo: F(L) — F(M): uL — o(u)M for a
morphism o: L — M in Extp.
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If f =0, the set
{uL e P(VL) | f(u) =0}

is equal to P(Vy) for all field extensions L/F: in that case we call the
associated projective curve the zero projective curve.
To have a more suggestive notation we write {f(§) = 0}, for

{ul € P(VL) | f(u) = 0}

and {f(§) = 0} for the projective cubic curve associated to f. We call
an element of {f(§) = 0} an L-point of {f(£) = 0}.

Note that the projective cubic curve associated to f is the same as
the one associated to Af for A € F*. In fact, by Theorem 9.7, page 26,
in [Walker, 1950], if two irreducible cubic forms have the same associated
projective cubic curve then they are equal up to a non-zero scalar.

For L € M field extensions of F' and p € P(Vy/), we say that p is
defined over L if there exists u € Vp such that p = uM. We have a
natural injection P(Vy) < P(V)s) which we consider as an inclusion.
Thus, if p € P(Vyy) is defined over L, we may consider p as an element
of P(VL)

Since f € S3(V*) can also be viewed as an element of $*((Vy)*) for
any algebraic field extension L over F, we may also associate to f a
projective cubic curve over L, i.e. a functor Ext; — Set. By abuse of
notation, we also write { f(§) = 0} for this functor. For L C M algebraic
field extensions of F and f € S*((Vas)*), we say that the cubic curve
{f(&) = 0} is defined over L if there exists g € S*((V)*) and A € M*
such that f = \g.

In the same way, we may define the projective curve associated to a
form of any degree. In the case of degree one, say | € S} (V*) = V*, we
call the projective curve {I(§) = 0} a projective line; and in the case of
degree two, say ¢ € S?(V*), {q(£) = 0} is a projective conic.

1.2 Tangents

We want to define an intersection multiplicity between a projective cubic
curve and a projective line at a point of the projective plane. Thereto,
let f € S3(V*), 1 € V" non-zero and p = uF € P(V). We write my(f,1)
for the multiplicity of the root A = 0 of the polynomial

Flu+ ) = f(u) + 3\t p(u, u,v) + 3Nt p(u,v,v) + X f(v)

if I(u) = 0 and u and v are linearly independent vectors of ker(l); and
my(f, 1) = 01if I(u) # 0.
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Definition 1.2.1 The number my,(f,1) € {0,1,2,3} U {oo} is the inter-
section multiplicity of the cubic curve {f(§) = 0} with the line {I(§) = 0}
at the point p.

Thus we have that m,(f,{) = 0 if and only if

p € {f(§) =0} n {l(§) =0}

and by Theorem 9.7, page 26, in [Walker, 1950], we have m,(f,1) = oo if
and only if [ divides f (in particular f is reducible) and p € {l(§) = 0}.
Note that f = 0 if and only if m,(f,!) = oo for all non-zero [ € V" such
that [(u) = 0.

Now we define the multiplicity of a cubic curve at a point.

Definition 1.2.2 Let f € S}(V*) and p = uF € P(V). If f # 0 then
the multiplicity of the cubic curve {f(§) = 0} at the point p is the least
integer my(f) such that there exists a non-zero | € V" with l(u) = 0
and my,(f) = mp(f,1). If f =0, then the multiplicity of the cubic curve

{f(&) =0} at the point p is my(f) = oo.

If f € S3(V*) is non-zero then m,(f) € {0,1,2,3}. We observe that, if
ti(u,&,8) =0 for all £ € V, then ty(u,u,§) =0 for all £ € V. Indeed,
we have tf(u,u,u) =0 and for all £ € V,

tf(u,f,f) :tf(u,u—i—f,u—i—f) :Oa
hence t5(u, u, &) = 0. Since
Flu+ X&) = flu) + 3Ats(u,u, &) + 3N*tp(u, £, €) + X f(€)
for all £ €V,
e m,(f) =0 if and only if f(u) #0,

e m,(f) = 1if and only if f(u) = 0 and there exists & € V such
that t7(u,u, &) # 0,

e m,(f) = 2 if and only if tf(u,u,&) = 0 for all £ € V and there
exists & € V such that ¢ (u, &, &) # 0,

e m,(f) =3 if and only if t;(u,&,&) =0 for all € € V and f # 0.
There exist at most m,,(f) lines {I(€) = 0} such that m,(f,1) > m,(f).

Definition 1.2.3 The lines {I(§) = 0} such that my(f,1) > m,(f) are
called the tangents to the cubic curve {f(§) = 0} at the point p.
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Definition 1.2.4 We say that a point uF € {f(£) = 0} is singular if
tr(u,u, &) = 0 for all £ € V and is non-singular otherwise. We call f
(or the cubic curve {f(§) = 0}) singular if there exists a singular point
and we call f (or {f(€) = 0}) non-singular otherwise.

Let (e1,e2,e3) be a basis of V, put £ := z1e; + xoes + x3e3 and

(w1, 2, 73) == f(§).

It is clear that m,(f) = 1 if and only if p = uF is a non-singular point
of {f(§) = 0}. In that case the unique tangent to {f(§) = 0} at p is the
line {t¢(u,u, &) = 0}; moreover we have

1~ dc
tr(u,u,§) = 3 Z (a1, a2, a3)w;

. 8.’)31‘
=1

where aj,a9,as are the coordinates of w in the basis (er,eq,e3). If
mp(f) = 2 then the tangents at p are contained in {ty(u,§, &) = 0} (we
say that F: Extp — Set is contained in G: Extp — Set if F(L) C G(L)
for all field extensions L/F'). Also 6ts(u,§,€) is equal to

°. 9%

ij=1 J

(a1, a2,a3)r;x;

where aq,as, a3 are the coordinates of u in the basis (e1,es,e3). If
my(f) = 3, then f is reducible and the tangents at p are contained
in {f(¢) = 0}. If f = 0 then all the points of P(V) are singular points
of {f(&) = 0}: this case is not interesting and we will not consider it.

The following theorem is a weaker version of Bézout’s Theorem.

Theorem 1.2.5 Let f € S3(V*) and | € S3(V") be non-zero such that
I does not divide f. Then there are 8 intersection F-points between the
cubic curve {f(§) = 0} and the line {I(§) = 0}, counting multiplicities.

Proof : See Proposition 1, page 208, in [Brieskorn and Knorrer, 1986].
O

The notions of intersection multiplicity, multiplicity and tangents can
also be defined for an arbitrary projective curve; we leave that to the
reader. In what follows we shall mainly use these notions in the case of
cubic curves (but Section 1.6 is an exception).
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1.3 Hessian curve, flexes and normal form

Definition 1.3.1 Let f € S*(V*). The functor Hy: Extp — Set defined
by

Hf(L) = {uL € P(VL) | the form (&, n) — ts(u,&,n) is singular}
is called the Hessian curve! of f.

The Hessian curve Hy of a cubic form f is itself a cubic curve?. Indeed,
let (e1, ea,e3) be a basis of V, put

c(z1, T2, 23) := f(x169 + T2€9 + X3€3)

and define h: V — F by

2 2 2
gx% (a) 89061 8cz2 (a) 8161 513 (a)
2 2 2
h(aiei + azes + azes) = det 61815:132 (a) gzg (a) 825‘13 (a) |,
% 9 o
azlacmg (a) aazzacwg (CL) 8z§ (a)

where a = (a1, az,a3). Then h € S3(V*) and Hy = {h(§) = 0}. Alter-
natively in terms of the associated trilinear form, we may also define Hy
as {h(§) = 0} with

tf(gv €1, 61) tf(é-v €1, 62) tf(fa €1, 63)
h(§) =det | ty(&, e1,e2) ty(€ ea,e2) ty(€ ea,e3) |,
ty(€ e es) tp(€ e, e3) ty(& es, e3)

where (e1, €2, €3) is a basis of V.

By Remark (i), page 289, in [Brieskorn and Knorrer, 1986], the Hes-
sian curve Hy is the zero curve only if f decomposes into a product of
linear forms over the algebraic closure. Remark (v) in loc. cit. says that
H; goes through each singular point of { f(§) = 0}.

Definition 1.3.2 Let p = uF be an F-point of {f(£) = 0}. We say
that p is a flex of {f(§) = 0} if p is non-singular and the intersection
multiplicity of the curve {f(§) = 0} with the tangent {t¢(u,u,&) = 0} at
p is greater than or equal to 3.

IThe Hessian curve is named after the German mathematician Otto Hesse (1811
1874) who defined this curve in 1844... as a polynomial, of course!

2We can define a Hessian curve for a form of any degree but in general it is not
necessarily a projective curve of the same degree.
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{£(&) = O}r

{t.f (u’ U, f) = O}R

Figure 1.1: Ilustration of a flex

In the following, we give an example of a flex of a cubic curve .

Example 1.3.3 Let f: R® — R be defined by f(x,y,2) = y2% — 5.
Then f is a cubic form over R and p = (0,0,1)C is a flex of the curve
{f(&) = 0}. In Figure 1.1 we draw the R-points of {f(¢) = 0} in the
affine plane obtained by choosing the line of equation z = 1 as line at
infinity.

Let f € S3(V*) and p = uF a non-singular F-point of {f(¢) = 0}. If
tr(u,u,v) = 0 then f(u + Av) = 3X%ts(u,v,v) + X3 f(v), so p is a flex
if and only if the tangent to {f(£) = 0} at p is contained in the conic
{ts(u,&,&) = 0}. We have another way to characterize the flexes of a
cubic curve.

Proposition 1.3.4 Let f € S?(V*) and p a non-singular point of the

curve {f(§) = 0}. Thenp is a flex of { f(§) = 0} if and only if p € Hy(F).
Proof : See [Knapp, 1992], Proposition 2.12. a

If f is non-singular, one can prove that {f(£) = 0} has at least one
and at most nine flexes using the resultant of polynomials. We will see
that {f(¢) = 0} has in fact nine distinct flexes. But first we need other
results.

Lemma 1.3.5 Let f € S3(V*) be non-singular. Then {f(¢) = 0} has
at least two flexes.

Proof : Lemma 15.3 in [Gibson, 1998] says that a non-singular cubic
curve has nine distinct flexes if F' = C. But the proof can be adapted



16 Ternary cubic forms and cubic curves

to show that a non-singular cubic curve has at least two flexes over an
algebraically closed field. ]

Definition 1.3.6 We say that f € S*(V*) is a normal form if there
exist linearly independent p1,p2,p3 € V* and A\, € F not both zero
such that

f= (o3 + 03 + 03) + A1

Suppose that f = u(3 4+ o3 + p3) + Ap1paps for some linearly indepen-
dent 1, 2, p3 € V" and A, 1 € F not both zero. Then f is singular if
and only if 4 =0 or A3 = p3.

Theorem 1.3.7 Let f € S3(V*) be non-singular. Then f is a normal
form as an element of 53(7*). In particular, {f(§) = 0} has exactly

nine flezes in P(V').

Proof : See Theorem 4, page 293, in [Brieskorn and Knorrer, 1986]. O

A priori the nine flexes are in P(V). The next theorem says that they
are defined over Fiep.

Theorem 1.3.8 Let f € S3(V*) be non-singular. The nine flexes of
{f(€) = 0} are defined over Fsp and f is a normal form as an element

of 53((‘/56,,)*).
Proof : Let (e1, ez, e3) be a basis of V and put

c(x,y,2) := f(xe; + yea + ze3).

We may assume that none of the flexes are in {ae; + Bes | o, 8 € F}.
Let a;,b; € F,i=1,...,9, be such that the (a;e; + bjes + e3)F are the
nine flexes. Changing the basis if necessary, we may assume that a; # a;
for i # j. Let
92 92 22

aw§($7yvz) Tacy('rayvz) Wf)cz(mzyvz)

2 2 2
May,2) =det | Gos(wy2) G y.2) g0 (@,9,2)

d“c

2 2
8%52(3373/72) m(l’,:%z) %(33,:%2)

and r(z, z) (respectively s(x)) the resultant of the polynomials ¢(z,y, 2)
and h(x,y,z) (respectively c(z,y,1) and h(x,y,1)) with respect to y.
One can check that s(a;) = 0 for all ¢ and s(z) = r(x,1) # 0. As the
degree of s(z) is less than or equal to 9 and s(a;) = 0 for all 4, it follows
that s has degree 9 and all its roots are simple. So a; € Fyp for all 1.
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The polynomial ¢(a;,y,1) is not constant since otherwise c(a;,y, 1)
would be constant equal to zero and f would be singular. If h(a;,y, 1)
is not constant, the polynomials ¢(a;,y,1) and h(a;,y,1) have a non-
constant common factor in Fgeply] which is a multiple of (y — b;)™ for
some n = 1,2, 3 (the degree of f(a;,y, 1) is less or equal to 3); s0 b; € Fiep.
If h(a;, y, 1) is constant, then h(a;,y, 1) = 0 and so ¢(a;, y, 1) is a multiple
of (y — b;)™ for some n = 1,2,3. As c(a;,y,1) € Fieply] we have that
b; € Fiep. Hence {f(§) = 0} has its nine flexes defined over Ficp.

In particular {f(§) = 0} has at least two flexes in P(Viep) and we
can adapt the proof of Theorem 4, page 293, in [Brieskorn and Knérrer,
1986] to see that f is a normal form as an element of $3((Vaep)*). O

Suppose that f is a non-singular cubic form. The nine flexes of the
curve {f(§) = 0} have the following property: a line passing through
two flexes passes through a third one. So we have 9 flexes and 12 lines
which pass through two of the flexes; through each flex pass four lines
among the 12 lines; there are four triples of lines such that each flex lies
on one and only one line of the triple. Figure 1.2 shows the incidences
just described, where p;; are the flexes and Cy, C1,C2 and C are the
triples of lines.
We summarize the properties of the flexes.

Proposition 1.3.9 Let f € S3(V*) be non-singular. The nine flexes of
the cubic curve {f(€) = 0} and the twelve lines which go through two of
the flexes have the configuration of the points and the lines of the affine
plane F3.

Proof : Pages 295-296 in [Brieskorn and Knorrer, 1986] treat the config-
uration of the flexes of the projective curve associated to a non-singular
normal form. Since a non-singular cubic form is a normal form as an
element of S*((Viep)*), the flexes of its associated cubic curve have the
same configuration. o

1.4 j-Invariant

Let f € S3(V*) be a non-singular cubic form. By Theorem 1.3.8, there
exist linearly independent @1, 92, 3 € (Veep)* and A € Fyep such that

f =03+ 03+ 03— 3\p10200.

and A3 # 1.
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Figure 1.2: Flexes of a non-singular cubic curve
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Lemma 1.4.1 There exist other linearly independent 1, w2, Y3 in
(Veep)* and p € Fyep such that f = 3 + 3 + 3 — 3ubibarps if and

i
i NN +8)° i’ +8)°
W —1)F (1)

Proof : See Theorem 10, page 302, in [Brieskorn and Knorrer, 1986]. O

We shall prove that

AN +8)°

o < F

To do this we need some lemmas.

We denote by T' the absolute Galois group Gal(Fgep/F). We consider
several continuous actions of I'. First I' acts naturally on Vip: for o € T,
v®AE ‘/;epa

oc(v®A) =v®a(N).
Next we have an action of I' on (Viep)*: for o € T', ¢ € (Veep)* and
5 € ‘/sep;
70(6) =0 (¢ (07(9)) -

Finally I' acts naturally on V*®p Fyep: for o € I' and 9@\ € V* ®p Fiep,
(@A) =pa(N).

Lemma 1.4.2 There exists an Fyp-vector space isomorphism between
V* ®@p Fep and (Vasep)™, which is compatible with the action of T'.

Proof : We may choose the linear map ©: V* ®p Fiep — (Veep)* which
sends ¢ ® A to the linear form mapping v ® p to ¢(v)Apu. |

Thus we may identify V* @p Fiep and (Veep)* and we denote them by
Veep:
We define two other actions of I'. We have an action of I" on S%(V% )

sep
induced by the action on Vg,:

o

(1. 0a) =p1...7¢g;

and T acts naturally on S4(V*) @ Fiep:
(p1--Pa®A) = p1...0a®T(A).

Lemma 1.4.3 There exists an Fyp-vector space isomorphism between
SHV*) @p Feep and SUVL) which is compatible with the action of T.

sep
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Proof : The linear map sending @1 ...¢q @ A onto (1 @ 1...¢4 @ 1)A
defines an Fyep-vector space isomorphism between S¥(V*) ®p Fiep and
S4(V.,) and is compatible with the action of T. O

sep

Let f € S*(V*) be non singular, then °f = f. Let @1, 2,3 € Veep be
linearly independent and A € Fi, such that

=0} + 05 + 0§ — 3Ap1020s.
For all o € T', we have
F="08 4703 + 705 — 30(N) “17p2 @3

where 71, %2, 703 € Vg, are linearly independent. By the lemma
above,

A3 (A3 +8)3 B a(A\)3(a(N\)? +8)3 B A3(A3 +8)3
”( (3 —1)? )‘ @V -1 (W -1
and hence is ;
A (A 8

Definition 1.4.4 In the situation above, we define the j-invariant of f
as

A3(A3 +8)3

i(f) = —5—2 € F.

We say that two ternary cubic forms f € S*(V*) and f' € S3(V'*) are
equivalent if there exists an F-vector space isomorphism ©: V — V'’
such that f = f' 0 ©. By Lemma 1.4.1, the j-invariant has the following
property: suppose f € S3(V*) and f’ € S3(V'*) are non-singular, then
§(f) =j(f') if and only if f and f” are equivalent as elements of S*(V.,)
and S3(VZ) respectively.

sep

1.5 Canonical pencil

Let f € S3(V*) and h € S*(V*) be such that {h(£) = 0} is the Hessian
curve Hy of f.

Definition 1.5.1 The canonical pencil associated to f is the collection
of the cubic curves {(af + Bh)(§) = 0} for all o, B € Fyep not both zero.
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If f is non-singular, then the flexes of {f(£) = 0} are common points of
all the cubic curves in the pencil.

Let g € S3(V*): the cubic curve {g(¢) = 0} is a triangle if g = l1l2l3
for some I; € V" such that the lines {[;(¢) = 0}, for i = 1,2,3, are
distinct and non-concurrent.

Proposition 1.5.2 Suppose that f € S3(V*) is non-singular. The cubic
curves in the canonical pencil of f are exactly the cubic curves over Fyep
passing through the nine flexes of {f(§) = 0}. These nine points are
also flexes for any cubic curve of the pencil. If af + Bh is singular, then
{(af +Bh)(&) = 0} is a triangle. There are exactly four triangles in the
canonical pencil.

Proof : Let ¢1,p2,p3 € Vi, be linearly independent and A € Fgep such
that
f =01+ 03+ 93 = 3hp1p203.

Let (e1,e2,e3) is a basis of Vi, such that ¢;(e;) = d;; where d;; denotes
the Kronecker symbol (such a basis exists since the linear forms @1, @2, ©3
are linearly independent) and put

c(x1, 22, 23) = f(z161 + T209 + 23€3).
Then

0?%c
Oxiaxj

dot (20) = 5a(32ad + 2 +a) + (V= Daraars).

Thus we may replace h by a multiple so that
h= N0} + 95 + ¢3) + (A = Dp1p20s.
Since A* # 1 the canonical pencil of f is equal to
{v(97 + 5 + ©3) + pp1p2ps | v, 1 € Faep 10t both zero}.

Then Proposition 5, page 295, in [Brieskorn and Knorrer, 1986] com-
pletes the proof. o

The triangles in the canonical pencil of f are called the inflexional tri-
angles of f.

Proposition 1.5.3 Let f € S*(V*) be non-singular and h € S*(V*)
such that {h(§) = 0} is the Hessian curve. Then h is singular if and
only if j(f) = 0. Moreover, if h is singular then Hy is an inflexional
triangle.
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Proof : Let 1, p2,p3 € Vi, be linearly independent and A € Fep such
that

F=¢%+ 05 + 0§ — 3Ap1020s.

Then we may assume that
h= XN (¢7 + 93 + @3) + (X = d)p1203,
so h is singular if and only if A = 0 or (A3 —4)3 = (=3X?)3. Since A3 # 1,
(N —4) = (-3\?)} <= N>+ 8 =0.

Thus h is singular if and only if j(f) = 0. Since Hy is in the canonical
pencil of f, if h is singular then Hy is an inflexional triangle of f. a

1.6 Singular cubic forms

In this section we classify the singular cubic forms over V' by giving
a representative of each Fi-equivalence class of F-cubic pairs. The
classification splits into two parts: the reducible cubic forms and the
irreducible ones.

First we consider a non-zero reducible cubic form f (note that a
reducible cubic form is singular): thus f = - ¢ for some [ € V" and
q € S*(V7). It is easy to see that we may assume | € V;5, and ¢ € S3(V2,)
since f € S3(V*).

If g itself is reducible, then f = l1lsl3 for some l; € Vg,.
on the number of distinct lines {l;(§) = 0} and on their intersection
points, one can show by straightforward computations that there exists
a basis (e1,e2,e3) of Vip such that f(ze; + yes + zes) is one of the

Depending

following polynomials:

(1) 22,
(2) =%y,
(3) zy(z +v),
(4) zyz.

In those cases we call the projective cubic curve respectively triple line,
double line plus simple line, three concurrent lines and triangle. The
singular points of these curves are the intersection points between the
lines. Thus a triple line and a double line plus simple line have infinitely



1.6 Singular cubic forms 23

many singular points, but three concurrent lines have one singular point
and a triangle has three singular points. If one among these singular
curves has finitely many singular points then all its singular points are
defined over Fip.

If on the contrary g is irreducible, then we may find a basis (e, e, €3)
of Veep such that f(xeq + yes + zes) is equal to one of the following:

(5) (v —w2),
(6) (22— ay)=.

In case (5) the line {I(¢) = 0} is tangent to {¢(§) = 0} and in case (6) the
line {I(§) = 0} has two distinct intersection points with {¢(§) = 0}. The
associated cubic curves are called conic plus tangent and conic plus chord
respectively. The singular points of these curves are the intersection
points between the conic and the line. A conic plus tangent has one
singular point and a conic plus chord has two singular points.

Having dealt with the singular reducible forms, we now classify the
singular irreducible cubic forms with a series of lemmas.

Lemma 1.6.1 Suppose that f is a non-zero singular irreducible cubic
form. Then {f(£) = 0} has a unique singular point and the multiplicity
of {f(&) = 0} at this point is equal to 2.

Proof : See Lemma 15.1 in [Gibson, 1998]. a

Let p = uF be the unique singular point of {f(¢) = 0}. Since the
multiplicity m,(f) = 2 there exists & € V such that ¢;(u,&y,&) # 0
and the tangents to {f(§) = 0} at p are contained in {¢s(u,&,&) = 0}.
If ty(u,&, &) = 1(€)? for some | € V" then we have a unique tangent
{1(&) = 0} and we say that the tangent is double. If t;(u, &, &) = 11(€)12(§)
for some Iy, 15 € V" linearly independent then the tangents to {f(&) =0}
are {l1(§) = 0} and {l2(§) = 0} and we say that the tangents are simple.

Lemma 1.6.2 Suppose that f is a non-zero singular irreducible cubic
form with two simple tangents at the singular point. Then there exists a
basis (e1, ez, e3) of Veep such that

f(zer +yes + ze3) = 22 + 222 — ay®.

Moreover the cubic curve {f(§) = 0} has exactly three collinear flexes;
the flexes and the singular points are defined over Fyp.
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Proof : See Proposition 12, page 304, in [Brieskorn and Knorrer, 1986].
Those authors assume that F' = C, but their argument can straightfor-
wardly be generalized for an arbitrary algebraically closed field. Then
one can check that the singular point, its tangents and the flexes are
defined over Fip, so the result is in fact also true over a separably closed
field. a

If f is a non-zero singular irreducible cubic form with two simple tangents
at the singular point, we say that the cubic curve {f(£) = 0} is nodal.

Lemma 1.6.3 Suppose that [ is a non-zero singular irreducible cubic
form with a double tangent at the singular point. Then there exists a
basis (e1, ez, e3) of Veep such that

f(zer +yey + ze3) = 23 — xy”.
Moreover the cubic curve {f(§) = 0} has a unique flex; the flex and the

singular point are defined over Fyp.

Proof : See Proposition 13, page 304, in [Brieskorn and Knorrer, 1986]:
the result is stated in the case where F' = C but one can prove that it is
also true for an arbitrary separably closed field. ]

If f is a non-zero singular irreducible cubic form with a double tangent
at the singular point then we say that {f(£) = 0} is cuspidal.

Thus, to repeat: if f is a non-zero irreducible singular cubic form,
there exists a basis (e1, ez, e3) of Viep such that f(xze; +yes + ze3) is one
of the following;:

(7) 23 + 222 — 292,
(8) 2% — wy?.

In conclusion, we have eight different kinds of non-zero singular cubic
forms, six of them are reducible and two of them are irreducible.
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Particular points and lines

For a flex of a non-singular cubic curve, we define its Hessian
point, its harmonic points and the associated harmonic polar.
We study the geometry of these points and lines which — much
like the flexes — have interesting properties. The Hessian
points and the harmonic points will play a crucial role in the
classification of non-singular cubic pairs in Chapter 4. We
believe that most of the results in this chapter are original;
we did not find any references in the literature.

2.1 Hessian points

Let f € S*(V*) be non-singular and p = uF a flex of {f(£) = 0}. Then
the bilinear form

VXV —=F:(n)— tr(u,&,m)

is singular and hence there exists a non-zero vector v’ € V such that
tr(u,u',€) = 0 for all £ € V. We note that v'F is an F-point of the
Hessian curve Hy and « and ' are linearly independent since p is non-
singular.

Proposition 2.1.1 Let f € S3(V*) be non-singular and p = uF a
flex of {f(&) = 0}. Then there exists a unique u'F € P(V) such that
tr(u,u',€) =0 for al €V,

Proof : Suppose there exist linearly independent v/, u” € V such that
tr(u,u/,€) = 0and ty(u,u”, &) =0 for all £ € V. It is clear that uF,u'F
and u”F are F-points of the tangent {t;(u,u,&) = 0}. Hence there exist
a, 3 € F with a # 0 such that «” = au + Bu’. Because

tf (ua ’ZLI/, E) = atf (’ll,, u, E) + ﬂtf (ua ’U,/, 6)

25
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we have tf(u,u,&) = 0 for all ¢ € V. This contradicts the assumption
that f is non-singular. ]

Definition 2.1.2 Let f € S*(V*) be non-singular and p = uF a flex
of {f(&) = 0}. We denote by p' = u'F the (unique) point satisfying
tr(u,u' &) =0 for all € € V, and (in view of Proposition 2.1.3) we call
p’ the Hessian point of p.

We observe that p’ is not an F-point of {f(£) = 0}. Indeed, the inter-
section multiplicity of {f(§) = 0} with the tangent {ts(u,u,§) =0} at p
is three. By Theorem 1.2.5, since f is irreducible, the point p is the only
intersection point between the cubic curve {f(£{) = 0} and the tangent
{t¢(u,u,&) = 0}; thus p’ is not a point of {f(£) = 0}.

It is clear that p and the Hessian point p’ are intersection points of
the Hessian curve Hy and the tangent {¢(u,u,&) = 0}. But we can
prove more.

Proposition 2.1.3 Let f € S*(V*) be non-singular and p a flex of
{f(€) = 0}. The points p and p’' are the only intersection points of
Hy and the tangent to {f(§) = 0} at p. Moreover, the intersection mul-
tiplicity at p’ is equal to two. In particular , if p’ is a non-singular point
of Hy then the tangent to {f(§) = 0} at p is the tangent to Hy at p'.

Proof : Let u,u’ € V be such that p = uF and p’ = vV and let v € V
be such that u,u’ and v are linearly independent. Then (u,u’,v) is a
basis of V, so £F is an F-point of the Hessian curve if and only if

tr(&u,u)  tp(§uu)  tr(€ u,v)
det | tp(& u,u’) tp(&u/,u') tp(&u'sv) | =0.
tf(€7’u,,’U> tf(§7ul7v) tf(gavav)

The points (au + Bu’)F, for a, 3 € F not both zero, are the F-points
of the tangent {t;(u,u,&) = 0}. Hence the intersection F-points of
the Hessian curve and the tangent {t;(u,u,&) = 0} at p are the points
(au + pu')F with a, 3 € F not both zero such that

B f(u' )t f(u,u,v) = 0.

The Hessian point p’ is not on {f(§) = 0}, so f(u') # 0. Since u,v,v
are linearly independent, ¢(u,u,v) # 0. Thus, p and p’ are the only
intersection points of the Hessian curve and the tangent {¢;(u, u, &) = 0}
and the intersection multiplicity at p’ is equal to two. O

The next lemma gives a criterion for a Hessian point to be singular.
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Lemma 2.1.4 Let f € S*(V*) be non-singular, p = uF a flex of the
cubic curve {f(€) = 0} and vF not on the tangent {t(u,u,&) = 0}.
Then p' = u'F is a singular point of Hy if and only if

F)tr (v, 0) = tp(u ol v)2.
Proof : Put

ty(u,u,§)  tr(u,u',§)  ty(u,v,8)
h(€) :=det | tp(u,u',§) ty(u',u',8) ty(u,v,8)
tf(u’ v, g) tf(ula v, 6) tf(?), v, g)

Then the coefficient of A in h(u’ + A§) is equal to

tr(u,u, &) (f(u)tp(u',v,0) —tp(u/ W/ v)?) .

So p’ is a singular point of Hy if and only if

tr(u,u, &) (f(u)ty(u',v,0) — tf(u’7u’,v)2) =0

for all ¢ € V. Since f is non-singular, there exists a & € V such that
ty(u,u, &) # 0. Hence p’ is a singular point of Hy if and only if

Fl )ty (u',v,0) = tp(u',u',0)?
O

Next we give a condition, related to the Hessian points of the flexes, for
the Hessian curve of a non-singular form to be singular, and describe the
configuration of the Hessian points in that case.

Proposition 2.1.5 Let f € S*(V*) be non-singular and p a flex of the
cubic curve {f(§) = 0}. The following conditions are equivalent:

1. p' is a singular point of Hy;
2. there exists a flex q of {f(§) =0} such that ¢ #p and ¢ =p';
3. Hy is singular.

In this situation, the flexes of {f(§) = 0} may be named p1,...,pg in
such a way that p; = pi 1 = Piyo and pi, piy1,Pitve lie on a line con-
tained in the Hessian curve, for i € {1,4,7}. For all i, the Hessian
point p; is a singular point of Hy and it is the intersection point of the
lines contained in the Hessian curve which do not pass through p;, as
tllustrated in Figure 2.1.
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Figure 2.1: Hessian points on a singular Hessian curve

Proof : Suppose p’ is a singular point of Hy. Then Hy is singular and by
Proposition 1.5.3 it is a triangle. Suppose ¢ = vF is a flex of { f(£) = 0}.
Proposition 2.1.3 says that the intersection multiplicity of the Hessian
curve with the tangent {t;(v,v,{) = 0} at ¢’ is equal to two. Hence
¢’ is singular (it is clear that the intersection multiplicity of a triangle
with a line at a non-singular point is 0,1 or co). Assume ¢’ # p’ for all
flexes g # p of {f(§) = 0}. As there are only two singular points of Hy
distinct from p’, there exist four distinct flexes such that their Hessian
points are equal. Thus, there exist three non-collinear flexes q1, g2, g3
of {f(&) = 0} such that ¢} = ¢5 = ¢5. Let v;,v) € V be such that
¢; = v;F and ¢ = v[F. Then t¢(v;,v},&) = 0 for all £ € V and for all
i € {1,2,3}. Since ¢, q2,q3 are non-collinear, the vectors vy, vq, v3 are
linearly independent. So, f(v]) = ¢,(v},v],v]) = 0 which is impossible.
Thus, (1) = (2).

Suppose that there exists a flex ¢ # p of {f(£) = 0} such that ¢’ = p'.
Let u,u’,v € F be such that p = uF, p’ = «'F and ¢ = vF. Then vF
does not lie on the tangent {¢(u,u, &) =0} and

F )ty v,0) =0 =tp(u o v)2

So by Lemma 2.1.4, the point p’ is a singular point of Hy and we have
(2) = ().

It is clear that (1) = (3). By Proposition 2.1.3, if H; is singular,
then p is singular; so also (3) = (1).
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Now assume that these equivalent conditions hold. Since the line
through a flex and its Hessian point intersects the Hessian curve at the
Hessian point with multiplicity two, it is not contained in the Hessian
curve (the intersection multiplicity of a triangle with a line of the triangle
at a point is either 0 or oo). So the Hessian points of three flexes on
a line contained in the Hessian curve are equal; this single point is the
intersection point of the lines contained in the Hessian curve which do
not pass through the flexes. O

For p # q € P(V) we shall denote by (p,q) the line passing through p
and ¢, i.e. the functor F: Extp — Set defined by

F(L) ={(au+ pv)L | o, B € L not both zero}

for L/F a field extension, where p = uF and ¢ = vF.

Proposition 2.1.6 Let f € S*(V*) be non-singular such that Hy is non-
singular. Suppose that p and q are distinct flexes of {f(§) = 0}. Then
the lines (p,q) and (p',q’) are distinct and intersect at the third flex on
the line (p,q).

Proof : If the lines (p, ¢) and (p', ¢’) coincide then p, p’ and g are intersec-
tion points of the Hessian curve with the tangent at p, which contradicts
Proposition 2.1.3. So the lines are distinct.

The third flex on the line (p, ) is the third intersection point of the
cubic curve {f(¢) = 0} with the line (p,q). Let u,u’,v be such that
p=uF,p =u'F and ¢ = vF. Because

flou+ Bv) = Baf(at p(u, u,v) + Bt (u,0,)),

the third flex on the line (p, g) is the point

(tp(u,v,v)u— ty(u,u,v)v)F.

Put
tf (U, u, g) tf (U" u/’ g) 7i.f (u’ v, 5)
h(§) :=det | tr(u,u/,&) tp(u, &) tr(u,v,8)
tr(u,v,8)  tp(u,v,8) ty(v,v,8)

so that {h(§) = 0} is the Hessian curve. Since
h(v) = =ty (u,v,0)%tp(u' 0 v) =ty (u, u,v)t (0, v,0)% =0,
the vector

/

v = —ty(u,v,0)t (] v, 0)u A+ g (u,0,0) 20 4 (w0t (W v, 0)o
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satisfies t¢(v,v’,&) = 0 for all £ € V, so ¢ = v'F. Since h(u’ + \v') is
equal to

Mg, u, o) (f(u)tp(u,0,0) —tp(u/ 0/, 0) + Mp(u/ 0/, o)t (o v,0)

the third intersection F-point of the Hessian curve and the line (p’,q’)
is the point

r=(tp(u w0t (U v + (Er (o 0)? = f(u)tp (W v, 0)) o) F

Replacing v’ in 7 we get that r = (t;(u,v,v)u — t¢(u,u,v)v)F. So the
lines (p,q) and (p’, ¢’} intersect at the third flex on the line (p, q). |

The previous proposition is also true if Hy is singular and p’ # ¢’. Indeed,
by Proposition 2.1.5, the flexes p and ¢ lie on distinct lines contained in
the Hessian curve. So the third flex on (p, ¢) lies on the line contained in
the Hessian curve which does not pass through p and g¢; this is the line

¥, q)
2.2 Harmonic polars

Let f € S*(V*) be non-singular and p = uF a flex of {f(¢) = 0}. We
know by the remark preceding Proposition 1.3.4 that the tangent at p is
contained in the conic {t¢(u,§,§) = 0}. Hence the quadratic form

VHF:EHtf(Ihgaf)

is reducible and the conic {t;(u,§,£) = 0} is composed of two lines.
These two lines intersect only at one point, namely the Hessian point p/,
thus the conic {t¢(u, &, &) = 0} consists of two distinct lines, one of them
being the tangent at p.

Definition 2.2.1 Let f € S3(V*) be non-singular and p = uF a flex of
{f(&) = 0}. The line different from the tangent at p contained in the
conic {ty(u,§,&) = 0} is called the harmonic polar of the cubic curve

{f(&) =0} at the flex p.

We write p* for the harmonic polar of {f(£) = 0} at a flex p.
Lemma 2.2.2 Let f € S*(V*) be non-singular and p and q distinct

flexes of {f(&) = 0}. Then the harmonic polar at p is distinct from the
harmonic polar at q.
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Proof: Let u,v € V be such that p = uF and ¢ = vF. Suppose that the
harmonic polars p* and ¢* coincide. Then there exists a point r = wF
of {f(¢) = 0} which lies on both the harmonic polars. In particular,
we have t¢(u, w,w) = 0 and tf(v,w, w) = 0 (the harmonic polar at p is
contained in the conic {t¢(u,&, &) = 0}). Since {tf(w,w,&) = 0} is the
tangent to {f(£) = 0} at r, the intersection multiplicity of {f(§) = 0}
with the tangent {t;(w,w,§) = 0} at r is greater than or equal to two.
Thus the number of intersection F-points of {f(£) = 0} with the line
{tf(w,w,&) = 0} is greater than or equal to four. By Theorem 1.2.5, the
line {t;(w,w,&) = 0} is contained in the cubic curve {f(§) = 0}. This
contradicts the fact that f is non-singular. a

The following proposition exhibits the configuration of the nine harmonic
polars of a non-singular cubic curve.

Proposition 2.2.3 Let f € S>(V*) be non-singular and p,q,r distinct
flexes of {f(§) = 0}. Then the harmonic polars p*,q* and r* are con-
current if and only if the flexes are collinear.

Proof : Suppose that p,q,r are collinear. If p’ = ¢’ = r’ then the lines
p*,q* and r* are concurrent at p’. Assume we do not have p’ = ¢ =1/,
then by Proposition 2.1.5 the points p’, ¢’ and r’ are distinct pairwise
because p,q,r are collinear. Let u,u’,v € V be such that p = uF,
o =4V and ¢ = vF. Then r = wF with

w = ty(u,v,v)u —ts(u,u,v)v

and the proof of Proposition 2.1.6 shows in particular that ¢’ = v'F with

v = —ty(u,v,0)tp(u v, )0+ (a0, 0) 2+t (uyu, )t (ul v, ).
Let &F be the intersection F-point of p* with ¢*. Then in particular
tr(u, &o,&) =0 and tf(v,&,8) = 0. Thus

tf(wag()ag()) = tf(ua v, U)tf(uvfoafo) - tf(U,U,’U)tf(’U,fo,fo) =0

and &F is either on the tangent at r or on the harmonic polar at r.
Assume & F is on the tangent at 7. Let o, 8,7 € F be scalars such that
& = au + Bu’ + yv. The point & F is not on the tangent at p. Indeed,
if £oF lies on the tangent at p then it is the intersection point of the
tangent at p with the harmonic polar at p, namely p’. But p’ does not
lie on the tangent at r since the only intersection points of the Hessian
curve with the tangent at r are r and /, and p’ # r,r’. Hence v # 0. In
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the same way, it can be seen that the tangent at ¢ does not pass through
& F. Because ty(w,w, &) = 0 implies

ty(uyu,v)tp(u',0,0)B8 =ty (u,v,0)t  (u, u, v)a + ty(u, v, 0) 2y
and tf(u, &, &) = 0 implies
207t (u,u,v) + 'thf(u, v,v) =0,
the point & F is equal to
(—ty (', v,0)tp(u, v, 0)u+ tp(u,v,0)%u + 2t (u, u, )ty (0, v,0)0) F.

Hence & F = (v + tp(u, u, v)t (v, v,0)v) F is an F-point of the tangent
{ts(v,v,&) = 0} and we have a contradiction. Thus, the point &F is
on the harmonic polar r* and the harmonic polars p*, ¢* and r* are
concurrent.

Now assume that the harmonic polars p*,¢* and r* are concurrent
at &F. Suppose p, g, are non-collinear. Let u,v,w € V be such that
p=uF,q=vVandr =wV. Then t;(u,&,&) =0, t¢(v,&,&) = 0 and
ty(w,&),&) = 0. Since p,q,r are non-collinear, the vectors u,v, w are
linearly independent. Thus, t£(£y,&,&) = 0 for all £ € V and &F is a
singular point of { f(£) = 0}; this is impossible because f is non-singular.

O

Let us summarize the properties which we obtained on the harmonic
polars. For a non-singular f € S3(V*), there are exactly nine harmonic
polars of the cubic curve {f(§) = 0}. Through the intersection point of
two harmonic polars passes a third harmonic polar; through any given
point pass at most three harmonic polars. There are four triples of
points which satisfy the following property: a harmonic polar passes
through one and only one point of the triple. Hence the configuration of
the nine harmonic polars is dual to the configuration of the nine flexes
in the following sense: to obtain the properties of the harmonic polars
we replace “point” by “line”, “lie on” by “pass through”, “collinear”
by “concurrent”, etc. in the properties of the flexes. Moreover the two
configurations are connected by Proposition 2.2.3: the harmonic polars
at three flexes are concurrent if and only if the flexes are collinear.

2.3 Harmonic points

In this section, we define another class of particular points of a non-
singular cubic curve.
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Proposition 2.3.1 Let f € S*(V*) be non-singular and p a flex of
{f(&) = 0}. There are exactly three distinct intersection F-points be-
tween the cubic curve {f(€) = 0} and the harmonic polar p*.

Proof : Let u € F be such that p = uF. Suppose that there is an
intersection F-point ¢ = vF between {f(£) = 0} and p* with multiplicity
greater than or equal to two. Then the tangent {tf(v,v,{) = 0} at ¢
is the harmonic polar p*. Since ¢ is on the harmonic polar p*, we have
in particular t¢(u,v,v) = 0. Thus p is also on the harmonic polar p*.
This is impossible since p’ is the only intersection point between the
tangent at p and the harmonic polar at p. Thus, there are exactly three
intersection points between the cubic curve {f(£) = 0} and the harmonic
polar p*. O

Definition 2.3.2 Let f € S?(V*) be non-singular and p a flex of the
curve {f(§) = 0}. The three intersection points of the cubic curve
{f(&) = 0} with the harmonic polar at p are called the harmonic points

of the flex p.

In [1950], page 124, Walker defines a sextatic point of an irreducible
cubic curve. An harmonic point is in particular a sextatic point.

Proposition 2.3.3 Let f € S3(V*) be non-singular, p a flex of the curve
{f(&) = 0} and q # p an F-point of {f(€) = 0}. Then the tangent to
the curve {f(€) = 0} at q passes through p if and only if q is a harmonic
point of p.

Proof : Let u,v € V be such that p = uF and ¢ = vF. Suppose that
¢ is a harmonic point of p. Then in particular t(u,v,v) = 0 and so p
is on the tangent to {f(§) = 0} at gq. Conversely, if p is on the tangent
to {f(§) = 0} at ¢ then t;(u,v,v) = 0. So ¢ is either on the tangent
at p or on the harmonic polar at p. Suppose that ¢ is on the tangent
at p. Because ¢ is on the cubic curve {f(§) = 0} we have ¢ = p; it
contradicts the hypothesis. Thus ¢ is on the harmonic polar p* and then
q is a harmonic point of p. O

As in [Walker, 1950] we shall define a group law on the F-points of the
cubic curve {f(§) = 0}. To that end, it is useful to introduce some more
notation. Recall that we write (p,q) for the line through given points
p# q € P(V). Forape {f(§) = 0} we shall now write (p,p) for the
tangent of {f(£) = 0} at p.
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Let o be a flex of {f(¢) = 0}. We define a group law on the F-points
of {f(¢) = 0} which depends on the flex 0. Let a,b be two F-points
of {f(¢) = 0}. By Theorem 1.2.5, there are exactly three intersection
F-points of {f(£) = 0} with the line (a,b), counting multiplicity. Let
c1 be the third intersection F-point (for instance, if the intersection
multiplicity at a is two and a # b then ¢; = a). Now we set a +, b to be
the third intersection point of {f(¢) = 0} with (0, ¢1). By Theorem 9.1,
page 191, in [Walker, 1950] this addition on the F-points of {f(£) = 0}
is a commutative group law with o as the zero element. Theorem 9.2,
page 192, in op. cit., says in particular the following:

Theorem 2.3.4 Let o be a flex of {f(£) = 0} and a1, as, a3 F-points of
{f(&) = 0}. Then a1, az,a3 are the intersection F-points of {f(£) = 0}
with {1(§) = 0} for somel € V™, counted with multiplicity, if and only
if a1 4+, as +, a3 = o.

Now we can state a property of the harmonic points.

Proposition 2.3.5 Let f € S3(V*) be non-singular, p1,p2,ps distinct
collinear flexes of {f(§) = 0} and ¢1 a harmonic point of p1. Then the
line (q1,ps3) intersects the cubic curve {f(£) = 0} at a third point, which
s a harmonic point of ps.

Proof: We put o := py and g2 := p2 4+, q1- Then g2 # ps since otherwise
q1 = p1. By Theorem 2.3.4, since p, pa, p3 are distinct collinear F-points
of {f(€) = 0}, we have py +, p3s = 0. Also 2¢; = o and 3ps; = o0 because
p1 is on the tangent at ¢; and ps is a flex. Then

{ P2 to 2(]2 =p2 to 2]?2 +o 2(]1 =0,
Q1 toP3toq2=q toP3toP2+toq1 =o0.

Thus, py is on the tangent to {f(§) = 0} at g2 and ¢1,ps,q2 are the
intersection F-points of {f(£) = 0} with the line (g1,p3). So the third
intersection point of the cubic curve {f(§) = 0} with the line {(gq, p3) is
the points ¢o which is a harmonic point of ps. ]
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Particular ternary cubic forms

We introduce and study particular ternary cubic forms which
we call semi-diagonal form and semi-trace form, the latter
generalizing the former. We give a criterion for a non-
singular cubic form to be semi-diagonal or semi-trace. In
Chapter 4 we shall use this criterion to show that the cu-
bic form associated to a mon-singular cubic pair is always a
semi-trace form.

3.1 Semi-diagonal forms

Definition 3.1.1 We say that f € S3(V*) is a semi-diagonal form
if there exist linearly independent forms ¢1,p2,03 € V* and scalars
aq, o, a3, \ € F such that

f =19} + asps + azp3 — 3Ap10203.
If moreover A = 0 we say that f is a diagonal form.

Note that 1, @9, @3 are linearly independent if and only if the cubic
curve {(p1p203)(€) = 0} is a triangle. Also note that a non-singular
cubic form is a diagonal form only if its j-invariant is equal to zero.

The following lemma gives a condition for a semi-diagonal form to
be non-singular.

Lemma 3.1.2 Let f € S*(V*) be a semi-diagonal form:
f= a1} + asps + azp3 — 3\p10203.

Then f is non-singular if and only if ay, ao, a3 # 0 and N> # ajasas.

35



36 Particular ternary cubic forms

Proof : The symmetric trilinear form ¢y associated to f is defined by

tr(&m,¢) = arp1(§)e1(n)p1(C) + azp2(&)w2(n)pa(C)

+ 0sgs(€psMes(0) — 5 3 Pom(Eo (oo (©)

0€S3

Let (e1,e2,e3) be a basis of V such that ¢;(e;) = d;; for all 4,5. Then
(voe1 + yoea + zoez) F is singular if and only if (x9, Yo, 20) # 0 and

2 _

1Ty = )\yOZ()’
2 _

a2ys = ATo20,

agzg = A\Zo¥o-

If a; = 0 then ey F is a singular point of {f(£) = 0}; hence f is singular.
In the same way, if ao = 0 or ag = 0 then f is singular. Assume
that ai, a9, a3 # 0 and A3 = ajasas. Let # € F be a cube root of
aray t, then (Ode; + 02 Xeg + aje3)F is a singular point, so f is singular.
Conversely, suppose that a1, as,a3 # 0 and f is singular. Let p be a
singular point. There exist xg, yo, 20 € F such that (xoe1+yoea +2063)F.
Then zy # 0 because otherwise xg, yg, zo = 0 and

2.4 2.2 2 4.2 3 4,
Qa3 Ty = Qa3 A Yg2y = A TgYoZo = A" a1Zp;
thus, A% = ajonas. O

Next we give a criterion for a non-singular cubic form to be a semi-
diagonal form.

Theorem 3.1.3 Let f € S*(V*) be non-singular. Then f is a semi-
diagonal form if and only if there exists an inflexional triangle of f whose
lines are defined over F'. Moreover, the cubic curve associated to p1p2p3,
with p; € V*, is an inflexional triangle of f if and only if

f =016} + a2pd + azpl — 3Ap1p2003
for some a1, a0, a3, A € F.

Proof : Suppose that f is a semi-diagonal form. Let 1, @2, 03 € V* be
linearly independent and «y, s, ag, A € F such that

f=0a10} + 228 + 303 — 3Ap10203.
Put

hi= —2X% (a1} + a2l + asel) + (Barasas — 20%) 10003,



3.1 Semi-diagonal forms 37

Figure 3.1: Flexes of {f(§) = 0}

then {h(£) = 0} is the Hessian curve of {f(£) = 0}. Let &F be a flex
of {f(£) = 0}. Since A\* # ajasas and & F is an intersection point of
{f(€) = 0} and the Hessian curve H;, we deduce that

{ a191(60)* + a292(60)? + azps(&)® = 0,
©1(&0)p2(&0)w3(&) = 0.

Thus the cubic curve associated to g = @123 is an inflexional triangle
of f whose lines are defined over F'.

Conversely, assume there exists an inflexional triangle g = p1p203
of f with ¢1,¢2,03 € V*. Let (e1,ea,e3) be a basis of V' such that
wi(e;) = 0i;. Let pi,p2,p3 be the flexes of {f({) = 0} on the line
{p1(§) = 0} and let py be a flex on the line {¢2(§) = 0}. Then there
exist b € F* and distinct a1, ag,a3 € F* such that py = (e1 + be3)F
and p; = (ajes + e3)F for all i = 1,2,3 (the scalars ay, as, as, b are non-
zero because the flexes of a non-singular cubic curve are not intersection
points between lines of an inflexional triangle). Let pgy; be the third
flex on the line (p;, p4) for i = 1,2, 3, ps the third flex on the line (py, ps)
and pg the third flex on the line (p1,pg) (the incidences of the points
are showed in Figure 3.1). Then we have pg.; = (e1 — a;bes)F for all
i =1,2,3, ps = (a1e1 + azbe3)F and pg = (aje; + asbesz)F. Using the
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configuration of the flexes of a non-singular cubic curve, we shall deduce
which flexes are collinear. For distinct collinear points p,q,r € P(V),
we write (p, g, r) for the line passing through this points. Since the lines
(p2,p4,ps) and (p1,pe,p9) do not pass through a common flex, they
are contained in the same inflexional triangle and (ps, ps, p7) is the last
line of the triangle; so ps3, ps, pr are collinear. We deduce similarly that
D2, Pe, p7 are collinear. The lines (p1,p2,p3), (P2, P4, ps) and (p2, ps, P7)
pass all through ps. Thus the last line passing through py is (p2, ps,p9)
and ps, ps, pg are collinear. In the same way, we can prove that ps, pg, ps
are collinear. Since ps lies on the line (ps, pr), there exist a, 3,\ € F
such that A # 0 and

(a1e1 + agbes)\ = a(azes + e3) + B(er — arbes).

So a = Aagb, B = Aa; and a? = agaz. Similarly, we have a3 = aja3
ecause po,ps,pg are collinear and a3 = ajas because ps,pg,ps are
b , D5, 11 d a3 b , D6,

collinear. In particular
a? = ag = ag = ajagas.

Since the a;’s are distinct, we have ay = wa; and as = w?a; for some
primitive cube root w € F' of unity. We write

f = Z >‘i1,i2,i3 Salll 90122 <P§3
where the sum runs over all the positive integers 71,42 and 73 such that

i1 + i3 + 43 = 3. Since f(aes +e3) = 0 for all ¢ = 1,2,3, the a;’s are
roots of the polynomial

20.3.0t% + X021t + Xo1.2t + Xo0.3-

Thus Ap2,1 = Ao,1,2 = 0. Exchanging the role of the e;’s we also get that
)\271’0 = )\172’0 =0 and /\2,0’1 = /\1,0’2 = 0. Hence

f = 230,008 + X0,3,005 + 20,0305 + A1,1,1010203,

and f is a semi-diagonal form. O

3.2 Semi-trace forms

For an F-algebra K, we denote by Tryx,r and Nk, the trace form and
the norm form of the F-algebra K, i.e. the maps

Trg/p: K — F: & tr(le),
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NK/F: K— F: f'—> det(lg),

where l¢ denotes the endomorphism of K of left multiplication by &.
Suppose that K is d-dimensional over F' and fix an o € K; then the forms
Ng/p and K — F: § — TrK/F(afd) may be considered as elements of
S4(K™).

Definition 3.2.1 Let f € S*(V*) be a ternary cubic form. We say that
f is a semi-trace form if there exist a cubic étale F-algebra K, elements
a € K and A € F, and an F-vector space isomorphism ©:V — K such
that

f(€) = Triyr(@O(€)?) — 3ANk/r(O())
forall€ € V.

A semi-diagonal form is in particular a semi-trace form. Indeed, suppose
f € S3(V*) is a semi-diagonal form; so let (1,92, 3 € V* be linearly
independent and ag, as, as, A € F such that

f= a1} + a203 + azpl — 3Ap1pap3.

Let (e1,e2,e3) be a basis of V' such that ¢;(e;) = d;; for all i,j =1,2,3.
Weput K := FXFxF, «a:= (a1, a9, a3) and we define ©: V — K as the
F-vector space isomorphism for which ©(e;) = (1,0,0), ©(e2) = (0, 1,0)
and O(eg) = (0,0,1). Then

f(&) =Trg, p(a®0(€)) — 3ANg, £ (O(8)).

We will give a criterion for a non-singular ternary cubic form to be
a semi-trace form but first we need preliminaries.

As in [Knus et al., 1998], we say that G is a I'-group if G is a group
equipped with a continuous action of T, denoted (¢,a) — o * a, such
that

o * (ab) = (o *a)(o * b)
for all o € I' and a,b € G. We denote by Map({1,2,3}, F5,) the group
of the set maps between {1,2,3} and F,. For a € Map({1,2,3}, F5,)
and i € {1,2,3}, we write (a,?) for the image of ¢ by the map a.

Suppose that T' acts continuously on {1,2,3}. Then it induces a
continuous action of I' on Map({1,2,3}, F5,): for o € T, i € {1,2,3}
and a € Map({1,2,3},FS§p),

(“a,iy =0 ((a,cf*l *z)) ;

this endows Map({1, 2, 3}, F5,) with a T-group structure.
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Lemma 3.2.2 Suppose that T' acts continuously on {1,2,3}. Then the
first cohomology group H(T', Map({1, 2, 3}, Fg,)) is trivial.

Proof : Assume that I' acts transitively on {1,2,3}. Let I'y denote the
stabilizer of 1 under the action of T" on {1, 2,3}. Then we have a bijection

/Ty — {1,2,3}: 4Ty +— v * 1.

We put Ag 1= Fg,, then Ag is a I-group. Then I'y is an open-closed
subgroup of T" (for the Krull topology). Let A be the group of continuous
maps a: I' — Ag such that

a(y0y) = o0 (a(v))

for all 79 € T'yp and v € I'. We define an action of I on A as follows:

7a(y) = a(yo)

for all o,+v € I'. Then A equipped with this action is a I'-group. Re-
mark (28.19) in [Knus et al., 1998] says that we may identify A with the
I-group of continuous maps from I'/Ty to Ag. Thus we may identify the
I'-groups A and Map ({1, 2,3}, Ag). By Corollary (28.18) in op. cit.,

H' (Lo, Ao) = H'(T', A).
But Hilbert’s Theorem 90 says that H!(T'g, Ag) = 1. Thus
H'(,Map({1,2,3}, F,5,)) =1,

as wanted.

Now assume that the action of I" on {1, 2, 3} is not transitive. Suppose
that X; and Xo are disjoint non-empty subsets of {1,2,3} such that
{1,2,3} = X; U X, and the X;’s are stable under the action of T'. For
i = 1,2, we put A; := Map(X;, F5,), then the action of I restricts to
A;. We have a split exact sequence of abelian I'-groups:

T S
Y v N\
A1 T} A1 X A2 T) A2

with f(ay1) = (a1,1), g(a1,a2) = az, r(a1,a2) = a1 and s(az) = (1, az).
It induces a split exact sequence of abelian groups:

1 1 N 1
1 — H (F,Al) — H (F,Al XAQ) — H (F,Ag)
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Hence, HY(T', A1 x Ag) = HY(T, A;) x HY(T, A3). Let Y1,...,Y, be the
orbits of {1,2,3} under the action of I' and put B; := Map(Y;, F5,) for
all i. Then HY(T', B;) = 1 because I' acts transitively on Y;. Using the
preceding

HYT,B; x ... x B,) 2HYI',B;y) x ... x H{(T", B,) = 1.
Since we have a I'-group isomorphism
Map({1,2,3}, Figp) — Br X ... X Bt f = (flyys -5 flv,)s

we obtain that H'(I',Map({1,2,3}, F.5,)) = 1. m

The next lemma gives a relation between a cubic form whose cubic curve
is a triangle and the norm form of a cubic étale F-algebra.

Lemma 3.2.3 Let f € S3(V*) be such that the curve { (&) = 0} is a tri-
angle. Then there exist a cubic étale F-algebra K, a unit A € F'* and an
F-vector space isomorphism ©: V. — K such that f(§) = ANk, r(0()).

Proof : Let @1, 2,903 € V& be linearly independent forms such that

sep
[ = ¢1p2¢3. Because f € S*(V*), we have 717027 p3 = ¢1p2¢3 for all
o € I'. By uniqueness of factorization in S(V*), there exist a permutation
7, of {1,2,3} and scalars \;_(;) ., € Fy, such that

sep
79i = Ary(i)io Pro(i)s

for all i € {1,2,3}. Since 7"¢; = 7(Ty;), we have

Ator(i)so7 Pron(i) = Amomr(i)0 T An,(0),7) Promr(i)-

Thus, 75, = m,7m, and

Mmoo (i)sor = Amor(i),0 T( M, (i),r)- (3.1)

We define an action of I' on the Fyp-algebra Map({1, 2,3}, Fsp) as fol-
lows: for ¢ € T, a € Map ({1, 2, 3}, Fiep) and 7 € {1, 2,3},

(7a,i) = o((a, ;" (i)).

The group I' acts continuously by semilinear algebra automorphisms.
By Galois descent, the F-algebra K := Map ({1, 2, 3}, Fsep)F is such that
the Fyep-linear map

K RF Fsep - Map({17273}7Fsep)
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mapping a ® A to a\ is an Fiep-algebra isomorphism. Since the map
Map({l, 27 3}7Fsep> — L'sep X Fsep X Fsep: a — (<CL, 1>7 <a7 2>a <a7 3>)

defines an Fiep-algebra isomorphism, the F-algebra K is cubic étale. For
o €T, we consider the map a,: {1,2,3} — Fiep defined by

<G,U, ’L> = )\i)g.

Then a, € Map ({1,2,3}, F,) because \; » # 0 for all i. In fact (a5 )ser
is a l-cocycle with values in Map({1,2, 3}, Fi5,). Indeed,

(a:7ar,i) = (ao,i)(7ar,i)
= i o({ar, 7 (D))
= Ao U(/\ng(i),f)'

for all ¢ € {1,2,3}. But relation (3.1) implies \; o = Ao 0'()\71_;1(1-)’7_),
thus a,%a; = a,r. We write u for the map {1,2,3} — Fi, defined
by (u,i) = 1 for all i. Let E be a finite field extension of F' such that
p; € Vi for all 4. The continuity of the map

T — Map({1,2,3},

ep): o Qg

follows from the fact that {o¢ € I' | a, = u} contains the Galois group
Gal(Fyep/E) of Fyp over E. Thus, by Lemma 3.2.2, there exists a map
b € Map({1,2,3}, F%,) such that a, = b 7b~" for all o € T'. We put

;== (b,i)¢;. Then

T = o((b,1) ¢
= o((b,1)Ax, (i),0 Pr. ()
a((b,9)){ac, 7o (1)) ()
a((b,1)) (b, 76 (i) o((b,1) " om, i)

= Ur, (i)

Put A = (b, 1)~1(b,2)71(b,3) 71, then f = Mp11ba1)3. Since f and ¥11h1)3
are invariant under the action of I', we have A € F*. Let

©: Veep — Map({1,2,3}, Feep)

be defined by (O(£),1) = ¢;(§) for all £ € Vip and ¢ € {1,2,3}. Since
the cubic curve {f(£) = 0} is a triangle, the linear forms ; are linearly
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independent and we deduce that O is an Fyp-vector space isomorphism.
The map © is also compatible with the actions of I':

(70(8),i) = o((6(8), (1))
= J(UJ 1(4) £)
N
= Yi(0(8))
= (8(a(8)).9)-

Thus O|y is an F-vector space isomorphism between V' and K. Now,
for £ € V', we have

Ni/r(0(§) = Nkorp, (0 1)

= NFsep/Fsep(<®(§ >’<®(§)72>7<@(€>73>)
(0(£),1)(0(£),2)(0(¢), 3)

)-

- )
= D(Eva(Oun(s

Thus, f(£§) = ANg/r(©(8)). .

Now we can give a criterion for a non-singular cubic form to be a semi-
trace form.

Theorem 3.2.4 Let f € S*(V*) be non-singular. Then f is a semi-
trace form if and only if there exists an inflexional triangle of f defined
over F'.

Proof : Suppose g = 1203 € S3(V*) is such that the associated cubic
curve {g(¢) = 0} is an inflexional triangle of f. Let K, © and 7,
for o € T', be as in the proof of Lemma 3.2.3. Then the linear forms
1,9, 13 € S3( Veep) With (©(€),7) = 9:(§) are such that “¢; = ¥ (5

and g(§) = pNg,/r (0(€)) = p1(§)2(§)vs(§) for some p € F*. By
Theorem 3.1.3 and since the cubic curve associated to 119213 is also an

inflexional triangle of f, there exist scalars o, ag, a3, A € Fyep such that

f =019} + aohd + al — 3Nprihats.

Because 7 f = f and “4; = 9_(;), we have o(;) = ax_(;) and o(A) = A
for all o € I'; thus in particular A € F. Let a: {1,2,3} — Fg, be the
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map defined by (a,i) = a;, then o € K. Indeed,

<Uaai> = U(<O‘>7r;1(i)>)
U(aw(jl(i))

= (o,1).

Therefore, for £ € V,

Trr r (@O(£)?)

Tres e, (0101(6)?, 0012 (€)?, azes(€)?)

sep

o191 (£)” + aatp2(€)® + asy3(€)°,

from which

F(&) =Tr/r (@O(€)®) — 3ANk, p (O())

and f is a semi-trace form.

Conversely, assume that f is a semi-trace form: let K be a cubic étale
F-algebra,« € K, A € Fand ©: V — K an F-vector space isomorphism
such that

f(&) =Trg/p (@O(£)?) — 3ANg,F (O()) .
By Theorem (18.4) in [Knus et al, 1998], there exist an action of " on
{1,2,3} and an F-algebra isomorphism ¢: K — Map({L?,S},Fsep)F,
where the action on Map ({1, 2, 3}, Fiep) is induced by the one on {1, 2, 3}:

(“a,i) =0 ((a,07" %)) .

Replacing K by Map ({1, 2, 3}, Fsep)F and © by ®oO, we may assume that
K =Map ({1,2,3}, Fiep)" . Let ; € V%, be defined by ¢;(€) = (©(€), )

for £ € V and put «; := (©(a),i) for i = 1,2, 3, then

f= a1} + a3 + azpl — 3Ap1pap3.

By Theorem 3.1.3, the cubic curve associated to g = ¢1p2¢3 is an inflex-
ional triangle of f which is a priori defined over Fyep. Since 7©(&) = ©(€)
for all £ € V and o € T', we have

7¢i(€) = o (¢i(€)) = o ((6(8),4)) = (B(&),0 % i) = Poui(§)

for all £ € V and i € {1,2,3}. Thus “¢; = @« and g = g. So
{g(&) = 0} is an inflexional triangle of f which is defined over F. O
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Classification
of non-singular cubic pairs

We introduce the motion of cubic pair over a field and we
use Galois cohomology to classify the isomorphism classes
of non-singular cubic pairs: we explicitly give a represen-
tative of each such isomorphism class. To each cubic pair
is associated a ternary cubic form, and our classification of
the mon-singular cubic pairs allows us to describe explicitly
those cubic forms. It turns out that all of these cubic forms
are semi-trace forms, and they are even semi-diagonal if the
ground field contains a primitive cube root of unity.

4.1 Cubic pairs

For A a central simple F-algebra, we let Trd4: A — F denote the re-
duced trace of A and A° the subspace of A of reduced trace zero elements.
The trace quadratic form of A is the quadratic form

qa: A — F: & Trda(€2).

Let A be a central simple F-algebra of degree 3. There exists a
field extension L of degree 3 over F' such that A ®p L = M3(L). Let
©: A®p L — M3(L) be an L-algebra isomorphism, then

Trda(é) = Tr(0(¢))

for all £ € A. For a matrix m € M3(L), let m;; denote the element at
the i-th row and the j-th column in m. For all m € M3(L)°, we have

2 2 2
tr(m®) = 2(miama1 + mizma1 + mazmaz + mi; + may + mi1maz).

45
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Thus the restriction of g4, to (AL)° is isometric to the diagonal form
(1,-1,1,-1,1,-1,1,3).

Since the degree of the field extension L over F' is odd, by Springer’s
Theorem there exist 3-dimensional subspaces of A° which are totally
isotropic for the quadratic form q4.

Definition 4.1.1 A pair (A,V) where A is a central simple algebra of
degree 3 over F and V' is a 3-dimensional subspace of A° which is totally
isotropic for the trace quadratic form, is called a cubic pair over F.

An F-isomorphism between two cubic pairs (A,V) and (4’,V’) is an
isomorphism ©: A — A’ of F-algebras such that O(V) = V.

To a cubic pair (A4,V) we can naturally associate a ternary cubic
form fa,y over V: define

fA,V:V—>F:§»—>§3.

We say that (A,V) is a non-singular cubic pair if f4 v is non-singular
and (A,V) is a singular cubic pair otherwise.

We observe that the cubic forms f4 v and fas v/ are equivalent if the
F-cubic pairs (A4,V) and (A’, V') are isomorphic (but the converse need
not hold). Indeed let ©: A — A’ be an F-algebra isomorphism such that
©(V) =V'. Then, for all £ € V,

fayv(©) =€ =0(&%) =0(5)° = faryv ((¢)).

Furthermore, it is clear that, if f € S*(V*) and f’ € S*(V'*) are equiva-
lent, then f is singular if and only if f’ is singular. Thus we can split the
classification of cubic pairs over F', up to isomorphism, into two parts:
the singular cubic pairs and the non-singular ones.

To classify cubic pairs, we shall use a method based on Galois coho-
mology justified by the following theorem. In this theorem, we use the
following notation: Aut(A, V') is the group scheme of automorphisms of a
cubic pair (A, V). Explicitly, Aut(A, V) is the functor from the category
of F-algebras to the category of groups that sends an F-algebra R on
the group of R-automorphisms of (A, V)g := (4g, Vg).

Theorem 4.1.2 Let (A,V) be an F-cubic pair. We have a bijection

F-isomorphism classes of
HY(F,Aut(A,V)) «— the F-cubic pairs which are
isomorphic to (A, V), over Fyp
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Proof : Let G C GL(A) be the subscheme of automorphisms of the flag
of vector spaces A D V over F. Let W be the F-vector space of the

F-homomorphisms of vector spaces between A ® p A and A. We define
p: G — GL(W) by

pr(9)(@)(E@n) =gop(g (&) @ g (n),

for g € G(R), ¢ € Wg and £,n € Ag. We denote by m: AQr A — A
the multiplication in the algebra A, then m € W. As in [Kuus, et al.,
1998], page 392, let Auti(m) denote the stabilizer of m. It is a subgroup
of the group scheme G and, for every F-algebra R,

Autg(m)(R) = { R-algebra automorphisms of (A,V)r},

so Autg(m) = Aut(A, V). Let A(p, m) be the category whose objects are
the ¢ € W such that ¢ = pg_ (g)(m) for some g € G(Fip), and whose
morphisms ¢ — 1 are the elements g € G(F) such that p(g)(p) = .
By Corollary (29.5) in op. cit., H'(F,G) = 1. So by Proposition (29.1)

in op. cit., there is a bijection
Isom (A(p, m)) «— H(F, Autg(m))

where Isom(A(p,m)) denotes the set of isomorphism classes of objects
of the category A(p, m). To finish the proof, we show that

F-isomorphism classes of
Isom(A(p,m)) «—— the F-cubic pairs which are
isomorphic to (A, V)g,, over Fyp

sep

Let ¢ € A(p, m). We define A’ to be the F-algebra such that A’ is equal
to A as an F-vector space and the multiplication in A’ is given by ¢. Let
g € G(Fsp) be such that ¢ = pp, (g)(m), then g is an Fiep-isomorphism
between (A,V)g,, and (A, V')p,,, where V' = V. Hence we obtain an
F-cubic pair (A", V’) such that (A, V)g,, and (A", V')p,, are isomorphic.
If ¢» € A(p, m) is isomorphic to ¢, then there exists h € G(F) such that
v = p(h)(p). If (A", V") is the F-cubic pair associated to ¢ in the
same way, then h is an F-isomorphism between (A’, V') and (4", V").
So the mapping [¢] — [(4,V)] is well-defined, where [¢] and [(4, V)]
are the isomorphism classes of ¢ and (A, V) respectively. We prove
that this mapping is bijective. Let (A’, V') be an F-cubic pair and
0: (A, V)pg, — (A, V')E,, an isomorphism of Fie,-cubic pairs. Let m/

denote the multiplication in A’. There exists an isomorphism of F-vector
spaces ®: A — A’ such that ®(V) = V’. We define p: A®@r A — A by

p(E@n) =2 om!(B(&) ® (n)),
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for {,n € A. Then ¢ = pg,,(g)(m), where g = &' 00 € G(Fip). If

U: A — A’isanother F-vector space isomorphism such that U(V) = V',
let ¥ € A(p, m) be defined by

Y€ m) =T om! (V(E) ® V(n)).

Then =1 o® € G(F) and p(¥~! o ®)(p) = 1. Hence [¢] does not
depend on the choice of ®. Now suppose that ¥: (A", V') — (A", V")
is an F-cubic pair isomorphism. Then W o © is an Fsp-cubic pair iso-
morphism between (A,V)r,, and (A”,V")p,, and ¥ o ® is an F-vector
space isomorphism from A to A” such that ¥ o ®(V) = V”. Let m” be
the multiplication in A”. Then the element of Isom(A(p, m)) associated
to the pair (A”, V") in the same way is [¢)] where

PE@n) =0 o om (Wod(&) @Wod(n) = p(l@n).

Therefore [¢] does not depend on the representative of [(A’,V')]. We
obtain a mapping [(A’, V")] — [¢] which is the inverse of the former. O

The bijection in Theorem 4.1.2 goes as follows. Let (A’, V') be a cubic
pair over F'such that ©: (A", V'), — (A,V)E,, is an Fep-isomorphism.

Then the corresponding 1-cocycle is (a, Fy,)oer With

int(ag) = 0o (ida ®0)oO to(ida®@a™),

where int(a,) is the inner automorphism & — as&a;* of Ap,. Con-
versely, for (agF5)ser € Z'(F,Aut(A,V)), we let

A'={¢e Ap, |aso(&)a;' =¢ forall o €T}

and
V' = {€ € Viep | apo(€)a,;* = ¢ for all o € T'}.

Then (A’, V') is the F-cubic pair corresponding to (ay)ger-

The previous theorem gives us a method to classify the cubic pairs
over F: first classify the cubic pairs over Fiep; then compute the au-
tomorphism group of a representative of any Fse,-isomorphism class of
cubic pairs; and finally for a representative of any Fse,-isomorphism class
of cubic pairs which is defined over F, give all the F-isomorphism classes
of F-cubic pairs which are Fyp-isomorphic to the former.

The rest of this chapter is devoted to the classification of the non-
singular cubic pairs; the singular ones are classified in Chapter 5.
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4.2 Non-singular cubic pairs over Fi,

Let (A, V) be a non-singular cubic pair over Fg,. We want to describe
(A, V) up to Fsep-isomorphism. Since A is a degree 3 central simple
algebra over Fgp, we may assume that A = M3z(Fip) and V is a 3-
dimensional subspace of M3(Fg) of trace zero matrices which is totally
isotropic for the trace quadratic form

gA: MS(Fsep) - Fsep: f — tr(§2)'

By the Skolem-Noether Theorem, an isomorphism between the cubic
pairs (M3(Fsep), V) and (Ms(Fsep), V') over Fiep is an inner automor-
phism

int(m): M (Fiep) — M3 (Flep): € — mém ™

such that mVm™! = V' for some m € GL3(Fip). Thus, to classify
the isomorphism classes of non-singular cubic pairs over Fiep, we may
classify, up to conjugacy, the 3-dimensional subspaces of Mg(Fgep)® which
are totally isotropic for the trace quadratic form gu,(r,,) and such that
fv is non-singular.

For brevity, if (A, V) is a cubic pair over F with A = M3(F), we write
fv instead of fa,v; we call V a cubic subspace of M3(F'); we say that V
is singular if fy is singular and V' is non-singular otherwise. Note that
the symmetric trilinear form associated with fy is the map

bV XV XV (E,Q) o gtr(EnC +ECn)

Lemma 4.2.1 Let V be a cubic subspace of M3(Fsep) and u € V non-
zero such that u> = 0. Then uF is a singular point of the cubic curve

{fv (&) =0}
Proof : Since u? = 0, we have ty (u,u, &) = %tr(u%) =0forall ¢ € V.
Therefore uF is a singular point of {fy (£) = 0}. O

In other words, there is no non-zero v € V such that u> = 0 in a
non-singular cubic subspace V' of Ms(Fsep). The next proposition gives
equivalent conditions for a matrix of a cubic subspace with a non-zero
square, to be of determinant zero.

Proposition 4.2.2 Let V be a cubic subspace of M3(Feep). Then, for
all w € V such that u® # 0, the following statements are equivalent:

1. fv(u) = 0,
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2. det(u) =0,
8. the rank of u is equal to 2,
4. im(u) = ker(u?).

Proof : The first two statements are equivalent since £3 = det(¢) for all
€ € V. By hypothesis u? # 0, so u® = 0 implies that the Jordan normal
form of u is

0 1 0
0 0 1
0 00
Therefore u3 = 0 implies (3) and (4). It is easy to see that (3) and (4)

both imply det(u) = 0. O

For a non-singular cubic subspace of M3(Fyep), we shall give explicit
vectors which span the given subspace. To do this we need preliminary
results.

Lemma 4.2.3 Let V be a cubic subspace of M3(Fiep) and ui,ug € V
determinant zero matrices. If u3 # 0, tr(u1u3) = 0 and tr(uiug) # 0,
then ker(ug) ¢ ker(u?).

Proof : Since tr(ufus) # 0 we have u? # 0. Replacing u; and uy by
conjugates in Ms(Fep) if necessary, we may assume that

01 0
Uy = 0 0 1
0 0 0
If ker(ug) = ker(uq) then

0 212 w13
Uz = | 0 2o To3
0 w32 w33

for some x;; € Fiep and so we have tr(u%uz) = 0 which contradicts the
hypothesis; hence ker(uz) # ker(u1). Suppose that ker(ug) C ker(u?).
Let a € F3_ be such that

sep
ker(uz) = u1a - Fyep

(there exists such a vector because ker(u?) = im(u;) by Proposition
4.2.2). Since ker(ug) # ker(uy) we have u?a # 0, so a ¢ ker(u?) = im(uy)
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and uja ¢ ker(up). Thus we have a & im(uy), ura € im(uy) \ ker(uq) and
u?a € ker(u1)\{0}, which means that a, u;a, u?a are linearly independent

in F;’;p. Let m be the matrix with columns u2a,u;a and a, then
010 z11 0 13

m tugm = 0 0 1 and m lugm = Tor 0 o3

0 0 0 31 0 Is33

for some x;; € Fyep, since ker(us) = uja - Feep. Because tr(ug) = 0 and
tr(U1U2) =0, we have 11 + £33 = 21 = 0. So

‘T%l + 13131 0 0
m”~uzm = T23T31 0 —To3T11
0 0 37%1 + X13T31

and tr(uju3) = tr(u3) = 0 implies
2
T23x31 = %7 + 13231 = 0.

On the other hand tr(u2us) = 231, s0 231 # 0. Therefore we have 293 = 0
and u = 0 which is impossible. Hence ker(uz) ¢ ker(u?). O

Lemma 4.2.4 Let V be a cubic subspace of M3(Feep) and ui,ug € V
determinant zero matrices. Suppose that u3 # 0, tr(wyu3) = 0 and
tr(ufug) # 0, then there exist m € GLg(Fiep) and A\, u € FX, such that

sep

010 0 0
muym =X 0 0 1 and musm~! = uwl 1 0

0 0 0 1 -1 0
Proof : Let a € F2, be such that ker(uz) = a- Fep. By Lemma 4.2.3, we
have a ¢ ker(u?) and so a,uja,u?a are linearly independent. Let mq be
the matrix with columns u?a, uia, a, then

0 1 0 r11 T12 0
mglulmo = 0 0 1 and mo_luQmo = | 291 290 O
0 0 0 x31 x32 0
for some x;; € Feep. As tr(ug) = tr(ujug) = 0, we have x99 = —x17 and
T32 = —I21, thus
1‘%1 + X12%91 0 0
-1,2 2
mg UsMo = 0 T11 + 12721 0

2
3111 — Ty T31%12 + T11x21 O
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From tr(uju3) = tr(u3) = 0 we deduce

31212 + Tz = 0 (4.1)
33%1 “+ T12T21 = 0
whence
0 0 0
malugmo = 0 0 0
3111 — iE%l 0 O

As u3 # 0, we need z31211 — 3, # 0. But
$11($§1 — z11231) = (T31212 + T11221)T21 — (Jﬁl + z12221)x31 =0
so z11 = 0 and z21 # 0. Using equation (4.2) we get z12 = 0 so

0 0 0
malu2m0 = To1 0 0
31 —T21 O

and 31 # 0 as tr(ufuz) # 0. Now choosing

e 0 0
m = 0 .%‘2_11.1331 0 ~m61
0 0 1
we get
- 01 0 22 0 0 0
mulm*l:i 0 0 1 and mugm b= 2L 1 0 0
22\ 0 0 o0 LA -1 0

The matrix m in the previous lemma is unique in the following sense:

Lemma 4.2.5 If mi,mg € GLg(Fsep) and A1, Mg, i1, o € Fg, are such
that both my, A1, 1 and ma, Aa, ua satisfy the conditions in Proposi-
tion 4.2.4, then miFg, = maFg,, \1 = Ay and p1 = pia.

sep

Proof : This follows easily from the relations

010 010
mytmy | 0 0 1 | =X 0 0 1 |my'm
000 000
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and

1

0 0
0 0 | my ms.
0

0
-1 -1
My M1 1 0 =y M2
-1 0 -1

O

Let V be a non-singular cubic subspace of M3(Fsp). By Theo-
rem 1.3.8, we know that {fy () = 0} has exactly nine flexes which are
defined over Fiep. Let u € V be such that uF is a flex of {fy(£) = 0}.
Then the conic {ty(u,&,€) = 0} and the tangent {ty (u,u,&) = 0} are
defined over Fyp. Thus the harmonic polar at uF, the Hessian point
and the harmonic points of uF are also defined over Fep.

To describe a non-singular cubic subspace of M3(Fsep) up to conju-
gacy, we shall use particular points related to the associated cubic curve.
More precisely, let V' be a non-singular cubic subspace of Mg (Fsep), UFsep
a flex of { fi/(§) = 0}, vFsep a harmonic point of uFye, and wFse, the Hes-
sian point of uFsep. Since vFye, does not lie on the tangent to { f(§) = 0}
at uFiep which is the line (uFsep, whsep), the matrices u, v, w are linearly
independent and V' is spanned by w, v, w. Therefore, to describe V' it is
sufficient to describe wu, v, w.

To state our next result, we introduce some notation that we shall
use in the rest of this chapter. We write w € Fy, for a primitive cube
root of unity!. We also put

0 1 0 0 0 0
u:=|(0 0 1 |, v:= 1 0 0 |,
0 0 O 1 -1 0

and for o € Fiep,

o —% 1
wi(a):= [ 302 —2a 3 |,
0 -3a® «
a 3 (w-1Da-1) 1
wala) =1 0 wa (W =1Da+1) |,
0 0 wra
o F((w-1)a-1) 1
ws(a):=1 0 w?a F(w=1a+1)
0 0 wa

IThe element w € Fiep shall denote a primitive cube root of unity in the rest of
the chapters.
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For &1,...,& € M3(F), we write spanp (&1, ..., &) for the F-vector sub-
space of M3(F) spanned by &1, ...,&.. We put

V, = spany,_ (u, v, wy())

for v € Fyep. We call a non-singular cubic subspace of Ms(F') which is
spanned by u,v,w;(«) for some o € F and some i = 1,2,3, a special
subspace of M3(F).

Theorem 4.2.6 Let V be a non-singular cubic subspace of M3(Fiep).
Then V' is conjugate to the spang, (u, v, w;(@)) for some o € Fgep and
some i € {1,2,3}.

Proof : Let @,9,% € V be such that @F is a flex of the cubic curve
{fv (&) =0}, 9F is a harmonic point of @F and @WF is the Hessian point
of WF. Since aF is a flex of the cubic curve {fy(¢) = 0} and 9F is a
harmonic point of @F, the determinants of % and ¥ are zero, tr(a9?) = 0
and tr(a%0) # 0. Moreover 92 # 0 because V is non-singular. Thus,
by Proposition 4.2.4, there exist a matrix m € GlLg(Fsp) and scalars

A p € FZ such that

sep

mam~! = u and mim~! = pw.

Put w := mwm~!. Let wi; € Fsp denote the element on row ¢ and
column j in w. Since tr(w) = 0, tr(aw) = 0 and tr(0w) = 0, we have
tr(w) = 0, tr(uw) = 0 and tr(vw) = 0. Thus w3z = —wi; — waa,
w3y = —wsop and wez = wis + wi3 and
w11 w12 w13
w=| w2 W2 w2 + W13

w31 —W21 —Wi11 — W22

We have w3 # 0 for otherwise tr(92¢) = 0 for all ¢ € V and oF would
be singular. Because tr(i?) = 0, we have

—1/ 2 2
w31 = w21 — Wz (Wi + Wiy + Wi1W22).

Since WF is the Hessian point of @F, we have ty (@, w,&) = 0 for all
¢ € F. But ty (@, w, @) = 0 implies

—1, 2 2 .
wa1 = Wiz (Wi + Wy + Wi1W22);

next ty (4, w,v) = 0 implies

1
Wig = —§(w13 + 2w11 + waz);
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and finally ty (@, w,w) = 0 implies
Wa2 = 7271)11 or ”U.)%l + ’LUSQ + wiiWo2 = 0.

If woe = —2w11, then wFe, = wi(a)Fsep with a = wnwl})l. On the
other hand, if w?; +w3, +wi1waeg = 0, then way = wwi; or wae = w?wyy.
Hence either wFep = wa () Feep Or WEiep = w3 () Feep with a = w11w1_31.

O

Therefore, up to conjugacy, the non-singular subspaces of M3 (Fsep) are
special subspaces. We can prove more:

Theorem 4.2.7 The pairs (M3(Fiep), Vo) for a € Fyp \ {0, 1, 5}, are
non-singular cubic pairs over Fyep, and any non-singular cubic pair over
Fiep is isomorphic to (M3(Fuep), V) for some a € Fiep \ {0, & 9
Proof : It is easy to check that (Ms(Fiep), Vi) is a cubic pair for all
a € Fiep, and is non-singular if and only if « ¢ {0, %, é}

To prove that an arbitrary non-singular cubic pair over Fiep, is iso-
morphic to (Ms(Fsep), V) for some «, it is sufficient to prove that the
non-singular cubic subspaces of M3 (Fsep) spanned by u, v and w; () are
isomorphic to V;, for some a € Fyep. Observe that spang, (u, v, wa(B)) is
a cubic subspace of M3(Fiep) for all 8 € Fyep and is non-singular if and
only if 8 # O,_T“)Q, _T“’z Let 8 € Feep \ {Q‘T‘”z, _T“z}, 0 € Fyp a cube
root of 9w + 1 and let m be the matrix

1 w8 +0+w? 0—1
33 g —w?) 6
0% —9wB—1 w262 —w?20%—w? (984w?)—9wB—1
(w2—1)(9wB+1) JOwB+1 38(9wB+1)
—02—w?0+3(w—w?)p-—w  (wP—w)(8—1) —w20—w
3(905+1) 3(9w5+1) 9wBT1

Then m € GL3(Fyep) and
m - spang,_(u, v, w2(f)) -m~ =V,

with a = 3(98 + w?)~!. In the same way, we can prove that any non-
singular cubic subspaces of M3(Fs) spanned by u,v and ws(5) is con-
jugate to V,, for some a € F: the matrix obtained replacing w by w?
and 0 by a cube root of 9w?3 + 1 in m, conjugates spang, (u, v, w3(B))
into V,, with a = 8(98 + w)~! (explanations on these computations are
given in Section A.2 of the appendix). |
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4.3 Automorphism group

In order to classify the non-singular cubic pairs over F', we compute the
automorphism group of an arbitrary non-singular cubic pair over Fiep.
Suppose that (A,V) and (A’,V’) are F-cubic pairs and there exists an
Fyep-isomorphism O: (A4, V)p,, — (A", V')g,,, then

Aut(A, V') (Fuep) = © 0 Aut(A, V) (Fep) 0 O~ 1.

By the previous section, we know that a non-singular cubic pair over Fyp
is isomorphic to (Ms(Fsep), Vo), for some a € Fyep. Therefore we only
need to compute the automorphism group of the pairs (M3 (Feep), Va),
for o € Fyep. By the Skolem-Noether Theorem,

Aut(Ms(Fiep), Vo) (Fsep) = {mF%, € PGL3(Fiep) | mVam ™" =V, },

hence we want to find the invertible matrices, up to scalar, which con-
jugate V,, into itself.

First we give some results which hold for arbitrary cubic subspaces
of Mg(Fsep).

Lemma 4.3.1 Let V be a cubic subspace of M3(Fep). If m € GL3(Fiep)
then mVm™1 is also a cubic subspace of M3(Fuep).

Proof : Clearly, mVm™! is a 3-dimensional subspace of M3(Fsp). The

properties of the trace imply that the trace of any matrix in mVm™!
is zero and mVm™! is totally isotropic for the trace quadratic form
My (F,)- Thus mVm ™! is a cubic subspace of Mg(Fiep). O

The group GLg(Fsp) acts on P (Ms(Feep)):
m* ulye, = mum_lFsep

for m € GL3(Fiep) and uFsep, € P(M3(Fyep)). This action induces an
action of PGL3(Fsep) on P (M3 (Feep)):

X —
mFSep * ulsep = mx ule,

for mFy, € PGL3(Fsep) and uFsep € P (M3(Fiep))-

The following lemma says that particular points of P(Ms(Fsep)) are
preserved under the action of GLg(Fep).

Lemma 4.3.2 Let V be a cubic subspace of M3(Feep), m € GL3(Fiep)

and put V' := mVm~™'. Suppose that @, 0, € V are such that UFep
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is a flex of the cubic curve {fy(§) = 0}, Fs,p is a harmonic point of
UFsep and Wl s the Hessian point of uFse,. Then m x iFyep is a flex
of {fv/(€) = 0}, mx0Fsp is a harmonic point of m*UFse, and m*wFeep
is the Hessian point of m % 4Fep.

Proof : This follows easily from the fact that tr(m&m=1) = tr(§) for all
¢ e Mg(Fsep). O

We use the notation introduced on page 53 to state the following theo-
rem.

Theorem 4.3.3 Let V be a non-singular cubic subspace of M3(Fuep) and
@, D, € V such that iF is a flex of the cubic curve {fy(£) = 0}, OF is
a harmonic point of iF and WF is the Hessian point of WF. Then there
exists a unique mFy, € PGL3(Feep) such that

X ~ _ % - .
mFsep * UFsep = uFyep and mFSep * VFgep = VFep.

Moreover, we have mFg, x Whsep = w;() Feep for some o € Fyep and

i € {1,2,3} and in particular mVm~=' is a special subspace.

Proof : The proof of Theorem 4.2.6 gives the existence of mFy,. The

unicity follows from Lemma 4.2.5. O

Thus, for a non-singular special subspace V' of M3(Fyp), the elements
mEy, € PGL3(Fyp) such that mVm™! is special, are in correspondence
with the pairs (@Fsep, 0Fsep) Where @ Fyp is a flex of {fy(§) = 0} and
UFsep is a harmonic point of 4 fsep: the element mFg, € PG L3(Fsep) such
that mVm™! is special, corresponds to (m ™! x uFsep, m ™! x vFyp) (the
point m~! xuFy, is a flex of { fy(£) = 0} and m~! xvFy, is a harmonic
point of m™! x uFye, because uFsep, is a flex of {fy/(£) = 0} and vFy is
a harmonic point of uFep).

We can deduce an upper bound for the number of elements in the
automorphism group of (Mg(Fsep), Vo).
Lemma 4.3.4 Let o € Fyp \ {0, %, %} There are exactly 27 elements
mEyg, € PGLy(Fiep) such that mVom™" is a special subspace. In par-
ticular, there are at most 27 elements in the automorphism group of

(MS(Fsep)a Va)-

Proof : Since a non-singular cubic curve has exactly 9 flexes and given
any flex, there are exactly 3 harmonic points of this flex, by Theo-

rem 4.3.3, there are exactly 27 elements mFy, € PGL3(Fsep) such that
1

mV,m™" is a special subspace. O
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The following is a corollary of Theorem 4.3.3.

Corollary 4.3.5 Let a € Fip \ {0, 5, 5} If m € GLs(Fuep) is such that

M * UFsep = UFep and m x VFsep, = VFsp, then m € F;efp.

Since uFsep is a flex of {fy, (€) = 0}, there exist three distinct ele-
ments mFy, € PGL3(Fip) such that mV,ym™! is a special subspace and
mFsip*quep = uFyp, one element for each harmonic points of uFy, and
two of them being non-trivial.

Lemma 4.3.6 Let o € Fyp \ {0,%,%} and m € GL3(Fyp) such that
m ¢ Fs>e<p’ mVam ™! is a special subspace and m* UFsep = UFsep. Then
mVam™" = Vg if and only if o = }.

Proof : Since mum~™! = \u, for some \ € Fg,, by straightforward
computations we deduce that

A2 Xa b
mEg, =1 0 X a |Fg,
0 0 1

for some a,b € Fyp. Suppose that mV,m~™' = V,. Then by Lem-
ma 4.3.2, the point mxw (o) Fsep is the Hessian point of mauFeep = uFsep
and by unicity of the Hessian point, we have mx w1 (o) Fsep = w1 () Feep-
Hence mwi (a) = vwy(a)m for some v € Fyep. For § € M3 (Feep), let &
denote the element on the i-th row and the the j-th column in €. Then

(mwi ()21 = v(wi(a)m)er implies v =1,

(maw1 ()33 = v(wy(a)m)ss implies v = (1 —3aa) .

We deduce from (mw;(a))i2 = v(wi(a)m)iz that b = a?/2. Then
(mwi ()13 = v(wi(a)m)13 if and only if (1 —9a)(3a2a® —3aa+1) =0
or a = 0. If a =0, then m € Fg, which contradicts the hypothesis.

Thus 3a%a® — 3aa + 1 = 0 because a # 5. We obtain that

2 2
w”—w —Ww
w 3o 6a?,
o cither \ =w?,v=wand mF5, =| 0 w2 13;” Feps
0 0 1
2 w—w? —w
w 3a 6?2
e or \=w,v=w? and mF}, = 0 w e | Y,
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Since m % vFep is a harmonic point of uFiep, it lies on the line passing
through uFie, and wFip. Thus we have mum ™' = yov + zow; () for

some Yo, 20 € Fiep and in particular (mvm™1)p = —%(mvm’l)lg. In
both cases, it implies that a = %. Conversely, the distinct elements
myiF,, maFy, € PGL3(Feep) with
1 2w —-1) —6w’
m;=1 0 wt 2(w? — wt)
0 0 w

are such that m; & F. miV%m = V1 and m; F, * uFsep = uFgep.

sep?
Since there exist at most two such elements we deduce that either

mFX =miFX or mFX = moF.X and thus mVurf1 = V%. O

sep sep sep sep

We can now glve the automorphism group of Ms(Fsep), V) in the
particular case o = 6' First we give a notation: we denote by p3 the set
of cube roots of unity in Fgp.

1

Proposition 4.3.7 For a = %z we have a I'-group isomorphism

6
AUt(Mg sep) Sep = /13 X Z/3
Proof : Put
1 -3 6 1 2w-1) —6w
m:==| 3 -2 3 |, m=1[0 w 2(w? — w)
0 -1 1 0 0 w?

and G := {m'm"Fy, | i,j € Z}. Then the group G contains exactly
9 elements, namely the m*m’ for i,5 = 0,1,2, and G is a subgroup of
Aut(Ms(Fsep), Vo) (Feep)- Let 0 € Fyep be a Cube root of —2. Put

—0? —w?0 +2 —6 6(w?0 +2)
meo i= —6%2+6 2(0% + w4+ w) 2(w—1)(0*+wh —2)
0 2(—0 +w) 2(wh? + 0 — 2w)

then my € GLa(Fiep) and maV, m2 is the span of u,v and wg(_‘g"z).

Hence the set maFg,G contains 9 elements and is a subset of

2
{”Fsép € PGL3(Fyp) | nV,n ™ is the span of U,’U,’U)?(Tw)}.

Put

02 —wh+2 —6 6(wh + 2)
ms = —6%2+9 2(0% + w20+ w?) 2(w? —1)(6% +w?0 —2)
0 2(—0 + w?) 2(w?60% + 0 — 2w?)
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then mg € GL3(Fsp) and mgVamgl is the span of u, v and w3(=5?). The
set m3 P, G contains 9 elements and is a subset of

{nFsip € PGL3(Fip) | mVym ™ is the span of u,v7w3(%w)}.

Therefore, the set G'UmaFg,GUmzFg,G consists of 27 elements nFg

sep sep
such that nV,n"! is a special subspace. So by Theorem 4.3.3, the set
GUmaFL,GUmsFLG is equal to

{nFj, € PGL3(Fip) | nVan™" is a special subspace}.

Hence Aut(Ms(Fsep), Vo) (Feep) = G. Because

1 2w?-1) —6w?
m?F =1 0 w? 2w—w?) | FZ
0 0 w

the mappings mFg, — (1,14 3Z) and m'Fg, — (w,3Z) define a group

sep
isomorphism G — pus x Z/3 which is compatible with the action of T'.

Thus
AUt(M3(FseP)> Va)(Fsep) = p3 X Z/3.

O
In fact, we can prove that, up to conjugacy, the only non-singular cubic

subspace V' of M3(Fyep) such that Aut(Ms(Fiep), V) (Fiep) is isomorphic
to Z/3 x Z/3 as an abstract group, is V1. But first we need a lemma.

Lemma 4.3.8 Let G C PGL3(Fsp) be a subgroup which is isomorphic
to Z/3 X Z/3 (as an abstract group). Then G is conjugate in PGL3(Fsep)
to the subgroup of PGL3(Fuep) generated by

010 1 0 0
e cither | 0 0 1 |Fand | 0 w 0 |Fg,
1 0 0 0 0 w?
100 1 0 0
eor| 01 0 |FLand| 0 w 0 |FZL.
0 0 w 0 0 w?

Proof : Let ©: G — Z/3 x Z/3 be a group isomorphism and aF.S and

sep
bF, inverse images of (1,0) and (0,1). Since a®F, = F5,, changing

sep sep?
the representative of aFy, if necessary, we may assume that a® = 1.

Similarly, we may assume that b> = 1. So the minimal polynomial of b
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divides 2 — 1 and thus b is diagonalizable and its eigenvalues are cube
roots of unity. Hence there exists m € GL3(Fiep) such that

/b 0 0
mbm ™! = 0 6 0 ,
0 0 @65

where the 6;’s are cube roots of unity in Fie,. We want to describe G up
to conjugacy, so we may assume that

6, 0 O
b= 0 6, O
0 0 6

Because abFl, = baF.,, there exists p € F such that ba = pab. Let

sep sep? sep
e € F2, be an eigenvector of b with eigenvalue §. Then

ba(e) = pab(e) = pha(e).

Hence a(e) is an eigenvector of b with eigenvalue pf. We deduce that
p is a cube root of the unity. Let (e1,ea,e3) be the canonical basis
of FS3ep7 then, for all ¢ = 1,2,3, the vector a(e;) is a multiple of some
ej. If p =1, then a(e;)Fsep = €;Fsep for all ¢ = 1,2,3. Indeed, since
a® =1, either a(e;)Feep = €;Fuep for all i or a(e;)Feep # €;Fsep for all 4.
If a(e1)Feep 7 €1Fsep then we may assume that

0 6, 0
a=| 0 0 04
9 0 0

But ba = ab implies #; = 0 = 03 which is impossible. Thus

9, 0 0
a=| 0 6, 0
A

for some ) € Fp, with 6,3 = 1 since a® = 1. In this case, G is conjugate
to the group

ppr 0 0
{ 0 p2 0 |F5 0= 1}
0 0 p3
which is generated by
1 0 0 1 00
0 w 0 |Fg, and 01 0 |Fg
0 0 w? 0 0 w
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Now assume that p # 1. If a(ei)Fy, = e1Fy, then a(e1) = 01e; for
some 0] € Fy, and

0107e1 = ba(er) = pab(er) = ph10ie;.

This implies p = 1, so a(e;)F, # eily, for all i and we may assume
that

0 6 0
a=| 0 0 0
0, 0 0

for some 07,04, 04 € F.5 with 6760404 = 1 since a® = 1. Put

sep

1 0 0
m:= | 0 616, 0
A

then m~tbm = b and
01 0
m tam = 0 0 1
1 0 0

The scalars 01,05, 03 are distinct pairwise because ba = pab and p # 1.
Therefore G is conjugate to the subgroup of PGL3(Fiep) generated by

01 0 1.0 0
001 |F, and |0 w 0 |FL.
100 0 0 w?

O

Theorem 4.3.9 If V is a non-singular subspace of M3(Fsep) such that
AUt(Mg( Feep), V)(Fsep) is isomorphic to Z/3 X Z/3 as an abstract group
then V 1is conjugate to V%.

Proof : By the previous lemma, the group Aut(Ms(Fsep), V')(Fsep) is con-
jugate to the subgroup G of PGL3(Fsp) generated by aFy, and bF,
where

1 0 0
(0 w 0 and
0 0 w?
0 1 0 1 0 0
either a = 0 0 1) or a= 01 0
1 00 0 0 w
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Let m € GL3(Fsp) be such that

mFy, - Aut(Ms(Fiep), V) (Feep) - m ' F5, = G.

sep sep

Then G = Aut(M3(Fiep), V) with V = mVm~'. We have a group ho-
momorphism

G — GL(V): gFep — (§: & 9¢97 ).

So @b = ba because ablFg, = balg,. We deduce from Corollary 4.3.5 that
g € Fg, impliAes g € F,. Thus the subgroup of PGL3(Fsp) generated
by aFy, and bFg, is isomorphic to Z/3 x Z/3. Using the proof of the
previous lemma, the eigenvalues of & and b are cube roots of unity and
we may find a basis of V' which diagonalizes both a and b.

Assume that

1 0
a= 0 1
0 0

— £ o o

Let D denote the subspace of Ms(Fyp) of the diagonal matrices and
{ei; | i,5 = 1,2,3} the canonical basis of M3(Fiep). Let & € V be a
common eigenvector of é and b, then a(7) = A9 and b(7) = Ay for some
cube roots A1, A2 € Fip of unity. This implies that either vFi, = €5
for some i, or ¥ is a diagonal matrix. Since V is non-singular, it does
not contain any e;;. So V = D which is impossible since D 7 M3 (Feep)©.
Therefore

01 0
a=1 0 0 1
100
We shall prove that V is conjugate to spanpsep<a, b,ab). Let o € V be
a common eigenvector of @ and b. The set
{a'¥ |i,5=0,1,2}

is a basis of M3(Fiep), thus there exist scalars c;; € Fsp such that
0 =Y a;;a'b?. Using the relations a® = 1, % = 1 and ba = w?ab, we
deduce that

(0) =
(0)

Hence V is spanned by 01, U9, U3, where ¥y, U9, U3 are distinct vectors
among a'b’ for i,j € {0,1,2}. Since V is a non-singular cubic sub-
space of M3(Fsp), we have V' C Ms(Fiep)®; s0 0; € Fuep for all i

(S

= Fep = a7 b Fuep.

S Q>
S

B
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Also V is totally isotropic for the trace quadratic form qu,(r,,), so
UiFeep # U5Fwp for all i # j. The fact that f; is non-singular im-
plies that v1v203 ¢ Fiep. Clearly, the matrices ¥; and v2 commute if and
only if g Fsep € {Frep, U1 Frep; U3 Feep }; hence 91 and 92 do not commute.
Since the subgroup of PGL3(Fsep) generated by o1 Fy, and v F, is iso-
morphic to Z/3 x Z/3 and vy1,v2 do not commute, by the proof of the
previous lemma, it is conjugate to the subgroup generated by aFg, and

bF,. Therefore we may assume that 0; = a and 02 = b and so

03 € {1, a, a?,b,b?, (ab)2}.

If 53 = a®bFp, using again the proof of the previous lemma, there exists
an m’ € GLg(Fiep) such that m/ xaFyep = aFeep and m/ xa?bFyep = bFyep.
Then m/xbFse, = abFsep, and Vis conjugate to the span of a, b, ab. In the
same way, if 03Fsep = ab?Fep, then there exists an m’ € GLg(Fep) such
that m* ab2FSep = aFsep and m* DFgp = bFiep. Then m* aFsep = abFiep
and V is conjugate to the span of a,b,ab. Thus we may assume that
173 = ab.
Finally, let 0 € Fi, be a cube root of —2 and put

2w?0% + w20+ 1) 2(0% +w? +w?) 267+ wh+1)

m' = w26?% +2 62 + 2w? 62 + 2
1 w? 1
Then m'Vm/~! = V1. Hence V' is conjugate to V1. a

We say that a special subspace is exceptional if it is conjugate to
Vé and it is non-exceptional otherwise. We shall now compute the auto-
morphism group Aut(M 3(F), V) (Fsep) for a non-exceptional subspace V.
The group PGL3(Fep) acts on the pairs (V, @Fsp), where V' is a special
subspace and @Fsep, is a flex of {fi/(§) = 0} as follows:

mFs>e<p * (‘/a anep) = (me_l, m * ﬂFsep).

Lemma 4.3.6 says that, if V' is a non-exceptional special subspace, then

the stabilizer PGL3(Fiep) (v ury,) Of (V,uFsep) is trivial. We deduce the
following:

Lemma 4.3.10 Let V' be a non-exceptional special subspace and tiFye,
a flex of {fv(§) =0}. Then PGL3(Fsep)(V’anep) =1.

Proof : There exists an m € GL3(Fsep) such that m  4Fp, = uFsp and
V := mVm™! is special. Hence

mEgy * (V,uFp) = (V,uFsp)

sep
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and also
PGLs(Fep) (Vi Fy) = PGOL3(Fiep) (¢ ) = 1

as claimed. O

Thus, if V' is non-exceptional, then the non-trivial elements of the auto-
morphism group Aut(Ms(Fsp), V') do not fix any flex.

Lemma 4.3.11 Let V be a non-exceptional subspace and tFs, a flex
of {fv(§) = 0}. Then there exists at most one mFy, € PGL3(Fsep) such
that mFZ * (V, il sep) = (V, uFsep).

sep

Proof : Suppose that mFJ,, m'Fy € PGLsg(Fsep) are such that

sep? sep

MES % (V, iiFaep) = (V, uFsep) = m'FL % (V, iFsep).

sep sep

Then m/m ™ F%, € PGL3(Feep) (v,upy,) = 1, S0 mF%, = m/'F} O

sep sep sep*

Recall that, given a special subspace V, the mFy, € PGL3(Fsep) such
that mVm™! is a special subspace, are in correspondence with the pairs
(@Fsep, UFsep) Where GFgep is a flex of { fi/ () = 0} and 9 Fp is a harmonic
point of wFsep: the pair corresponding to an element mFg, € PGL3 (Feep)
such that mVm ™1 is special, is (m ™ xuFep, m %0 Fyep). By the previous

lemma, the map

Aut(M3(Faep), V) (Fuep) — {flexes of {fy (&) = 0}}

which maps mFg, to m ™! % uFyp, is injective. Thus there exist at most
9 elements in Aut(M3(Fsep), V).

Lemma 4.3.12 Let V' be a non-exceptional subspace and mFg, a non-

trivial element of PGL3(Fsep) such that mVm™' = V. Then the order of

mFg, is equal to 3.

Proof : By Proposition 1.3.9, the flexes of a non-singular cubic curve and
the lines through them have the configuration of the affine plane F3. We
fix an isomorphism between the flexes of {fi-(£) = 0} and F3. Since an
element of Aut(M3(Fsep), V)(Feep) preserves the collinearity, the isomor-
phism induces a group homomorphism © from Aut(Ms(Fiep), V) (Fiep) to
the group As(F%) of affine transformations of F3. By Lemma 4.3.10, if
an element mF%, such that mVm~=" = V preserves a flex of { fy () = 0}
then it is trivial. In particular © is injective. Let G denotes the image
of ©, then it is sufficient to prove that a non-trivial element of G has
order 3.
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By Lemma 4.3.10, a non-trivial element of G does not fix any point
of F3. Let g € G be non-trivial. We may change the affine coordinates so
that g(0,0) = (0,1). If g> = 1, then ¢(0,1) = (0, 0) and since g preserves
the collinearity, we have g(0,2) = (0, 2); thus g = 1 which contradicts the
hypothesis. Therefore the order of g is not 2. Suppose that g preserves
the line passing through (0,0), (0,1) and (0, 2), then g(0,1) = (0,2) and
g(0,2) = (0,0). In particular, g®(0,0) = (0,0) and g® = 1; hence g has
order 3. Now suppose that g does not preserve the line passing through
(0,0),(0,1) and (0,2). Then we may assume that g(0,1) = (1,2). We
show that g is completely determined. There exist a # b € F3 such that

(1)) ()

Since g does not fix any points, the linear system

(a—1lz+y=0
br = —1

has no solutions, and therefore b = 0. Would a = 2, then ¢3(0,2) = (0, 2)
and so g3 = 1; but on the other hand ¢3(0,0) = (1,0) and thus we get a
contradiction. Hence a = 1, so that ¢®(0,0) = (0,0) and g has order 3.

O

Thus the group Aut(Ms(Fsep), V') is either trivial or isomorphic to Z/3,
because by Theorem 4.3.9 it is not isomorphic to Z/3 x Z/3.

Lemma 4.3.13 Let a € Fy, \ {0, £, L}, then Aut(M3(Fiep), V) is not

1879
trivial.
Proof : Put
o 0 -1
m = a —2a 0
302 —a o

Then m is invertible and mVom™"' = V,. Thus mFy, is a non-trivial

element of Aut(Ms(Feep), Vi) (Fsep)- |

We proved the following theorem:

Theorem 4.3.14 Let o € Fiep \ {0, 3, §}. Then

ZI3X L3 ifa=g,

Aut(M3(Fsep)aVa) = { Z/3 otherwise

as abstract groups.
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We say that a non-singular cubic pair is of the first kind if its automor-
phism group is Z/3 and of the second kind otherwise.

4.4 Classification of cubic pairs of the first kind

We shall classify the non-singular cubic pairs over F' with an automor-
phism group isomorphic to Z/3 (as an abstract group).

Fix (4,V) a non-singular F-cubic pair of the first kind. By Theo-
rem 4.1.2, if Aut(A, V) (Feep) is isomorphic to Z/3 as I'-groups then there
is a bijection

F-isomorphism classes of
HY(F,Z/3) «— the F-cubic pairs which are
isomorphic to (A4, V)r,, over Fiep

As HY(F,Z/3) classifies the Galois Z/3-algebras over F (see (28.15) in
[Knus et al., 1998]), there is a one to one correspondence between the
isomorphism classes of F-cubic pairs (A’, V') which are isomorphic to
(A,V)E,, over Fyp, and the isomorphism classes of Galois Z/3-algebras
over F. The bijection is defined as follows: let m € A* be such that
Aut(A, V) (Feep) = {Fos,, mEg

sep? mQFs:p};
for an F'-cubic pair (A’, V') which is isomorphic to (4, V) g, over Fiep, let
(asF,) be the corresponding 1-cocycle with values in Aut(A, V)(Feep)-

Let
H={oeT |a, € FL,}.

Then H is an open-closed subgroup of I' and so there exists a field
extension L/F with L C Fy, such that H = Gal(Fyp/L). If H =T
(i.e. (A, V') is F-isomorphic to (A,V)), then [(F3,p)] where p is the
automorphism of F? defined by p(x,y,2) = (y, z, ), is the corresponding
isomorphism class of Galois Z/3-algebra. If H # T, let o be such that
Aoy X =mFX,. Since I' = H UogH Uo2H and

sep sep*
TH={oc€eTl| aan:p = aTFszp} =Hr

for all 7 € T', the extension L/F is Galois of degree 3. Then [(L, o¢|L)] is
the isomorphism class of Galois Z/3-algebra corresponding to [(4’, V')].
Conversely, for a non-trivial Galois Z/3-algebra (L, p), we define

1 ifU‘L:idL,
a =3 m ifo|L=np,

m? if ol = p*
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Then the isomorphism class of F-cubic pair corresponding to [(L, p)],
is the one associated to [a,]. By Theorem 4.2.7 and Theorem 4.3.14, a
non-singular cubic pair (A, V') of the first kind is isomorphic over Fip
to the pair (M3(Fiep), Vo) for some o € Fiep \ {0, &, 5, 2} In general, a
may not be in F. First, we classify the cubic pairs (A, V) of the first
kind such that there exists o € F' so that (4,V)r,, = (M3(Fp), Va)
and next we classify the ones which do not have this property.

First we fix two notations: for a,b € F(w)*, let (a,b),, r(,) denote
the symbol F-algebra generated by & and 7o such that & = a, n3 = b
and &yno = wnpéo; and for a € F*, L/F a cyclic extension of degree 3
and p a generator of the Galois group Gal(L/F), let (a, L/F,p) denote
the cyclic algebra @?:0 Le? with multiplication defined by e®> = a and
e£ = p(&)e for all € € L.

Case 1: Let a € F\{0,%, 5, 4}. We want to describe all the F-cubic
pairs (A4, V) such that

(A, V)Fsep = (M3(Fsep)7 Va)~

Put A := M3(F), V :=spang(u, v, w; (a)) and

o 0 -1
m = « —2a 0
302 —a a

so that Aut(A, V) (Fup) = {Fu,, mFy,, m*F%,}. Note that T' acts triv-
ially on Aut(A,V)(Feep) so Aut(A,V)(Feep) and Z/3 are isomorphic as
I-groups. Let (L, p) be a non-trivial Galois Z/3-algebra. We define, for
ocel,

1 if O“L = idL,

e =4<¢ m if ol = p,

m?  if o|p = p2.
The isomorphism class of cubic pair corresponding to [(L, p)] is [(4", V)]
with

A ={€ € Awp | a50(E)a,t =€ forallo € T'}

and
V' ={£ € Viep | apa(€)a,* = ¢ forall o € T'}.

To determine V”, it is sufficient to find three linearly independent vec-
tors € in Vg, such that mp(§)m~—! = &. By Corollary 4.3.5, the group
homomorphism

Aut(A, V) (Feep) — GL(V): gF%, — (§: V = Vi gég™ )
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is injective. Since the order of mFg, divides 3, so does the order of
m. Therefore, the minimal polynomial of m divides z® — 1, so 7 is
diagonalizable and its eigenvalues are cube roots of unity. We observe
that m? € V thus m? is an eigenvector of 1 with eigenvalue 1 and in
particular m? € V'.

First we assume that F' contains a primitive cube root of unity. Then
Z/3 = ps3 and the isomorphism classes of the Galois Z/3-algebras are in
one to one correspondence with the elements of F'*/F*3: the class of
(L, p) corresponds to dF'*3 € F>*/F*3 such that there exists § € L
with 3 = d € F and p(8) = wf. To determine V', it is sufficient to
find the eigenvectors of m. Indeed, if §; € V is an eigenvector of m with
eigenvalue w® then 07%&, € V'. Put

& = a(ba—1)v —2wi(a),
no = %(w —w?)(8a — 1)0u + a1 — 9a)v — Ow: (),
G = %( 2 _w)(8a — 1)0%u + a(l — 9a)0*v — 0wy (a),

then &g, n9, o € V' are linearly independent and
& = aBa—1)% gy =daBa —1)*(9a = 1), &ip = wnolo

(we have &no = wnoéo because & F = m2F). Hence V' is the vector
subspace of Asep spanned by &y, 10, (o and A’ is the symbol algebra

(a(8a = 1)%,da(8a — 1)*(9a — 1)),

generated by &y and 79. Replacing 6 by 1, we obtain that the algebra

(aBa=1)* aBa=1)*(9a - 1)),

is trivial since it is generated by &g, m0 € M3(F'). So A’ is Brauer equiv-
alent to (a(8a —1)?,d),, . We have

3w? w(ba —1)
(80[ — 1)(9a — 1)€0n8 - a(8a _ 1)2(9a o 1)58778

G =
and
Faryr = a&g® +big® + eGg® = BAEGGC
where (5,15, ¢}) denotes the dual basis of (&g, 70, o) and

a=a(Ba—1)?% b=da8a—1)*9a —1),
c=d*a(8a —1)?(9a — 1), A= da(8a—1)%(1 - 6a).
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The scalars a, b, ¢, A satisfy the relation®

abe — N3

= (3da(8a —1))* € F*®,

a

Thus we already proved:

Theorem 4.4.1 Assume F contains a primitive cube root of unity. Let
a € F\ {0, é, %, %} Then, up to F-isomorphism, the F-cubic pairs
which are isomorphic to (Mg(Fsep), Vi) over Fyep, are the pairs

((a(8a ~1)2,da(8a — 1)2(9a — 1))W7F,spanF<§0,n0,§0>),

for alldF>*3 € F*/F*3, where £,m9 are generators of the symbol algebra
such that £ = a(8a —1)2, 13 = da(8a — 1)*(9a — 1), &mo = wnoéo and

Co = 3w?a(8a — 1)&uma — w(ba — 1)E3nG.
The associated cubic forms are semi-diagonal.

Note that, by Theorem 3.1.3 the cubic curve {(&5n5¢s)(€) = 0} is an
inflexional triangle of far 1 whose lines are defined over F'.

Now we assume that I’ does not contain a primitive cube root of
unity and F' is infinite. By Proposition (18.32) in [Knus et al., 1998],
there exists # € L such that L = F(#) and the minimal polynomial of
0 over F is 2% — 3x + X for some A € F\ {2,—2}. Let 8/ = p(6) and
0" = p2(0) be the other roots of z3 — 3z + X in Fiep. Since +60"+60" =0
and 06’ + 00" + 6’0" = —3, we have
=046 —-0—946

5 and ¢ = 5

9/

where

3
2 _19_9p2 _
02 =12-30° = .5

So § = x5 1(26% + X0 — 4), where x € F is a square root of (4 — A\?)/3.
Using Cardano’s method, we may write

(207 + N0 — 4)* € F(0)*2.

=60
where ¢ € Fi, is a cube root of (A 4 (w — w?)zp)/2, and then

0 = —wp—w?o ! and 6" = —wrp—we L.

2The details of these computations are given in Section A.3 of the appendix.
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Put
& = a(ba—1)v— 2w («a),
1
no = 5(1 —8a)du + a(9a — 1)0v + Gw; (),
G = g(Saf 1)0u + a(9a — 1)dv + dw; (o),

then &y, 19, (o are linearly independent vectors of V’, so V' is the F-vector
subspace of M3 (Fsep) spanned by &y, 7o and (o. Put

o 1 +w2—w
771~—2770 6

Then &y, m € A’ ®p F(w) are such that

(o = %(w —w?) (8 — Dou + a(l — 9a)pv — dwy ().

53 = a(8a — 1)2, ni” = ¢3a(8a - 1)2(9a — 1) and & = wni&o.

So A'®@p F(w) = (a(8a—1), ¢*a(8a—1)%(9a — 1))W7F(w) is the symbol
F(w)-algebra generated by & and 7;. We shall find a subfield of A’
which is a Galois extension of degree 3 over F. We use the following
notation: for a,b € F, we write

a+wb=a+w?

and, for £ =Y & ®@x; € A ®@p F(w), we write

£=> &om.

Put
3 6o —1

Ba—DOa—1"" " aBa—120a 1)
then n3 = ¢3 € F(w). Let 7,7’ be the F-automorphisms of F (1) defined
by 7(12) = wna and 7/(n2) = 15 *. Then 7/(n2) = 73 since 7,7 = 1 and
we have 77 = 77/. So the subfield

L'={¢eF(n)|E=¢}

of F(ny) is a Galois extension of degree 3 over F with Galois group
generated by 7|1+, and it is contained in

A ={geAp, | E=¢)

N 1= &

Put 13 := —1p—1n5 ', then L' = F(n3). Moreover we have £y13 = 7(13)&
because {ony = wne&y. Hence A’ is the cyclic algebra

(a(8a—1)%, L' /F, 7|1/)
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generated by &, and n3. Observe that the mapping 73 — 6 defines an
isomorphism between the Galois Z/3-algebras (L', 7|1) and (L, p). We
shall write 7y and (g in function of &, and n3. We have

mo=m+m and (= (w—w?)(n —M).

But
3 6 — 1 9\~
= ((8a —1)(9a — 1)'EO ~ a(8a—1)%(9a — 1)50) 12
and since 7(n3) = —wn2 — w?n, ' we get
1 2
N2 = ﬂ( — w3 +7'(773))-
Therefore

Co = 15z (3a(6ar — 1) (8 — 1) + (6cx — 1)%&0 + 903 (3 + 27(n3)).

{ Mo = == (3a(6ar — 1)(8a — 1) + (6 — 1) + 9a2) s,

We shall give explanations over these computations in the appendix.
Now we describe the cubic form fa: v/. Let (&5, 77,71°) denote the dual
basis of (£o,71,71). We observe that the cubic curve {(&57771*)(€) = 0}
is an inflexional triangle of fasvs. The triangle {({gnimi™)(§) = 0} is
a priori defined over Fiep. But the line {£5(§) = 0} is defined over F
because noF and (oF are distinct F-points of {{5(¢) = 0}. Hence the
triangle {(§5n1717)(€) = 0} is defined over F' and the cubic form fa/ v

is a semi-trace form. We have

3
f(@§o +ymo +20) = (9050 +y'm + Z’ﬁ)
= a12° 4 boy/® + 0323 — 3uay’

!

where i =y + (w —w?)z, 2/ =y — (w — w?)z and

a; = a(8a—1)%, by = ¢3a(8a —1)%(9a — 1),
b3 = ¢ 3a(8a —1)2(9a — 1), pu=a(8a—1)(1—6a).
Put K = F x F(w) and define ©: V' — K by
O(z&o + ymo + 2¢0) = (z,y + (w — w?)2).

The scalars az = 2Aa(8a —1)?(9a— 1) and a3 = 2zoa(8a —1)?(9a — 1)
are such that

az + (w— w?)az = by,

as — (w—w?)az = b3
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thus we have

F(&) =Tr/r(a©(€)?) = 3uNk/r (0(€))

where @ = (0L17 as + (w — w2)a3). Also the elements a and p satisfy the
relation

Ni/p(a) = aibbs — p® x3
L A

a a

1 1

We shall prove that fa: - is not semi-diagonal. The line {nj(§) = 0} is
not defined over F' because otherwise the intersection point 71 Fsep of this
line and {£§(§) = 0} would be defined over F' and it would contradict
the assumption that F' does not contain a primitive cube root of unity.
We consider the action of T on AL defined by

sep

ox&=a,0(€)a;’.

The points uFgep, mum_lFsep and mQum_2FSep are flexes of the curve
{far,v/(§) = 0} and they lie on the line {£{§(§) = 0}. Let T be an
inflexional triangle of fas v distinct from {({5ni7i)(€) = 0}. Then
a line of the triangle T passes through one and only one point among
UFep, mum_lFSep and mzum_QFsep; thus it is not preserved under the
action of ' and it is not defined over F. Hence there does not exist an
inflexional triangle of fa/ v+ whose lines are defined over F'; so far v is
not semi-diagonal.

We shall prove that also fa, is semi-trace but not semi-diagonal.
Observe that V' is spanned by

& = a(ba—1)v—2wi(a),
no = %(80(— 1éu + a(9a — 1)0v + w (),
G = 2(804 — 1)0u+ a(9a — 1)dv + dw; (@)

where § = —2 and § = 0. The F(w)-algebra A ® F(w) is generated by
&o and n; where

o 1 +w2—w
m = 2770 6

o = 5w —w?)(8a — 1gu +a(l - 9a)gv — bur(a)

for ¢ = 1. Note that ¢* = (A + (w — w?)zg)/2 with 29 = 0 and A = 2,
and

—0+96 —0—46
IR R S |
f=—p—9¢p ", —— wo — w P » T

5 :_w2¢_w¢71



74 Classification of non-singular cubic pairs

are the roots of the polynomial 2 — 3z + A. The matrix

. 3 €omt — 6 — 1
= 0N T Ba—1)2(%a — 1)

(8o — 1)(9a — 1) Sl

is such that 73 = ¢3. We have

Mo = =52 (Ba(6a — 1)(8a — 1) + (6a — 1)2&y + 9o ) ns,
Co = 1255 (Ba(ba — 1)(8a — 1) + (6a — 1)2&) + 9alo) (n3 + 215)

where 13 = —np — 15 ' and 0y = —wny —w?n, *. Put L' := F@ Fnz ® Fnj
and let p be the F-algebra automorphism of L’ defined by p(ns3) = n}
and p(n}) = —n3 — n%. We note that the map ¥: L' — F? defined by

U(x+yns+z2n3) = (@ +y+z2—2y+z0+y—22)

is an F-algebra isomorphism such that p(¥~*(1,0,0)) = ¥=1(0,1,0) and
p(T~1(0,1,0)) = T=1(0,0,1). Also A = @7, L'€} with && = p(€)&
for all £ € L' and 1,73, p(n3) span L’ such that

(z —n3) (T/ - P(Tls)) (1’ - p2(n3)) =23 -3z + A\

We can prove that f4  is a semi-trace form which is not semi-diagonal
by letting 6 = —2, 6 =0 =g, A = 2 and ¢ = 1 in the relations that we
found for (A’, V).

We proved:

Theorem 4.4.2 Assume that F is an infinite field which does not con-
tain a primitive cube root of unity and let o € F\ {0, é, %, %} Then,
up to F-isomorphism, the cubic pairs over F which are isomorphic to
(M3(Fiep), Vo) over Fuep, are either (M3(F),spanp(u,v,wi(a))) or the

pairs
((a(8a - 1)27 L/Fa P),SPQ“F<§07770,CO>)7

for all non-trivial isomorphism classes [(L, p)| of Galois Z/3-algebras,
where & and L = F(0) generate the cyclic algebra such that &40 = p(6)&o,
& =aBa—-1)2%60-30€F, and

no = (3a(6a—1)(8a —1)+ (6a —1)%¢ + 9a&3) 0,
G = (Ba(ba—1)(8a —1)+ (6a —1)%& + 9a&3) p(6).

The associated cubic forms are semi-trace forms and they are not semi-
diagonal.
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Case 2: Now we classify the F-cubic pairs (A, V) of the first kind such
that (A,V)g,, is not isomorphic to (M3(Fiep), Vi3) for any 3 € F. Let
(A, V) be such a cubic pair. Then there exists an Fyep-isomorphism

CF (A, V)F - (M3(Fsep)ava)

sep

for some a € Fiep \ {0, &, 5, 5 }. For o € I, the composition

Qo(di®o)o® tog™!

is an Fiep-algebra automorphism of Ms(Feep). Thus, by the Skolem-
Noether Theorem, there exists a, € GL3(Fsp) such that

Qo(ida®0o)oO too ! =int(ay).
Put
ox&:=00(ds®0)o0O (&) =a,0(&)a,t

for 0 € T" and & € M3(Fsep). Then we obtain a continuous action of I' on
M3(Feep) by semi-linear Feep-algebra automorphism and we have

9|A: (A,V) = (M3(FSEP)F7VO§)'

For all ¢ € T and £ € V,, we have o0 x £ € V,, and o(§) € V,(q). Thus
aJVa(a)agl = V, and V, is conjugate to V(,). Therefore we need to
know whenever Vg is isomorphic to V.

For a € Fyep \ {0, £, £}, we fix p a square root of 1 — 8« in Fie, and

7879
we put
o (18ax — 1)(8ax — 1) + (6ax — 1)p
' 16(9a — 1)2 ’
o (18 —1)(8ax — 1) — (b — 1)p
' 16(9c — 1)2 '

Lemma 4.4.3 Leta € Fiep\{0, &, 5, £}. There are exactly three distinct

values for B € Fyep such that V, = Vg, namely o, o’ and o

Proof : By Lemma 4.3.4, there are exactly 27 distinct elements nFg, in

PGLj3(Fsep) such that nV,n~! is a special subspace. We already know
that the automorphism group Aut(A, V,)(Fsep) contains 3 elements. Let
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X
mFsep

€ PGL3(Fsp) be a generator of the group Aut(A, V,)(Feep). Put

—72a%4+16a—14+(12a—1)p —6a+l—(18a—1)p  36a—5+3p

2(8a—1) 8a—1 8a—1
m = 0 —8a+1—(12a—1)p  3(8a—1)+p
T 2(8a—1) 8a—1 ’
0 0 1
—720%+16a—1—(12a—1)p —6a+1+(18a—1)p  36a—5—3p
2(8a—1) 8a—1 8a—1
m! = 0 —8a+1+(12a—1)p  3(8a—1)—p
’ 2(8a—1) 8a—1
0 0 1

then m'V,m'~!' =V, and m"V,ym"~' = V,». By the proof of Theo-
rem 4.2.7, the subspace spanFsep<u, v, wa(f3)) is conjugate to Viga4u2)-—1
for all B € Fiep\{0, —%2, —%2}‘ So V4 is conjugate to spang,_ (u, v, w2(3))

with 8 = 529, Let mo € GLg(Fuep) be such that

moVamy ' = spany, (u, v, wa(B)).
Suppose that an invertible matrix n is such that the subspace
n-spang,_(u, v, wa(3)) nt

is special and n * uFp = uFsp. Then there exists A € Fs>e<p such that

nun~! = Au and it implies that

A2 Xa b
nFg,=1 0 X a |FZg
0 0 1

for some a,b € Fiep. We deduce that

8 x *
nwg(ﬁ)nfl = 0 ws
0 0 w?g
and n - spang,_(u, v, wa(f)) - n~l = spang,  (u, v, w2(B")) for some scalar

(3" € Feep. Therefore there exist matrices mb, my € GLg(Fsp) such that

myVemy ' = spang_(u,v, wa(f8')),
myVemly ™t = span g, (u, v, w2(6"))

for some 3, 3" € Feep and moF,, myFg,, my F, are distinct pairwise.

In the same way, we can prove that there exist mgs, mj5, m5 € GLg(Fsep)
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such that
mBVamgl = SpanFSep <U7 v, w3(7)>7
mg’)VOémé_l = SpanFsep <’LL7'U,'LU3(’Y/)>,
myVamy 1 = spanFsep<u,v,w3('y” ).

for some 7,7',7" € Feep and maF,, myFy,, ms F, are distinct pair-

wise. We put my := 1, mj :=m’ and mY := m” so that the set

o d X ! J X
{mlm Fsepa m;m Fsepa

mg/ijsXp | i, = 15273}

€|

consists of the 27 elements nF, such that nVan~! is a special subspace.

Thus V, is conjugate to V; if and only if a is equal to a, @’ or o”. O

Lemma 4.4.4 Let o € Fiep \ {0, 5, 5, ¢ }. There exists an F-cubic pair

(A, V) such that (A,V)g,, = (M3(Fep), Va) and (A,V)p,, is not iso-
morphic to (M3(Fsep), V) for all B € F, if and only if the minimal
polynomial of a over F is equal to

8t —1 7 8t —1

x

3 2
—t
S 77 648

for somet € F.

Proof : Suppose that (A,V) is an F-cubic pair which is isomorphic to
(Mg(Fsep), Va) over Fyp and such that (A,V)p,, is not isomorphic to
(M3 (Fep), Vi) for all § € F. By the previous lemma the scalars «, o/, o/
are not in F. The action of I" on F, restricts to {o,a’,a”}. Indeed,
for all o € T', the subspaces V,, and V,(,) are conjugate. Thus by the
previous lemma o (o) € {o, ', ’’}. There exist matrices a,b € GL3(Fep)
such that aV,a~! =V, and bV, b~ = V. Since

o(a)Vy(yo(a) ™' = Vo) and o) Voo ()™ = Vo

the subspaces V(o) and V, (4 are both conjugate to V,, and we have
ola),o(a”) € {a,a/,a"} for all 0 € T. Because «o,a’,a” ¢ F the
minimal polynomial of o over F is equal to

8t —1 8t —1
T —

(z—a)(z—a)(z—ao) =23 —ta® + o IS

where

 6480° — 18a + 1

e F.
8(9a — 1)?
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Conversely, suppose that the minimal polynomial of « over F' is equal

to
8t —1 7815—1

36 648

3 — ta? +
for some t € F'. Then

. 6480 — 18 + 1
 8(9a —1)2

and the other roots of the minimal polynomial are ' and . Put

1 if o(a) = a,
a, =41 m' ifo(a) =7,
m”  ifola) =a”

where m’,m” are the matrices introduced in the proof of Lemma 4.4.3.
Then (a, F,)oer is a 1-cocycle with values in PGL3(Fep) and by Galois
Descent, the pair (A, V) with

A = {£€My(Fyp) | ago(&)a,t =€ forall o €T,

V = {€€V,|a,0&)a,' =¢ forallo T}

is an F-cubic pair which is isomorphic to (Ms(Fsep), Vo) Over Feep. O

Let a € Fyp, with minimal polynomial over F' equal to

for some t € F.. We observe that t # % since otherwise o = %. Similarly
we have t # %. Put

010 2(2t — 1) 3 i
=100 1], n:= 0 —4(2t — 1) -1
00 0 —48(2t — 1)? 0 2(2t — 1)
0 0 ey
and (o := [ 2(2t—1) 0 0 )
0 —2(2t — 1) 0

then <M3<F)7SpanF<€077705<0>)Fsep = (M?)(Fsep)?Va)' Indeed7 put

18(6a — 1)*  6(6cr — 1)*(9ar — 1) (9 — 1)2
a:= 0 18a(6ar — 1)2(9a — 1) 6a(9a — 1)?
0 0 18a2(9a — 1)?
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then a € GL3(Fsep) and

1 (6a—1)?

ar = GO
_ 2702(6a — 1> 3(6a —1)2(3a — 1

anoa L= - ?9(1?1)2) v ( aa<9a)_(10)12 )U)l(oz),
IR 6o — 1

a0a” = Srga—1) (@)

We put A := M3(F') and V := spany(£o, no, (o) so that (A,V) is a cubic
pair over F' which is isomorphic to (Mg(Fsep), Vi) over Fgp. Put

2t —1 z -3
m = 0 —2(2t—1) -1 ,
24(2t — 1)2 0 2t — 1
then m € GL3(F') and
Aut(A, V) (Fuep) = {Fasys mFysy, m* Fuep .

Since I acts trivially on mF,, the I'-group Aut(A, V')(Fsep) is isomorphic
to Z/3.

The isomorphism classes of F-cubic pairs which are isomorphic to
(A, V)R, over Iy, are in bijection with the isomorphism classes of Galois

7/3-algebras over F. Let (L, p) be a non-trivial Galois Z/3-algebra over
F. For o € T, we put

1 if O’|L = idL7
g i =4 m if ol = p,
m? if o|p = p%
Then the isomorphism class of F-cubic pair corresponding to [(L, p)] is
[(A’, V)] with

A = {f € Asep | aao’(ﬁ)a;l :§ for all o € F},
Vi = {£€ Vi | aso(&)a;t =¢ forallo € T'}.

As in the first case, the endomorphism m: V — V: €& — mém™! is

diagonalizable and its eigenvalues are cube roots of unity. Since m? € V,

we deduce that m? is an eigenvector with eigenvalue 1 and in particular
2 1

m- e V'
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Suppose that F' contains a primitive cube root of unity. Let 8 € L
be such that 03 = d € F and p(0) = wf. Put

51 = Mo + 6C07
1-8 1
o (e e e

Then &1,m1, (1 are linearly independent vectors of V' such that

2d
=48t —1)%(2t—1), n} = E(St — 122t —1)% &m = wné

(we have &1 = wm & because &1 F = m2F). Therefore V' is the sub-
space of Agep spanned by &1,m1,¢ and A’ is the symbol F-algebra

( A8t — 1)2(2t — 1), %d(&f 122t — 1)2) B
We have

w2

G = oD - )

2 w 2 2
51771 2(8t — 1)2(2t — 1)61771

and the cubic form fa/ - is semi-diagonal:
faryr = a&t® + b + (= 3NN CT

for some scalars a,b,c,\ € F such that (abc — \?)a=2? € F*3, where
(&r, 17T, ¢Y) denotes the dual basis of (£1,71,(1)-
We have thus shown:

Theorem 4.4.5 Suppose that F' contains a primitive cube root of unity.
Let o € Fyep be such that its minimal polynomial over F' is equal to

St_lx— 8t —1
36 648

for some t € F. Up to F-isomorphism, the F-cubic pairs which are
isomorphic to (Mg(Fsep), Va) over Fyep are the pairs

% — t2? +

(( — A8t —1)2(2t — 1), %d(&t 122t — 1)2)W’F,spanF<§1,n1,C1>>

for all dF>*3 € F*/F>*3 where &,m are generators of the symbol algebra
such that

2d
& =48t —1)*(2t — 1), 0} = E(St —1)%(2t — 1)%, &m = wmés
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and ¢; = W?(8t — 1)&1n? + w&in?. The cubic forms associated to these
cubic pairs are semi-diagonal.

Now we assume that F' does not contain a primitive cube root of
unity and F' is infinite. Let # € L be such that the minimal polynomial
of § over F is 23 — 3z + A for some A € F'\ {2,—2}. Put ¢ := p(#) and
0" := p?(#). Then
_ -0+ s —0—9

2 2
where § = x5 1(20% + X0 — 4) and z € F is a square root of (4 — \?)/3.
Also, there exists a cube root ¢ of (A + (w — w?)z()/2 in Fyep such that

9/

9:_¢_¢71’ 9/:_w¢_w2¢71’ 9//:_w2¢_w¢71.

Put
61 = 1o + 6C07
1 1
nm o= E(gt — 1)550 + 50770 - 4(2t - 1)0407
1 1
Goo= (1= 80 + om0 — 4(2t = 1)0.

Then &1, 71, (; are linearly independent vectors of V', thus V” is the span
of glanla <1~ Put

1 —w? 18t 1
3 ud 6w G = (4(w7w2)§0+§770—4(2t—1)C0))¢

N2 = —5N+
then &;,m2 € A’ ®p F(w) are such that
& =—408t —1)*(2t — 1), 13 = §¢3(8t —1)%(2t = 1)%, & = wnp.
Therefore A’ @ F(w) is the symbol algebra

2
—4(8t —1)2(2t — 1), Z¢3(8t — 1)%(2t — 1)?
(—as - 12— o m - 1Pe-12)
generated by & and 72. Put

— 1 _ 1 2
B R D = DR T A TR = D)

then 73 = ¢ and 73m3 = 1. Put ny :== —n3 — 1751, then L' := F(ny) is
a Galois extension of degree 3 over F' with Galois group generated by 7
where

T(ma) = —wng — w?ng '
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and L’ is contained in A’. Since &1ny = 7(n4)&1, the algebra A’ is the
cyclic algebra ( — 4(8¢t — 1)?(2t — 1), L’/F,7) generated by & and n,
where (L', 7) 2 (L, p): ng — 6. We can write 77 and (3 in function of &
and ny:

i (%(& —1)(2t—1)— §(2t - 1)& + é&f)m

G (;(St —D@t—1) - §(2t —1)& + %é‘f) (14 + 2p(1a)).-

Again fa/ v is a semi-trace form. Let (£F,73,72") denote the dual ba-
sis of (&1,7m2,7z). The cubic curve {(&n372*)(€) = 0} is an inflexional
triangle of far v and the line {{}(§) = 0} is defined over F. Hence
{(&nmz") (&) = 0} is defined over F and far v+ is a semi-trace form:

farvi(€) = Tri/r(a©(€)?) = 3uNg,r (O())
where K = F X F(w), the map ©: V' — K is defined by
O(xé1 +ym + 261) = (a:,y + (w— w2)z),

a= (al,ag + (w— w2)a3) with

ap = —4(8t —1)%(2t — 1),
ay = 73(815—1)2(215—1)2,
as = —%(875—1)2(%—1)2

and p = 3(8t — 1)?(2t — 1)2. The clements a and p satisfy the relation

3
w = (- List— 1)t — 1))3 e X3,

aj 3

The line {£5(€) = 0} passes through the flexes &g Fiep, m&em ™! Fyep and
m2§0m_2Fsep. Therefore a line of an inflexional triangle distinct from
{(&nm2") (&) = 0} is not defined over F. Since the line {n3(§) = 0} is
not defined over F' the form fa/ 1 is not semi-diagonal.

We note that the vector space V' is spanned by

& = mo+6Q,
1 1
1 = E(St — 1)5&) —|— 59’[]0 — 4(2t — 1)9C0,

G = 3(1 — 8)0o + %5770 —4(2t = 1)d¢o
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with § =0 and 6 = —2. We put

. 1 L w — wQC
N2 = 2771 6 1,
1 1 )
BT TRt - (2t — 1)5”72 T (Rt 1)2(2t — 1)51772,
N4 = —N3— Tlg_l,

/

7 —wiy — wnz .

Then 13 = ¢3 for ¢ = 1 and

nmo= (%(& —1)(2t—1) - %(215 —D&+ %5%)774’
G = (%(St —1)@2t—1) - §(2t —1)& + %5%) (na + 2073).

Put L' := F @ Fny & Fn), and let p be the F-algebra automorphism of
L’ defined by p(ns) = n} and p(n}) = —na —nj. Then 1,74, p(n4) span
L’ and

(@ —na)(z = p(m)) (z — p*(n)) = 2° =3z + A
for A = 2. There exists an F-algebra isomorphism ¥: L' — F3 such
that

p(¥71(1,0,0)) = ¥'(0,1,0) and p(¥~'(0,1,0)) = ¥'(0,0,1).

We have A = @?:0 L€l with &€ = p(€)& for all £ € L'. We can
prove that f4 y is semi-trace but not semi-diagonal by letting § = —2,
§=0=1z9, A\ =2 and ¢ = 1 in the relations we proved for (4’,V").

Theorem 4.4.6 Suppose that F is infinite and does not contain a prim-
itive cube root of unity. Let a € Fyp be such that its minimal polynomial
over F is equal to x3 —tx?® + (8t —1)/36x — (8t — 1) /648 for some t € F.
Then, up to F-isomorphism, the F-cubic pairs which are isomorphic to
(M3(Feep), Vi) over Fyp, are either (I\/lg(F),spanF<§o,n0,Co>), where

010 2(2t — 1) i 3
=100 1|, n:= 0 —4(2t — 1) -3
000 —48(2t — 1)2 0 2(2t — 1)
0 0 24(2%:—1)
and (o := | 2(2t—1) 0 0 5



84 Classification of non-singular cubic pairs

or the pairs

(( _ A8t —1)%(2t — 1), L/F, p),spanF<£1,m,C1>)

for all non-trivial isomorphism classes [(L, p)] of Galois Z/3-algebras,
where & and L = F(0) generates the cyclic algebra in such a way that
&0 =p(0)&1, 02 —30 € F and & = —4(8t — 1)%(2t — 1), and

mo o= <§(8t -1)2t—1) - %(Qt - 1)+ égf)e,
G = (3= D=1 - Ser- 16+ 56)0(0)

The associated cubic forms are semi-trace forms and not semi-diagonal.

4.5 Classification of cubic pairs of the second kind

We classify up to F-isomorphism the non-singular cubic pairs (A, V)
over F' such that Aut(A,V)(Feep) = Z/3 x Z/3 as an abstract group,
i.e. the F-cubic pairs (A4, V) such that (A,V)g,, = (M3(Feep), V%). Put

w = wl(%), A :=M3(F) and V := spanp(u,v,w). Then

Aut(A,V)(Fep) = {mimngzp | 4,7 =0,1,2}

with
1 0 -6 1 2w-1) —6w
m=(1 -2 0 and mo=| 0 w 2(w? —w)
;-1 1 0 0 w?

and the mappings my FS, — (14+3Z,1) and ma Fg, = (3Z,w) define a I'-

group isomorphism from Aut(A4, V) (Fsep) to Z/3 X 3. By Theorem 4.1.2,
there is a bijection

F-isomorphism classes of
HY(F,Z/3 x p3) «— the F-cubic pairs which are
isomorphic to (A, V)E

sep

over Fyp

Since the action of I' on Z/3 X ug restricts to Z/3 and s, we have
HY(F,Z/3 x p3) = HY (F,Z/3) x H'(F, u3).

The characteristic of F is different from 3, thus

HY(F, pz) 2 F* [ F*°
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(see (30.1) in [Knus et al., 1998]). So, there is a one to one correspon-
dence between the F-isomorphism classes of non-singular F-cubic pairs
of the second kind, and the product Isom(Z/3-Galp) x (F* /F*3), where
Isom(Z/3-Galp) denotes the set of isomorphism classes of Galois Z/3-
algebras over F.

Let (L1,p1) be a Galois Z/3-algebra and doF*3 € F*/F*3. Let
(ai,0 F%y)ocr be the 1-cocycle with values in {F.5,, m; F,, mi F,} cor-
responding to (Li,p1) for i = 1, and doF*3 for i = 2. Let 0y € Fyep
be such that 63 = dy and put a, F%, := a1,0a2,,F.5,. The F-cubic pair

corresponding to the 1-cocycle (ay F))oer is the pair (A’, V') with

sep

A = {f€Ae| otga(f)a;1 =¢ forall 0 €T},
VI = {£€ Vi | aso(&)a;t =¢ forallo €T'}.

First we assume that F' contains a primitive cube root of unity. If L
is a field then there exists §; € L; such that Ly = F(61), 03 = d; € F and
p1(01) = wby. If Ly = F} we put 61 := 1. Suppose that L; = F(6,) # F
and doF*3 = d; F*3. Then we may assume that di = da, 61 = 65 and

1 if 0'((91) = 917
Ay = mimeo if 0'(01) = w@l,
m3m3  if o(01) = w?0;.

If L1 & F(02) # F and doF*® = d3F*3, then we may assume that
dQ = d%, 92 = 0% and

1 if 0'(91) = 91,
ay =< mim3 if o(6;) = wb,

mimg if 0(01) = w?6;.

Now we suppose that L1 2 F(62). Then we may assume that a; , = 1 if
d; € F*3 and
Aj o = m; if 0'(91) = w@i,

mf if O'(Hi) = w29i,

if d; ¢ F*3. Put

€0

Mo

12wh3,

((w2 —w)u + %v + 6w> 0105,

G = ((w—wz)u+%v+6w))9f92.
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Then &y, 1o, o are linearly independent vectors of V' such that

& = —4d3, 1y = —2d1d2, &mno = winolo.

So V' = span (&, o, o) and A’ = (—4d3, —2d1ds). F is the F-algebra
generated by &y and 19. We have

2
_ v 2
Co = 2d2§o770

and the associated cubic form fa/ v+ is diagonal:
farvr = a&® + bng? + G5

where a = —4d%, b = —2d;ds and ¢ = —2d3dy and (&5, 75, () denotes
the dual basis of (£o, 70, o). The scalars a, b, ¢ satisfy the relation

abe

5 = (—d1)? € F*°.

a

We proved the following;:

Theorem 4.5.1 Assume that F' contains a primitive cube root of unity.
Then, up to F-isomorphism, the non-singular F-cubic pairs of the second
kind are the pairs

((_4d%7 _2d1d2)w,F7 SpanF<§0) o, C0>)a

for all dyF*3,do F*3 € F* /F>*3 where &y,m0 are generators of the sym-
bol algebra such that 58 = 74d§, 173 = —2dida, &no = wnop, and
Co = &m3. The cubic forms associated to these cubic pairs are diagonal.

Now we assume that F' is an infinite field which does not contain a
primitive cube root of unity. In the case where Ly /F is a Galois extension
of degree 3, there exists 1 € Ly such that L; = F'(#;) and the minimal
polynomial of 01 over F is 2° — 3z + A for some \; € F\ {2, -2} with
(4—X?)/3 € F2. Let 0, = p1(01) and 67 = p3(#1) be the other roots of
23 — 3z + A;. We may choose 21 € F with 23 = (4 — A\?)/3 such that

b = —¢1—¢;!
0, = —wpr—wier! = y
0] = —w¢—wep! = _912_ 61’,

where §; = 271 (207 4+X160; —4) and 1 is a cube root of (A +(w—w?)z1)/2
in Fiep. In the case where Ly = F3 weput 6y :=—2,6; :=0and ¢ :=1
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(then we have 6 — 30; + A\; = 0 with A\; = 2). We can observe that
L, % F(02) since either L/F is an Galois extension of degree 3 or
Ly = F3 and F(f2) is a field which is not a Galois extension of degree 3
over F. If dy & F*3, let py € Gal(F(63)/F) be defined by pa(f2) = wbs.
Then, we may assume that a; , =1 if 6; € F, and

1 ifo’|Li:idLi,
Ao = m; if olp, = ps,
m? o]y, = g7,
otherwise. Put
& = 1203w,
1
N = 75192114 + 59192’0 + 6910210,
1
CO = 30192'& + 55192” + 651921'0'

Then &y, 1o, (o are linearly independent vectors of V', so V' is the span
of &0, M0, Co- Put

. 1 +w—w2
m = 2770 6

o= ((w2 —wu+ %v + Gw)qﬁl&g,

then
& = —A4d3, 0} = —2¢%da, Som = wméo.
So A},(w) is the F'(w)-algebra (—4d3, 72¢:{d2)w7F(w) generated by & and
n1. Put ng := (2da) "1&om1, then 3 = ¢3.
Suppose that L; = F3, then Alp(y is split. But F(w)/F is a field
extension of degree 2, thus A’ is also split. The vector space V' is spanned
by 1203w, fou and 02 (v + 12w). Put

0,2 —205% 2052
n = 0 00 —205"
0 0 1

then n is an invertible matrix such that

0 1 0 0 0 4
n@un =0 0 1 |, n(1208wnt=|d 0 0 |,
0 0 0 0 —dy O
0 -2 0
and n(f2(v+12w))n = 0 0 2
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Thus (A’, V') is isomorphic to (M3(F),spang (&), nh, ) with

010 0 0 4 0 -2 0
=100 1], m=d 0 0], g=o0 0 2
0 00 0 —d2 O d 0 0

Now we assume that L; is a field. Put n3 := —np — 772_1 then

L' = F(n3) is a Galois extension of degree 3 over F with Galois group
generated by 7 where 7(1j3) = —wny — w?n, *. Moreover L is contained
in A’ because 197z = 1. Since &yne = wneéy, we have & = 7(€)& for
all £ € L'. So A’ is the cyclic F-algebra (—4d3, L'/F,T) generated by
& and n3. Note that the Galois Z/3-algebras (L',7) and (Lq,p1) are
isomorphic. Also we have

1
N = —ﬁﬁgﬂ:ﬁ
1
G = ~34, —& (13 +2p(n3)).

The form f4/ - is a semi-trace form:

fA/,V’(f) = TrK/F (a@(g)g)
where K = F X F(w), the map ©: V' — K is defined by

O (o + ymo + 2¢0) = (z,y + (w — w?)2),
= (—4d3,2¢3dy). We have the relation
Ni/r(a) 3
= (-1 e F*3
T
and again f4s - is not semi-diagonal.
We observe that, if L; = F3, then
57560 (3 + 2nf3)

no =—==&ms, C=

2d2 2d2

where 3 = —1mp — 15 " and 7y = —wno —w?n, L. Put L' := F&Fns @ Fj
and let p be the F-algebra automorphism of L’ defined by p(n3) = n}
and p(n5) = —ns —n%. Then 1,n3 and p(n3) span L’ such that

(z—m3)(z — p(n3)) (z — p*(n3)) = 2® — 3z + A

for A\ = 2, and there exists an F-algebra isomorphism ¥ from L’ to F?
such that

p(¥~1(1,0,0)) = ¥'(0,1,0) and p(¥"'(0,1,0)) =¥ '(0,0,1).
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We also have A = @?:0 L€} with &€ = p(£)&y for all € € L. We can
prove that fas v is a semi-trace form and is not semi-diagonal if L = F*
by letting 8 = —2, §; =0 =1, \; = 2 and ¢; = 1 in the relations that
we found in the case where L, is a field.

Thus we arrive at:

Theorem 4.5.2 Suppose that F is infinite and does not contain a prim-
itive cube root of unity. Then, up to F-isomorphism, the non-singular
F-cubic pairs of the second kind are either the pairs

(Ms(F), span (€0, 710, Co))

for all doF*3 € F*/F>*3, where

010 0 0 4 0 -2 0
=100 1|, 0=4d 0 0], ¢=(0 0 2],
000 0 —dy 0 d 0 0

or the pairs
((—4d3, L1/ F, p1), span (€0, M0, Co))

for all doF*3 € F*/F*3 and for all non trivial isomorphism classes
[(L1, p1)] of Galois Z/3-algebras, where & and Ly = F(61) generate the
cyclic algebra such that

€8 = —4ds, 07 — 30, € F, &61 = p1(61)o,

and no = €201, Co = E3p1(01). The associated cubic forms are semi-trace
forms and are not semi-diagonal.






5

Classification
of singular cubic pairs

We classify the isomorphism classes of singular cubic pairs.
We split the classification into nine parts corresponding to
the zero cubic curve and the eight different kinds of non-
zero singular cubic curves. In the case of the triangle we use
Galois cohomology but for the rest we use another method.

5.1 A useful proposition

To classify non-singular cubic pairs, we shall use an easier method than
the one used for the classification of non-singular cubic pairs. Clearly,
if two non-singular cubic pairs are isomorphic, their associated cubic
curves are singular curves of the same kind. Thus we may split the
classification of non-singular cubic pairs into nine parts. Before we give
the new method, we need preliminaries.

We have a continuous action of I' on P(Ms(Fsep)) induced by the
action on Mg (Fsep):

0(uFsep) = 0 (1) Feep.

Lemma 5.1.1 We have that P(M3(Fiep))t = P(M3(F)).

Proof : Let p = uFyp € P(M3(Fiep))t. Then o(uFyep) = uFsep for all
o € I'; thus there exists a scalar A\, € Fg, such that o(u) = Au.
Because o7(u) = o(7(u)), we have

Aor = Ao (Ar).

Hence (\,)ser is a l-cocycle with values in F,. By Hilbert’s Theo-
rem 90, there exists u € F%, such that A, = po(u)~'. Hence we can

91
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deduce that pu € M3(F):

o(pu) = o(p)Asu = pu;
and therefore p € P(M3(F)). O
Similarly if ¢ € V% is such that “¢ = A, ¢ for all 0 € I then there exists

se
p € Fg, such that F;up eV
By section 1.6, the number of singular points of a cubic curve with
finitely many singular points is less than or equal to three and the singu-
lar points are defined over Fg,. Note that the action of I on IF’(M 3(Fsep))
permutes the singular Fiep-points of a cubic curve over F.

We deduce the following proposition from the previous lemma.

Proposition 5.1.2 Suppose that (A, V) is a singular cubic pair over
F where A is a division algebra. Then the associated cubic curve is a
triangle.

Proof : Since A is division, there are no F-points on the cubic curve
{fa,v (&) = 0}. Indeed, if uF is a F-point of {f4,v({) =0}, then u € A
and u® = 0 which is impossible in a division algebra. In particular the
cubic curve f4 v is non-zero.

Suppose that the cubic curve {fa v (§) = 0} has one singular point
in P(Veep). Then the action of I' on P(Vep) leaves this singular point
invariant. By Lemma 5.1.1 the singular point is defined over F' and in
particular there exists an F-point of {f4 1 (§) = 0}; this is impossible
since A is division. Suppose that {f4,v(£) = 0} has two singular points
in P(Veep). Then the action of I' on the singular points is not trivial
since otherwise there would exist an F-point of {f4,v(§) = 0}. Thus
the subgroup of I' which leaves the singular points invariant, has index
two. So, there exists a point of {f4 v (§) = 0} over a quadratic extension
of F. But A remains division after extending the scalars to a quadratic
extension, thus we get a contradiction. Now if fay = I3 - Iy for some
l1,l2 € Vi&,, then T' leaves the line {I1({) = 0} invariant. Thus it is
defined over F' and in particular there is a point of {fa v (£) = 0} over
F; this is impossible. Therefore, by Section 1.6, the curve {fa,v(§) = 0}
is a triangle. O

Hence, if (A, V) is a singular cubic pair over F' such that the associated
cubic curve is not a triangle, then A = M3(F'). To classify such cubic
pairs up to isomorphism we may thus assume that the algebra of the
cubic pair is M3(F'). In the case where the associated cubic curve is a
triangle, we use Theorem 4.1.2.
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The following lemma shall be useful to classify singular cubic pairs.

Lemma 5.1.3 Let V' be a cubic subspace of M3(F) and (e1,ez,€3) a
basis of V.. Then fy(x1e1 + xoea + x3€3) is equal to

3 3
3,3 | tr(e2e )\ z2a. -t
€;T; r(ejej)rix; + tr(erezes + erege)r 1 xors.
i=1 i£j=1

Proof : We have fy(x1es + x9es + x3e3) = (101 + T9e3 + 23€3)>. The
fact that

1
(z1€1 + z2€2 + x363)3 = gtr((xleg + x9e9 + x363)3)

implies the result. O

5.2 Zero projective curve

We shall describe up to F-isomorphism the cubic pairs over F' with the
zero projective curve as associated cubic curve.

Suppose that V' is a cubic subspace of M3(F') such that fy = 0. We
want to describe V up to conjugacy. Suppose that €2 =0 for all £ € V
then we may assume that

0 0 1
u:=| 0 0 0 | eV
0 00

For € € M3(Fyep), let &;; denote! the scalar on row ¢ and column j in &.
Since fa,v = 0, we have tr(én{+&¢n) = 0forallé,n,( € V. Letv,w € V
be such that (u,v,w) is a basis of V. Because tr(v) = 0 and tr(uv) = 0
we have v33 = —v1; — v92 = 0 and v3; = 0. Since v3 = (u +v)* = 0 we
have v2 = 0 and wv 4+ vu = 0. But uv + vu = 0 implies vzs = 0, vag = 0,
vg1 = 0, and v? = 0 implies v1; = 0 and v12v93 = 0. Replacing v by
v — v13u if necessary, we may assume that v;3 = 0, hence

0 V12 0
v = 0 0 V23
0 0 0

1This notation shall be used in the remainder of this chapter.



94 Classification of singular cubic pairs

In the same way, we can prove that

0 w12 0
w = 0 0 w23
0 O 0

with wiswesz = 0. Since v and w are linearly independent there exists
a matrix £ € V such that €2 # 0 and it contradicts the assumption.
Therefore there exists a matrix « € V such that u? # 0. Because u> = 0
we may assume that

01 0
u = 0 0 1
0 0 O

Suppose that u? and v? are linearly independent. We need the following
lemma.

Lemma 5.2.1 Let V be a cubic subspace of M3(F) and u,v € V. Sup-
pose that (zu + yv)® = 0 for all x,y € F and u?,v* are linearly in-
dependent, then there exist m € GL3(F) and non-zero A\, € F such
that

010 0
mum =X 0 0 1 and mom ' =p | 1
0 00 0

Proof : Since u? = 0 and u? # 0, we may assume that
010
u=1]1 0 0 1
0 0 0
Because tr(v) = 0, tr(uv) = 0 and tr(u?v) = 0, we have

V33 = —V11 — V22, U3z = —U21, v31 = 0.

Then tr(uv?) = 0 implies va1 (2011 +v92) = 0. If vo; = 0, then tr(v?) =0
and v = 0 imply v11 = voe = 0; this contradicts the fact that u? and v?
are linearly independent. So vg; # 0 and ves = —2v11. Replacing v by
v;llv if necessary, we may assume that vo; = 1. We have vo3 = v —|—3v%1
and v13 = v}, because tr(v?) = 0 and v® = 0. Put « := v11, 8 = vi2

and
1 —a 20°+p
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then m € GL3(Feep), mum ™' = u and
0 0 O
mom ™! = 1 0 O
0 -1 0
which concludes the proof. O

By this lemma, we may now assume that

0 0 O

v=|(1 0 0

0 -1 0

Since tr(w) = 0, tr(uw) = 0, tr(u?w) = 0, tr(vw) = 0 and tr(v3w) = 0
we have

w33z = —wWi] — W2, W32 = —way, w31 = 0, we3z = w1z, w1z = 0;
thus
w1l Wiz 0
w = w21 W22 w12
0 —we —wip —wo

Replacing w by w—wisu—wav if necessary, we may assume that wyo = 0
and wq; = 0. So tr(w?) implies wqy = pwq; for some primitive cube root
p € Fiep of unity and w® = 0 implies w = 0. We get a contradiction,
thus u? and v? are linearly dependent. Since tr(v) = 0, tr(uv) = 0 and
tr(u?v) = 0 we have

V33 = —U11 — Va2, Usz = —va1, v31 = 0.
But v? = \u? for some A € F, so

v11 =0, v21 =0, v2 =0

2 2

and v is an upper triangular matrix. Similarly, since u® and w* are
linearly dependent, we can prove that w is an upper triangular matrix.

Hence V is the subspace of M3(F') of upper triangular matrices.

Theorem 5.2.2 Up to F-isomorphism there exists one F-cubic pair
such that the associated cubic curve is the zero projective curve, namely
the pair (l\/lg(F), V) where V is the subspace of M3(F) of upper triangu-
lar matrices.
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5.3 Triple line

We want to describe up to F-isomorphism the cubic pairs over F' with a
triple line as associated cubic curve. To do this it is sufficient to describe,
up to conjugacy, the singular cubic subspaces of M3(F), such that the
associated cubic curve is a triple line.

Suppose that V is a singular cubic subspace of M3(F') such that
{fv (&) = 0} is a triple line: fiy = [ for some non-zero [ € Veep- Clearly,
the group I' acts trivially on {I(§{) = 0}, so {l(¢§) = 0} is defined over
F. Hence | = pp for some pu € Fyp, and ¢ € V*. Thus fyy = A\p? with
A= p® € FX since fyy € S3(V*) and ¢ € V*. We describe V up to
conjugacy.

Case 1: Suppose that there exists u € V such that v = 0 and u? # 0.
Then we may assume that

01 0
u= 0 0 1
0 0 O

Let v,w € V be such that u and v span the kernel of ¢ and p(w) = 1.
Then (u,v,w) is a basis of V' and

(zu + yv + 2w)® = X5,
By Lemma 5.1.3, we have

u? =3 = tr(u?v) = tr(uww?) = tr(v?w) = tr(uw?) = 0,
tr(v2w) = tr(vw?) = tr(uvw + vwv) = 0 and w3 # 0.

For all £ € V, we have

&33 = —&11 — &22, &32 = —&21, €31 =0, £1(2611 +622) =0

since tr(€) = 0, tr(ué) = 0, tr(u?¢) = 0 and tr(ué?) = 0. Replacing v by
v —v12u and w by w — wisu, we may assume that vis = 0 and wy2 = 0.
Thus

V11 0 V13 w1y 0 w13
v=| w21 w22 V23 y W= | w1 Wi Wa3
0 —w21 —v11 —v22 0 —wo1 —wi1 —wo

and v91(2v11 + v22) = 0 = we1(2wy11 + was). Suppose ve; # 0, then
v9o = —2wv1; and replacing v by év if necessary, we may assume that
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v91 = 1. Since tr(v?) = 0 and v® = 0, we have voz = 3v3 and v13 = v3;.
Put « := vy, then

« 0 a®
v = 1 —2a 302
0 -1 o

If wo; = 0, then tr(wQ) implies w%l + wiiwoo + w§2 =0. So wyy = pW11
for some p € Fiep with p> + p+ 1 =0 and

w11 0 w13
w = 0  pwir  was
0 0 pPwn

with wy; # 0 because w® = X\ # 0. But tr(uvvw + uwv) = 0 implies
(1 — p*)wy; = 0 thus we get a contradiction. Now if wa; # 0, then
Wog = —2wi1. We have

2 -1 3
W23 = 3w11w21 , W11 = Qw21, W13 = W21

because tr(w?) = 0, tr(vw) = 0 and tr(v?w) = 0. So

war 0 w3
— _ 2 —
w = W21 2’[0210[ 3’([)210[ = W21V
0 — W21 wao1

and we have a contradiction; therefore vy; = 0. Since tr(v?) = 0 and
v3 =0, we have voo = v11 = 0. So

0 0 V13
v = 0 0 V23
0 0 O
If vo3 = 0, then we may assume that v;3 = 1. Replacing w by

w — wi3v if necessary, we may assume that w3 = 0. Since tr(w2v) =0,
tr(w?) = 0 and w3 # 0, we have

wa1 =0, war = pwir, wir #0

where p € Fy, is a primitive cube root of unity. Note that p € F' because
wy € F, pwi1 € F and wqq 7’5 0. Put

0
w23
(p—p?)wi1

1 0
m = 0 1
0 0 1
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then m € GL3(F) is such that mum ™!, mvm=! € spany(u,v) and

Hence V is conjugate to the subspace of M3(F') spanned by

0
0

¥

01 0 0 01 1 0
0o o011, 0o 0 0 |, 0 p
0 0 0 0 00 0 0 p

If vo3 # 0, then we may assume that v13 = 0 and veg = 1. Indeed,
the invertible matrix

1 —v130531 0
m = 0 1 —v13v2_31
0 0 1
is such that mum™! = u and

0 0 O
mom ™! = Vo3 0 0 1
0 0 O
Replacing w by w—ws3v, we may assume that wo3 = 0. Then tr(w?) = 0,
tr(vw) = 0 and w?® # 0 imply
W = pwiy, woy =0, wip #0

where p € F is a primitive cube root of unity. We may assume that
wi1 = 1 and w13 = 0 because

1 0 —4r—
(1-p?)wi1
m=1 0 1 0 € GL3(F)
0 0 1
is such that mum ™! = u, mvm ™! = v and

1 0 O
mwm ™" = w11 0 p O
0 0 p?

Theorem 5.3.1 Suppose that F' contains a primitive cube root of unity.
The F-cubic pairs (A, V) such that the associated cubic curve is a triple
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line and there exists an element & € V such that £ = 0 and &3 # 0, are
F-isomorphic to the pair (I\/Ig(F),spanF<u, v, w>) where

010 0 0 1 1 0 0
eitheru=1 0 0 1 |,o=| 0 0 0 J],w=1[| 0 p O
0 0 0 0 0 0 0 0 p?
010 0 0 0 1 0 0
oru=[ 0 0 1 |,o=|0 0 1 J,w=| 0 p O )
0 0 0 0 0 0 0 0 p?

for some primitive cube root of unity p. There are, up to isomorphism,
four such cubic pairs.

Proof : Put
0 01 0 0 0 1 0 0
v = 0O 0 0 , Ug 1= 0 0 1 , Wi = 0 pi O ,
0 00 0 00 0 0 p?

for i = 1,2, where p; is a primitive cube root of unity. If spanz{u, v, w;)
is conjugate to spanp(u,ve, wa) then spanp(u,v1) and spanp(u,vs) are
conjugate. We observe that (au + Bv1)? = 0 if and only if a = 0 and
(au + Bvg)? = 0 if and only if @ = 0 or @ = —3. Thus spanp(u,v;) is
not conjugate to spanp(u, vs). By straightforward computations one can
check that span (u, v;,w1) is not conjugate to spanp(u, v;, ws) if p1 # pa.

O

Case 2: Assume &2 = 0 implies ¢2 = 0 for all € € V. Let u,v,w € V be
such that u and v span the kernel of ¢ and ¢(w) = 1. Since u® = 0, we
have u? = 0 and we may assume that

0 0 1
u=| 0 0 0
0 0 0
Replacing v by v —v13u and w by w —wi3u, we may assume that vz =0

and wyz = 0. For £ € V, we have tr(§) = 0 and tr(u&) = 0, thus

§33 = —&11 — §22, &31 = 0.

Since v = 0 and (u + v)? = 0, we deduce that v? = 0 and uv + vu = 0.
But wv + vu = 0 implies v3s = vo; = v = 0 and v? = 0 implies v1; = 0
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and v1ov93 = 0. Hence

0 V12 0
v = 0 0 V23
0 O 0
and either v13 = 0 or ve3 = 0.
If vo3 = 0, then we may assume that vio = 1. Replacing w by

w — wiav, we may assume that wijs = 0. Since tr(vw) = 0 we have
wgq = 0, thus
w11 0 0
w = 0 wa Wa3
0 w32 —wi—wa

Suppose that I’ contains a primitive cube root of unity. If wss # 0 then
tr(w?) = 0 implies w3z = —wgzl(wfl + w3y + wiiwe). Put a = wnwg}l
and §:= w22w3_21, then o # 0 because w? # 0. The matrix

(w—wHa 0 0
m = 0 1 wa-p € GL3(F)
0 1 wla—-4

L mym™! € spany(u,v) and

is such that mum™
0
0
2

1 0
mwm~t = awso 0 w
0 0 w

Now suppose that w3z, = 0. We have wss = pwi; for some primitive
cube root p of unity because tr(w?) = 0. Put a := wyy, f := wo3 then
a # 0 because w? # 0. The invertible matrix

1 0 0

_ B
m= 0 1 (p—p?)a

0 0 1

is such that mum=1, mvm=1 € spanp(u,v) and
10

mwm =a| 0 p 0
0 0

Hence we may assume that

g
Il
o O =
o O
o O

S
o
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Since the invertible matrix

1 0 0
m'=[0 0 1
010
is such that m/um/=%, m/vm’~! € spanp(u,v) and
1 0 0 1 0 O
m | 0w 0 |mTt=]0 w 0],
0 0 w? 0 0 w

the vector space V' is conjugate to the subspace of M3(F') spanned by

00 1 01 0 10 0
0oo0o0f|,{ooo],[0ow o0
000 000 0 0 w?

Now suppose that F' does not contain a primitive cube root of unity. If
w3z = 0, then tr(w?) = 0 implies woy = pwy; for some primitive cube
root of unity p € Fiep. Since w3 # 0 we have wy; # 0 and it contradicts
the fact that F' does not contain p; thus wsa # 0. Because tr(w?) = 0,
we have
Wo3z = —’LU3_21 (w%l + w§2 + ’u}11’w22).

Put a := wjjw;y; and B := waws, then a # 0 because w® # 0. The
invertible matrix

—a 0 0
m = 0 a! —-1-a7lp
0 ot —a~1p

is such that mum =1, mwm™=! € spanp(u,v) and

1 0
mwm ™! = awso 0 O
0 1
Therefore V' is conjugate to the subspace of M3(F') spanned by
0 0 1 010 1 0
0o 0 0|, 00 0], 0 0 71
0 0 O 0 0 0 01 -1
If v12 = 0, then we may assume that vas = 1. Replacing w by

w — wa3v, We may assume that wosz = 0. We have

w3z =0, wir + wae #0
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because tr(vw) = 0 and w3 # 0. Suppose that F contains a primitive
cube root of unity. If woy # 0, then tr(w?) = 0 implies

— 1 2 2
W12 = —w (wll + U)22 + w11w22).
21

. —1 — —1
Put o := wiywyy , B := wewy; and

1 w?a—wf 0
m:=| 1 wa—w?3 0
0 0 1

then m € GL3(F), mum™, mvm~! € spanp(u,v) and
0 0
w?2 0
0 1

mwm ™" = —wa (o + )

o o &

Thus we may assume that wo; = 0. Since tr(w?) = 0, there exists a
primitive cube root of unity p such that wss = pwy;. Put a := wy; and
B := w3 then o # 0 because w3 # 0. The invertible matrix

1 s 0
m = 0 1 0
o o0 1

is such that m € GL3(F), mum™', mvm~! € spany(u,v) and

10 0
mwm ™t =a| 0 p 0
0 0 p?
Therefore V is conjugate to the span of
0 0 1 0 0 10 0
00 0|, 0 o0 1|, 0 p O
0 0 0 0 0 0 0 p?

We may assume that p = w since

=
I

-
o
jan)}
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is such that m/um/~!, m’vm’~t € spany(u,v) and

1 0 0 1 0 0
m| 0 w 0 |mt=w|l 0 w2 0
0 0 w? 0 0 w

Now assume that F' does not contain a primitive cube root of unity, then
way1 # 0 and we have wyy = —way (W3 + w35 + w11wae) since tr(w?) = 0.
Put o := wnw;ll and 3 := wggwgll then a + 3 # 0 because w? # 0.
The invertible matrix

0 1 0
m=| —(a+3)" al@+p)" 0
0 0 a+

1

is such that mum=1, mvm=! € spanp(u,v) and

1 -1 0
mwm ' =wy(a+pB)| 1 0 0
0O 0 -1

Therefore V' is conjugate to the subspace of M3(F') spanned by

0 0 1 0 0O 1 -1 0
0 0 0 |, 00 1], 1 0 0
0 0 O 0 0 O 0o 0 -1
We note that the subspace of M3(F") spanned by
0 01 010
0 0O and 0 0 0
0 0 O 0 0 O
is not conjugate to the one spanned by
0 0 1 0 0 0
0 0 0 and 0 0 1
0 00 0 00

Thus, we have the following theorems:

Theorem 5.3.2 Suppose that F' contains a primitive cube root of unity.
The cubic pairs (A, V) over F with a triple line as associated cubic curve
and such that €3 = 0 implies £2 = 0 for all € € V, are F-isomorphic to
the pair (Mg(F), V) where V is the subspace of M3(F) spanned by
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0 0 1 0 1 0 1 0 0
e cither | O 0 O |, O O O |,] O w O
0 0 O 0 0 O 0 0 w?
0 0 1 0 0 O 1 0 0
eor| 0O O |,{O0O0OT1],1] 0 w O
0 0 O 0 0 O 0 0 w?

There are exactly two such cubic pairs up to isomorphism.

Theorem 5.3.3 Suppose that F' does not contain a primitive cube root
of unity. The cubic pairs over F with a triple line as associated cubic
curve are F-isomorphic to the pair (Mg(F), V) where V is the subspace
of M3(F) spanned by

0 01 0 10 10 O
o either | O O 0 |, O O O ), 0 0 -1
0 0 O 0 0 0 01 -1
0 0 1 0 0 0 1 -1 0
eor( OO O |, OO0 1], 0 0
0 0 0 0 0 0 -1

There are exactly two such cubic pairs up to isomorphism.

5.4 Double line plus simple line

We want to describe up to conjugacy the F-cubic subspaces of Ms(F')
such that the associated cubic curve is a double line plus simple line.

Thereto, suppose that V is a cubic subspace of M3(F) such that the
cubic curve {fy(§) = 0} is a double line plus simple line. There exist
linearly independent ly,ls € Vg, such that fy = 1315. Clearly the lines
{l1(¢) = 0} and {l2(&¢) = 0} are invariant under the action of I. So there
exist linearly independent ¢; € V* and p; € Fsip such that I; = p;p;.
Hence fy = Ap?ps with A = p2us € F. Replacing o by A lyg if
necessary, we may assume that A\ = 1. Let (u,v,w) be a basis of V' such
that ¢1(u) = p2(v) = 1, the vectors u, w span the kernel of ¢o and v, w
span the kernel of ¢;. Because tr(u?v) # 0 we have u? # 0. Since u® =0
we may assume that

0 1 0
u = 0 0 1
0 0 O
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For all £ € V', we have tr(§) = 0 and tr(u€) = 0, so

&33 = —&11 — a2, &32 = 1.

Case 1: Suppose that v?> # 0. By Lemma 4.2.4 and since u and v
are determinant zero matrices of V such that v? # 0, tr(u?v) # 0 and
tr(uv?) = 0, we may assume that
0 0 O

v=| 1 0 O

1 -1 0

Because tr(vw) = 0, tr(u?w) = 0 and tr(v2w) = 0, we have

wez = w12, w31 =0, wiz =0.

So tr(w?) = 0 implies way = pw;; for some primitive cube root of unity

p € Fiep, next tr(uvw—+uwv) = 0 implies wig = %wu and tr(vw?) = 0
implies w11 = 0. Hence

0 0 0

w = w1 1 0 0

0 -1 0

and V is the subspace of M3(F') spanned by

0 10 0 0 0 0 0 0
00 1], 10 0}, 0 0 0
0 0 0 0 -1 0 1 0 0

Case 2: Suppose that v2 = 0. We use the following lemma:

Lemma 5.4.1 Let V be a cubic subspace of Mg(F') and u,v € V deter-
minant zero matrices such that v: = 0 and tr(u?v) # 0. Then there exist
m € GL3(F) and scalars A\, u € F* such that

010 0 00
mum ™ =X 0 0 1 and mvmt=p| 0 0 0
0 00 1 0 0
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Proof : Because u® = 0 and u? # 0, we may assume that
010
U = 0 0 1
0 0 0
Since tr(v) = 0, tr(uv) = 0, tr(u?v) # 0, we have
U3z = —U11 — U22, U3z = —U21, V31 # 0.

Put o := vllvg_ll and 3 := U21’U3_11 then v? = 0 implies

a —aff a(-a+p?%)
v=uvs | B B> B(—a+pF?)
1 —p —a+ (2
The invertible matrix

1 -8 —a+p3?

m=| 0 1 —p
0 O 1
is such that mum~! = v and
0 0 O
mom ™! = V31 0 0 O
1 0 0

O

Since u,v € V are determinant zero matrices such that v> = 0 and
tr(u?v) # 0, we may assume that

0 0 O
v=1| 0 0 0
1 0 0
We have

w31 =0, wiz =0, waz = —wi2

because tr(u?w) = 0, tr(vw) = 0 and tr(uvw + vwv) = 0. Then the
relations tr(vw?) = 0, tr(w?) = 0 and w3 = 0 imply w2, w11, wae = 0.
Thus

0O 0 O
w = w1 1 0 0
0 -1 0

and we obtain the same subspace as in the first case. So we obtain the
following theorem:
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Theorem 5.4.2 Up to F-isomorphism, there is one F'-cubic pair such
that the associated cubic curve is a double line plus simple line, namely
the pair (Ms(F'),spang(u,v,w)) where

0 10 0 0 0 0 0 0
v=| 00 1 |,v={00 0 ])],w=[1 0 O
0 0 O 1 0 0 0 -1 0

5.5 Three concurrent lines

We want to describe up to F-isomorphism the F-cubic pairs such that
the associated cubic curve is three concurrent lines.

Suppose that V' is a cubic subspace of M3(F') such that the curve
{fv (&) = 0} is three concurrent lines. Then there exists a basis (u,v,w)
of Viep such that

fv(zu +yv + 2w) = 22y + y>.

Since tr(u?v) = 1 we have u? # 0. But u® = 0 so we may assume that

<

Il
o O O
O O =
o = O

If £ € Viep, then
€33 = =& — €22, &32 = =&

because tr(§) = 0 and tr(u&) = 0. We have
w31 =0, wa1(2w11 + wa2) =0

since tr(u?w) = 0 and tr(uw?) = 0. Suppose that ws; = 0, then we
have wos = pw; for some primitive cube root of unity p € Fi, because
tr(w?) = 0, and w® = 0 implies wy; = 0. Therefore w? = wiawazu?
and uw + wu = (w12 + wez)u®. But tr(u?v) # 0, tr(w?v) = 0 and
tr(uwv 4+ wuv) = 0, s0 w1z = wo3 = 0 and w = wyzu?. Since tr(u?v) # 0
and tr(vw) = 0, we have wy3 = 0 and so w = 0; we get a contradiction.
Thus we have wg; # 0, and u? and w?
Lemma 5.2.1, we may assume that

are linearly independent. By

0 0 0
w = 1 0 O
0 -1 0
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We have
v31 = 1, vag3 = v12, v13 =0

since tr(u?v) = 1, tr(vw) = 0 and tr(vw?) = 0. Then tr(v?) = 0,
tr(uvw + vwov) = 0 and v* = 0 imply

0 0 0
v = V21 0 0
1 —V21 0

and this contradicts the fact that tr(uv?) = 1.
Therefore we obtain the following result:

Theorem 5.5.1 There is no cubic pair over F such that the associated
cubic curve is three concurrent lines.

5.6 Conic plus tangent

We want to classify up to F-isomorphism the F-cubic pairs such that
the associated cubic curve is a conic plus tangent.

Suppose that V is a cubic subspace of M3(F) such that {f(£) = 0}
is a conic plus tangent. Then there exists a basis (u, v, w) of Veep such
that

fv(zu +yv + 2w) = (2% — y2)z.

Since tr(vw?) # 0 we have w? # 0. So u and w are determinant
zero matrices such that w? # 0, tr(u?w) # 0 and tr(uw?) = 0 and

by Lemma 4.2.4, we may assume that
010 0 0 O
u=1| 0 0 1 and w=| 1 0 O
0 0 0 1 -1 0

Because tr(v) = 0, tr(uv) = 0, tr(u?v) = 0, tr(vw) = 0 and tr(vw?) = —1,
we deduce that

U1l V12 1
v=| w21 w22 v12 +1
0 —wy —vi1 —v22

Then tr(uv?) = 0 implies vo1 (2011 + v22) = 0. Suppose that ve; = 0,
then vi; = 0, v2o = 0 and v12 = —3 because tr(v?) = 0, v = 0 and
tr(uvw+uwv) = 0; it contradicts the fact that tr(v2w) = 0. Now suppose
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that vo; # 0, then vos = —2v1;. We have vy = —% and vg = 311%1
because tr(uvw + uwv) = 0 and tr(v?) = 0. Since tr(v?*w) = 0 and
v3 = 0, we have

1
6vZ, — 3v11 + 1= 0 and v3(1—9vy;) =0;

which is impossible.
We proved the following:

Theorem 5.6.1 There is no F-cubic pair with a conic plus tangent as
associated cubic curve.

5.7 Conic plus chord

We want to classify the F-cubic pairs such that the associated cubic
curve is a conic plus chord. To do this we need to describe a cubic form
over V with a conic plus chord as associated cubic curve.

Proposition 5.7.1 Let f € S*(V*) be a singular cubic form such that
the cubic curve {f(§) = 0} is a conic plus chord. Then there exist a
basis (u,v,w) of V and non-zero scalars a,b € F such that

flzu+yv+ zw) = (22 — ay® + b2?)2.

Proof : There exist ¢ € S*(V%,) and [ € V%, such that f = ¢-I. Since
I' acts trivially on the line {I({) = 0} we may assume that | € V*.
Let (u,v,w) be a basis of V such that {(w) = 1. We know that the
curve {f(£) = 0} has two distinct singular points p; and ps. Thus the
subgroup of I" which leaves the singular points invariant has index less
than or equal to 2 and the singular points are defined over a quadratic
extension of F'. Let a € F'* be such that the singular points are defined
over F(yv/a) (if T' acts trivially on the singular points, we may choose
a € F*?). We know that the line {I(£) = 0} passes through the singular
points and is not the tangent at these points. Changing the basis if
necessary we may assume that p; = (yau+v)F and ps = (—au+v)F
are the singular points and the tangents at these points intersect at wF.
Let A j & € F be such that ¢(zu + yv + zw) is equal to

22,007 + X209 + X0.0.22° + A11.07Y + A 0122 + Ao1.1Y2-

Since p; and p, lies on the conic {g(¢) = 0}, we deduce that A1 19 =0
and A\g20 = —aM20,0. The F-points of the tangent to {g(¢) = 0} at
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p1 are the points (zu 4+ yv 4+ zw)F for all x,y,z € F not all zero such
that © = /ay, so Vali,01 + Xo,1,1 = 0. Similarly, using the tangent
to {q(&) = 0} at pa, we deduce that —v/ar1 91 4+ Ao1,1 = 0, and thus
)\170’1 = )\071’1 = 0. Hence

flau+yv + zw) = ()\270,0932 - a)\27070y2 + )\0,072,22)2

with A20,0, A0,0,2 7 0 since ¢ is irreducible. Replacing w by Ag’(l)!ow we
may assume that As 90 = 1. Thus

fluz +yv + zw) = (2? — ay® + b2%)z
where a, b #£ 0. O

Let V' be a cubic subspace of M3(F') such that the curve {fy (§) = 0}
is a conic plus chord. By the previous lemma, there exist a basis (u, v, w)
of V and non-zero a,b € F such that

fv(zu +yv + 2w) = (2% — ay® + b2?)z.

Since u® = 0 and tr(u?w) # 0, we have u? # 0 and we may assume that
010
u=| 0 0 1
0 0 0
Then for £ € V, we have

€33 = =& — €22, &32 = =&

since tr(¢) = 0 and tr(ué) = 0. Because tr(u?v) = 0 and tr(uv?) = 0, we
deduce that
v31 =0, v21(2011 + v22).

Suppose that vo; = 0, then tr(v?) = 0 and v* = 0 imply

0 w2 w13

v = 0 0 V23

0 O 0
So v? = wviavezu? and wv + vu = (via + vez)u?. But tr(uw) = 1,
tr(v?w) = —a and tr(uvw + vwv) = 0, thus vey = —v12 and v}, = a.

Hence a € F*? and we may assume that a = 1 and v15 = 1. Put
1 2 0
*— v
m==|0 1 4
0 0
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then m is an invertible matrix such that mum~—! = u and
0 1 0
mom =0 0 -1
0 0 O
So we may assume that v;3 = 0. Since tr(vw) = 0, tr(v?w) = 1,
tr(uw?) = 0, tr(vw?) = 0 and tr(w?) = 0, we have
wo1 =0, wz1 =1, wiz =0, waz =0, wiz = —w} — w3, — WiWwo.

We have was # 0 because w? # 0. The invertible matrix

1

is such that mum=1, mvm=! € spanp(u,v) and

0 0 -1
mwm P =we | 0 1 0
1 0 -1

So V is conjugate to the subspace of M3(F') spanned by

010 01 0 00 -1
00 1], 00 -1 ], 01 0
0 00 00 O 1 0 -1

Now suppose that vo; # 0, then u? and v? are linearly independent.
Since (zu+ yv)? =0 for all x,y € Fyep, by Lemma 5.2.1 we may assume
that

0 0 0
v=| 1 0 O
0 -1 0
Since we know that tr(u?w) = 1, tr(vw) = 0, tr(uvw + uwv) = 0,

tr(uw?) = 0, tr(w?) = 0, tr(vw?) = 0 and w? # 0, we have

w11 0 —3’(1}%1
w = 0 —211)11 0
1 0 w11
with wy; # 0. Since a = —tr(v?w) = —3w?, and b = w® = —8w3,,

we deduce that a € F(w)*? and b € F*3. Suppose that F contains a
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primitive cube root of unity, then we can change the basis (u,v,w) of V
so that
fv(zu+yv + 2w) = (22 + 3y* — 82%)2.

Thus we may assume that

1 0 -3
w = 0 -2 0
1 0 1

Therefore, the vector space V is spanned by

01 0 0 0 O 1 0 =3
oo01]}),{1 0 O0],{0 -2 0
0 0 0 0 -1 0 1 0 1

We proved the following:

Theorem 5.7.2 Suppose that F' contains a primitive cube root of unity.
The F-cubic pairs such that the associated cubic curve is a conic plus
chord are F-isomorphic to the pair (Mg(F), V) where V' is the subspace
of M3(F) spanned by

0 1 01 0 0 0 -1
e either | 0 0 1 |, 0o o0 -1 1, 0 1 0
0 0 0 0 O 1 0 -1
01 0 0 0 O 1 0 =3
eor| 0 0O 1 |, 1 0 0], 0 -2 0
0 0 0 -1 0 1 0 1

Theorem 5.7.3 Suppose that F' does not contain a primitive cube root
of unity. The cubic pairs over F' with a conic plus chord as associated
cubic curve are F-isomorphic to the pair (Mg(F),V) where V' is the
subspace of Ms(F') spanned by

01 0 0 1 0 0 0 -1
e cither | 0 0 1 |, o o0 -1 |, 0 1 O
0 0 O 0 0 O 1 0 -1
01 0 0 0 O « 0 —30?
e or 0 1 , 1 0 O , 0 —2«a 0 ,
0 0 0 -1 0 1 0 a

for some o € F.
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5.8 Cuspidal curve

We want to classify up to F-isomorphism the F-cubic pairs such that
the associated cubic curve is cuspidal. First we need to describe a cubic
form over V with a cuspidal associated cubic curve.

Lemma 5.8.1 Let f € S*(V*) be such that the curve {f(£) = 0} is
cuspidal. Then there exist a basis (u,v,w) of V and a non-zero A € F
such that

fzu +yv + zw) = M\(2% + 22y).

Proof : The cubic curve {f(£§) = 0} has one flex, one singular point and
one tangent at the singular point which are all defined over F,. Thus
these points and their tangents are invariant under the action of I' and
so there are defined over F. Let u,v,w € V be such that uF is the
flex, vF is the singular point and wF is the intersection F-point of the
tangents. Then (u,v,w) is a basis of V.. Let A; j 1 € F be such that

flzu+yv + 2w) = Z Nijrriy? 2"

where the sum runs over all the positive integers i,j and k such that
i+j+k=3. Since uF is a flex of {f(£) = 0} and the F-points of
its tangent are the (au + fw)F for all o, 3 € F not both zero, the root
z = 0 of the polynomial

flu+2w) = 300 + A2,0,12 + A1,0,22° + Xo,0,32°

has a multiplicity equal to 3. Therefore A300 = A2,0,1 = A1,02 = 0 and
X0,0,3 7 0. Because vF is a singular point and the F-points of its double
tangent are the (av + Bw)F for all o, 8 € F not both zero, we have

A0,3,0 =A0,1,2 = A1,2,0 = A1,1,1 = Ao,2,1 = 0 and Ao 19 # 0.

Hence
flzu+yv + 2w) = X 032° + A2.1,07°y.

Replacing v by )\277%,0)\0’0,31), we may assume that A2 1,0 = Ag,0,3 and
flzu+yv + zw) = Ao 03(2% + 2%y)

as wanted. O

Suppose that V' is a cubic subspace of M3(F') such that the curve
{fv (&) = 0} is cuspidal. We shall describe V up to conjugacy. By the
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previous lemma, there exist a basis (u,v,w) of V and a non-zero A € F
such that

fv(zu + yv + 2w) = X2 + 2%y).

Suppose that v2 # 0. Since u,v € V are determinant zero matrices such

that tr(u?v) = X and tr(uv?) = 0, by Lemma 4.2.4 we may assume that

01 0 0 0 O

u=| 0 0 1 and v=A[ 1 0 O

0 00 1 -1 0

Since tr(w) = 0, tr(uw) = 0, tr(u?w) = 0, tr(vw) = 0, tr(v*w) = 0,
tr(uvw + vwv) = 0 and tr(vw?) = 0, we deduce that

w11 0 0
w = W21 72’[1)11 0
0  —wa wn

Then tr(w?) = 0 imply w11 = 0 and it contradicts the fact that w® = 0.
Suppose that v? = 0, since tr(u?v) = X # 0, by Lemma 5.4.1 we may
assume that

01 0 0 0 O
u = 0 0 1 and v=A| 0 0 O
0 0 O 1 0 0

Since tr(w) = 0, tr(uw) = 0, tr(u?w) = 0, tr(vw) = 0, tr(uvw +uwv) = 0
and tr(vw?) = 0, we have

w11 0 0
w = w21 W22 0
0 —W21 —Wi1 — W2

So tr(w?) = 0 implies way = pwy; for some primitive cube root of unity
p € Fiep. Since w® = X\ # 0 we have w1 # 0 and the cube root p is in F.
Then tr(uw?) = 0 imply wae; = 0. Therefore V is the subspace of M3(F')
spanned by

So we obtain:



5.9 Nodal curve 115

Theorem 5.8.2 Suppose that F' does not contain a primitive cube root
of unity, then there is no F-cubic pair with a cuspidal associated cubic

curve.

Theorem 5.8.3 Suppose that F' contains a primitive cube root of unity
and (A,V) is a F-cubic pair such that {fa,v(§) = 0} is cuspidal, then
(A,V) is F-isomorphic to the pair (Ms(F'),spang(u, v, w)), where
01 0 0 0 0 1 0 O
u=[001),o=l00 0], w=[0p 0
0 0 O 1 00 0 0

(V]

p

for some p € F such that p> 4+ p+1 = 0. There are two such cubic pairs
up to isomorphism.

Proof : Let W be the subspace of M3(F') spanned by u,v and

1 0 0

0 w O

0 0 w?
and W’ the one spanned by u,v and

1 0 O

0 w? 0

0 0 w

Suppose that m € GL3(F) is such that mWm™! = W’. Since uFse, is
a flex of {fw(§) = 0} the point m * uFy, is a flex of {fw (&) = 0}.
Therefore m * uFsp, = uFse,. We can also prove that m « vFep = vFep.
By straightforward computations we deduce that

A2 0 0
mFy, = 0 X 0 |Fg
0 01
for some X\ € F.X, and mwm ™! = w; so we get a contradiction. a

sep

5.9 Nodal curve

Suppose that V' is a cubic subspace of M3(F') such that {fy(£) = 0} is
nodal. We want to describe V' up to conjugacy. Thereto we first describe
those cubic forms over F' which have a nodal associated cubic curve.
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Lemma 5.9.1 Let f € S3(V*) be such that {f(&) = 0} is nodal. Then
there exist a basis (u,v,w) of V and \, u,v € F with pn # 0 such that

flzu+yv 4 zw) = A\23 4+ 29® — pxz? + vy
Moreover uFyep is the unique singular point of {f(§) = 0}.

Proof : The curve {f(£) = 0} has a unique singular point, thus it is
defined over F. Let u € V be such that uF is the singular point. The
three flexes of { f(§) = 0} are collinear, hence there is a unique line which
passes through the flexes and it is defined over F'. At the singular point,
there are two simple tangents, so these tangents are defined at least over
a quadratic extension of F. Let v,w € V be linearly independent and
b € F'* such that vF and wF lie on the line passing through the flexes
and the F-points of the tangents at the singular point are the points
(xu + yv + 2w)F for all x,y,z € F not all zero such that y? — bz? = 0.
Let A; j 1 € F' be such that

flzu+yv + 2w) = Z /\i,j,kxiyjzk = c(z,y,2).
i+j+k=3

Then the first partial derivatives of ¢ cancel at (1,0,0), so
A3,0,0 = A2,1,0 = A2,0,1-
Using the tangents at uF, we have
A1,1 =0, A2 =—bA120, A20F0.

Let h € S3(V*) be defined by

o 9?2 9?2

ng (a) BzQBCy ( ) 89028Cz (a’)

h(a1u + agv + azw) = det aigy (a) g—gg(a) a?,acz (a)
2 2

() gaz(a)  FE(a)

for all @ = (a1, a2, as), so that {h(§) = 0} is the Hessian curve H;. Then
h(yv + zw) is a multiple of

X129 + 6200212 + (26X0.2.1 + 3X0,03)y%2 + (2bX0.1.2 + 3b* X0 3,0)y2>.

Since the F-points of the line passing through the flexes are the points
(xu + yv + 2w)F for all 2,9,z € F not all zero such that x = 0, we
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deduce that h(yv + zw) is a multiple of f(yv + zw). Thus there exists
o€ F" such that

20,3,0 = @Ao,1,2,

Xo0,0,3 = ab*Xo 2,1,

A0,2,1 = (20X0,2,1 +3X0,0.3),
No,1,2 = (2bXo,1,2 + 3b%X0.3,0)-

If )\0’271 = )\071’2 = 0 then )\073’0 = )\070’3 =0 and f is reducible. Thus
either A\gp21 # 0 or Ag,1,2 # 0 and we obtain that 36202 + 2ba — 1 = 0.
Hence either a = —% or a = i. If a= —%, then

Ao,1,2
b

flzu+yv+ zw) = ( - Y+ X212+ /\1,2,056) (y* — bz%);

this is impossible because f is irreducible. Thus a = ﬁ and we obtain

that f(zu 4+ yv + zw) is equal to

0,12 bAo 2.1
3767 y3 + 3 =23 4 /\1,2,033192 + /\0,2,1y22 - b)\1,2,0$22 + /\0,1,2y22-
Replacing u by )\féjou we may assume that A; 20 = 1. Now we put
ui=u, v = —)‘O?;;’Qu + v, w = —Xp21u + w, then

X012 o

4
+ zy? — bz + Tyz

4b\
flzu +yv’' + 20') = 7:;)’2’1 23

in which indeed b # 0. a

We keep the notation as in the statement of the lemma.
Suppose that u? # 0. Since tr(u?v) = 0 and tr(uv?) = 1, we may
assume that

0 0 O 0 1 0
u = 1 0 O and v = 0 0 1
1 -1 0 0 0 O

Since tr(w) = 0, tr(uw) = 0, tr(u?w) = 0, tr(vw) = 0 and tr(v?w) = 0,
we have

w1l Wiz 0
w = w21 w22 w12
0 —wo —wip —wo

Then tr(w?) implies wag = pw1; for some p € Fyep such that p>+p+1 = 0,

2
and tr(vvw—+uwv) = 0 implies wis = pT—le. We have wy; # 0 because
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w3 # 0 and in particular p € F. Hence V is conjugate to the span of

01 0 0 0 0 1 0 0
oo 1|,{1t o o],lop o0
000 1 -1 0 a 0 p?

for some o € F. So we obtain:

Theorem 5.9.2 Suppose that F' does not contain a primitive cube root
of unity. Then there is no F-cubic pair with a nodal associated cubic
curve and such that the unique singular point 4F satisfies 4% # 0.

Theorem 5.9.3 Suppose that F' contains a primitive cube root of unity
and (A, V) is an F-cubic pair such that {fav(€) = 0} is nodal with ©F
as the unique singular point. If 4> # 0, then (A, V) is F-isomorphic to
the pair (M3(F),spang(u,v, w)) where

0 0 0 01 0 1 0 O
U = 1 0 0 )],v=1001],w= 0 p O
1 -1 0 00 0 a 0 p?

for some o € F' and some primitive cube root of unity p.

Now we suppose that u? = 0. Since tr(uv?) = 1, we may assume that
0 0 0 010
u=1 0 0 0 and v=1| 0 0 1
1 00 0 0 O

Because tr(w) = 0, tr(uw) = 0, tr(uwvw + vwv) = 0, tr(vw) = 0 and
tr(v2w) = 0, we deduce that

w1l Wiz 0
w = w21 w2 —Wi12
0 —wy —wi1 —wa

Since tr(uw?) = —pu, we have w?, = p and in particular p € F*2.
Replacing w by wl_21w we may assume that wio = 1 and g = 1. Put
a :=wy; and 3 := way, then tr(w?) = 0 implies wq; = —%(oﬂ—l—ﬁz—i—aﬂ);
S0

« 1 0

w= | —i(a®+B2+ap) 3 ~1
0 1+ +af) —a-p

We proved:
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Theorem 5.9.4 Let (A, V) be an F'-cubic pair such that {fa,v (&) =0}
is nodal and @F its unique singular point. Suppose that 4> = 0 then

(A,V) is F-isomorphic to the pair (Mg(F'),spanp(u, v,w)) where

0 0 0 0 1 0
u=|000|,v=(0 01
1 00 0 00
o 1 0
and w = f%(a2+ﬂ2+aﬁ) Ié] -1
0 L+ +af) —a-p

for some a, 3 € F.

5.10 Triangle

We shall classify the singular cubic pairs over F' such that the associated
cubic curve is a triangle. To do this we follow the method described in
Section 4.1 which uses Theorem 4.1.2.

Triangles over the separable closure

Suppose that V' is a cubic subspace of Ms(Fsep) such that the curve
{fv (&) =0} is a triangle: there exists a basis (u,v,w) of V such that

fv(zu+yv + zw) = zyz.

We shall describe V' up to conjugacy.
First suppose that u? # 0, then we may assume that

01 0
u=1 0 0 1
0 0 0
For all £ € V, we have tr(¢) = 0, tr(ué) = 0 and tr(u?¢) = 0, so

£33 = —&11 — &22, &32 = —&a1, §31 = 0.

Since tr(uv?) = 0, we deduce that vo;(2v17 + vag) = 0. If vg; = 0, then
tr(v?) = 0 and v = 0 imply v1; = veg = 0, thus uv +vu = (vi2 +va3)u?.
But tr(v?w) = 0 and tr(uvw + uwv) = 1, so we get a contradiction. If
va1 # 0 then u,v € V are such that (zu+yv)® = 0 for all z,y € Fiep, and
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u?,v? are linearly independent, thus by Lemma 5.2.1 we may assume

that

0 0 O
v = 1 0 O
0 -1 0

Since tr(vw) = 0, tr(v?w) = 0, tr(vvw + uwv) = 0 and tr(w?) = 0, we
have

0 w12 0
w= | woy 0 w2 |,
0 —W21 0

and it contradicts the fact that u, v, w are linearly independent.
Next suppose that u? = 0, then we may assume that

0 0 1
0 0 O
0 0 O
For £ € V, we have tr(§) = 0 and tr(u€) = 0, hence

&33 = —&11 — &22 and &31 = 0.

Using the first case we know that v? = 0 and w? = 0; 50 V91032 = 0 and
worwzy = 0. Since tr(uvw + uwv) = 1, we have vsawgy + voywzs = 1,
hence either vzy = we; = 0 and wvey, w3y # 0 or vy = wsy = 0 and
vg2,wa1 # 0. By symmetry, we may assume that vsy = wo; = 0 and
vo1, w32 # 0. Replacing v by v;llv if necessary, we may assume that
vo1 = 1, and then wss = 1. Because v? = 0, we deduce that

2
V22 = —V11, V12 = —U11, V13 = V11V23.
Put
1 —wvi1 wvos
m = 0 1 0
0 0 1

then m € GLg(Feep), mum ™' = u and

0 0 O
mom ™! = 1 0 0
0 0 O

So we may assume that v1; = 0 and veg = 0. Since tr(vw) = 0 and
w? = 0 we have

2
W12 = 0, w11 = 0, W3 = 711.)22, w13 = 0
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Put
10 0
m = 0 1 —W22
0 0 1
then m € GLg(Fiep), mum ™! = u, mvm~! = v and
0 0 O
mwm™t = 0 0 O
01 0

So we proved the following:

Theorem 5.10.1 Suppose that (A, V) is a cubic pair over Fyep such that
the curve {fa,v(§) = 0} is a triangle, then (A, V) is isomorphic to the
pair (M3 (Fsep), spanp(u, v, w)) where

0 01 0 0 0 0 0 0
u=| 0 0 0 |,v=|(1 0 0 |],w=[0 0 O
0 0 O 0 0 O 0 1 0

Automorphism group

The cubic pairs over Fip, with a triangle as associated cubic curve being
classified, we compute the automorphism group of such cubic pairs. Let
A be the matrix algebra Ms(Fsp) and V' the subspace of A spanned by
u, v, w where

0 0 1 0 0 O 0 0 O
u=| 00 0 |,v=1 0 0 |, w=| 0 0 O
0 0 0 0 00 01 0

Suppose that m € GL3(Fiep) is such that mVm™! = V. The singular
points of the triangle {fa,v(§) = 0} are the points uFsep, vFsep and
Whgep. Thus m « uFep is equal to uFsep, VFsep OF Whep.

Case 1: Suppose that m x uFse, = uFsep, There exists A € F, such

sep
that mu = Aum, thus

Amgzz M2 M3
m

0 Moo  Ma3
0 0 mss

I ¢ V we have mia = mqs = 0 and then mwm™! € V

implies mo3 = 0. Thus m is diagonal matrix, and conversely, if n is

Since mvm~—
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an invertible diagonal matrix then we can check that nVn=! = V and
n* uFyep = uFp. Let Gy denote the subgroup of PGL3(Fiep) which

consists of the elements nFg, where n is an invertible diagonal matrix.

Case 2: Suppose that m x uFsp = vFsep. Put
0 0 1
m =1 0 0
0 1 0

then m'Vm/~! =V and m’~'m % uFsp = uFsep. Thus mlflmFsip € Go

and
mEX € m'FX

sep sep

Go.

Conversely, it is easy to check that nVn ™! =V and n * UFsep = VFep if
nFxX € m'FX Go.

sep sep

Case 3: Suppose that m x uFiep = wWFsep. Put

01 0
m’':=10 0 1
1 0 0

then m”Vm/”~! =V and m”~'m * uFie, = uFsep. Thus

mEYX € m'FX

sep sep

Go.

Conversely, if nFy, € m"Fg,Go then one can check that nVnl =V
and 1 x uFsep = WFep.
We proved that Aut(A, V) (Fep) is equal to

0 0 1 0 1 0
Go U 1 0 0 FX~G0U 0 0 1 FX~G0.
0 1 0 1 0 0

First cohomology set

Let A be the matrix algebra M3(F) and V' the subspace of A spanned
by

00 1 000 00 0
000 |,{1oo],[o0oo00
000 000 01 0

We want to describe the elements of the first set H*(F,Aut(A,V)) of
cohomology.



5.10 Triangle 123

First we prove that HY(I',Go) = 1. We consider the split exact
sequence of abelian groups

S

1 FX D /\\G 1
3 0

sep

where D3 is the subgroup of GL3(Fiep) of diagonal matrices and

a 0 0 1 0 0
s 0 b 0 |F,])=(0 bat 0
0 0 ¢ 0 0 ca™ !

It induces the following exact sequence

5
HY(T, D3) — HY(T,Gy) —— H(T, FX).

sep
But HY(T', D3) = 1 and Remark (28.7) in [Knus et al., 1998] says that &;
is trivial. Thus HY(T', Go) = 1.

Next we put G := Aut(A, V) (Fsep) and we consider the exact sequence
of groups

1 Go G G/GO — 1.

It induces an exact sequence

1=HYT,Gy) —— HYT,G) % HY(T,G/Gy)

where f([as]) = [asGo] for a 1-cocycle (ag)ser with values in G. The
mapping

0 01
10 0 | FXGo—1+3Z
0 1 0
defines a I-group isomorphism between G/Gy and Z/3. Suppose that

[as] € HY(T, G) is non-trivial, then there exists a Galois extension L over
F of degree 3 such that

{o €T |a, € Go} = Gal(Fiep/L).

Put I := Gal(Fip/L), then (as)scr is a 1-cocycle with values in Gy.
Since HY(I”, Go) = 1, there exists b € Gy, such that

ay = bo(b)~!
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for all o € T'. Replacing (ay)ser by (b_laaa(b))(IGF if necessary, we
may assume that a, = 1 for all o € I'V. Let og € I" be such that

00 1
a,,Go=[ 1 0 0 | EXGo.
010

Since L is a Galois extension of I, oI = I'Vo for all 0 € I'. So for all
7 € I there exists 7 € IV such that 709 = og7’. Let 7 € I, then

T(aao) = aTT(aJU) = Qrgq = Qoor! = aUQU()(aT’) = Qg

where 7/ € TV is such that 709 = g97’. Thus there exist A\, u € L such

that a, = mFg, and

3
I
o> o

0 1
0 0
w0
Using the fact that (a,)ser is a 1-cocycle, we deduce that

FZ, if o €TV,
if o € opl”,

— X
Ay = mFsep
moo(m)Fy, if o€ ogl’

for all o € T, and mog(m)og(m) € F,. We may assume that A = 0:
indeed put

A0 0
ci=|( 0 1 0
0 0 oo(N)
then
0 0 1
oo(cyme™t = | 1 0 0
0 g\ 0

Since mag(m)og(m) € F5, we have A € F*. Now suppose that the

1-cocycles (a1,4)oer and (as,q)ser are equivalent where
X 3 !
Feo if o eI,
aio =4 miFy, ifoe ool”,
2 17X 3 277/
mi;bg, ifo€ogl

and

&



5.10 Triangle 125

with \; € F*. Then we can prove by straightforward computations that

Aoy € NL/F(LX))\l.

Classification

Let A be the matrix algebra M3(F') and V' the subspace of A spanned
by

0 01 0 00 0 0 0
u=|100 0 |,v=11020 |, w=1]0 00
0 0 0 0 00 01 0

We shall describe the isomorphism classes of F-cubic pairs which are
isomorphic to (A4, V)r,, over Fyp. We know by Theorem 4.1.2 that they
are in correspondence with the elements of Hl(F,Aut(A,V)). Let «
be a non-trivial cocycle with values in Aut(A, V'), then by the previous
subsection there exist a non-trivial Galois Z/3-algebra (L, p) and a scalar
w € F* such that [o] = [a,] where

y . .
Fg, if o|p =idy,
— X 3 —
ag =4 mFg, if ol = p,

2 X : 2
miFg, ifolp=p

for all o € T', and

0 1
m = 1 0
0 0

= o o

The F-cubic pair corresponding to [a] is the pair (A’, V') where

A = {£e AL |mp(©mTt =¢},
Vo= {ge Vi |mp(©m Tt =¢}

Suppose that F' contains a primitive cube root of unity. Let § € L
be such that §3 = d € F and p(f) = wf. Put

§o = utv+pw,
n = 6Ou+whv+ wubw,
G = Pu+ w0+ wubw

then &g, 70, (o are linearly independent matrices of V' such that &3 = p,
ns = du and &mo = w?npéo. Therefore V' is the subspace of M3 (Fiep)
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spanned by &o, 10, (o and A’ is the symbol algebra (du, i), » generated

by & and 1. We have
2

Co = %5377(2)
and f is semi-diagonal:
f=a&g® +bug® + c(5® — 3N
for some a,b,c, A € F which satisfy the relation
abe = \3

and where (£5,m5,(}) is the dual basis of (&g, 70, Co)-

Theorem 5.10.2 Suppose F contains a primitive cube root of unity.
Then, up to F-isomorphism, the F-cubic pairs with a triangle as asso-
ciated cubic curve are the pairs

((a7 b)w,F7 SpanF<§0a Mo, 58773»

for all a,b € F*, where & and ng are generators of the symbol algebra
such that £ = a, 13 = b and &no = wnolo. The cubic forms associated
to these cubic pairs are semi-diagonal.

Now suppose that F' does not contain a primitive cube root of unity
and F is infinite. Let 6 € L be such that its minimal polynomial over
F is equal to 2° — 3z + \ for some A € F'\ {2 — 2}. Put ¢’ = p/(#) and
0" = p*(0). Then we may choose a square root zg of (4 — A?)/3 in F
and a cube root ¢ of (A + (w — w?)xg)/2 in Fy,p such that

0 = 7¢7¢717
-0+
/ _ _ 21 —
0 = wo —w P 5
—-0-9¢
nooo_ 20 -1 _
0" = w d —wo 5

where § = x5 (26% + \0 — 4). Put

o = ututpw,

1 1
Mo Ou + 5(—9 + 5)1} + 5(—9 - 5)/111},

1 1
G = 5u+§(—39—6)v+§(39—5)uw
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then &g, 19, (o are linearly independent vectors of V’. Put

. 1 +w—w2
m = 2770 6

(o = Pu +whv + w?Ppw

then & = p, 9} = ¢ and &y = w?m&. Therefore A’ @ F(w) is the
symbol algebra (¢, )w, F(w) generated by {o and 7. Put ny = ptedm,
then 13 = ¢* and no7z = 1. Hence the subfield L' := F(—ny —ny ') of
A’ is a Galois extension of degree 3 over F' with Galois group generated
by 7 where 7(—ns — 15 1) = —wnp —w?n, 1. Since &ynp = Wy we have

So(=m2—n3 ") =7 (—n2 — my "o

Thus A’ is the cyclic algebra (u, L'/F, %) generated by & and L’. We
observe that the mapping —n,—n5 1+~ 0 defines an isomorphism between
(L',7) and (L,p). Furthermore 1y = &mns and (o = & (ns + 27(n3))
where 13 = —n9 — 772_1. In particular V' = §L’'. By Lemma 3.2.3 we
know that the cubic form associated to (A’, V') is a semi-trace form since
{far,v/(§) =0} is a triangle. More precisely we have

farv(€0€) = ENpryp(€)

for all £ € L’. We can also write

F(&) =Tr/r(a©(€)?) = 3uNkr (0(€))

where K = F x F(w), ©: V — K is the F-vector space isomorphism
defined by

O(x&o + ymo + 2¢0) = (z, —y — (w — w?)z)

and a = u(1,¢%). Note that the elements a and u satisfy the relation
Ng/p(a) = p3. However, the cubic form fa/ v+ is not semi-diagonal.
Indeed, if far v+ is semi-diagonal, then the lines of the cubic curve
{far,vy = 0} are defined over F' and also their intersection points; this
contradicts the assumption that F' does not contain a primitive cube
root of unity.

We note that V is spanned by

o = ututpw,

1 1
Mo Ou + 5(—9 + 5)1} + 5(—9 - 5)/111},

1 1
G = 5u+§(—39—6)v+§(39—5)uw
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for # = —2 and § = 0. The matrix 1y = p~1¢2n; where

1 w— w?

m = —57704' 6

is such that 73 = ¢3 for ¢ = 1. Put

Co

N3 = —mp — 15, = —wine —wny

then no = &mns and (o = &o(ns + 2n5). Put L' := F & Fns @ Fni and
let p be the F-algebra automorphism of L’ defined by p(ns) = n4 and
p(n}) = —n3 — n%. There exists an F-algebra isomorphism ¥: L — F3
such that

p(¥71(1,0,0)) = ¥'(0,1,0) and p(¥~'(0,1,0)) =¥ '(0,0,1).

It is also true that A = @?:0 L€} where && = p(€)& for all € € L.
Note that

Fav(€) = Trpxr()/r(a©(€)?) = 3uN(rx p(w))/F (O(6))
where ©: V — F x F(w) is defined by
O(z&o + ymo + 2G0) = (2, —y — (w — w?)2),
a = u(1,$3) and N(rxp)) rla) = p3. But fa v is also semi-diagonal:
fay = urvrw*
where (u*,v*, w*) is the dual basis of (u,v,w).
Theorem 5.10.3 Suppose that F is infinite and does mot contain a

primitive cube root of unity. Up to F-isomorphism, the F-cubic pairs
with a triangle as associated cubic curve, are either

(Mg(F),spanF<u,v,w>)

where
0 0 1 0 0 O 0 0 0
u= 00 0 ],v= 1 0 0|, w= 0 0 O
0 0 O 0 0 O 0 1 0

or the pairs

((,LL, L/Fv p)v €0L)
for all non trivial isomorphism classes [(L, p)] of Galois Z/3-algebras and
Jor all uNp/p(L*) € F*/Np,p(L*), where & and L = F(0) generate
the cyclic algebra such that & = u, 0 — 30 € F and &0 = p(0)&. The
associated cubic forms are semi-diagonal.



Conclusion

We shall summarize our results on the classification of cubic pairs.

First we deal with the non-singular cubic pairs over the field F' and
we assume that F' contains a primitive cube root of unity. By Theo-
rems 4.4.1, 4.4.5 and 4.5.1, if (A, V) is a non-singular cubic pair over F
then there exist a,b € F* and o € F such that (A4,V) is F-isomorphic
to

((a,b)w, 7, sPanp (€0, mos Eotp + &3m5) )
where &y,m0 are generators of the symbol algebra (a,b), r such that

6 = a, n3 = b and &y = wio&o.
Conversely, let a,b € F* and o € F. Put A := (a,b),, r and

V= span (€0, 0, Eomy + €5m;)
where &gy, 79 are generators of the symbol algebra A such that
& =a, my =0, Eno=wnolo.

One can check that (A, V) is a cubic pair over F. The associated cubic
form fa,y is semi-diagonal:

fav (@& +yno + 2(0) = ax® + by® + (ab® + aa?b?)2® — 3(w?aab)ryz.
Observe that
ab(ab® + a?a®b?) — (waab)® = a*b® # 0,

thus by Lemma 3.1.2 the cubic form f4 y is non-singular if and only if
ab? +a2a®b? £ 0, ie. a® # —a~l.

Lemma. With the notation as above and o3 # —a™', the cubic pair
(A, V) is of the second kind if and only if a = 0.

129
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Proof : Suppose that o = 0 then

(A7 V)Fsep = (MS(Fsep)a spanFsep <§la Ui 5177%>)

with
010 1 0 0
&LE=10 01 and n; = 0 w O
a 0 0 0 0 w?
Let 6 € Fip be a cube root of a and put
w20> 0 0
m = 0 g 0 |,
0 0 1
then
0 w O 1 0 0
mé&mt=whd| 0 0 w? and mgm =10 w 0
1 0 0 0 0 w?

So spany, (&1,m,&nf) is conjugate to the subspace of M3(Fiep) spanned
by

01 0 10 0 0 w 0
001 |,{0w o0].,l00 w
1 00 0 0 w? 1 0 0

Using the proof of Theorem 4.3.9 we deduce that the automorphism
group of (A,V)p,, is isomorphic to Z/3 x Z/3; therefore (A,V) is a
cubic pair of the second kind.

Conversely, suppose that (A4,V) is a cubic pair of the second kind.
By Theorem 4.3.9 the subspace V is conjugate to spang, (€0, M0, E0mB)-
So there exist an m € GLg(Fsp) and A;, pi, v; € F not all zero such that

mé&em™" = A&+ pno + v (Eomg + a&gnp),
mnom™" = Ao + pamo + va(Eomg + a&3mg),
méomgm ™" = As€o + psno + vs(&oma + a&dng).

Since the coefficient of £3m9 in mé&ynom ~t —wmmne&em 1! is equal to zero
we have vi1vy = 0. Similarly we can prove that v;v3 = 0 and vers = 0.
We cannot have v; = v3 = 0, since otherwise

méo(&ong)m ™" = wm(&mg)éom ™"
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implies m&m ™! = puyny and m&endm =1 = A\3&o, and then
mé&o(€omp)*m ™" # wab(Aa&o + pano + va(Somg + a&mg))-
Similarly we cannot have vo = v3 = 0, thus v; = v, = 0. Because
m&onom " = wmae&em ™!
we have m&om~! = A& and mngm =t = pane. Then
2, -1 _ 2 2,2

m&ongm™ = Az&o + pano + v3(§omy + apmp)

implies o = 0. O

We obtain the following theorem:

Theorem 1 Suppose that F contains a primitive cube oot of unity. Up
to F-isomorphism, the non-singular cubic pairs over F are the pairs

((asb)w,r,spanp (€, no, Somg + &ong))

for alla,b € F* and o € F with a® # —a™', where £, 10 are generators
of the symbol algebra such that & = a, n3 = b and &mno = wnoéo. Such
a cubic pair is of the second kind if and only if o = 0. The associated
cubic form is always semi-diagonal and it is diagonal if the pair is of the
second kind:

3
(z&o +yno + 2(Eomp + a&img))” = ax® + by® + cz® — 3Aayz

where ¢ = ab® 4+ a3a?b?, A = w?aab and a=?(abc—\3) = b3 is a non-zero
cube in F.

Now we suppose that F' does not contain a primitive cube root of
unity and is infinite. By the remarks preceding Theorems 4.4.2, 4.4.6
and 4.5.2, if (A,V) is a non-singular cubic pair over F', then there exist
a Galois Z/3-algebra (L, p) and a,, 8 € F, a # 0 such that

2
(A, V) = (@ Le', span (€0, 7o, Co>>
i=0

with e = p(&)e for all £ € L, €2 = a and
So=e, no=(a+pBe+e)t, (o= (a+fe+e)p(t)
where 1,¢, p(t) span L and

(z—t)(z—p))(z—p*(t) =2° — 3z + A
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for some A € F.
Conversely, let (L, p) be a Galois Z/3-algebra and a,«a, 3 € F such
that a # 0. Let t € L be such that 1,¢, p(t) span L and

(z—t)(z — p(t)) (z — p*(t)) =2® =3z + A

for some A € F. We may name 6,6’,6” the roots of 23 —3z+ \ in Fyep 50
that there exists an F-algebra isomorphism ¥: L — F @ Ft @ Ft’ with
U(t) =1, and ¥(p(t)) =t where

6 0 0 g 0 0
t=(0 ¢ 0 |, t=|0 6" 0
0 0 ¢ 0 0 6

Thus we may assume that L = F & Ft & Fp(t) with t = ¢ and p(t) = /.
Put

0 1 0
e .= 0 0 1
a 0 O

then e® = a and ef = p(€)e for all £ € L. Put

2

A= @Lez and V := SpanF<£0an07 CO>
=0

where
Co=e, mo=(a+pBe+et, (o= (a+PBe+e?)(t+2p(1)).

Then (A,V) is a cubic pair if and only if 3 = a~'a?. Suppose that
B = a"ta?. There exist a square root zg € F of (4 — \?)/3 and a cube
root ¢ of (A + (w — w?)zg)/2 such that

9:_¢_¢—17 9/:_w¢_w2¢—1’ 9//2_w2¢_w¢—1.

Put
. 1 +w—w2< ¢ e 1 +w2—w
m = 2770 6 0, G1:= 2770 6

Co-

We note that, if a® = a? then 77 = 0 and (4, V) is singular. Suppose
that o # a? then

(x€& +ym + 2(1)° = ax® + b'y® + 2% — 3uayz



Conclusion 133

where v/ = ¢3a72(a® —a?)?, ¢ = ¢ 3a"2(a® — a?®)?, p = a ta(a® —a?).
Since a® # a? we have V', ¢’ # 0 and ab'c’ # p?, so fa,v is non-singular.
Observe that &n; = wni& and & ¢ = w21 &, thus

C1 = qoan; + a12éon; + a0t

with age = 0 since tr(n1¢1) = 0. By the lemma above, the pair (A,V) is
of the second kind if and only if n;(; = w?Cimy, ie. a = 0.

By the remarks preceding Theorems 4.4.2, 4.4.6 and 4.5.2 we know
that f4 v is semi-trace but non semi-diagonal. Moreover we may choose
the cubic étale F-algebra to be F' x F(w) when we write f4 1 as a semi-
trace form: for & = x&y + yng + 2{p € V,

fav() = (!Efo +(—y—(w—w)m+ (—y+ (- wQ)Z)Q)B
= Trrxrw)r(10(8)?) = 3uN(px r(w))/r(OE))
where ©(§) = (ac, —y— (w— w2)z), v = (a,9°a"?(a® — a*)?) and

N(rxFw)y/F(7) = 1 - 3v) 3
(£x ())a/2 = (a 1(a2—a3)) c F¥3.

Altogether we proved:

Theorem II Suppose that F' does not contain a primitive cube root of
unity and is infinite. Up to F-isomorphism, the non-singular cubic pairs
over F' are the pairs

2
(@L€i7SP3nF<€o,no, C0>)
i=0
for all Galois Z/3-algebras (L,p) and a,a € F such that a # 0 and
a® # a?, where €3 = a, e = p(€)e for all £ € L,
Co=e, mo=(a+a'a’e+et, (o= (a+a 'a’e+e?)(t+2p(t))
and t € L is such that 1,t, p(t) span L and
(z—t)(z—p(t))(z—p*(t)) =2° =3z + A

for some A € F. Such a cubic pair is of the second kind if and only if
a = 0. The associated cubic form f is semi-trace, and we may choose
the cubic étale algebra over F to be F' x F(w):

F(&) = Tr(rxp(w))r(10(€)?) = 3uN(px r(w)) r(O(E))

with the notation from above. However the cubic form is not semi-
diagonal.
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Now we deal with the singular cubic pairs over F. By Proposi-
tion 5.1.2 we know that, if (A, V') is a singular cubic pair over F' such that
the curve {fa,v(§) = 0} is not a triangle, then A = M3(F'). Therefore
the classification of these cubic pairs was done by matrix computations in
Chapter 5. In the next statement we draw some particularly interesting
conclusions.

Theorem III There is no cubic pair over F' such that the associated
cubic curve is three concurrent lines or a conic plus tangent. There
exists at least one cubic pair over F such that the associated cubic curve
1s cuspidal if and only if F' contains a primitive cube root of unity. There
always exists at least one cubic pair over F' such that the associated cubic
curve is the zero curve, a triple line, a double line plus simple line, a
conic plus chord or a nodal curve.

Finally we treat the cubic pairs with a triangle as associated cubic
curve. By Theorem 5.10.2 we have:

Theorem IV Suppose that F contains a primitive cube root of unity.
Then, up to F-isomorphism, the F-cubic pairs with a triangle as asso-
ciated cubic curve are the pairs

((a7 b)w,F7 spanF<§0a Mo, gg’rlg>)

for all a,b € F*, where & and ny are generators of the symbol algebra
such that £ = a, n§ = b and &ono = wnolo. The associated cubic form
s semi-diagonal:

(w€o + ymo + 2€5m3)* = az® + by® + c2® — Bhayz
where ¢ = a?b?, A = w?ab and abc = \3.

Suppose that F' does not contain a primitive cube root of unity and is
infinite. By the remarks preceding Theorem 5.10.3, if (A, V) is a cubic
pair over F' such that {f4 v (§) = 0} is a triangle, then there exist a
Galois Z/3-algebra (L, p) and a € F* such that

2
(A, V) = ( @ Le',spang{e, et, ep(t)))

=0

where €2 = a, e£ = p(£)e for all £ € L, and t € L is such that 1,¢, p(t)
span L and (z — t)(z — p(t)) (z — p2(t)) = 2® — 3z + X for some X € F.
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Conversely, let (L, p) be a Galois Z/3-algebra and a € F*. Let t € L
be such that 1,¢, p(t) span L and

(. —t)(z — p(t)) (z — p*(t)) = 2° — 3z + A

for some A € F. We may assume that

6 0 O ¢ 0 0
t= 0 ¢ 0 and pt)=|( 0 87 0
0 0 ¢ 0O 0 6

where 6,60’,6" are the roots of 23 — 3z + \. Put

0
e .= 0

o O =
S = O

A= @?:0 Let and V = spanp (e, et,ep(t)). Then the cubic curve asso-
ciated to fa,v is a triangle: for & = ze + yet + zep(t) € V,

fA,V(g) = aNL/F(x-l—yt-i—zp(t))
= a(z+yl+20")(x+yd + 20")(x + y0" + 20).

We may also choose the cubic étale algebra to be F' x F(w) when we
write fa,y as a semi-trace form. Indeed, put

1 42 1 2 _
m = f§6t+w - e(t+2p(t), (1= *§€t+w 6 we(t+2p(t))v

and let 2o € F be a square root of (4 — A\?)/3 and ¢ € Fyp a cube root
of (A + (w — w?)z¢)/2 such that

9:_¢_¢71’ 9/:—(4}(]5—0(]2@571, 9//:_w2¢_w¢71.

Then for all £ = ze + yet + ze(t + 2p(t)) € V

3
fav(€) = (3350 F(—y—(w—w)z)m+ (—y+ (w- WQ)Z)Q)
= az® + ad®y® + ap 32 — 3azyz
= Trpxrw)/r(@0(€)?) = 3uN(rxrw) r(OE))

where O(¢)

(2, =y — (w —w?)z), @ = (a,a¢%), i = a and

N(px )/ F(a) = i
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Theorem V Suppose that F is infinite and does not contain a primi-
tive cube root of unity. Up to F-isomorphism, the F-cubic pairs with a
triangle as associated cubic curve, are the pairs

(E_QB Le', spanp(e, et, ep(t)>)

for all Galois 7./3-algebras (L, p) and a € F*, where €3 = a, e = p(€)e
forall§ € L, and t € L is such that 1,t, p(t) span L and

(z—t)(z — p(t)) (z — p*(t)) =2° =3z + A

for some \ € F. The associated cubic form f is semi-trace, and we may
choose the cubic étale F-algebra to be F x F(w):

F(&) = Tripxrw))r(aO(€)?) = 3uN(ry r)) r(O8))
with notation as above.

Taken together, Theorems I-V above lead to the following result on
division algebras:

Theorem VI Let (A, V) be a cubic pair over F such that A is a division
algebra. If F' contains a primitive cube root of unity then the associated
cubic form fav is semi-diagonal. If F' is infinite and does not contain a
primitive cube root of unity then fa v is semi-trace, and we may choose
the cubic étale algebra over F to be F' x F(w).

By this theorem, the results of Haile and Tignol which we mentioned in
the introduction can be improved as follows:

Theorem VII Suppose that (A,V) is a F-cubic pair where F con-
tains a primitive cube root of unity and A is a division algebra, and
let (¢1, @2, p3) be a basis of V*, ay,as,a3,\ € F such that

[ =a10% + axp 4+ azps — 3N\p102003,

Then either aiasas = A\ or there exists one and only one i € {1,2,3}
such that (ajagas — )\3)a;2 18 a non-zero cube in F; in the first case
necessarily

A= (a17a2)wi1,F = (a17a3)wi1,F = (a27a3)wi1,F;

in the second case necessarily A = (a;,a;) for all j € {1,2,3}, i # j.
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In particular, we deduce the following theorem:

Theorem VIII Let A, A’ be division algebras of degree 3 over F. If
V,V' are such that (A, V) and (A", V') are F-cubic pairs and fav is
equivalent to far v, then the algebras A and A’ are either isomorphic or
anti-isomorphic.

Proof : Let A°P denote the opposite algebra of A. By Theorem VII we
have either A ®p F(w) 2 A’ ®p F(w) or A® @p F(w) 2 A’ @p F(w).
In other words, the field F'(w) is a splitting field of either A°® @ A’ or
A®p A’. Since the algebras A°® @ A’ and A ®@p A’ are degree 9 central
simple F-algebras, and the degree of the field extension F(w)/F divides
2, we deduce that either A = A’ or A% = A’. ]






Appendix

Some heavy computations in Chapter 4 were not done by
hand: an Apple computer equipped with Wolfram’s Mathe-
matica software was of great help. We explain the use of
Mathematica on several examples.

A.1 Some of Mathematica’s commands

In this thesis we used Mathematica as a powerful calculator that can

deal with matrices, polynomials, etc. The following commands were

particularly useful:

Clear[a, b, c,...] initializes the variables a,b,¢, .. ;
a = 1 associates to the variable a the value 1;
; executes a computation without showing it;

{{1,2,3},{4,5,6}} represents the matrix 2 x 3 with (1,2,3) on
the first line and (4,5,6) on the second one;

I represents a complex number with square equal to —1;

m([i, j]] gives the element on row i and column j in the matrix m;
Det[m] gives the determinant of the matrix m;

Tr[m)] gives the trace of the matrix m;

m. n gives the multiplication of two matrices m and n;
Inverse[m)] gives the inverse of the matrix m;

IdentityMatrix[n] gives the identity matrix of order n;

139
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e DI[f, x,y] gives the partial derivative %afy;

Simplify[a] gives a in a “more simplified way”

a /.b — > c gives a replacing the variable b by the value ¢;

Factor[p] factorizes the polynomial p;

Solve[{a == 0,b == 0}, {x,y, z}] gives the solutions (z,y, z)
of the system of equations a =0, b = 0.

A.2 Conjugation of cubic subspaces

In the proof of Theorem 4.2.7 we state the existence of a matrix which
conjugates two special subspaces of M3(Fiep). Recall that a special sub-
space of M3(Fsep) is a cubic subspace of Mg(Fsp) which is spanned by
u, v, w; (o) for some 7 = 1,2,3 and some « € Fep, where u, v, w;(a) are
the matrices introduced on page 53. We observed earlier that, given a
special subspace V' there are exactly 27 elements mFy, € PGL3(Fep)
such that mVm™! is also special. These elements mFg, are completely
determined by their action on the flexes and the harmonic points of the
cubic curve {fy(§) = 0}.

Let us, as an example of our use of Mathematica, compute one of
these elements. Thereto we must first find the flexes of {fy, (§) = 0}
where Vi, = spang,_ (u, v, wi(a)).

Let p be a flex of {fy,(¢) = 0}. Since p is a point of {fy, (&) = 0},
we may write p = (au + bv + cwy (a))Fsep with

] 1
a®b = a®(9a — 1)c3 + bPc + 1(24042 — 120 + 1)bc?.

Indeed,

Inf1]:= Clear[a]
mf2l:= u= {{0,1,0},{0,0,1},{0,0,0}};

v = {{0,0,0},{1,0,0},{1,—1,0}};

w = {{e, _Tla 1}, {302, —2a, %}a {0, —3a?, a}lls
Inf5]:= Clear[x,y,z]
Inf6]:= f=Detlxu+yv+zwl;
In[7]:= Simplify][

f—
(x*y—
(03(9a — 1)z® + y?z + 1 (24a® — 12 + 1)yz?))]

Out[7]= 0
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If ¢ =0, then p = uFi, because a?b =0 and
—8b% 4+ 2(240% — 120+ 1)a’*h =0
as verified by:
m[s]:= h = Det[{{DI[f, x, x|, D[f, x, y], D[f, x, z] },
{DIf,x,y], D[f,y,y], D[f,y, z]},
{D|[f, x, z], D[f,y,z], D[f,z,2]}}];
nf9]:= z = 0;
In[10]:= Simplify[h — (—8y3 + 2(24a? — 12« + 1)x3%y)]
Out[10]= 0
Now if ¢ = 1, then either b = a(9a — 1) or
b+ a(9a — 1)b* + a?(3a — 1)(9a — 1)b + 3a° (9 — 1)
as shown by:
Inf11]:= z = 1;
In[12]:= r =
yh/.
x2 — (a3(9a —1)+y2+ (6(12 — 3a + %)y)
Yy
Inf13]:= Factor][r]
out[13]= —8(y + a —9a2)(y® — y?a + ya?+
9y2a? — 12ya® + 27ya* — 3a® + 27a5)
Inf14]:= Simplify[
r— (=8)(y — a(9a — 1))
y®+ a@a —1)y2 + a?(Ba — 1)(9a — 1)y+
3a5(9a — 1))]
Out{14]= 0
We shall find the roots of the polynomial
s =9+ a(9a —1)y* + ®(Ba — 1)(9a — 1)y + 30° (9o — 1)
using Cardano’s method:
mfi5):= s =y3+ a(9a —1)y? + a?(Ba — 1)(9a — 1)y+
3a®(9a — 1);
Inf16]:= a= a(9a — 1);
b=a?Ba—1)(%9a — 1);
c=3a’(9a —1);
Inf19]:= y =1t — %;
Inf20]:= Simplify]|
S_
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(t3 +2(1 - 9a)a?t + Lad(9a — 1)(T2a — 7))]
Outf20]= 0
Inf2i]:= p = %az(l —9a);
q= 30*(9a — 1)(72a — 7);

2 3 3 2
mf23)= Simplify[L + B — (%(Sa ~1)(9a — 1)) ]
Out[23]= 0

3 3

mf2y= Simplify[d — & (8a — 1)(9a — 1) — (—Ta) (1 — 9a)]
Outf24]= 0
mf25):= 0 = (1 —9a)'/3;

-1
Inf26]:= y = %(%"‘0) _ (—?19) —
Inf27):= Simplify[y — §(—26% 4+ 6 + 1 — 9a)]
Out[27]= 0

So the roots of s are those z = 2(—260% + 6 + 1 — 9a) where 6 is a cube

root of 1 — 9. Since

Inf28]:= w = 3(—1+Iv/3);
Inf29]:= Simplify

[(y2 + 013(904 —-1)+ y<6a2 —3a + i))y—l_
(45 (~602 + 20 — 1)) ]

o
3

Out[29]= 0
Imf30):= y = a(9a — 1);
Inf31]:= Simplify|

(yz + a3(9a —1)+ y<6a2 — 30+ i))y_l—
(3a-1)]

Outf31]= 0
the nine flexes of {fy (&) = 0} are
UFep (a'u+bv+w)Fep (—a'u+ Vv + w)Fsep

(a1u + b1v 4+ w) Feep (agu + bov 4+ w) Feep (asu + bsv 4+ w) Feep
(—a1u+b1v+w)Feep (—asu+bsv + W) Fsp (—agu + bov + w) Feep

where
r = tga-)
a = (8 ,
vV = a9a-—1),
2
w—w
= —46% 426 -1
ai 18 ( 0 + 0 ),

b = %(—292 1041 9a),
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a; = o'(ay), b; = o(by) and w = wy (), the automorphism o of F(6,w)
being defined by o(w) = w and o(0) = wh.

Now that we have described all the flexes of {fy, (§) = 0}, for an
arbitrary flex, we shall give a harmonic point for each of them. Let
(au+bv+wi () Faep be a flex of { fv, (§) = 0}. Put up = au+bv+wi (a)
and ug = —au + bv + w1 (a). Then uzFiep is a flex and the points uFep,
Uz Fiep, usFsep are collinear. By Proposition 2.3.5 there is a harmonic
point of ua Fyep on the line passing through vFie, and uzFiep. Thus there
exists a unique ¢ € Fiep such that veFye, = (— au + cv + wq (a))Fsep is a
harmonic point of ug Fyep, namely

e a3(1—=9a)b+ b?
~ a3(1—9a) +4a2b+ b2’

Indeed det(ve) = 0, tr(ugv3) = 0 and

In/32]:= Clear[a, b, c]
n[33):= u2=au—+bv+w;
v2=—au+tcv+w;
Inf35]:= r = Tr[u2.v2.v2];
Simplify[Det[v2]]
out[36]= —c? 4+ a —9a* + c( — % +a?+3a— 6a2)
In[87]:= s:r/.cz—>a3—9a4+c<—%+a2+3a—6a2>;
In[38]:= t =
s /.
a? — —%( —a2+a®*9a—-—1)b ' +b—-3a+ i);
Inf39]:= Simplify|
bt—
(a3(1 = 9a)b + b — c(a®(1 — 9a) + 4a%b + b?))]
Out[39]= 0

In the preceding computations we may replace o by

—1( —a®+a*9a— Db +b—3a+ 1)
6 4
in s because a?b + a3(1 — 9a) — b2 — (6a? — 3a + 1/4)b = 0. We have
a3(1 — 9a) + 4a®b + b2 # 0 since otherwise a3(1 — 9a)b + b* = 0 and
a = 0 which is impossible because us Fyp is not a point on the harmonic
polar at uFgep.

To find all the matrices which conjugate V,, into another special sub-
space of M3 (Fsep), we search for any flex @Fs, of {fy, (§) = 0} and for
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any harmonic point 9Fgep of @Fsep, the unique mF,
that

€ PGL3(Fsp) such

sep

mﬁmlesep = ulsp, and mﬁmlesep = vFep.
We shall give the example where the flex @ Fep is (a’u+ b'v+wy (a))Fsep
and the harmonic point 0 Fp, is ( —a'u+cdv+ wl(a))Fsep with
;a1 —9a)b + b
31— 9a) +4a2b + b2

Inf40]:= a = %(Sa —1);
b =a(9a — 1);
a®(1—9a)b+4b?
ad(1— 9a)+4a2b+b2’
In[43):= Clear[ml1l,m12, m13, m21, m22, m23,
m31, m32, m33, A, y]
fi4):= m= {{mll,m12,m13}, {m21, m22, m23},
{m31,m32,m33}};
Inf45]:=  Solve[{(m.u2 — Au.m)[[1, 1]] == 0,

c =

(m.u2 — Au. m)[[1, 2]] == 0,
(m.u2 — Au.m)|[[1,3]] == 0,
(m.u2 — Au.m)[[2,1]] == O,
(m.u2 — Au.m)[[2,2]] == 0,
(m.u2 — Au. m)[[2, 3]] == 0,
(m.u2 — Au. m)[[3, 1]] == 0,
(m.u2 — Au.m)|[[3,2]] == 0,
(m.u2 — Au.m)[[3, 3]] == 0,
(m.v2 — pv. m)[[1,1]] == 0,
(m.v2 — pv.m)[[1,2]] == 0,
(m.v2 — pv.m)[[1, 3]] == 0,
(m.v2 — pv.m)[[2,1]] == 0,
(m.v2 — pv.m)l[[2,2]] == 0,
(m.v2 — pv.m)l[2, 3]] == 0,
(m.v2 — pv.m)[[3,1]] = 0,
(m.v2 — pv.m)[[3,2]] =
(m. v2 — pv. m)[[3, 3]] == O}a
{m12,m13,m21, m22, m23, m31, m32,
m33, A, p1}]

Outf47)= {{mSl — 3mlla,
A—1—-8a, m21 - mll, m32 — —mll,
uw— o —8a%, ml2 — 0, m33 — mll,
m22 — —2mll, m13 — — =1 ;m23 0}}



A.2 Conjugation of cubic subspaces 145

So the matrix

« 0 -1
m = a —2a 0
302 —a o

is such that

mam 'F =uF and mim 'F =vF.

We determine mV,m~! computing mwl(a)m_lz

m[8):= m= {{a,0, -1}, {a, —2c, 0}, {3a?, —, a}};
In[49):= Simplify[m. w. Inverse[m]—
i(l — 6a)u — —a(ﬁ';(;i)iglo)‘_l)v—i-
10a—1
2(8a—1)

out[49]= {{0,0,0},{0,0,0},{0,0,0}}]
So mVem ™ =V, and mFy, € Aut(Ms(Fiep), Va) (Frep)-
We use the same method to find an invertible matrix such that

m(alu +biv+ wl(a))m_lFsep = UFsep7
m( —a1u+ v+ wl(a))m_lFsep = vFp

w>]

with )
a?(1 - 9a)by + b3

a?(1 — 9a) + 4a3by + b3’
But the computations take much more time and the solution of these
equations given by Mathematica is too complicated. To find the solution

CcC1 =

we helped Mathematica to simplify the computations. We shall only give
a matrix and check that it is an invertible matrix that satisfies these
equations.
First we note that the Hessian point of us Fyep = (au-+bv+wi (a)) Faep
is equal to woFeep = (du +ev + gwl(a))Fsep with
d=—ab"te, e=3a%1—-9a)+V? g=a*1—9a)b"! —b.

Indeed, we have tr(ugwa€ + wav€) = 0 for all £ € V, and

Inf50]:= Clear[a,b,d,e,g]

In[51):= w2 = du+ ev 4 gw;

Inf52]:=  Simplify[Tr[(u2. w2 4+ w2. u2). u]]

outf52]= 2(bd + ae)

Inf53]:= Simplify[Tr[(u2. w2 4+ w2.u2). v]+

2b_1((a2 + b)e + (b2 + (6a2 —3a+ i)b)g)]
Out[53]= 0
Inf54):= Simplify[Tr[(u2. w2 + w2.u2). w]+
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Out[54]=

Since

we have

Appendiz

2((b+ 60 - 3a + 1)et
3a3(9a — 1) + (6a2 — 3a + i)b)g)]

0
1
6(12—3(1—&—1 =a*(1—9a) +a’b—b*
(a® +b)e + (@®(1 — 9a) + a’b)g =
(®(1=9a)b ' +a*)e+ (20°(9a— 1) = b*)g = 0

and we obtain

(@®(1=9a)b™" —b)e + (3a*(9a — 1) — b*)g = 0.

Now we give a matrix which is a solution of the equations:

In[55]:=

In[57]:=

In[60]:=

In[69]:=

In[70]:=

Out[70]=
In[71]:=
In[72]:=
In[73]:=

a= 972" (462 4 26 — 1);
b = %(—2492 +6+1—9a);
g =a3(1 —9a)b™1 — b;
e = 3a3(1 — 9a) + b?;
d = —ab~!(3a3(1 — 9a) + b?);
mll = 1;
ml2 = i(f@z + w?0 +1 — 9a);
B AT
= e ;
m22 = w26;
m23 = ;- (—w?6? + (9a — 1)0 + w(9a — 1));
m31 = 3 (—w?6? — 0 + 3(w — w?)a — w);
m32 = (6% + 9a — 1);
m33 = —w?6? + w(9a — 1);
m = {{ml1,m12,m13}, {m21, m22, m23},
{m31,m32,m33}};

Simplify]|

Det[m]
( —wtd(w—la g2 _wt2(l—daja g
3(8a—1)2(9a—1) 3(8a—1)2(9ax—1)

w43(1—3w)a—24a2
3(8a—1)2(9a—1) ]

1
= %(%02—0+12a—1);
V:%(Qa—l)
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(=(—6a —1)0% — (9a — 1)0 + (9 — 1)(12c¢ — 1));
Infyli= B = 3%,
In[75]:= w = {{/67 %(w2 - 1)ﬂ - 1)7 1}7

{0, wB, %((wz -1)8+1)},{0,0, w2/6}}§

In[76]:= Simplify[Inverse[m]. u2. m — A u]
out[76]= {{0,0,0},{0,0,0},{0,0,0}}
In[77]:= Simplify[Inverse[m]. v2. m — p V]
out[77]= {{0,0,0},{0,0,0},{0,0,0}}
Inf78):= Simplify[Inverse[m]. w2. m — v w’]
out[78]= {{0,0,0},{0,0,0},{0,0,0}}

A.3 Description of cubic pairs

In the classification of non-singular cubic pairs, we gave an explicit repre-
sentative for each F-isomorphism class of F-cubic pairs. We shall explain
how we found this representative for the classification of cubic pairs of
the first kind.

We put A := M3(F) and V := spanp(u, v, w;(«)) with notation as on
page 53. For a non-trivial Galois Z/3-algebra (L, p) we want to describe
(A, V') where

Al {€e AL | mp(em™" =¢},
Vo= {ge VL mp(m™ =g}

Suppose that F' contains a primitive cube root of unity. Let § € L
be such that §3 = d € F and p(f) = wh. To describe V' it is sufficient
to find the eigenvectors of the endomorphism m: V — V: £ — m&m ™1
if £ € V is a eigenvector of 7 with eigenvalue w’ then §2%¢, € V'. The
eigenvectors of m are

a(l — 6a)v + wy(a),

%(uﬁ —w)Ba—1u+ a9a — 1) + wi (o),

%(w — w2)(8a — 1)u + a(9a — ].) + ’LU1(OZ)7

with eigenvalues 1,w? and w respectively:

In[1]:= Clear[a]
mfzl:= u = {{0,1,0},{0,0,1},{0,0,0}};

v = {{0,0,0},{1,0,0},{1,—1,0}};

w = {{a, —%, 1}, {322, —2a, %}, {0, —-3a?,a}};
mnf5):= m= {{a,0, -1}, {a, —2c, 0}, {302, —, a} };
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Inf6]:= w = %(—1 + I\/g);
In[7]:= Clear[x,y,z]
Infs):= £E=xu+yVv+zw;

mmf9]:= Solve[{(m. &. Inverse[m] — £)[[1,1]] == 0,
(m. & Tnversefm] — &)[[1,2]] == 0,
(m. &. Inverse[m] — £)[[1, 3]] == 0,
(m. & Tnverse[m] — )[[2,1]] == 0,
(m. &. Inverse[m] — £)[[2, 2]] == 0,
(m. & Tnverse[m] — &)[[2,3]] == 0,
(m. &. Inverse[m] — £)[[3,1]] == 0,
(m. &. Inverse[m] — £)[[3, 2]] == 0,
(m. §. Inverse[m] — £)[[3, 3]] == 0}, {x,y}]
outf9)= {{x— 0,y — 3(za — 6za?)}}
Inf10]:= Solve[{(m. . Inverse[m] — w?¢)[[1, 1]] == 0,
(m. &. Inverse[m] — w?€)[[1,2]] == 0,
(m. £. Inverse[m] — w?¢)[[1, 3]] == 0,
(m. ¢&. Inverse[m] — w2¢)[[2,1]] == 0,
(m. ¢&. Inverse[m] — w?€)[[2,2]] == 0,
(m. &. Inverse[m] — w?€)[[2, 3]] == 0,
(m. £. Inverse[m] — w?¢)[[3,1]] == 0,
(m. £. Inverse[m] — w?¢)[[3,2]] == 0,
(m. &. Inverse[m] — w?6)[[3, 3]] == 0}, {x,y}]

out/10]=  {{x — —3i(—V3z + 8V3za),y — a(—z + 9za) } }
Inf11]:= Simplify]|
—31(—v/3z 4 8v38za) — 1(w? — w)(8a — 1)z]

Out[11]= 0

Inf12]:= Solve[{(m. &. Inverse[m] — w€)[[1,1]] == 0,
(m. &. Inverse[m] — w&)[[1,2]] == 0,
(m. &. Inverse[m] — w&)[[1, 3]] == 0,
(m. &. Inverse[m] — w§)[[2, 1]] == 0,
(m. &. Inverse[m] — w§)[[2,2]] == 0,
(m. &. Inverse[m] — w§)[[2, 3]] == 0,
(m. &. Inverse[m] — wé)[[3,1]] == 0,
(m. &. Inverse[m] — w§)[[3,2]] == 0,

(m. 5 Inverse[m] — w&)[[3, 3]] == 0}, {x,¥y}]
out12)=  {{x — 2i(—V3z+8V3za),y — a(—z+ 9za)} }
Inf13]:= Slmphfy[

11(—V/3z + 8v/3za) — 1 (w — w?)(8a — 1)z]

Out18]= 0
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Thus V’ is the F-vector subspace of M3(Fyep) spanned by

&% = alba—1)v— 2w (a),
n = %(w —w?)(8a — 1)fu + a1 — 9a)0v — Ow: (),
G = %( 2 —w)(Ba —1)0%u + a(l - 92)6%v — 6w (a).

Since we have w € F, the algebra A’ is a symbol algebra. We note that
m? € A" and m?ny = wnem?. But mb € F* because m € GL3(Fyep) and
mFy has order 3; also nj € F*:

sep

Inf14]:= Clear[d]

Inf15]:= 0 = d'/3;

Inf16]:= 10 = %(w — w?)(8a — 1)0u + a(1 — 9a)bv — Ow;

In/17]:= Simplify[Det[n0]] — da(8a — 1)?(9a — 1)]

Out[17]= 0
So A’ is the symbol F-algebra generated by m? and 9. We have

Inf18):= €0 = a(6a — 1)v — 2w;

€0 = 2 (w? — w)(8a — 1)6%u + a(1l — 9a)6*v — 6%w;

In[19]:= Simplify[¢€0 — a~1m.m]

outf19)=  {{0,0,0},{0,0,0},{0,0,0}}

In[20]:= Simplify[Det[£0] — a(8cx — 1)?]

Outf20]= 0

Inf22]:= Simplify|

3w?
o — (7@&_1)(9&_1)50- n0. 70—
6a—1
Ss) 5£0.£0.70.70)]

Out[22]= {{anao}a{0a070}a {0,0,0}}
Hence A’ is the symbol F-algebra (a(8a —1)?, da(8cc —1)?(9a — 1))
generated by &y and 79, and

3w?
8a—1)(9a—1)

P

w(ba — 1)
8a—1)2(9a— 1)

Co = &omg — ol &

The cubic form fas vy is semi-diagonal: we have
farvr = a&5® + b + e5® = 3NN ¢h
where (5,15, ¢) is the dual basis of (£, 70, o), and a, b, ¢, A satisfies

abe — N3

e F*3,
a2

Indeed:
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Inf23):= f = Det[x.£0 + y.n0 + z. {0];
In[24):= a = a(8a —1)?;
b = da(8a — 1)?(9a — 1);
c=d?a(8a — 1)?(9a — 1);
A =da(8a — 1)%(1 — 6a);
Inj28]:= Simplify[f — (ax® + by3 + cz3 — 3A\xyz)]
Outf28]= 0
Inf29):=  Simplify[2252° _ (3da(8a — 1))?]
Out[29]= 0
Now we suppose that F does not contain a primitive cube root of
unity and F' is infinite. Let 8 € L be such that its minimal polynomial
over F is equal to 23 — 3z + \ for some A € F. Then there exists a square
root xg of (4 —A2)/3 in F such that

0 = _¢ - ¢_17
o0) = —wo—we = 0D
PO) = —wo-wot =020

where § = 25! (202 + X0 — 4) and ¢ is a cube root of (A + (w —w?)z)/2
in Fgep. Thus we have
—30—146
o) =27
To find V' we solve the equation mp(&)m~! = £ where
f = ()\o + A0 + )\25)@6 + (,UO + ,u10 + ,UQ(S)U + (1/0 + 1160 + VQ(S)wl(Oé) :

In[30]:= Clear[0, d]

Inf31]:= al = —%;
a(9a—1
az = (804—1 );
1
a3 = Sa—l;

Inf34]:= Simplify[m. u. Inverse[m] — (al u 4+ a2 v + a3 w)]
Out[34]= {{anao}a{0a070}a {0,0,0}}
1,

In/[35]:= bl = —3a)
b2 = 555

— 1 .

b3 = a(l—8a)?

Inf38]:= Simplify[m. v. Inverse[m] — (bl u + b2 v 4+ b3 w)]
out[s8j= {{0,0,0},{0,0,0},{0,0,0}}
Inf39]:= ¢l = (1 — 6a);
c2 = a(6a—1)(9a—1),
= 2(1—8a)  °

_ 10a-1 ,
€3 = 38a-1)’
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Inf42]:= Simplify[m. w. Inverse[m] — (c1 u+ c2 v + c3 w)]
Out[42]= {{anao}a{0a070}a {0,0,0}}
Inf[43]:= Solve[{al A0 + bl 0 + c1 v0 == A0,

al(AL5 +A238) 4+ b1(p1 3 + p232 )+
c1(v13t +v23) == A1,

al(A1} + 223 ) +b1(p1} + u23t)+
c1(v1} +v231) == Az,

a2 A0 + b2 p0 + c2 v0 == u0,

a2( M+ a252) +b2(p1 3t + p232 )+

c2(u1_71 + 1/2_73) == ul,

a2(A1} +A23!) +b2(p1} + u23t)+
c2(v1} +v23) == p2,

a3 A0 + b3 0 + c3 v0 == 10,

a3()\1_—1 +A238) +b3(p1 3 + p23t )+
c3(1/1 + v2= 3) ==vl,

a3(A1} + 223 ) + b3 (1} + u23t)+
c3(u1% —+ 1/2_71) == 1/2},

{20, A1, A2, n0, 1, u2} |

Out[43)= {{)\0 — 0,40 — 110 a — 610 a?),
M — 3(—v2+8v2a),A2 = L (vl — 8vl a),
pl — —vl a+9vl o2, u2 — —v2 a + 92 a2}}
Using the fact that

(u, Ou, du, v, Ov, dv, wy (a), bw; (@), 5w1(a))

is a basis of V;, we obtain that the vectors

& = a(ba—1)v+wi (o),
n = %(1 —8a)du + a(9a — 1)0v + Ow: (),
G = g(Sa —1)bu+ a(9a — 1)dv + dwy ()

span V'. Using the case where F' contains a primitive cube root of unity
we know that A’F (@) is the cyclic algebra

((8a — 1)%, ¢*a(8ar — 1)*(9a — 1))W,F(w)
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generated by &y and 7; where

_1 +w2—w
771—2770 6

= %(w (S0 )+ a(l — 9a)o0 — b @)

(since ¢ = °6). To describe A’ we shall find a subfield of A’
which is Ga101s extensmn of degree 3 over F. Thereto we search a matrix
in A'F(w) with its cube equal to ¢3. Since

= %(wQ —w)Ba—1)¢ ' u+ a(l —9a)™ v — ¢ wi (w),

using the case where F' contains w, we have

3w? 9 w(ba —1)

O = Ba 1o — 1" " aEa—120a —1)

&ni

and 77° = n}. Because &m = wni&p and F(&) is a field we deduce that

3 6o — 1
Ba—DOa -1~ aBa—12(9a -1

e 1= )53771

is such that 73 = ¢3. We have no7z = 1:
In[44]:= Clear[A]

1/2
Inf5)i= X0 = (4—3*2 ;
w—w2 X! 1/3
¢ = (M) :
0=—¢—0¢%

6 = x071(202% + X0 — 4);
In[49):= m0 = %(1 — 8a)du + a(9a — 1)0v + Ow;
Co = 2(8a — 1)0u + a(9a — 1)6v + dw;
Inf51]:= M = 1770 + “’2_“’60
nl =
In[53):= M2 = W,‘SO nl — a@a—1)2(9a—1)
n2 = mfo nl — Wfo- £0.71;
In/55]:= Simplify[n2. n2]
outf55]= {{1,0,0},{0,1,0},{0,0,1}}
Therefore F(n3) is contained in A’ where 73 = —no — 75 ' and it is a
Galois field extension of degree 3 over F. We shall write 19 and (y in
function of £, and n3. We have
B (304(604 —1)(8ax—1) n (6 — 1)?
Ja —1 9a -1

ba—1 £0. £0.n1;

Yo
S0t Ya — 153)772

because
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Inf/56]:= Simplify]|
(W IdentityMatrix[3]+
(69?1_—11)2 €0 + 92315& 50)'
FaDEaD 0~
et £0- €0))]
outfs6)= {{1,0,0},{0,1,0},{0,0,1}}

Hence

{ o = 5z (3a(6a — 1)(8a — 1) + (60 — 1)%6 + 908,

o= 1_19a (304(604 —1)(8a— 1) + (6a — 1)%¢& + 90z§3) (7]3 + 27’(773)).
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A

AO

(4,V)
Aut(4,V)
F

F

Frep

{f(¢) =0}
{f(©) =0}
fayv

fv

I

Hy
Ng/r
w

P(V)
(p,q)
qaA
S4(V™*)
spang (&1, ...
ty

ty
TFK/F
Trdy4
1%

Vr

e

Veep
V*

&ij

&)

Index of notation

a central simple algebra of degree 3 over F

the subspace of reduced trace zero elements of A

a cubic pair

the group scheme of automorphisms of (A, V)
a field of characteristic neither 2 nor 3

an algebraic closure of F'

the separable closure of F' in F'

the projective curve associated to f

the set of the L-points of {f(£) =0}

the cubic form associated to (A, V)

the cubic form associated to V'

the absolute Galois group of F

the Hessian curve of f

the norm form of the F-algebra K

a primitive cube root of unity in Fyp

the projective space associated to V'

the line passing through p and ¢

the trace quadratic form of A

the d-th symmetric power of V'*

the F-vector space spanned by &1, ..., &,
the symmetric trilinear form associated to f
the symmetric trilinear form associated to fy
the trace form of the F-algebra K

the reduced trace of A

a 3-dimensional vector space over F'
VerR

Ve

VF

the dual space of V'

the element on row ¢ and column j in £
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Index

canonical pencil, 20 form
conic, 11 cubic, 10
conic plus chord, 23 degree d, 10
conic plus tangent, 23 diagonal, 35
cubic pair, 46 irreducible, 10
non-singular, 46 non-singular, 13
of the first kind, 67 normal, 16
of the second kind, 67 reducible, 10
singular, 46 semi-diagonal, 35
cubic subspace, 49 semi-trace, 39
non-singular, 49 singular, 13
singular, 49 symmetric trilinear, 10
curve
cubic, 10 I'-group, 39
cuspidal, 24
defined over L, 11 harmonic polar, 30
Hessian, 14
nodal, 24 j-invariant, 20
non-singular, 13
singular, 13 line, 11
zero, 11
multiplicity, 12
double line plus simple line, 22 intersection multiplicity, 12
equivalent, 20 point
defined over L, 11
F-isomorphism, 46 harmonic, 33
flex, 14 Hessian, 26
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L-point, 11
non-singular, 13
singular, 13

special subspace, 54
exceptional, 64
non-exceptional, 64

tangent, 12
double, 23
simple, 23
three concurrent lines, 22
triangle, 21, 22
inflexional, 21
triple line, 22
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