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Introduction

Statement of the problem

There is a well-known relation between quaternion algebras and quadra-
tic forms. Suppose that F is a field of characteristic not 2, for a, b ∈ F×,
let (a, b)F be the quaternion algebra generated by i and j such that
i2 = a, j2 = b and ij = −ji. We may define a quadratic form over
(a, b)F , called the norm form, as follows:

N : (a, b)F → F : ξ 7→ ξξ

where x0 + x1i+ x2j + x3ij = x0−x1i−x2j−x3ij. The norm form has
interesting properties: two quaternion algebras are isomorphic if and
only if their respective norm forms are isometric (see Proposition 2.5,
page 57 in [Lam, 1973]); a quaternion algebra is isomorphic to M2(F )
if and only if its norm form is isotropic (see Theorem 2.7, page 58, in
op. cit.); and the Clifford algebra of the norm form of a quaternion
algebra A is isomorphic to A⊗F M2(F ) (see Theorem 1.8, page 106, and
Corollary 3.3, page 116, in op. cit). We observe that

N(ξ) = −ξ2

for all ξ in the subspace of (a, b)F spanned by i, j and ij, i.e. the subspace
of reduced trace zero elements of (a, b)F . A natural question is then: Is
it possible to extend these results and establish a similar relation between
central simple algebras of degree 3 and cubic forms?

One way to proceed, as did D. Haile in [1984], is to study the Clifford
algebra of a binary cubic form. Considering a field F of characteristic
neither 2 nor 3 and a binary cubic form with a non-zero discriminant
over F , Haile proves that the Clifford algebra of this cubic form is always
an Azumaya algebra. Moreover each homomorphic image of the Clifford
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2 Introduction

algebra is a degree 3 simple algebra over its center, and there exists a
correspondence between the simple homomorphic images and the points
of the curve y2 = x3−27D in an algebraic closure of F , where D denotes
the discriminant of the binary cubic form.

We favor however a different approach. Suppose that F is a field of
characteristic neither 2 nor 3 and let A be a central simple algebra of
degree 3 over F . By Cayley-Hamilton’s Theorem

ξ3 − TrdA(ξ)ξ2 +
1
2
(
TrdA(ξ)2 − TrdA(ξ2)

)
ξ − NrdA(ξ) = 0

for all ξ ∈ A, where TrdA and NrdA denote respectively the reduced trace
and the reduced norm of A. So the cube of a reduced trace zero element
ξ of A is not necessarily in F ; it is in F if and only if TrdA(ξ2) = 0. Let

qA : A→ F : ξ 7→ TrdA(ξ2)

denote the so-called trace quadratic form of A. The restriction of qA to
the subspace A◦ of reduced trace zero elements of A is isometric to

〈1,−1, 1,−1, 1,−1, 1, 3〉

over an extension of degree 3 over F which splits A. Therefore there
exist 3-dimensional subspaces1 of A◦ which are totally isotropic for qA.
Such a subspace V gives rise to a cubic form

fA,V : V → F : ξ 7→ ξ3.

So a more precise formulation of the problem of generalizing the situation
for quaternion algebras and quadratic norm forms is: Does the cubic form
fA,V as above determine the algebra A?

D. Haile and J.-P. Tignol partly answered this question in a hand-
written note, dated April 2002. They consider a central division algebra
A of degree 3 over F and assume that F contains a primitive cube root
of unity ω. Then they prove that if fA,V is semi-diagonal, i.e.

fA,V = a1ϕ
3
1 + a2ϕ

3
2 + a3ϕ

3
3 − 3λϕ1ϕ2ϕ3

for some a1, a2, a3, λ ∈ F and linearly independent ϕ1, ϕ2, ϕ3 ∈ V ?, then
either a1a2a3 = λ3 or there exists one and only one i ∈ {1, 2, 3} such
that

a1a2a3 − λ3

a2
i

∈ F×3.

1There exist 4-dimensional totally isotropic subspaces of A◦ if and only if F con-

tains a primitive cube root of unity.
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If a1a2a3 = λ3 then A is isomorphic to

(a1, a2)ω±1,F
∼= (a1, a3)ω±1,F

∼= (a2, a3)ω±1,F .

If a−2
i (a1a2a3−λ3) ∈ F×3 for some i ∈ {1, 2, 3} then A is isomorphic to

(ai, aj)ω±1,F for all j ∈ {1, 2, 3} such that j 6= i.
Observe that for a semi-diagonal cubic form fA,V as above we can

write

fA,V (ξ) = TrF 3/F

(
aΘ(ξ)3

)
− 3λNF 3/F

(
Θ(ξ)

)
where a = (a1, a2, a3) ∈ F 3, Θ: V → F 3 is the F -vector space isomor-
phism defined by

Θ(ξ) =
(
ϕ1(ξ), ϕ2(ξ), ϕ3(ξ)

)
,

and TrF 3/F , respectively NF 3/F , denotes the trace, respectively norm, of
the F -algebra F 3. The result of Haile and Tignol can then be reformu-
lated as follows: let A be a central division algebra of degree 3 over F
and suppose that there exists a subspace V of A◦ such that

fA,V (ξ) = TrF 3/F

(
aΘ(ξ)3

)
− 3λNF 3/F

(
Θ(ξ)

)
for some a = (a1, a2, a3) ∈ F 3, then either NF 3/F (a) = λ3 or there exists
one and only one i ∈ {1, 2, 3} such that a−2

i

(
NF 3/F (a)−λ3

)
is a non-zero

cube in F . This suggests the following generalization of semi-diagonal
forms: say that f : V → F is a semi-trace form if

f(ξ) = TrK/F
(
aΘ(ξ)3

)
− 3λNK/F

(
Θ(ξ)

)
for some cubic étale F -algebra K, elements a ∈ K and λ ∈ F , and an
F -vector space isomorphism Θ: V → K. Our problem then becomes:
Is it possible to extend the preceding result on semi-diagonal forms to
semi-trace forms?

However, note that a−2
i

(
NK/F (a) − λ3

)
does not make sense in an

arbitrary cubic étale F -algebra: indeed, we cannot talk about the coor-
dinates a1, a2, a3 of a ∈ K because there does not exist a “canonical”
basis of K. But since a cubic form fA,V is completely determined by A
and V , we can reformulate once more our problem, this time avoiding
the cubic form fA,V : Is it possible to classify the pairs (A, V ) where A
is a degree 3 central simple algebra over F and V is a 3-dimensional
subspace of A◦ which is totally isotropic for the trace quadratic form?
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Classification of cubic pairs

In this thesis we answer this question in the affirmative: we give a com-
plete classification of those so-called cubic pairs (A, V ) over F (up to
isomorphism).

The next two theorems summarize the classification of non-singular
cubic pairs2. We let F be a field of characteristic neither 2 nor 3 such
that F either contains a primitive cube root of unity or is infinite; let
Fsep denote a separable closure of F . We prove that the automorphism
group of a non-singular cubic pair over Fsep is either Z/3 or Z/3×Z/3 as
an abstract group (see p. 66), and we say that a non-singular cubic pair
(A, V ) is of the first kind if (A ⊗F Fsep, V ⊗F Fsep) has automorphism
group Z/3 and it is of the second kind otherwise. Fix ω ∈ Fsep a primitive
cube root of unity.

Theorem I (cf. p. 131) Suppose that F contains a primitive cube root
of unity. Up to F -isomorphism, the non-singular cubic pairs over F are
the pairs (

(a, b)ω,F , spanF 〈ξ0, η0, ξ0η
2
0 + αξ2

0η
2
0〉
)

for all a, b ∈ F× and α ∈ F with α3 6= −a−1, where ξ0, η0 are generators
of the symbol algebra such that ξ3

0 = a, η3
0 = b and ξ0η0 = ωη0ξ0. Such

a cubic pair is of the second kind if and only if α = 0. The associated
cubic form is always semi-diagonal and it is diagonal if the pair is of the
second kind:(

xξ0 + yη0 + z(ξ0η2
0 + αξ2

0η
2
0)
)3 = ax3 + by3 + cz3 − 3λxyz

where c = ab2 +α3a2b2, λ = ω2αab and a−2(abc−λ3) = b3 is a non-zero
cube in F .

Theorem II (cf. p. 133) Suppose that F does not contain a primitive
cube root of unity and is infinite. Up to F -isomorphism, the non-singular
cubic pairs over F are the pairs( 2⊕

i=0

Lei, spanF 〈ξ0, η0, ζ0〉
)

for all Galois Z/3-algebras (L, ρ) and a, α ∈ F such that a 6= 0 and
α3 6= a2, where e3 = a, eξ = ρ(ξ)e for all ξ ∈ L,

ξ0 = e, η0 = (α+ a−1α2e+ e2)t, ζ0 = (α+ a−1α2e+ e2)ρ(t),

2A cubic pair is non-singular if its associated cubic form is non-singular.
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and t ∈ L is such that 1, t, ρ(t) span L and

(x− t)
(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ

for some λ ∈ F . Such a cubic pair is of the second kind if and only if
α = 0. The associated cubic form is semi-trace, and we may choose the
cubic étale algebra over F to be F × F (ω). However the cubic form is
not semi-diagonal.

For the classification of singular cubic pairs, we use the fact that
there are nine different kinds of singular cubic curves: the zero curve,
a triple line, a double line plus simple line, three concurrent lines, a
triangle, a conic plus tangent, a conic plus chord, a cuspidal curve and
a nodal curve. Thus we split the classification of singular cubic pairs
into nine parts. We prove that the cubic curve associated to a singular
pair (A, V ) where A is division, is necessarily a triangle: to classify the
singular cubic pairs over F such that the associated cubic curve is not
a triangle, we can therefore make computations in the matrix algebra
M3(F ). We find in particular the following results:

Theorem III (cf. p. 134) There is no cubic pair over F such that the
associated cubic curve is three concurrent lines or a conic plus tangent.
There exists at least one cubic pair over F such that the associated cubic
curve is cuspidal if and only if F contains a primitive cube root of unity.
There always exists at least one cubic pair over F such that the associated
cubic curve is the zero curve, a triple line, a double line plus simple line,
a conic plus chord or a nodal curve.

For the classification of cubic pairs with a triangle as associated cubic
curve, we prove:

Theorem IV (cf. p. 134) Suppose that F contains a primitive cube
root of unity. Then, up to F -isomorphism, the F -cubic pairs with a
triangle as associated cubic curve are the pairs(

(a, b)ω,F , spanF 〈ξ0, η0, ξ
2
0η

2
0〉
)

for all a, b ∈ F×, where ξ0 and η0 are generators of the symbol algebra
such that ξ3

0 = a, η3
0 = b and ξ0η0 = ωη0ξ0. The associated cubic form

is semi-diagonal:

(xξ0 + yη0 + zξ2
0η

2
0)3 = ax3 + by3 + cz3 − 3λxyz

where c = a2b2, λ = ω2ab and abc = λ3.
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Theorem V (cf. p. 136) Suppose that F is infinite and does not con-
tain a primitive cube root of unity. Up to F -isomorphism, the F -cubic
pairs with a triangle as associated cubic curve, are the pairs

( 2⊕
i=0

Lei, spanF 〈e, et, eρ(t)〉
)

for all Galois Z/3-algebras (L, ρ) and a ∈ F×, where e3 = a, eξ = ρ(ξ)e
for all ξ ∈ L, and t ∈ L is such that 1, t, ρ(t) span L and

(x− t)
(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ

for some λ ∈ F . The associated cubic form is semi-trace, and we may
choose the cubic étale F -algebra to be F × F (ω).

Our classification implies in particular the following result on division
algebras:

Theorem VI (cf. p. 136) Let (A, V ) be a cubic pair over F such that
A is a division algebra. If F contains a primitive cube root of unity then
the associated cubic form fA,V is semi-diagonal. If F is infinite and does
not contain a primitive cube root of unity then fA,V is semi-trace, and
we may choose the cubic étale algebra over F to be F × F (ω).

This allows us to sharpen the result of Haile and Tignol mentioned ear-
lier:

Theorem VII (cf. p. 136) Suppose that (A, V ) is a cubic pair over
F where F contains a primitive cube root of unity and A is a division
algebra, and let (ϕ1, ϕ2, ϕ3) be a basis of V ?, a1, a2, a3, λ ∈ F such that

f = a1ϕ
3
1 + a2ϕ

3
2 + a3ϕ

3
3 − 3λϕ1ϕ2ϕ3,

Then either a1a2a3 = λ3 or there exists one and only one i ∈ {1, 2, 3}
such that (a1a2a3 − λ3)a−2

i is a non-zero cube in F ; in the first case
necessarily

A ∼= (a1, a2)ω±1,F
∼= (a1, a3)ω±1,F

∼= (a2, a3)ω±1,F ;

in the second case necessarily A ∼= (ai, aj) for all j ∈ {1, 2, 3}, i 6= j.

Moreover our classification of cubic pairs and the result of Haile and
Tignol imply the following result:
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Theorem VIII (cf. p. 137) Let A,A′ be division algebras of degree 3
over F . If V, V ′ are such that (A, V ) and (A′, V ′) are F -cubic pairs
and fA,V is equivalent to fA′,V ′ , then the algebras A and A′ are either
isomorphic or anti-isomorphic.

Overview of contents

In Chapter 1 we state well-known results on ternary cubic forms and
projective cubic curves. We present them by means of the symmetric
trilinear form associated to a cubic form. These results are used in the
other chapters.

We study the geometry of particular points and lines of a non-singular
cubic curve in Chapter 2. We define the Hessian point, the harmonic
points and the harmonic polar of a flex of a non-singular cubic curve,
and prove some remarkable properties of these points and lines. Further
on we shall use the Hessian point and the harmonic points to classify
the non-singular cubic pairs.

In the third chapter we give criterions for a non-singular cubic form
to be semi-diagonal or semi-trace. These criterions involve the flexes of
the associated cubic curve, and shall be used to describe the cubic form
associated to a non-singular cubic pair further on.

In Chapter 4 we classify the non-singular cubic pairs over a field F .
First we classify up to isomorphism the non-singular cubic pairs over
the separable closure of F ; next we compute the automorphism group of
an arbitrary cubic pair over Fsep; finally, we use Galois cohomology to
obtain the non-singular cubic pairs over F .

In the fifth chapter we classify the singular cubic pairs over F . Since
we have nine different kinds of singular cubic curves we split the classi-
fication into nine parts. In all cases except the triangle, the algebra of a
singular cubic pair is split. Since we classify the cubic pairs up to iso-
morphism, we may assume in those cases that the algebra is the matrix
algebra M3(F ). In the remaining case we use the same method as for
the classification of non-singular cubic pairs.

In the Conclusion we summarize our results on the classification of
cubic pairs and their associated cubic forms.

Some heavy computations in Chapter 4 were done with the aid of
Mathematica: in a short Appendix we explain this on a couple of ex-
amples. Finally we have of course included a bibliography, an index of
notation and an index of terms.



8 Introduction
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Ternary cubic forms

and cubic curves

We define cubic forms and cubic curves and we give their
properties that we need in the following chapters. We present
these notions and the results by means of the symmetric tri-
linear form associated to a cubic form. The main purpose
of this chapter is to fix notation and not to present original
results. Whenever the stated results are well-known we omit
a detailed proof but we give an appropriate reference.

1.1 Forms and curves

In this chapter, as well as in all following chapters, F is a field of char-
acteristic neither 2 nor 3. We denote by F an algebraic closure of F and
by Fsep the separable closure of F in F . For a commutative F -algebra R
and an F -vector space V , we put VR := V ⊗F R. We have an injection
V ↪→ VR defined by u 7→ u⊗ 1 and we identify an element of V with its
image by this injection. For brevity we write V instead of VF , and Vsep

instead of VFsep . As usual, V ? is the dual space of V . Henceforth V is a
3-dimensional F -vector space.

If d is a strictly positive integer, we denote by Sd(V ?) the d-th sym-
metric power of the vector space V ? and we put S0(V ?) := F . For all
strictly positive integers d and d′, we have a map

Sd(V ?)× Sd
′
(V ?)→ Sd+d′(V ?)

sending (ϕ1 . . . ϕd, ψ1 . . . ψd′) to ϕ1 . . . ϕdψ1 . . . ψd′ . This endows

S(V ?) := ⊕d≥0Sd(V ?)

9



10 Ternary cubic forms and cubic curves

with a structure of graded F -algebra.
In general, an element of Sd(V ?) is called a degree d form over V .

Definition 1.1.1 We say that an element of S3(V ?) is a ternary cubic
form over V , or more briefly a cubic form.

If f ∈ S3(V ?), thus f =
∑r
i=0 ϕiψiθi for some ϕi, ψi θi ∈ V ? , we can

define for every F -algebra R, a map VR → R by

u⊗ λ 7→
r∑
i=0

λϕi(u)ψi(u)θi(u)

which we also denote by f .
Let (e1, e2, e3) be a basis of V . We consider the element xe1+ye2+ze3

of V ⊗F F [x, y, z]. One can check that f(xe1 + ye2 + ze3) is a degree 3
homogeneous polynomial in the variables x, y, z over F .

If f ∈ S3(V ?) can be written as l · q for some l ∈ V ? and q ∈ S2(V
?
),

we call f reducible and f is irreducible otherwise.

Definition 1.1.2 Given f ∈ S3(V ?) there exists a unique symmetric
trilinear form t over V such that t(ξ, ξ, ξ) = f(ξ) for all ξ ∈ V . Namely,

t(ξ, η, ζ) =
1
6
(
f(ξ+η+ζ)−f(ξ+η)−f(ξ+ζ)−f(η+ζ)+f(ξ)+f(η)+f(ζ)

)
.

We call t the symmetric trilinear form associated to f .

For f ∈ S3(V ?), w denote by tf the symmetric trilinear form associated
to f . For any commutative algebra R, we can also define a trilinear form
over VR using the map f : VR → R, and we also denote it by tf .

We denote by P(V ) the projective space associated to V , i.e. the set
of non-zero elements of V quotiented by the equivalence relation u ∼ λu
for u ∈ V \ {0} and λ ∈ F×. For u ∈ V \ {0}, we write uF for the
equivalence class of u in P(V ). Let ExtF denote the category of field
extensions of F and Set the category of sets.

Definition 1.1.3 Let f ∈ S3(V ?). The projective cubic curve associ-
ated to f over F is the functor F : ExtF → Set defined by

F(L) = {uL ∈ P(VL) | f(u) = 0}

for an object L of ExtF and Fσ : F(L) → F(M) : uL 7→ σ(u)M for a
morphism σ : L→M in ExtF .
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If f = 0, the set
{uL ∈ P(VL) | f(u) = 0}

is equal to P(VL) for all field extensions L/F : in that case we call the
associated projective curve the zero projective curve.

To have a more suggestive notation we write {f(ξ) = 0}L for

{uL ∈ P(VL) | f(u) = 0}

and {f(ξ) = 0} for the projective cubic curve associated to f . We call
an element of {f(ξ) = 0}L an L-point of {f(ξ) = 0}.

Note that the projective cubic curve associated to f is the same as
the one associated to λf for λ ∈ F×. In fact, by Theorem 9.7, page 26,
in [Walker, 1950], if two irreducible cubic forms have the same associated
projective cubic curve then they are equal up to a non-zero scalar.

For L ⊂ M field extensions of F and p ∈ P(VM ), we say that p is
defined over L if there exists u ∈ VL such that p = uM . We have a
natural injection P(VL) ↪→ P(VM ) which we consider as an inclusion.
Thus, if p ∈ P(VM ) is defined over L, we may consider p as an element
of P(VL).

Since f ∈ S3(V ?) can also be viewed as an element of S3
(
(VL)?

)
for

any algebraic field extension L over F , we may also associate to f a
projective cubic curve over L, i.e. a functor ExtL → Set. By abuse of
notation, we also write {f(ξ) = 0} for this functor. For L ⊂M algebraic
field extensions of F and f ∈ S3

(
(VM )?

)
, we say that the cubic curve

{f(ξ) = 0} is defined over L if there exists g ∈ S3
(
(VL)?

)
and λ ∈ M×

such that f = λg.
In the same way, we may define the projective curve associated to a

form of any degree. In the case of degree one, say l ∈ S1(V ?) = V ?, we
call the projective curve {l(ξ) = 0} a projective line; and in the case of
degree two, say q ∈ S2(V ?), {q(ξ) = 0} is a projective conic.

1.2 Tangents

We want to define an intersection multiplicity between a projective cubic
curve and a projective line at a point of the projective plane. Thereto,
let f ∈ S3(V ?), l ∈ V ? non-zero and p = uF ∈ P(V ). We write mp(f, l)
for the multiplicity of the root λ = 0 of the polynomial

f(u+ λv) = f(u) + 3λtf (u, u, v) + 3λ2tf (u, v, v) + λ3f(v)

if l(u) = 0 and u and v are linearly independent vectors of ker(l); and
mp(f, l) = 0 if l(u) 6= 0.
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Definition 1.2.1 The number mp(f, l) ∈ {0, 1, 2, 3} ∪ {∞} is the inter-
section multiplicity of the cubic curve {f(ξ) = 0} with the line {l(ξ) = 0}
at the point p.

Thus we have that mp(f, l) = 0 if and only if

p 6∈ {f(ξ) = 0}F ∩ {l(ξ) = 0}F

and by Theorem 9.7, page 26, in [Walker, 1950], we have mp(f, l) =∞ if
and only if l divides f (in particular f is reducible) and p ∈ {l(ξ) = 0}F .
Note that f = 0 if and only if mp(f, l) =∞ for all non-zero l ∈ V ? such
that l(u) = 0.

Now we define the multiplicity of a cubic curve at a point.

Definition 1.2.2 Let f ∈ S3(V ?) and p = uF ∈ P(V ). If f 6= 0 then
the multiplicity of the cubic curve {f(ξ) = 0} at the point p is the least
integer mp(f) such that there exists a non-zero l ∈ V

?
with l(u) = 0

and mp(f) = mp(f, l). If f = 0, then the multiplicity of the cubic curve
{f(ξ) = 0} at the point p is mp(f) =∞.

If f ∈ S3(V ?) is non-zero then mp(f) ∈ {0, 1, 2, 3}. We observe that, if
tf (u, ξ, ξ) = 0 for all ξ ∈ V , then tf (u, u, ξ) = 0 for all ξ ∈ V . Indeed,
we have tf (u, u, u) = 0 and for all ξ ∈ V ,

tf (u, ξ, ξ) = tf (u, u+ ξ, u+ ξ) = 0,

hence tf (u, u, ξ) = 0. Since

f(u+ λξ) = f(u) + 3λtf (u, u, ξ) + 3λ2tf (u, ξ, ξ) + λ3f(ξ)

for all ξ ∈ V ,

• mp(f) = 0 if and only if f(u) 6= 0,

• mp(f) = 1 if and only if f(u) = 0 and there exists ξ0 ∈ V such
that tf (u, u, ξ0) 6= 0,

• mp(f) = 2 if and only if tf (u, u, ξ) = 0 for all ξ ∈ V and there
exists ξ0 ∈ V such that tf (u, ξ0, ξ0) 6= 0,

• mp(f) = 3 if and only if tf (u, ξ, ξ) = 0 for all ξ ∈ V and f 6= 0.

There exist at most mp(f) lines {l(ξ) = 0} such that mp(f, l) > mp(f).

Definition 1.2.3 The lines {l(ξ) = 0} such that mp(f, l) > mp(f) are
called the tangents to the cubic curve {f(ξ) = 0} at the point p.
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Definition 1.2.4 We say that a point uF ∈ {f(ξ) = 0}F is singular if
tf (u, u, ξ) = 0 for all ξ ∈ V and is non-singular otherwise. We call f
(or the cubic curve {f(ξ) = 0}) singular if there exists a singular point
and we call f (or {f(ξ) = 0}) non-singular otherwise.

Let (e1, e2, e3) be a basis of V , put ξ := x1e1 + x2e2 + x3e3 and

c(x1, x2, x3) := f(ξ).

It is clear that mp(f) = 1 if and only if p = uF is a non-singular point
of {f(ξ) = 0}. In that case the unique tangent to {f(ξ) = 0} at p is the
line {tf (u, u, ξ) = 0}; moreover we have

tf (u, u, ξ) =
1
3

3∑
i=1

∂c

∂xi
(a1, a2, a3)xi

where a1, a2, a3 are the coordinates of u in the basis (e1, e2, e3). If
mp(f) = 2 then the tangents at p are contained in {tf (u, ξ, ξ) = 0} (we
say that F : ExtF → Set is contained in G : ExtF → Set if F(L) ⊂ G(L)
for all field extensions L/F ). Also 6tf (u, ξ, ξ) is equal to

3∑
i,j=1

∂2c

∂xi∂xj
(a1, a2, a3)xixj

where a1, a2, a3 are the coordinates of u in the basis (e1, e2, e3). If
mp(f) = 3, then f is reducible and the tangents at p are contained
in {f(ξ) = 0}. If f = 0 then all the points of P(V ) are singular points
of {f(ξ) = 0}: this case is not interesting and we will not consider it.

The following theorem is a weaker version of Bézout’s Theorem.

Theorem 1.2.5 Let f ∈ S3(V ?) and l ∈ S3(V
?
) be non-zero such that

l does not divide f . Then there are 3 intersection F -points between the
cubic curve {f(ξ) = 0} and the line {l(ξ) = 0}, counting multiplicities.

Proof : See Proposition 1, page 208, in [Brieskorn and Knörrer, 1986].
2

The notions of intersection multiplicity, multiplicity and tangents can
also be defined for an arbitrary projective curve; we leave that to the
reader. In what follows we shall mainly use these notions in the case of
cubic curves (but Section 1.6 is an exception).
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1.3 Hessian curve, flexes and normal form

Definition 1.3.1 Let f ∈ S3(V ?). The functor Hf : ExtF → Set defined
by

Hf (L) = {uL ∈ P(VL) | the form (ξ, η) 7→ tf (u, ξ, η) is singular}

is called the Hessian curve1 of f .

The Hessian curve Hf of a cubic form f is itself a cubic curve2. Indeed,
let (e1, e2, e3) be a basis of V , put

c(x1, x2, x3) := f(x1e2 + x2e2 + x3e3)

and define h : V → F by

h(a1e1 + a2e2 + a3e3) = det


∂2c
∂x2

1
(a) ∂2c

∂x1∂x2
(a) ∂2c

∂x1∂x3
(a)

∂2c
∂x1∂x2

(a) ∂2c
∂x2

2
(a) ∂2c

∂x2∂x3
(a)

∂2c
∂x1∂x3

(a) ∂2c
∂x2∂x3

(a) ∂2c
∂x2

3
(a)

 ,

where a = (a1, a2, a3). Then h ∈ S3(V ?) and Hf = {h(ξ) = 0}. Alter-
natively in terms of the associated trilinear form, we may also define Hf
as {h(ξ) = 0} with

h(ξ) = det

 tf (ξ, e1, e1) tf (ξ, e1, e2) tf (ξ, e1, e3)
tf (ξ, e1, e2) tf (ξ, e2, e2) tf (ξ, e2, e3)
tf (ξ, e1, e3) tf (ξ, e2, e3) tf (ξ, e3, e3)

 ,

where (e1, e2, e3) is a basis of V .
By Remark (i), page 289, in [Brieskorn and Knörrer, 1986], the Hes-

sian curve Hf is the zero curve only if f decomposes into a product of
linear forms over the algebraic closure. Remark (v) in loc. cit. says that
Hf goes through each singular point of {f(ξ) = 0}.

Definition 1.3.2 Let p = uF be an F -point of {f(ξ) = 0}. We say
that p is a flex of {f(ξ) = 0} if p is non-singular and the intersection
multiplicity of the curve {f(ξ) = 0} with the tangent {tf (u, u, ξ) = 0} at
p is greater than or equal to 3.

1The Hessian curve is named after the German mathematician Otto Hesse (1811–

1874) who defined this curve in 1844... as a polynomial, of course!
2We can define a Hessian curve for a form of any degree but in general it is not

necessarily a projective curve of the same degree.



1.3 Hessian curve, flexes and normal form 15

•
p

{tf (u, u, ξ) = 0}R

{f(ξ) = 0}R

Figure 1.1: Illustration of a flex

In the following, we give an example of a flex of a cubic curve .

Example 1.3.3 Let f : R3 → R be defined by f(x, y, z) = yz2 − x3.
Then f is a cubic form over R3 and p = (0, 0, 1)C is a flex of the curve
{f(ξ) = 0}. In Figure 1.1 we draw the R-points of {f(ξ) = 0} in the
affine plane obtained by choosing the line of equation z = 1 as line at
infinity.

Let f ∈ S3(V ?) and p = uF a non-singular F -point of {f(ξ) = 0}. If
tf (u, u, v) = 0 then f(u + λv) = 3λ2tf (u, v, v) + λ3f(v), so p is a flex
if and only if the tangent to {f(ξ) = 0} at p is contained in the conic
{tf (u, ξ, ξ) = 0}. We have another way to characterize the flexes of a
cubic curve.

Proposition 1.3.4 Let f ∈ S3(V ?) and p a non-singular point of the
curve {f(ξ) = 0}. Then p is a flex of {f(ξ) = 0} if and only if p ∈ Hf (F ).

Proof : See [Knapp, 1992], Proposition 2.12. 2

If f is non-singular, one can prove that {f(ξ) = 0} has at least one
and at most nine flexes using the resultant of polynomials. We will see
that {f(ξ) = 0} has in fact nine distinct flexes. But first we need other
results.

Lemma 1.3.5 Let f ∈ S3(V ?) be non-singular. Then {f(ξ) = 0} has
at least two flexes.

Proof : Lemma 15.3 in [Gibson, 1998] says that a non-singular cubic
curve has nine distinct flexes if F = C. But the proof can be adapted



16 Ternary cubic forms and cubic curves

to show that a non-singular cubic curve has at least two flexes over an
algebraically closed field. 2

Definition 1.3.6 We say that f ∈ S3(V ?) is a normal form if there
exist linearly independent ϕ1, ϕ2, ϕ3 ∈ V ? and λ, µ ∈ F not both zero
such that

f = µ(ϕ3
1 + ϕ3

2 + ϕ3
3) + λϕ1ϕ2ϕ3.

Suppose that f = µ(ϕ3
1 +ϕ3

2 +ϕ3
3) +λϕ1ϕ2ϕ3 for some linearly indepen-

dent ϕ1, ϕ2, ϕ3 ∈ V
?

and λ, µ ∈ F not both zero. Then f is singular if
and only if µ = 0 or λ3 = µ3.

Theorem 1.3.7 Let f ∈ S3(V ?) be non-singular. Then f is a normal
form as an element of S3(V

?
). In particular, {f(ξ) = 0} has exactly

nine flexes in P(V ).

Proof : See Theorem 4, page 293, in [Brieskorn and Knörrer, 1986]. 2

A priori the nine flexes are in P(V ). The next theorem says that they
are defined over Fsep.

Theorem 1.3.8 Let f ∈ S3(V ?) be non-singular. The nine flexes of
{f(ξ) = 0} are defined over Fsep and f is a normal form as an element
of S3

(
(Vsep)?

)
.

Proof : Let (e1, e2, e3) be a basis of V and put

c(x, y, z) := f(xe1 + ye2 + ze3).

We may assume that none of the flexes are in {αe1 + βe2 | α, β ∈ F}.
Let ai, bi ∈ F , i = 1, . . . , 9, be such that the (aie1 + bie2 + e3)F are the
nine flexes. Changing the basis if necessary, we may assume that ai 6= aj
for i 6= j. Let

h(x, y, z) = det


∂2c
∂x2 (x, y, z) ∂2c

∂x∂y (x, y, z) ∂2c
∂x∂z (x, y, z)

∂2c
∂x∂y (x, y, z) ∂2c

∂y2 (x, y, z) ∂2c
∂y∂z (x, y, z)

∂2c
∂x∂z (x, y, z) ∂2c

∂y∂z (x, y, z) ∂2c
∂z2 (x, y, z)


and r(x, z) (respectively s(x)) the resultant of the polynomials c(x, y, z)
and h(x, y, z) (respectively c(x, y, 1) and h(x, y, 1)) with respect to y.
One can check that s(ai) = 0 for all i and s(x) = r(x, 1) 6= 0. As the
degree of s(x) is less than or equal to 9 and s(ai) = 0 for all i, it follows
that s has degree 9 and all its roots are simple. So ai ∈ Fsep for all i.
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The polynomial c(ai, y, 1) is not constant since otherwise c(ai, y, 1)
would be constant equal to zero and f would be singular. If h(ai, y, 1)
is not constant, the polynomials c(ai, y, 1) and h(ai, y, 1) have a non-
constant common factor in Fsep[y] which is a multiple of (y − bi)n for
some n = 1, 2, 3 (the degree of f(ai, y, 1) is less or equal to 3); so bi ∈ Fsep.
If h(ai, y, 1) is constant, then h(ai, y, 1) = 0 and so c(ai, y, 1) is a multiple
of (y − bi)n for some n = 1, 2, 3. As c(ai, y, 1) ∈ Fsep[y] we have that
bi ∈ Fsep. Hence {f(ξ) = 0} has its nine flexes defined over Fsep.

In particular {f(ξ) = 0} has at least two flexes in P(Vsep) and we
can adapt the proof of Theorem 4, page 293, in [Brieskorn and Knörrer,
1986] to see that f is a normal form as an element of S3

(
(Vsep)?

)
. 2

Suppose that f is a non-singular cubic form. The nine flexes of the
curve {f(ξ) = 0} have the following property: a line passing through
two flexes passes through a third one. So we have 9 flexes and 12 lines
which pass through two of the flexes; through each flex pass four lines
among the 12 lines; there are four triples of lines such that each flex lies
on one and only one line of the triple. Figure 1.2 shows the incidences
just described, where pij are the flexes and C0, C1, C2 and C∞ are the
triples of lines.

We summarize the properties of the flexes.

Proposition 1.3.9 Let f ∈ S3(V ?) be non-singular. The nine flexes of
the cubic curve {f(ξ) = 0} and the twelve lines which go through two of
the flexes have the configuration of the points and the lines of the affine
plane F2

3.

Proof : Pages 295-296 in [Brieskorn and Knörrer, 1986] treat the config-
uration of the flexes of the projective curve associated to a non-singular
normal form. Since a non-singular cubic form is a normal form as an
element of S3

(
(Vsep)?

)
, the flexes of its associated cubic curve have the

same configuration. 2

1.4 j-Invariant

Let f ∈ S3(V ?) be a non-singular cubic form. By Theorem 1.3.8, there
exist linearly independent ϕ1, ϕ2, ϕ3 ∈ (Vsep)? and λ ∈ Fsep such that

f = ϕ3
1 + ϕ3

2 + ϕ3
3 − 3λϕ1ϕ2ϕ2.

and λ3 6= 1.
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C0

C2

C1

C∞

p00

p01

p02 p12

p22

p21

p20p10

p11

Figure 1.2: Flexes of a non-singular cubic curve
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Lemma 1.4.1 There exist other linearly independent ψ1, ψ2, ψ3 in
(Vsep)? and µ ∈ Fsep such that f = ψ3

1 + ψ3
2 + ψ3

3 − 3µψ1ψ2ψ3 if and
only if

λ3(λ3 + 8)3

(λ3 − 1)3
=
µ3(µ3 + 8)3

(µ3 − 1)3
.

Proof : See Theorem 10, page 302, in [Brieskorn and Knörrer, 1986]. 2

We shall prove that

λ3(λ3 + 8)3

(λ3 − 1)3
∈ F.

To do this we need some lemmas.
We denote by Γ the absolute Galois group Gal(Fsep/F ). We consider

several continuous actions of Γ. First Γ acts naturally on Vsep: for σ ∈ Γ,
v ⊗ λ ∈ Vsep,

σ(v ⊗ λ) = v ⊗ σ(λ).

Next we have an action of Γ on (Vsep)?: for σ ∈ Γ, ϕ ∈ (Vsep)? and
ξ ∈ Vsep,

σϕ(ξ) = σ
(
ϕ
(
σ−1(ξ)

))
.

Finally Γ acts naturally on V ?⊗F Fsep: for σ ∈ Γ and ϕ⊗λ ∈ V ?⊗F Fsep,

σ(ϕ⊗ λ) = ϕ⊗ σ(λ).

Lemma 1.4.2 There exists an Fsep-vector space isomorphism between
V ? ⊗F Fsep and (Vsep)?, which is compatible with the action of Γ.

Proof : We may choose the linear map Θ: V ? ⊗F Fsep → (Vsep)? which
sends ϕ⊗ λ to the linear form mapping v ⊗ µ to ϕ(v)λµ. 2

Thus we may identify V ? ⊗F Fsep and (Vsep)? and we denote them by
V ?sep.

We define two other actions of Γ. We have an action of Γ on Sd(V ?sep)
induced by the action on V ?sep:

σ(ϕ1 . . . ϕd) = σϕ1 . . .
σϕd;

and Γ acts naturally on Sd(V ?)⊗F Fsep:

σ(ϕ1 . . . ϕd ⊗ λ) = ϕ1 . . . ϕd ⊗ σ(λ).

Lemma 1.4.3 There exists an Fsep-vector space isomorphism between
Sd(V ?)⊗F Fsep and Sd(V ?sep) which is compatible with the action of Γ.
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Proof : The linear map sending ϕ1 . . . ϕd ⊗ λ onto (ϕ1 ⊗ 1 . . . ϕd ⊗ 1)λ
defines an Fsep-vector space isomorphism between Sd(V ?) ⊗F Fsep and
Sd(V ?sep) and is compatible with the action of Γ. 2

Let f ∈ S3(V ?) be non singular, then σf = f . Let ϕ1, ϕ2, ϕ3 ∈ V ?sep be
linearly independent and λ ∈ Fsep such that

f = ϕ3
1 + ϕ3

2 + ϕ3
3 − 3λϕ1ϕ2ϕ3.

For all σ ∈ Γ, we have

f = σϕ3
1 + σϕ3

2 + σϕ3
3 − 3σ(λ) σϕ1

σϕ2
σϕ3

where σϕ1,
σϕ2,

σϕ3 ∈ V ?sep are linearly independent. By the lemma
above,

σ

(
λ3(λ3 + 8)3

(λ3 − 1)3

)
=
σ(λ)3(σ(λ)3 + 8)3

(σ(λ)3 − 1)3
=
λ3(λ3 + 8)3

(λ3 − 1)3
,

and hence
λ3(λ3 + 8)3

(λ3 − 1)3
∈ F.

Definition 1.4.4 In the situation above, we define the j-invariant of f
as

j(f) =
λ3(λ3 + 8)3

(λ3 − 1)3
∈ F.

We say that two ternary cubic forms f ∈ S3(V ?) and f ′ ∈ S3(V ′?) are
equivalent if there exists an F -vector space isomorphism Θ: V → V ′

such that f = f ′ ◦Θ. By Lemma 1.4.1, the j-invariant has the following
property: suppose f ∈ S3(V ?) and f ′ ∈ S3(V ′?) are non-singular, then
j(f) = j(f ′) if and only if f and f ′ are equivalent as elements of S3(V ?sep)
and S3(V ′?sep) respectively.

1.5 Canonical pencil

Let f ∈ S3(V ?) and h ∈ S3(V ?) be such that {h(ξ) = 0} is the Hessian
curve Hf of f .

Definition 1.5.1 The canonical pencil associated to f is the collection
of the cubic curves {(αf + βh)(ξ) = 0} for all α, β ∈ Fsep not both zero.
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If f is non-singular, then the flexes of {f(ξ) = 0} are common points of
all the cubic curves in the pencil.

Let g ∈ S3(V ?): the cubic curve {g(ξ) = 0} is a triangle if g = l1l2l3
for some li ∈ V

?
such that the lines {li(ξ) = 0}, for i = 1, 2, 3, are

distinct and non-concurrent.

Proposition 1.5.2 Suppose that f ∈ S3(V ?) is non-singular. The cubic
curves in the canonical pencil of f are exactly the cubic curves over Fsep

passing through the nine flexes of {f(ξ) = 0}. These nine points are
also flexes for any cubic curve of the pencil. If αf +βh is singular, then
{(αf + βh)(ξ) = 0} is a triangle. There are exactly four triangles in the
canonical pencil.

Proof : Let ϕ1, ϕ2, ϕ3 ∈ V ?sep be linearly independent and λ ∈ Fsep such
that

f = ϕ3
1 + ϕ3

2 + ϕ3
3 − 3λϕ1ϕ2ϕ3.

Let (e1, e2, e3) is a basis of Vsep such that ϕi(ej) = δij where δij denotes
the Kronecker symbol (such a basis exists since the linear forms ϕ1, ϕ2, ϕ3

are linearly independent) and put

c(x1, x2, x3) := f(x1e1 + x2e2 + x3e3).

Then

det
( ∂2c

∂xi∂xj

)
= −54

(
λ2(x3

1 + x3
2 + x3

3) + (λ3 − 4)x1x2x3

)
.

Thus we may replace h by a multiple so that

h = λ2(ϕ3
1 + ϕ3

2 + ϕ3
3) + (λ3 − 4)ϕ1ϕ2ϕ3.

Since λ3 6= 1 the canonical pencil of f is equal to

{ν(ϕ3
1 + ϕ3

2 + ϕ3
3) + µϕ1ϕ2ϕ3 | ν, µ ∈ Fsep not both zero}.

Then Proposition 5, page 295, in [Brieskorn and Knörrer, 1986] com-
pletes the proof. 2

The triangles in the canonical pencil of f are called the inflexional tri-
angles of f .

Proposition 1.5.3 Let f ∈ S3(V ?) be non-singular and h ∈ S3(V ?)
such that {h(ξ) = 0} is the Hessian curve. Then h is singular if and
only if j(f) = 0. Moreover, if h is singular then Hf is an inflexional
triangle.
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Proof : Let ϕ1, ϕ2, ϕ3 ∈ V ?sep be linearly independent and λ ∈ Fsep such
that

f = ϕ3
1 + ϕ3

2 + ϕ3
3 − 3λϕ1ϕ2ϕ3.

Then we may assume that

h = λ2(ϕ3
1 + ϕ3

2 + ϕ3
3) + (λ3 − 4)ϕ1ϕ2ϕ3,

so h is singular if and only if λ = 0 or (λ3−4)3 = (−3λ2)3. Since λ3 6= 1,

(λ3 − 4)3 = (−3λ2)3 ⇐⇒ λ3 + 8 = 0.

Thus h is singular if and only if j(f) = 0. Since Hf is in the canonical
pencil of f , if h is singular then Hf is an inflexional triangle of f . 2

1.6 Singular cubic forms

In this section we classify the singular cubic forms over V by giving
a representative of each Fsep-equivalence class of F -cubic pairs. The
classification splits into two parts: the reducible cubic forms and the
irreducible ones.

First we consider a non-zero reducible cubic form f (note that a
reducible cubic form is singular): thus f = l · q for some l ∈ V

?
and

q ∈ S2(V
?
). It is easy to see that we may assume l ∈ V ?sep and q ∈ S2(V ?sep)

since f ∈ S3(V ?).
If q itself is reducible, then f = l1l2l3 for some li ∈ V ?sep. Depending

on the number of distinct lines {li(ξ) = 0} and on their intersection
points, one can show by straightforward computations that there exists
a basis (e1, e2, e3) of Vsep such that f(xe1 + ye2 + ze3) is one of the
following polynomials:

(1) x3,

(2) x2y,

(3) xy(x+ y),

(4) xyz.

In those cases we call the projective cubic curve respectively triple line,
double line plus simple line, three concurrent lines and triangle. The
singular points of these curves are the intersection points between the
lines. Thus a triple line and a double line plus simple line have infinitely
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many singular points, but three concurrent lines have one singular point
and a triangle has three singular points. If one among these singular
curves has finitely many singular points then all its singular points are
defined over Fsep.

If on the contrary q is irreducible, then we may find a basis (e1, e2, e3)
of Vsep such that f(xe1 + ye2 + ze3) is equal to one of the following:

(5) (y2 − xz)z,

(6) (z2 − xy)z.

In case (5) the line {l(ξ) = 0} is tangent to {q(ξ) = 0} and in case (6) the
line {l(ξ) = 0} has two distinct intersection points with {q(ξ) = 0}. The
associated cubic curves are called conic plus tangent and conic plus chord
respectively. The singular points of these curves are the intersection
points between the conic and the line. A conic plus tangent has one
singular point and a conic plus chord has two singular points.

Having dealt with the singular reducible forms, we now classify the
singular irreducible cubic forms with a series of lemmas.

Lemma 1.6.1 Suppose that f is a non-zero singular irreducible cubic
form. Then {f(ξ) = 0} has a unique singular point and the multiplicity
of {f(ξ) = 0} at this point is equal to 2.

Proof : See Lemma 15.1 in [Gibson, 1998]. 2

Let p = uF be the unique singular point of {f(ξ) = 0}. Since the
multiplicity mp(f) = 2 there exists ξ0 ∈ V such that tf (u, ξ0, ξ0) 6= 0
and the tangents to {f(ξ) = 0} at p are contained in {tf (u, ξ, ξ) = 0}.
If tf (u, ξ, ξ) = l(ξ)2 for some l ∈ V

?
then we have a unique tangent

{l(ξ) = 0} and we say that the tangent is double. If tf (u, ξ, ξ) = l1(ξ)l2(ξ)
for some l1, l2 ∈ V

?
linearly independent then the tangents to {f(ξ) = 0}

are {l1(ξ) = 0} and {l2(ξ) = 0} and we say that the tangents are simple.

Lemma 1.6.2 Suppose that f is a non-zero singular irreducible cubic
form with two simple tangents at the singular point. Then there exists a
basis (e1, e2, e3) of Vsep such that

f(xe1 + ye2 + ze3) = z3 + xz2 − xy2.

Moreover the cubic curve {f(ξ) = 0} has exactly three collinear flexes;
the flexes and the singular points are defined over Fsep.
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Proof : See Proposition 12, page 304, in [Brieskorn and Knörrer, 1986].
Those authors assume that F = C, but their argument can straightfor-
wardly be generalized for an arbitrary algebraically closed field. Then
one can check that the singular point, its tangents and the flexes are
defined over Fsep, so the result is in fact also true over a separably closed
field. 2

If f is a non-zero singular irreducible cubic form with two simple tangents
at the singular point, we say that the cubic curve {f(ξ) = 0} is nodal.

Lemma 1.6.3 Suppose that f is a non-zero singular irreducible cubic
form with a double tangent at the singular point. Then there exists a
basis (e1, e2, e3) of Vsep such that

f(xe1 + ye2 + ze3) = z3 − xy2.

Moreover the cubic curve {f(ξ) = 0} has a unique flex; the flex and the
singular point are defined over Fsep.

Proof : See Proposition 13, page 304, in [Brieskorn and Knörrer, 1986]:
the result is stated in the case where F = C but one can prove that it is
also true for an arbitrary separably closed field. 2

If f is a non-zero singular irreducible cubic form with a double tangent
at the singular point then we say that {f(ξ) = 0} is cuspidal.

Thus, to repeat: if f is a non-zero irreducible singular cubic form,
there exists a basis (e1, e2, e3) of Vsep such that f(xe1 + ye2 + ze3) is one
of the following:

(7) z3 + xz2 − xy2,

(8) z3 − xy2.

In conclusion, we have eight different kinds of non-zero singular cubic
forms, six of them are reducible and two of them are irreducible.
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Particular points and lines

For a flex of a non-singular cubic curve, we define its Hessian
point, its harmonic points and the associated harmonic polar.
We study the geometry of these points and lines which – much
like the flexes – have interesting properties. The Hessian
points and the harmonic points will play a crucial role in the
classification of non-singular cubic pairs in Chapter 4. We
believe that most of the results in this chapter are original;
we did not find any references in the literature.

2.1 Hessian points

Let f ∈ S3(V ?) be non-singular and p = uF a flex of {f(ξ) = 0}. Then
the bilinear form

V × V → F : (ξ, η) 7→ tf (u, ξ, η)

is singular and hence there exists a non-zero vector u′ ∈ V such that
tf (u, u′, ξ) = 0 for all ξ ∈ V . We note that u′F is an F -point of the
Hessian curve Hf and u and u′ are linearly independent since p is non-
singular.

Proposition 2.1.1 Let f ∈ S3(V ?) be non-singular and p = uF a
flex of {f(ξ) = 0}. Then there exists a unique u′F ∈ P(V ) such that
tf (u, u′, ξ) = 0 for all ξ ∈ V .

Proof : Suppose there exist linearly independent u′, u′′ ∈ V such that
tf (u, u′, ξ) = 0 and tf (u, u′′, ξ) = 0 for all ξ ∈ V . It is clear that uF , u′F
and u′′F are F -points of the tangent {tf (u, u, ξ) = 0}. Hence there exist
α, β ∈ F with α 6= 0 such that u′′ = αu+ βu′. Because

tf (u, u′′, ξ) = αtf (u, u, ξ) + βtf (u, u′, ξ)

25
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we have tf (u, u, ξ) = 0 for all ξ ∈ V . This contradicts the assumption
that f is non-singular. 2

Definition 2.1.2 Let f ∈ S3(V ?) be non-singular and p = uF a flex
of {f(ξ) = 0}. We denote by p′ = u′F the (unique) point satisfying
tf (u, u′, ξ) = 0 for all ξ ∈ V , and (in view of Proposition 2.1.3) we call
p′ the Hessian point of p.

We observe that p′ is not an F -point of {f(ξ) = 0}. Indeed, the inter-
section multiplicity of {f(ξ) = 0} with the tangent {tf (u, u, ξ) = 0} at p
is three. By Theorem 1.2.5, since f is irreducible, the point p is the only
intersection point between the cubic curve {f(ξ) = 0} and the tangent
{tf (u, u, ξ) = 0}; thus p′ is not a point of {f(ξ) = 0}.

It is clear that p and the Hessian point p′ are intersection points of
the Hessian curve Hf and the tangent {tf (u, u, ξ) = 0}. But we can
prove more.

Proposition 2.1.3 Let f ∈ S3(V ?) be non-singular and p a flex of
{f(ξ) = 0}. The points p and p′ are the only intersection points of
Hf and the tangent to {f(ξ) = 0} at p. Moreover, the intersection mul-
tiplicity at p′ is equal to two. In particular , if p′ is a non-singular point
of Hf then the tangent to {f(ξ) = 0} at p is the tangent to Hf at p′.

Proof : Let u, u′ ∈ V be such that p = uF and p′ = u′V and let v ∈ V
be such that u, u′ and v are linearly independent. Then (u, u′, v) is a
basis of V , so ξF is an F -point of the Hessian curve if and only if

det

 tf (ξ, u, u) tf (ξ, u, u′) tf (ξ, u, v)
tf (ξ, u, u′) tf (ξ, u′, u′) tf (ξ, u′, v)
tf (ξ, u, v) tf (ξ, u′, v) tf (ξ, v, v)

 = 0.

The points (αu + βu′)F , for α, β ∈ F not both zero, are the F -points
of the tangent {tf (u, u, ξ) = 0}. Hence the intersection F -points of
the Hessian curve and the tangent {tf (u, u, ξ) = 0} at p are the points
(αu+ βu′)F with α, β ∈ F not both zero such that

α2βf(u′)tf (u, u, v) = 0.

The Hessian point p′ is not on {f(ξ) = 0}, so f(u′) 6= 0. Since u, u′, v
are linearly independent, tf (u, u, v) 6= 0. Thus, p and p′ are the only
intersection points of the Hessian curve and the tangent {tf (u, u, ξ) = 0}
and the intersection multiplicity at p′ is equal to two. 2

The next lemma gives a criterion for a Hessian point to be singular.
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Lemma 2.1.4 Let f ∈ S3(V ?) be non-singular, p = uF a flex of the
cubic curve {f(ξ) = 0} and vF not on the tangent {tf (u, u, ξ) = 0}.
Then p′ = u′F is a singular point of Hf if and only if

f(u′)tf (u′, v, v) = tf (u′, u′, v)2.

Proof : Put

h(ξ) := det

 tf (u, u, ξ) tf (u, u′, ξ) tf (u, v, ξ)
tf (u, u′, ξ) tf (u′, u′, ξ) tf (u′, v, ξ)
tf (u, v, ξ) tf (u′, v, ξ) tf (v, v, ξ)

 .

Then the coefficient of λ in h(u′ + λξ) is equal to

tf (u, u, ξ)
(
f(u′)tf (u′, v, v)− tf (u′, u′, v)2

)
.

So p′ is a singular point of Hf if and only if

tf (u, u, ξ)
(
f(u′)tf (u′, v, v)− tf (u′, u′, v)2

)
= 0

for all ξ ∈ V . Since f is non-singular, there exists a ξ0 ∈ V such that
tf (u, u, ξ0) 6= 0. Hence p′ is a singular point of Hf if and only if

f(u′)tf (u′, v, v) = tf (u′, u′, v)2.

2

Next we give a condition, related to the Hessian points of the flexes, for
the Hessian curve of a non-singular form to be singular, and describe the
configuration of the Hessian points in that case.

Proposition 2.1.5 Let f ∈ S3(V ?) be non-singular and p a flex of the
cubic curve {f(ξ) = 0}. The following conditions are equivalent:

1. p′ is a singular point of Hf ;

2. there exists a flex q of {f(ξ) = 0} such that q 6= p and q′ = p′;

3. Hf is singular.

In this situation, the flexes of {f(ξ) = 0} may be named p1, . . . , p9 in
such a way that p′i = p′i+1 = p′i+2 and pi, pi+1, pi+2 lie on a line con-
tained in the Hessian curve, for i ∈ {1, 4, 7}. For all i, the Hessian
point p′i is a singular point of Hf and it is the intersection point of the
lines contained in the Hessian curve which do not pass through pi, as
illustrated in Figure 2.1.
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Figure 2.1: Hessian points on a singular Hessian curve

Proof : Suppose p′ is a singular point of Hf . Then Hf is singular and by
Proposition 1.5.3 it is a triangle. Suppose q = vF is a flex of {f(ξ) = 0}.
Proposition 2.1.3 says that the intersection multiplicity of the Hessian
curve with the tangent {tf (v, v, ξ) = 0} at q′ is equal to two. Hence
q′ is singular (it is clear that the intersection multiplicity of a triangle
with a line at a non-singular point is 0, 1 or ∞). Assume q′ 6= p′ for all
flexes q 6= p of {f(ξ) = 0}. As there are only two singular points of Hf
distinct from p′, there exist four distinct flexes such that their Hessian
points are equal. Thus, there exist three non-collinear flexes q1, q2, q3

of {f(ξ) = 0} such that q′1 = q′2 = q′3. Let vi, v′i ∈ V be such that
qi = viF and q′i = v′iF . Then tf (vi, v′1, ξ) = 0 for all ξ ∈ V and for all
i ∈ {1, 2, 3}. Since q1, q2, q3 are non-collinear, the vectors v1, v2, v3 are
linearly independent. So, f(v′1) = tf (v′1, v

′
1, v
′
1) = 0 which is impossible.

Thus, (1)⇒ (2).
Suppose that there exists a flex q 6= p of {f(ξ) = 0} such that q′ = p′.

Let u, u′, v ∈ F be such that p = uF , p′ = u′F and q = vF . Then vF

does not lie on the tangent {tf (u, u, ξ) = 0} and

f(u′)tf (u′, v, v) = 0 = tf (u′, u′, v)2.

So by Lemma 2.1.4, the point p′ is a singular point of Hf and we have
(2)⇒ (1).

It is clear that (1) ⇒ (3). By Proposition 2.1.3, if Hf is singular,
then p is singular; so also (3)⇒ (1).
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Now assume that these equivalent conditions hold. Since the line
through a flex and its Hessian point intersects the Hessian curve at the
Hessian point with multiplicity two, it is not contained in the Hessian
curve (the intersection multiplicity of a triangle with a line of the triangle
at a point is either 0 or ∞). So the Hessian points of three flexes on
a line contained in the Hessian curve are equal; this single point is the
intersection point of the lines contained in the Hessian curve which do
not pass through the flexes. 2

For p 6= q ∈ P(V ) we shall denote by 〈p, q〉 the line passing through p

and q, i.e. the functor F : ExtF → Set defined by

F(L) = {(αu+ βv)L | α, β ∈ L not both zero}

for L/F a field extension, where p = uF and q = vF .

Proposition 2.1.6 Let f ∈ S3(V ?) be non-singular such that Hf is non-
singular. Suppose that p and q are distinct flexes of {f(ξ) = 0}. Then
the lines 〈p, q〉 and 〈p′, q′〉 are distinct and intersect at the third flex on
the line 〈p, q〉.

Proof : If the lines 〈p, q〉 and 〈p′, q′〉 coincide then p, p′ and q are intersec-
tion points of the Hessian curve with the tangent at p, which contradicts
Proposition 2.1.3. So the lines are distinct.

The third flex on the line 〈p, q〉 is the third intersection point of the
cubic curve {f(ξ) = 0} with the line 〈p, q〉. Let u, u′, v be such that
p = uF , p′ = u′F and q = vF . Because

f(αu+ βv) = 3αβ
(
αtf (u, u, v) + βtf (u, v, v)

)
,

the third flex on the line 〈p, q〉 is the point(
tf (u, v, v)u− tf (u, u, v)v

)
F .

Put

h(ξ) := det

 tf (u, u, ξ) tf (u, u′, ξ) tf (u, v, ξ)
tf (u, u′, ξ) tf (u′, u′, ξ) tf (u′, v, ξ)
tf (u, v, ξ) tf (u′, v, ξ) tf (v, v, ξ)


so that {h(ξ) = 0} is the Hessian curve. Since

h(v) = −tf (u, v, v)2tf (u′, u′, v)− tf (u, u, v)tf (u′, v, v)2 = 0,

the vector

v′ = −tf (u, v, v)tf (u′, v, v)u+ tf (u, v, v)2u′ + tf (u, u, v)tf (u′, v, v)v
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satisfies tf (v, v′, ξ) = 0 for all ξ ∈ V , so q′ = v′F . Since h(u′ + λv′) is
equal to

λtf (u, u, v′)
(
f(u′)tf (u′, v, v)− tf (u′, u′, v)2 + λtf (u′, u′, v′)tf (u′, v, v)

)
,

the third intersection F -point of the Hessian curve and the line 〈p′, q′〉
is the point

r =
(
tf (u′, u′, v′)tf (u′, v, v)u′ +

(
tf (u′, u′, v)2 − f(u′)tf (u′, v, v)

)
v′
)
F .

Replacing v′ in r we get that r = (tf (u, v, v)u − tf (u, u, v)v)F . So the
lines 〈p, q〉 and 〈p′, q′〉 intersect at the third flex on the line 〈p, q〉. 2

The previous proposition is also true if Hf is singular and p′ 6= q′. Indeed,
by Proposition 2.1.5, the flexes p and q lie on distinct lines contained in
the Hessian curve. So the third flex on 〈p, q〉 lies on the line contained in
the Hessian curve which does not pass through p and q; this is the line
〈p′, q′〉.

2.2 Harmonic polars

Let f ∈ S3(V ?) be non-singular and p = uF a flex of {f(ξ) = 0}. We
know by the remark preceding Proposition 1.3.4 that the tangent at p is
contained in the conic {tf (u, ξ, ξ) = 0}. Hence the quadratic form

V → F : ξ 7→ tf (u, ξ, ξ)

is reducible and the conic {tf (u, ξ, ξ) = 0} is composed of two lines.
These two lines intersect only at one point, namely the Hessian point p′,
thus the conic {tf (u, ξ, ξ) = 0} consists of two distinct lines, one of them
being the tangent at p.

Definition 2.2.1 Let f ∈ S3(V ?) be non-singular and p = uF a flex of
{f(ξ) = 0}. The line different from the tangent at p contained in the
conic {tf (u, ξ, ξ) = 0} is called the harmonic polar of the cubic curve
{f(ξ) = 0} at the flex p.

We write p? for the harmonic polar of {f(ξ) = 0} at a flex p.

Lemma 2.2.2 Let f ∈ S3(V ?) be non-singular and p and q distinct
flexes of {f(ξ) = 0}. Then the harmonic polar at p is distinct from the
harmonic polar at q.
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Proof : Let u, v ∈ V be such that p = uF and q = vF . Suppose that the
harmonic polars p? and q? coincide. Then there exists a point r = wF

of {f(ξ) = 0} which lies on both the harmonic polars. In particular,
we have tf (u,w,w) = 0 and tf (v, w,w) = 0 (the harmonic polar at p is
contained in the conic {tf (u, ξ, ξ) = 0}). Since {tf (w,w, ξ) = 0} is the
tangent to {f(ξ) = 0} at r, the intersection multiplicity of {f(ξ) = 0}
with the tangent {tf (w,w, ξ) = 0} at r is greater than or equal to two.
Thus the number of intersection F -points of {f(ξ) = 0} with the line
{tf (w,w, ξ) = 0} is greater than or equal to four. By Theorem 1.2.5, the
line {tf (w,w, ξ) = 0} is contained in the cubic curve {f(ξ) = 0}. This
contradicts the fact that f is non-singular. 2

The following proposition exhibits the configuration of the nine harmonic
polars of a non-singular cubic curve.

Proposition 2.2.3 Let f ∈ S3(V ?) be non-singular and p, q, r distinct
flexes of {f(ξ) = 0}. Then the harmonic polars p?, q? and r? are con-
current if and only if the flexes are collinear.

Proof : Suppose that p, q, r are collinear. If p′ = q′ = r′ then the lines
p?, q? and r? are concurrent at p′. Assume we do not have p′ = q′ = r′,
then by Proposition 2.1.5 the points p′, q′ and r′ are distinct pairwise
because p, q, r are collinear. Let u, u′, v ∈ V be such that p = uF ,
p′ = u′V and q = vF . Then r = wF with

w = tf (u, v, v)u− tf (u, u, v)v

and the proof of Proposition 2.1.6 shows in particular that q′ = v′F with

v′ = −tf (u, v, v)tf (u′, v, v)v + tf (u, v, v)2u′ + tf (u, u, v)tf (u′, v, v)v.

Let ξ0F be the intersection F -point of p? with q?. Then in particular
tf (u, ξ0, ξ0) = 0 and tf (v, ξ0, ξ0) = 0. Thus

tf (w, ξ0, ξ0) = tf (u, v, v)tf (u, ξ0, ξ0)− tf (u, u, v)tf (v, ξ0, ξ0) = 0

and ξ0F is either on the tangent at r or on the harmonic polar at r.
Assume ξ0F is on the tangent at r. Let α, β, γ ∈ F be scalars such that
ξ0 = αu+ βu′ + γv. The point ξ0F is not on the tangent at p. Indeed,
if ξ0F lies on the tangent at p then it is the intersection point of the
tangent at p with the harmonic polar at p, namely p′. But p′ does not
lie on the tangent at r since the only intersection points of the Hessian
curve with the tangent at r are r and r′, and p′ 6= r, r′. Hence γ 6= 0. In
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the same way, it can be seen that the tangent at q does not pass through
ξ0F . Because tf (w,w, ξ0) = 0 implies

tf (u, u, v)tf (u′, v, v)β = tf (u, v, v)tf (u, u, v)α+ tf (u, v, v)2γ

and tf (u, ξ0, ξ0) = 0 implies

2αγtf (u, u, v) + γ2tf (u, v, v) = 0,

the point ξ0F is equal to(
−tf (u′, v, v)tf (u, v, v)u+ tf (u, v, v)2u′ + 2tf (u, u, v)tf (u′, v, v)v

)
F .

Hence ξ0F = (v′ + tf (u, u, v)tf (u′, v, v)v)F is an F -point of the tangent
{tf (v, v, ξ) = 0} and we have a contradiction. Thus, the point ξ0F is
on the harmonic polar r? and the harmonic polars p?, q? and r? are
concurrent.

Now assume that the harmonic polars p?, q? and r? are concurrent
at ξ0F . Suppose p, q, r are non-collinear. Let u, v, w ∈ V be such that
p = uF , q = vV and r = wV . Then tf (u, ξ0, ξ0) = 0, tf (v, ξ0, ξ0) = 0 and
tf (w, ξ0, ξ0) = 0. Since p, q, r are non-collinear, the vectors u, v, w are
linearly independent. Thus, tf (ξ0, ξ0, ξ) = 0 for all ξ ∈ V and ξ0F is a
singular point of {f(ξ) = 0}; this is impossible because f is non-singular.

2

Let us summarize the properties which we obtained on the harmonic
polars. For a non-singular f ∈ S3(V ?), there are exactly nine harmonic
polars of the cubic curve {f(ξ) = 0}. Through the intersection point of
two harmonic polars passes a third harmonic polar; through any given
point pass at most three harmonic polars. There are four triples of
points which satisfy the following property: a harmonic polar passes
through one and only one point of the triple. Hence the configuration of
the nine harmonic polars is dual to the configuration of the nine flexes
in the following sense: to obtain the properties of the harmonic polars
we replace “point” by “line”, “lie on” by “pass through”, “collinear”
by “concurrent”, etc. in the properties of the flexes. Moreover the two
configurations are connected by Proposition 2.2.3: the harmonic polars
at three flexes are concurrent if and only if the flexes are collinear.

2.3 Harmonic points

In this section, we define another class of particular points of a non-
singular cubic curve.
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Proposition 2.3.1 Let f ∈ S3(V ?) be non-singular and p a flex of
{f(ξ) = 0}. There are exactly three distinct intersection F -points be-
tween the cubic curve {f(ξ) = 0} and the harmonic polar p?.

Proof : Let u ∈ F be such that p = uF . Suppose that there is an
intersection F -point q = vF between {f(ξ) = 0} and p? with multiplicity
greater than or equal to two. Then the tangent {tf (v, v, ξ) = 0} at q
is the harmonic polar p?. Since q is on the harmonic polar p?, we have
in particular tf (u, v, v) = 0. Thus p is also on the harmonic polar p?.
This is impossible since p′ is the only intersection point between the
tangent at p and the harmonic polar at p. Thus, there are exactly three
intersection points between the cubic curve {f(ξ) = 0} and the harmonic
polar p?. 2

Definition 2.3.2 Let f ∈ S3(V ?) be non-singular and p a flex of the
curve {f(ξ) = 0}. The three intersection points of the cubic curve
{f(ξ) = 0} with the harmonic polar at p are called the harmonic points
of the flex p.

In [1950], page 124, Walker defines a sextatic point of an irreducible
cubic curve. An harmonic point is in particular a sextatic point.

Proposition 2.3.3 Let f ∈ S3(V ?) be non-singular, p a flex of the curve
{f(ξ) = 0} and q 6= p an F -point of {f(ξ) = 0}. Then the tangent to
the curve {f(ξ) = 0} at q passes through p if and only if q is a harmonic
point of p.

Proof : Let u, v ∈ V be such that p = uF and q = vF . Suppose that
q is a harmonic point of p. Then in particular tf (u, v, v) = 0 and so p
is on the tangent to {f(ξ) = 0} at q. Conversely, if p is on the tangent
to {f(ξ) = 0} at q then tf (u, v, v) = 0. So q is either on the tangent
at p or on the harmonic polar at p. Suppose that q is on the tangent
at p. Because q is on the cubic curve {f(ξ) = 0} we have q = p; it
contradicts the hypothesis. Thus q is on the harmonic polar p? and then
q is a harmonic point of p. 2

As in [Walker, 1950] we shall define a group law on the F -points of the
cubic curve {f(ξ) = 0}. To that end, it is useful to introduce some more
notation. Recall that we write 〈p, q〉 for the line through given points
p 6= q ∈ P(V ). For a p ∈ {f(ξ) = 0}F we shall now write 〈p, p〉 for the
tangent of {f(ξ) = 0} at p.
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Let o be a flex of {f(ξ) = 0}. We define a group law on the F -points
of {f(ξ) = 0} which depends on the flex o. Let a, b be two F -points
of {f(ξ) = 0}. By Theorem 1.2.5, there are exactly three intersection
F -points of {f(ξ) = 0} with the line 〈a, b〉, counting multiplicity. Let
c1 be the third intersection F -point (for instance, if the intersection
multiplicity at a is two and a 6= b then c1 = a). Now we set a+o b to be
the third intersection point of {f(ξ) = 0} with 〈o, c1〉. By Theorem 9.1,
page 191, in [Walker, 1950] this addition on the F -points of {f(ξ) = 0}
is a commutative group law with o as the zero element. Theorem 9.2,
page 192, in op. cit., says in particular the following:

Theorem 2.3.4 Let o be a flex of {f(ξ) = 0} and a1, a2, a3 F -points of
{f(ξ) = 0}. Then a1, a2, a3 are the intersection F -points of {f(ξ) = 0}
with {l(ξ) = 0} for some l ∈ V ?, counted with multiplicity, if and only
if a1 +o a2 +o a3 = o.

Now we can state a property of the harmonic points.

Proposition 2.3.5 Let f ∈ S3(V ?) be non-singular, p1, p2, p3 distinct
collinear flexes of {f(ξ) = 0} and q1 a harmonic point of p1. Then the
line 〈q1, p3〉 intersects the cubic curve {f(ξ) = 0} at a third point, which
is a harmonic point of p2.

Proof : We put o := p1 and q2 := p2 +o q1. Then q2 6= p2 since otherwise
q1 = p1. By Theorem 2.3.4, since p1, p2, p3 are distinct collinear F -points
of {f(ξ) = 0}, we have p2 +o p3 = o. Also 2q1 = o and 3p2 = o because
p1 is on the tangent at q1 and p2 is a flex. Then{

p2 +o 2q2 = p2 +o 2p2 +o 2q1 = o,

q1 +o p3 +o q2 = q1 +o p3 +o p2 +o q1 = o.

Thus, p2 is on the tangent to {f(ξ) = 0} at q2 and q1, p3, q2 are the
intersection F -points of {f(ξ) = 0} with the line 〈q1, p3〉. So the third
intersection point of the cubic curve {f(ξ) = 0} with the line 〈q1, p3〉 is
the points q2 which is a harmonic point of p2. 2
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Particular ternary cubic forms

We introduce and study particular ternary cubic forms which
we call semi-diagonal form and semi-trace form, the latter
generalizing the former. We give a criterion for a non-
singular cubic form to be semi-diagonal or semi-trace. In
Chapter 4 we shall use this criterion to show that the cu-
bic form associated to a non-singular cubic pair is always a
semi-trace form.

3.1 Semi-diagonal forms

Definition 3.1.1 We say that f ∈ S3(V ?) is a semi-diagonal form
if there exist linearly independent forms ϕ1, ϕ2, ϕ3 ∈ V ? and scalars
α1, α2, α3, λ ∈ F such that

f = α1ϕ
3
1 + α2ϕ

3
2 + α3ϕ

3
3 − 3λϕ1ϕ2ϕ3.

If moreover λ = 0 we say that f is a diagonal form.

Note that ϕ1, ϕ2, ϕ3 are linearly independent if and only if the cubic
curve {(ϕ1ϕ2ϕ3)(ξ) = 0} is a triangle. Also note that a non-singular
cubic form is a diagonal form only if its j-invariant is equal to zero.

The following lemma gives a condition for a semi-diagonal form to
be non-singular.

Lemma 3.1.2 Let f ∈ S3(V ?) be a semi-diagonal form:

f = α1ϕ
3
1 + α2ϕ

3
2 + α3ϕ

3
3 − 3λϕ1ϕ2ϕ3.

Then f is non-singular if and only if α1, α2, α3 6= 0 and λ3 6= α1α2α3.

35
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Proof : The symmetric trilinear form tf associated to f is defined by

tf (ξ, η, ζ) = α1ϕ1(ξ)ϕ1(η)ϕ1(ζ) + α2ϕ2(ξ)ϕ2(η)ϕ2(ζ)

+ α3ϕ3(ξ)ϕ3(η)ϕ3(ζ)− λ

18

∑
σ∈S3

ϕσ(1)(ξ)ϕσ(2)(η)ϕσ(3)(ζ).

Let (e1, e2, e3) be a basis of V such that ϕi(ej) = δij for all i, j. Then
(x0e1 + y0e2 + z0e3)F is singular if and only if (x0, y0, z0) 6= 0 and

α1x
2
0 = λy0z0,

α2y
2
0 = λx0z0,

α3z
2
0 = λx0y0.

If α1 = 0 then e1F is a singular point of {f(ξ) = 0}; hence f is singular.
In the same way, if α2 = 0 or α3 = 0 then f is singular. Assume
that α1, α2, α3 6= 0 and λ3 = α1α2α3. Let θ ∈ F be a cube root of
α1α

−1
2 , then (θλe1 + θ2λe2 +α1e3)F is a singular point, so f is singular.

Conversely, suppose that α1, α2, α3 6= 0 and f is singular. Let p be a
singular point. There exist x0, y0, z0 ∈ F such that (x0e1+y0e2+z0e3)F .
Then x0 6= 0 because otherwise x0, y0, z0 = 0 and

α2α3α
2
1x

4
0 = α2α3λ

2y2
0z

2
0 = λ4x2

0y0z0 = λ3α1x
4
0;

thus, λ3 = α1α2α3. 2

Next we give a criterion for a non-singular cubic form to be a semi-
diagonal form.

Theorem 3.1.3 Let f ∈ S3(V ?) be non-singular. Then f is a semi-
diagonal form if and only if there exists an inflexional triangle of f whose
lines are defined over F . Moreover, the cubic curve associated to ϕ1ϕ2ϕ3,
with ϕi ∈ V ?, is an inflexional triangle of f if and only if

f = α1ϕ
3
1 + α2ϕ

3
2 + α3ϕ

3
3 − 3λϕ1ϕ2ϕ3

for some α1, α2, α3, λ ∈ F .

Proof : Suppose that f is a semi-diagonal form. Let ϕ1, ϕ2, ϕ3 ∈ V ? be
linearly independent and α1, α2, α3, λ ∈ F such that

f = α1ϕ
3
1 + α2ϕ

3
2 + α3ϕ

3
3 − 3λϕ1ϕ2ϕ3.

Put

h := −2λ2(α1ϕ
3
1 + α2ϕ

3
2 + α3ϕ

3
3) + (8α1α2α3 − 2λ3)ϕ1ϕ2ϕ3,
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Figure 3.1: Flexes of {f(ξ) = 0}

then {h(ξ) = 0} is the Hessian curve of {f(ξ) = 0}. Let ξ0F be a flex
of {f(ξ) = 0}. Since λ3 6= α1α2α3 and ξ0F is an intersection point of
{f(ξ) = 0} and the Hessian curve Hf , we deduce that{

α1ϕ1(ξ0)3 + α2ϕ2(ξ0)3 + α3ϕ3(ξ0)3 = 0,
ϕ1(ξ0)ϕ2(ξ0)ϕ3(ξ0) = 0.

Thus the cubic curve associated to g = ϕ1ϕ2ϕ3 is an inflexional triangle
of f whose lines are defined over F .

Conversely, assume there exists an inflexional triangle g = ϕ1ϕ2ϕ3

of f with ϕ1, ϕ2, ϕ3 ∈ V ?. Let (e1, e2, e3) be a basis of V such that
ϕi(ej) = δij . Let p1, p2, p3 be the flexes of {f(ξ) = 0} on the line
{ϕ1(ξ) = 0} and let p4 be a flex on the line {ϕ2(ξ) = 0}. Then there
exist b ∈ F× and distinct a1, a2, a3 ∈ F× such that p4 = (e1 + be3)F
and pi = (aie2 + e3)F for all i = 1, 2, 3 (the scalars a1, a2, a3, b are non-
zero because the flexes of a non-singular cubic curve are not intersection
points between lines of an inflexional triangle). Let p6+i be the third
flex on the line 〈pi, p4〉 for i = 1, 2, 3, p5 the third flex on the line 〈p1, p8〉
and p6 the third flex on the line 〈p1, p9〉 (the incidences of the points
are showed in Figure 3.1). Then we have p6+i = (e1 − aibe2)F for all
i = 1, 2, 3, p5 = (a1e1 + a2be3)F and p6 = (a1e1 + a3be3)F . Using the
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configuration of the flexes of a non-singular cubic curve, we shall deduce
which flexes are collinear. For distinct collinear points p, q, r ∈ P(V ),
we write 〈p, q, r〉 for the line passing through this points. Since the lines
〈p2, p4, p8〉 and 〈p1, p6, p9〉 do not pass through a common flex, they
are contained in the same inflexional triangle and 〈p3, p5, p7〉 is the last
line of the triangle; so p3, p5, p7 are collinear. We deduce similarly that
p2, p6, p7 are collinear. The lines 〈p1, p2, p3〉, 〈p2, p4, p8〉 and 〈p2, p6, p7〉
pass all through p2. Thus the last line passing through p2 is 〈p2, p5, p9〉
and p2, p5, p9 are collinear. In the same way, we can prove that p3, p6, p8

are collinear. Since p5 lies on the line 〈p3, p7〉, there exist α, β, λ ∈ F

such that λ 6= 0 and

(a1e1 + a2be3)λ = α(a3e2 + e3) + β(e1 − a1be2).

So α = λa2b, β = λa1 and a2
1 = a2a3. Similarly, we have a2

2 = a1a3

because p2, p5, p9 are collinear and a2
3 = a1a2 because p3, p6, p8 are

collinear. In particular

a3
1 = a3

2 = a3
3 = a1a2a3.

Since the ai’s are distinct, we have a2 = ωa1 and a3 = ω2a1 for some
primitive cube root ω ∈ F of unity. We write

f =
∑

λi1,i2,i3ϕ
i1
1 ϕ

i2
2 ϕ

i3
3

where the sum runs over all the positive integers i1, i2 and i3 such that
i1 + i2 + i3 = 3. Since f(aie2 + e3) = 0 for all i = 1, 2, 3, the ai’s are
roots of the polynomial

λ0,3,0t
3 + λ0,2,1t

2 + λ0,1,2t+ λ0,0,3.

Thus λ0,2,1 = λ0,1,2 = 0. Exchanging the role of the ei’s we also get that
λ2,1,0 = λ1,2,0 = 0 and λ2,0,1 = λ1,0,2 = 0. Hence

f = λ3,0,0ϕ
3
1 + λ0,3,0ϕ

3
2 + λ0,0,3ϕ

3
3 + λ1,1,1ϕ1ϕ2ϕ3,

and f is a semi-diagonal form. 2

3.2 Semi-trace forms

For an F -algebra K, we denote by TrK/F and NK/F the trace form and
the norm form of the F -algebra K, i.e. the maps

TrK/F : K → F : ξ 7→ tr(lξ),
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NK/F : K → F : ξ 7→ det(lξ),

where lξ denotes the endomorphism of K of left multiplication by ξ.
Suppose that K is d-dimensional over F and fix an α ∈ K; then the forms
NK/F and K → F : ξ 7→ TrK/F (αξd) may be considered as elements of
Sd(K?).

Definition 3.2.1 Let f ∈ S3(V ?) be a ternary cubic form. We say that
f is a semi-trace form if there exist a cubic étale F -algebra K, elements
α ∈ K and λ ∈ F , and an F -vector space isomorphism Θ: V → K such
that

f(ξ) = TrK/F (αΘ(ξ)3)− 3λNK/F (Θ(ξ))

for all ξ ∈ V .

A semi-diagonal form is in particular a semi-trace form. Indeed, suppose
f ∈ S3(V ?) is a semi-diagonal form; so let ϕ1, ϕ2, ϕ3 ∈ V ? be linearly
independent and α1, α2, α3, λ ∈ F such that

f = α1ϕ
3
1 + α2ϕ

3
2 + α3ϕ

3
3 − 3λϕ1ϕ2ϕ3.

Let (e1, e2, e3) be a basis of V such that ϕi(ej) = δij for all i, j = 1, 2, 3.
We putK := F×F×F , α := (α1, α2, α3) and we define Θ: V → K as the
F -vector space isomorphism for which Θ(e1) = (1, 0, 0), Θ(e2) = (0, 1, 0)
and Θ(e3) = (0, 0, 1). Then

f(ξ) = TrK/F (α3Θ(ξ))− 3λNK/F (Θ(ξ)).

We will give a criterion for a non-singular ternary cubic form to be
a semi-trace form but first we need preliminaries.

As in [Knus et al., 1998], we say that G is a Γ-group if G is a group
equipped with a continuous action of Γ, denoted (σ, a) 7→ σ ? a, such
that

σ ? (ab) = (σ ? a)(σ ? b)

for all σ ∈ Γ and a, b ∈ G. We denote by Map({1, 2, 3}, F×sep) the group
of the set maps between {1, 2, 3} and F×sep. For a ∈ Map({1, 2, 3}, F×sep)
and i ∈ {1, 2, 3}, we write 〈a, i〉 for the image of i by the map a.

Suppose that Γ acts continuously on {1, 2, 3}. Then it induces a
continuous action of Γ on Map({1, 2, 3}, F×sep): for σ ∈ Γ, i ∈ {1, 2, 3}
and a ∈ Map({1, 2, 3}, F×sep),

〈σa, i〉 = σ
(
〈a, σ−1 ? i〉

)
;

this endows Map({1, 2, 3}, F×sep) with a Γ-group structure.
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Lemma 3.2.2 Suppose that Γ acts continuously on {1, 2, 3}. Then the
first cohomology group H1(Γ,Map({1, 2, 3}, F×sep)) is trivial.

Proof : Assume that Γ acts transitively on {1, 2, 3}. Let Γ0 denote the
stabilizer of 1 under the action of Γ on {1, 2, 3}. Then we have a bijection

Γ/Γ0 → {1, 2, 3} : γΓ0 7→ γ ? 1.

We put A0 := F×sep, then A0 is a Γ-group. Then Γ0 is an open-closed
subgroup of Γ (for the Krull topology). Let A be the group of continuous
maps a : Γ→ A0 such that

a(γ0γ) = γ0 (a(γ))

for all γ0 ∈ Γ0 and γ ∈ Γ. We define an action of Γ on A as follows:

σa(γ) = a(γσ)

for all σ, γ ∈ Γ. Then A equipped with this action is a Γ-group. Re-
mark (28.19) in [Knus et al., 1998] says that we may identify A with the
Γ-group of continuous maps from Γ/Γ0 to A0. Thus we may identify the
Γ-groups A and Map ({1, 2, 3}, A0). By Corollary (28.18) in op. cit.,

H1(Γ0, A0) = H1(Γ, A).

But Hilbert’s Theorem 90 says that H1(Γ0, A0) = 1. Thus

H1(Γ,Map({1, 2, 3}, F×sep)) = 1,

as wanted.
Now assume that the action of Γ on {1, 2, 3} is not transitive. Suppose

that X1 and X2 are disjoint non-empty subsets of {1, 2, 3} such that
{1, 2, 3} = X1 ∪X2 and the Xi’s are stable under the action of Γ. For
i = 1, 2, we put Ai := Map(Xi, F

×
sep), then the action of Γ restricts to

Ai. We have a split exact sequence of abelian Γ-groups:

A1
f

//

r
��

A1 ×A2 g
//

s
��

A2

with f(a1) = (a1, 1), g(a1, a2) = a2, r(a1, a2) = a1 and s(a2) = (1, a2).
It induces a split exact sequence of abelian groups:

1 // H1(Γ, A1) // H1(Γ, A1 ×A2) //
��

H1(Γ, A2).
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Hence, H1(Γ, A1 × A2) ∼= H1(Γ, A1) × H1(Γ, A2). Let Y1, . . . , Yr be the
orbits of {1, 2, 3} under the action of Γ and put Bi := Map(Yi, F×sep) for
all i. Then H1(Γ, Bi) = 1 because Γ acts transitively on Yi. Using the
preceding

H1(Γ, B1 × . . .×Br) ∼= H1(Γ, B1)× . . .× H1(Γ, Br) ∼= 1.

Since we have a Γ-group isomorphism

Map({1, 2, 3}, F×sep)→ B1 × . . .×Br : f 7→ (f |Y1 , . . . , f |Yr ),

we obtain that H1(Γ,Map({1, 2, 3}, F×sep)) = 1. 2

The next lemma gives a relation between a cubic form whose cubic curve
is a triangle and the norm form of a cubic étale F -algebra.

Lemma 3.2.3 Let f ∈ S3(V ?) be such that the curve {f(ξ) = 0} is a tri-
angle. Then there exist a cubic étale F -algebra K, a unit λ ∈ F× and an
F -vector space isomorphism Θ: V → K such that f(ξ) = λNK/F (Θ(ξ)).

Proof : Let ϕ1, ϕ2, ϕ3 ∈ V ?sep be linearly independent forms such that
f = ϕ1ϕ2ϕ3. Because f ∈ S3(V ?), we have σϕ1

σϕ2
σϕ3 = ϕ1ϕ2ϕ3 for all

σ ∈ Γ. By uniqueness of factorization in S(V ?), there exist a permutation
πσ of {1, 2, 3} and scalars λπσ(i),σ ∈ F×sep such that

σϕi = λπσ(i),σ ϕπσ(i),

for all i ∈ {1, 2, 3}. Since στϕi = σ(τϕi), we have

λπστ (i),στ ϕπστ (i) = λπσπτ (i),σ σ(λπτ (i),τ ) ϕπσπτ (i).

Thus, πστ = πσπτ and

λπστ (i),στ = λπστ (i),σ σ(λπτ (i),τ ). (3.1)

We define an action of Γ on the Fsep-algebra Map({1, 2, 3}, Fsep) as fol-
lows: for σ ∈ Γ, a ∈ Map ({1, 2, 3}, Fsep) and i ∈ {1, 2, 3},

〈σa, i〉 = σ(〈a, π−1
σ (i)〉).

The group Γ acts continuously by semilinear algebra automorphisms.
By Galois descent, the F -algebra K := Map ({1, 2, 3}, Fsep)Γ is such that
the Fsep-linear map

K ⊗F Fsep → Map({1, 2, 3}, Fsep)
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mapping a⊗ λ to aλ is an Fsep-algebra isomorphism. Since the map

Map({1, 2, 3}, Fsep)→ Fsep × Fsep × Fsep : a 7→ (〈a, 1〉, 〈a, 2〉, 〈a, 3〉)

defines an Fsep-algebra isomorphism, the F -algebra K is cubic étale. For
σ ∈ Γ, we consider the map aσ : {1, 2, 3} → Fsep defined by

〈aσ, i〉 = λi,σ.

Then aσ ∈ Map
(
{1, 2, 3}, F×sep

)
because λi,σ 6= 0 for all i. In fact (aσ)σ∈Γ

is a 1-cocycle with values in Map({1, 2, 3}, F×sep). Indeed,

〈aσσaτ , i〉 = 〈aσ, i〉〈σaτ , i〉
= λi,σ σ(〈aτ , π−1

σ (i)〉)
= λi,σ σ(λπ−1

σ (i),τ ).

for all i ∈ {1, 2, 3}. But relation (3.1) implies λi,στ = λi,σ σ(λπ−1
σ (i),τ ),

thus aσσaτ = aστ . We write u for the map {1, 2, 3} → Fsep defined
by 〈u, i〉 = 1 for all i. Let E be a finite field extension of F such that
ϕi ∈ V ?E for all i. The continuity of the map

Γ→ Map({1, 2, 3}, F×sep) : σ 7→ aσ

follows from the fact that {σ ∈ Γ | aσ = u} contains the Galois group
Gal(Fsep/E) of Fsep over E. Thus, by Lemma 3.2.2, there exists a map
b ∈ Map({1, 2, 3}, F×sep) such that aσ = b σb−1 for all σ ∈ Γ. We put
ψi := 〈b, i〉ϕi. Then

σψi = σ(〈b, i〉)σϕi
= σ(〈b, i〉)λπσ(i),σ ϕπσ(i)

= σ(〈b, i〉)〈aσ, πσ(i)〉 ϕπσ(i)

= σ(〈b, i〉)〈b, πσ(i)〉 σ(〈b, i〉)−1ϕπσ(i)

= ψπσ(i).

Put λ = 〈b, 1〉−1〈b, 2〉−1〈b, 3〉−1, then f = λψ1ψ2ψ3. Since f and ψ1ψ2ψ3

are invariant under the action of Γ, we have λ ∈ F×. Let

Θ: Vsep → Map({1, 2, 3}, Fsep)

be defined by 〈Θ(ξ), i〉 = ψi(ξ) for all ξ ∈ Vsep and i ∈ {1, 2, 3}. Since
the cubic curve {f(ξ) = 0} is a triangle, the linear forms ψi are linearly
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independent and we deduce that Θ is an Fsep-vector space isomorphism.
The map Θ is also compatible with the actions of Γ:

〈σΘ(ξ), i〉 = σ(〈Θ(ξ), π−1
σ (i)〉)

= σ(ψπ−1
σ (i)(ξ))

= σψπ−1
σ (i)(σ(ξ))

= ψi(σ(ξ))

= 〈Θ(σ(ξ)), i〉.

Thus Θ|V is an F -vector space isomorphism between V and K. Now,
for ξ ∈ V , we have

NK/F (Θ(ξ)) = NK⊗FFsep(Θ(ξ)⊗ 1)

= NF 3
sep/Fsep

(〈Θ(ξ), 1〉, 〈Θ(ξ), 2〉, 〈Θ(ξ), 3〉)
= 〈Θ(ξ), 1〉〈Θ(ξ), 2〉〈Θ(ξ), 3〉
= ψ1(ξ)ψ2(ξ)ψ3(ξ).

Thus, f(ξ) = λNK/F (Θ(ξ)). 2

Now we can give a criterion for a non-singular cubic form to be a semi-
trace form.

Theorem 3.2.4 Let f ∈ S3(V ?) be non-singular. Then f is a semi-
trace form if and only if there exists an inflexional triangle of f defined
over F .

Proof : Suppose g = ϕ1ϕ2ϕ3 ∈ S3(V ?) is such that the associated cubic
curve {g(ξ) = 0} is an inflexional triangle of f . Let K, Θ and πσ,
for σ ∈ Γ, be as in the proof of Lemma 3.2.3. Then the linear forms
ψ1, ψ2, ψ3 ∈ S3(V ?sep) with 〈Θ(ξ), i〉 = ψi(ξ) are such that σψi = ψπσ(i)

and g(ξ) = µNK/F (Θ(ξ)) = µψ1(ξ)ψ2(ξ)ψ3(ξ) for some µ ∈ F×. By
Theorem 3.1.3 and since the cubic curve associated to ψ1ψ2ψ3 is also an
inflexional triangle of f , there exist scalars α1, α2, α3, λ ∈ Fsep such that

f = α1ψ
3
1 + α2ψ

3
2 + α3ψ

3
3 − 3λψ1ψ2ψ3.

Because σf = f and σψi = ψπσ(i), we have σ(αi) = απσ(i) and σ(λ) = λ

for all σ ∈ Γ; thus in particular λ ∈ F . Let α : {1, 2, 3} → Fsep be the
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map defined by 〈α, i〉 = αi, then α ∈ K. Indeed,

〈σα, i〉 = σ
(
〈α, π−1

σ (i)〉
)

= σ(απ−1
σ (i))

= αi

= 〈α, i〉.

Therefore, for ξ ∈ V ,

TrK/F
(
αΘ(ξ)3

)
= TrF 3

sep/Fsep

(
α1ψ1(ξ)3, α2ψ2(ξ)3, α3ψ3(ξ)3

)
= α1ψ1(ξ)3 + α2ψ2(ξ)3 + α3ψ3(ξ)3,

from which

f(ξ) = TrK/F
(
αΘ(ξ)3

)
− 3λNK/F (Θ(ξ))

and f is a semi-trace form.
Conversely, assume that f is a semi-trace form: let K be a cubic étale

F -algebra, α ∈ K, λ ∈ F and Θ: V → K an F -vector space isomorphism
such that

f(ξ) = TrK/F
(
αΘ(ξ)3

)
− 3λNK/F (Θ(ξ)) .

By Theorem (18.4) in [Knus et al, 1998], there exist an action of Γ on
{1, 2, 3} and an F -algebra isomorphism Φ: K → Map ({1, 2, 3}, Fsep)Γ,
where the action on Map ({1, 2, 3}, Fsep) is induced by the one on {1, 2, 3}:

〈σa, i〉 = σ
(
〈a, σ−1 ? i〉

)
.

ReplacingK by Map ({1, 2, 3}, Fsep)Γ and Θ by Φ◦Θ, we may assume that
K = Map ({1, 2, 3}, Fsep)Γ. Let ϕi ∈ V ?sep be defined by ϕi(ξ) = 〈Θ(ξ), i〉
for ξ ∈ V and put αi := 〈Θ(α), i〉 for i = 1, 2, 3, then

f = α1ϕ
3
1 + α2ϕ

3
2 + α3ϕ

3
3 − 3λϕ1ϕ2ϕ3.

By Theorem 3.1.3, the cubic curve associated to g = ϕ1ϕ2ϕ3 is an inflex-
ional triangle of f which is a priori defined over Fsep. Since σΘ(ξ) = Θ(ξ)
for all ξ ∈ V and σ ∈ Γ, we have

σϕi(ξ) = σ
(
ϕi(ξ)

)
= σ

(
〈Θ(ξ), i〉

)
= 〈Θ(ξ), σ ? i〉 = ϕσ?i(ξ)

for all ξ ∈ V and i ∈ {1, 2, 3}. Thus σϕi = ϕσ?i and σg = g. So
{g(ξ) = 0} is an inflexional triangle of f which is defined over F . 2



4

Classification

of non-singular cubic pairs

We introduce the notion of cubic pair over a field and we
use Galois cohomology to classify the isomorphism classes
of non-singular cubic pairs: we explicitly give a represen-
tative of each such isomorphism class. To each cubic pair
is associated a ternary cubic form, and our classification of
the non-singular cubic pairs allows us to describe explicitly
those cubic forms. It turns out that all of these cubic forms
are semi-trace forms, and they are even semi-diagonal if the
ground field contains a primitive cube root of unity.

4.1 Cubic pairs

For A a central simple F -algebra, we let TrdA : A → F denote the re-
duced trace of A and A◦ the subspace of A of reduced trace zero elements.
The trace quadratic form of A is the quadratic form

qA : A→ F : ξ 7→ TrdA(ξ2).

Let A be a central simple F -algebra of degree 3. There exists a
field extension L of degree 3 over F such that A ⊗F L ∼= M3(L). Let
Θ: A⊗F L→ M3(L) be an L-algebra isomorphism, then

TrdA(ξ) = Tr
(
Θ(ξ)

)
for all ξ ∈ A. For a matrix m ∈ M3(L), let mij denote the element at
the i-th row and the j-th column in m. For all m ∈ M3(L)◦, we have

tr(m2) = 2(m12m21 +m13m31 +m23m32 +m2
11 +m2

22 +m11m22).

45
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Thus the restriction of qAL to (AL)◦ is isometric to the diagonal form

〈1,−1, 1,−1, 1,−1, 1, 3〉.

Since the degree of the field extension L over F is odd, by Springer’s
Theorem there exist 3-dimensional subspaces of A◦ which are totally
isotropic for the quadratic form qA.

Definition 4.1.1 A pair (A, V ) where A is a central simple algebra of
degree 3 over F and V is a 3-dimensional subspace of A◦ which is totally
isotropic for the trace quadratic form, is called a cubic pair over F .

An F -isomorphism between two cubic pairs (A, V ) and (A′, V ′) is an
isomorphism Θ: A→ A′ of F -algebras such that Θ(V ) = V ′.

To a cubic pair (A, V ) we can naturally associate a ternary cubic
form fA,V over V : define

fA,V : V → F : ξ 7→ ξ3.

We say that (A, V ) is a non-singular cubic pair if fA,V is non-singular
and (A, V ) is a singular cubic pair otherwise.

We observe that the cubic forms fA,V and fA′,V ′ are equivalent if the
F -cubic pairs (A, V ) and (A′, V ′) are isomorphic (but the converse need
not hold). Indeed let Θ: A→ A′ be an F -algebra isomorphism such that
Θ(V ) = V ′. Then, for all ξ ∈ V ,

fA,V (ξ) = ξ3 = Θ(ξ3) = Θ(ξ)3 = fA′,V ′ (Θ(ξ)) .

Furthermore, it is clear that, if f ∈ S3(V ?) and f ′ ∈ S3(V ′?) are equiva-
lent, then f is singular if and only if f ′ is singular. Thus we can split the
classification of cubic pairs over F , up to isomorphism, into two parts:
the singular cubic pairs and the non-singular ones.

To classify cubic pairs, we shall use a method based on Galois coho-
mology justified by the following theorem. In this theorem, we use the
following notation: Aut(A, V ) is the group scheme of automorphisms of a
cubic pair (A, V ). Explicitly, Aut(A, V ) is the functor from the category
of F -algebras to the category of groups that sends an F -algebra R on
the group of R-automorphisms of (A, V )R := (AR, VR).

Theorem 4.1.2 Let (A, V ) be an F -cubic pair. We have a bijection

H1(F,Aut(A, V ))←→


F -isomorphism classes of

the F -cubic pairs which are
isomorphic to (A, V )Fsep over Fsep

 .
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Proof : Let G ⊂ GL(A) be the subscheme of automorphisms of the flag
of vector spaces A ⊃ V over F . Let W be the F -vector space of the
F -homomorphisms of vector spaces between A ⊗F A and A. We define
ρ : G→ GL(W ) by

ρR(g)(ϕ)(ξ ⊗ η) = g ◦ ϕ
(
g−1(ξ)⊗ g−1(η)

)
,

for g ∈ G(R), ϕ ∈ WR and ξ, η ∈ AR. We denote by m : A ⊗F A → A

the multiplication in the algebra A, then m ∈ W . As in [Knus, et al.,
1998], page 392, let AutG(m) denote the stabilizer of m. It is a subgroup
of the group scheme G and, for every F -algebra R,

AutG(m)(R) = {R-algebra automorphisms of (A, V )R},

so AutG(m) = Aut(A, V ). Let A(ρ,m) be the category whose objects are
the ϕ ∈ W such that ϕ = ρFsep(g)(m) for some g ∈ G(Fsep), and whose
morphisms ϕ → ψ are the elements g ∈ G(F ) such that ρ(g)(ϕ) = ψ.
By Corollary (29.5) in op. cit., H1(F,G) = 1. So by Proposition (29.1)
in op. cit., there is a bijection

Isom
(
A(ρ,m)

)
←→ H1(F,AutG(m))

where Isom
(
A(ρ,m)

)
denotes the set of isomorphism classes of objects

of the category A(ρ,m). To finish the proof, we show that

Isom(A(ρ,m))←→


F -isomorphism classes of

the F -cubic pairs which are
isomorphic to (A, V )Fsep over Fsep

 .

Let ϕ ∈ A(ρ,m). We define A′ to be the F -algebra such that A′ is equal
to A as an F -vector space and the multiplication in A′ is given by ϕ. Let
g ∈ G(Fsep) be such that ϕ = ρFsep(g)(m), then g is an Fsep-isomorphism
between (A, V )Fsep and (A′, V ′)Fsep , where V ′ = V . Hence we obtain an
F -cubic pair (A′, V ′) such that (A, V )Fsep and (A′, V ′)Fsep are isomorphic.
If ψ ∈ A(ρ,m) is isomorphic to ϕ, then there exists h ∈ G(F ) such that
ψ = ρ(h)(ϕ). If (A′′, V ′′) is the F -cubic pair associated to ψ in the
same way, then h is an F -isomorphism between (A′, V ′) and (A′′, V ′′).
So the mapping [ϕ] 7→ [(A, V )] is well-defined, where [ϕ] and [(A, V )]
are the isomorphism classes of ϕ and (A, V ) respectively. We prove
that this mapping is bijective. Let (A′, V ′) be an F -cubic pair and
Θ: (A, V )Fsep → (A′, V ′)Fsep an isomorphism of Fsep-cubic pairs. Let m′

denote the multiplication in A′. There exists an isomorphism of F -vector
spaces Φ: A→ A′ such that Φ(V ) = V ′. We define ϕ : A⊗F A→ A by

ϕ(ξ ⊗ η) = Φ−1 ◦m′
(
Φ(ξ)⊗ Φ(η)

)
,
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for ξ, η ∈ A. Then ϕ = ρFsep(g)(m), where g = Φ−1 ◦ Θ ∈ G(Fsep). If
Ψ: A→ A′ is another F -vector space isomorphism such that Ψ(V ) = V ′,
let ψ ∈ A(ρ,m) be defined by

ψ(ξ, η) = Ψ−1 ◦m′
(
Ψ(ξ)⊗Ψ(η)

)
.

Then Ψ−1 ◦ Φ ∈ G(F ) and ρ(Ψ−1 ◦ Φ)(ϕ) = ψ. Hence [ϕ] does not
depend on the choice of Φ. Now suppose that Ψ: (A′, V ′) → (A′′, V ′′)
is an F -cubic pair isomorphism. Then Ψ ◦ Θ is an Fsep-cubic pair iso-
morphism between (A, V )Fsep and (A′′, V ′′)Fsep and Ψ ◦ Φ is an F -vector
space isomorphism from A to A′′ such that Ψ ◦ Φ(V ) = V ′′. Let m′′ be
the multiplication in A′′. Then the element of Isom(A(ρ,m)) associated
to the pair (A′′, V ′′) in the same way is [ψ] where

ψ(ξ ⊗ η) = Φ−1 ◦Ψ−1 ◦m′′
(
Ψ ◦ Φ(ξ)⊗Ψ ◦ Φ(η)

)
= ϕ(ξ ⊗ η).

Therefore [ϕ] does not depend on the representative of [(A′, V ′)]. We
obtain a mapping [(A′, V ′)] 7→ [ϕ] which is the inverse of the former. 2

The bijection in Theorem 4.1.2 goes as follows. Let (A′, V ′) be a cubic
pair over F such that Θ: (A′, V ′)Fsep → (A, V )Fsep is an Fsep-isomorphism.
Then the corresponding 1-cocycle is (aσF×sep)σ∈Γ with

int(aσ) = Θ ◦ (idA′ ⊗ σ) ◦Θ−1 ◦ (idA ⊗ σ−1),

where int(aσ) is the inner automorphism ξ 7→ aσξa
−1
σ of AFsep . Con-

versely, for (aσF×sep)σ∈Γ ∈ Z1(F,Aut(A, V )), we let

A′ = {ξ ∈ AFsep | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ}

and

V ′ = {ξ ∈ Vsep | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ}.

Then (A′, V ′) is the F -cubic pair corresponding to (aσ)σ∈Γ.
The previous theorem gives us a method to classify the cubic pairs

over F : first classify the cubic pairs over Fsep; then compute the au-
tomorphism group of a representative of any Fsep-isomorphism class of
cubic pairs; and finally for a representative of any Fsep-isomorphism class
of cubic pairs which is defined over F , give all the F -isomorphism classes
of F -cubic pairs which are Fsep-isomorphic to the former.

The rest of this chapter is devoted to the classification of the non-
singular cubic pairs; the singular ones are classified in Chapter 5.
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4.2 Non-singular cubic pairs over Fsep

Let (A, V ) be a non-singular cubic pair over Fsep. We want to describe
(A, V ) up to Fsep-isomorphism. Since A is a degree 3 central simple
algebra over Fsep, we may assume that A = M3(Fsep) and V is a 3-
dimensional subspace of M3(Fsep) of trace zero matrices which is totally
isotropic for the trace quadratic form

qA : M3(Fsep)→ Fsep : ξ 7→ tr(ξ2).

By the Skolem-Noether Theorem, an isomorphism between the cubic
pairs (M3(Fsep), V ) and (M3(Fsep), V ′) over Fsep is an inner automor-
phism

int(m) : M3(Fsep)→ M3(Fsep) : ξ 7→ mξm−1

such that mVm−1 = V ′ for some m ∈ GL3(Fsep). Thus, to classify
the isomorphism classes of non-singular cubic pairs over Fsep, we may
classify, up to conjugacy, the 3-dimensional subspaces of M3(Fsep)◦ which
are totally isotropic for the trace quadratic form qM3(Fsep) and such that
fV is non-singular.

For brevity, if (A, V ) is a cubic pair over F with A = M3(F ), we write
fV instead of fA,V ; we call V a cubic subspace of M3(F ); we say that V
is singular if fV is singular and V is non-singular otherwise. Note that
the symmetric trilinear form associated with fV is the map

tV : V × V × V : (ξ, η, ζ) 7→ 1
6

tr(ξηζ + ξζη).

Lemma 4.2.1 Let V be a cubic subspace of M3(Fsep) and u ∈ V non-
zero such that u2 = 0. Then uF is a singular point of the cubic curve
{fV (ξ) = 0}.

Proof : Since u2 = 0, we have tV (u, u, ξ) = 1
3 tr(u2ξ) = 0 for all ξ ∈ V .

Therefore uF is a singular point of {fV (ξ) = 0}. 2

In other words, there is no non-zero u ∈ V such that u2 = 0 in a
non-singular cubic subspace V of M3(Fsep). The next proposition gives
equivalent conditions for a matrix of a cubic subspace with a non-zero
square, to be of determinant zero.

Proposition 4.2.2 Let V be a cubic subspace of M3(Fsep). Then, for
all u ∈ V such that u2 6= 0, the following statements are equivalent:

1. fV (u) = 0,
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2. det(u) = 0,

3. the rank of u is equal to 2,

4. im(u) = ker(u2).

Proof : The first two statements are equivalent since ξ3 = det(ξ) for all
ξ ∈ V . By hypothesis u2 6= 0, so u3 = 0 implies that the Jordan normal
form of u is  0 1 0

0 0 1
0 0 0

 .

Therefore u3 = 0 implies (3) and (4). It is easy to see that (3) and (4)
both imply det(u) = 0. 2

For a non-singular cubic subspace of M3(Fsep), we shall give explicit
vectors which span the given subspace. To do this we need preliminary
results.

Lemma 4.2.3 Let V be a cubic subspace of M3(Fsep) and u1, u2 ∈ V

determinant zero matrices. If u2
2 6= 0, tr(u1u

2
2) = 0 and tr(u2

1u2) 6= 0,
then ker(u2) 6⊂ ker(u2

1).

Proof : Since tr(u2
1u2) 6= 0 we have u2

1 6= 0. Replacing u1 and u2 by
conjugates in M3(Fsep) if necessary, we may assume that

u1 =

 0 1 0
0 0 1
0 0 0

 .

If ker(u2) = ker(u1) then

u2 =

 0 x12 x13

0 x22 x23

0 x32 x33


for some xij ∈ Fsep and so we have tr(u2

1u2) = 0 which contradicts the
hypothesis; hence ker(u2) 6= ker(u1). Suppose that ker(u2) ⊂ ker(u2

1).
Let a ∈ F 3

sep be such that

ker(u2) = u1a · Fsep

(there exists such a vector because ker(u2
1) = im(u1) by Proposition

4.2.2). Since ker(u2) 6= ker(u1) we have u2
1a 6= 0, so a 6∈ ker(u2

1) = im(u1)
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and u1a 6∈ ker(u1). Thus we have a 6∈ im(u1), u1a ∈ im(u1) \ ker(u1) and
u2

1a ∈ ker(u1)\{0}, which means that a, u1a, u
2
1a are linearly independent

in F 3
sep. Let m be the matrix with columns u2

1a, u1a and a, then

m−1u1m =

 0 1 0
0 0 1
0 0 0

 and m−1u2m =

 x11 0 x13

x21 0 x23

x31 0 x33


for some xij ∈ Fsep, since ker(u2) = u1a · Fsep. Because tr(u2) = 0 and
tr(u1u2) = 0, we have x11 + x33 = x21 = 0. So

m−1u2
2m =

 x2
11 + x13x31 0 0
x23x31 0 −x23x11

0 0 x2
11 + x13x31


and tr(u1u

2
2) = tr(u2

2) = 0 implies

x23x31 = x2
11 + x13x31 = 0.

On the other hand tr(u2
1u2) = x31, so x31 6= 0. Therefore we have x23 = 0

and u2
2 = 0 which is impossible. Hence ker(u2) 6⊂ ker(u2

1). 2

Lemma 4.2.4 Let V be a cubic subspace of M3(Fsep) and u1, u2 ∈ V

determinant zero matrices. Suppose that u2
2 6= 0, tr(u1u

2
2) = 0 and

tr(u2
1u2) 6= 0, then there exist m ∈ GL3(Fsep) and λ, µ ∈ F×sep such that

mu1m
−1 = λ

 0 1 0
0 0 1
0 0 0

 and mu2m
−1 = µ

 0 0 0
1 0 0
1 −1 0

 .

Proof : Let a ∈ F 3
sep be such that ker(u2) = a ·Fsep. By Lemma 4.2.3, we

have a 6∈ ker(u2
1) and so a, u1a, u

2
1a are linearly independent. Let m0 be

the matrix with columns u2
1a, u1a, a, then

m−1
0 u1m0 =

 0 1 0
0 0 1
0 0 0

 and m−1
0 u2m0 =

 x11 x12 0
x21 x22 0
x31 x32 0


for some xij ∈ Fsep. As tr(u2) = tr(u1u2) = 0, we have x22 = −x11 and
x32 = −x21, thus

m−1
0 u2

2m0 =

 x2
11 + x12x21 0 0

0 x2
11 + x12x21 0

x31x11 − x2
21 x31x12 + x11x21 0

 .
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From tr(u1u
2
2) = tr(u2

2) = 0 we deduce

x31x12 + x11x21 = 0 (4.1)

x2
11 + x12x21 = 0 (4.2)

whence

m−1
0 u2

2m0 =

 0 0 0
0 0 0

x31x11 − x2
21 0 0

 .

As u2
2 6= 0, we need x31x11 − x2

21 6= 0. But

x11(x2
21 − x11x31) = (x31x12 + x11x21)x21 − (x2

11 + x12x21)x31 = 0

so x11 = 0 and x21 6= 0. Using equation (4.2) we get x12 = 0 so

m−1
0 u2m0 =

 0 0 0
x21 0 0
x31 −x21 0


and x31 6= 0 as tr(u2

1u2) 6= 0. Now choosing

m =

 x−2
21 x

2
31 0 0

0 x−1
21 x31 0

0 0 1

 ·m−1
0

we get

mu1m
−1 =

x31

x21

 0 1 0
0 0 1
0 0 0

 and mu2m
−1 =

x2
21

x31

 0 0 0
1 0 0
1 −1 0

 .

2

The matrix m in the previous lemma is unique in the following sense:

Lemma 4.2.5 If m1,m2 ∈ GL3(Fsep) and λ1, λ2, µ1, µ2 ∈ F×sep are such
that both m1, λ1, µ1 and m2, λ2, µ2 satisfy the conditions in Proposi-
tion 4.2.4, then m1F

×
sep = m2F

×
sep, λ1 = λ2 and µ1 = µ2.

Proof : This follows easily from the relations

m−1
2 m1

 0 1 0
0 0 1
0 0 0

 = λ−1
1 λ2

 0 1 0
0 0 1
0 0 0

m−1
2 m1
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and

m−1
2 m1

 0 0 0
1 0 0
1 −1 0

 = µ−1
1 µ2

 0 0 0
1 0 0
1 −1 0

m−1
2 m1.

2

Let V be a non-singular cubic subspace of M3(Fsep). By Theo-
rem 1.3.8, we know that {fV (ξ) = 0} has exactly nine flexes which are
defined over Fsep. Let u ∈ V be such that uF is a flex of {fV (ξ) = 0}.
Then the conic {tV (u, ξ, ξ) = 0} and the tangent {tV (u, u, ξ) = 0} are
defined over Fsep. Thus the harmonic polar at uF , the Hessian point
and the harmonic points of uF are also defined over Fsep.

To describe a non-singular cubic subspace of M3(Fsep) up to conju-
gacy, we shall use particular points related to the associated cubic curve.
More precisely, let V be a non-singular cubic subspace of M3(Fsep), uFsep

a flex of {fV (ξ) = 0}, vFsep a harmonic point of uFsep and wFsep the Hes-
sian point of uFsep. Since vFsep does not lie on the tangent to {f(ξ) = 0}
at uFsep which is the line 〈uFsep, wFsep〉, the matrices u, v, w are linearly
independent and V is spanned by u, v, w. Therefore, to describe V it is
sufficient to describe u, v, w.

To state our next result, we introduce some notation that we shall
use in the rest of this chapter. We write ω ∈ Fsep for a primitive cube
root of unity1. We also put

u :=

 0 1 0
0 0 1
0 0 0

 , v :=

 0 0 0
1 0 0
1 −1 0

 ,

and for α ∈ Fsep,

w1(α) :=

 α − 1
2 1

3α2 −2α 1
2

0 −3α2 α

 ,

w2(α) :=

 α 1
2

(
(ω2 − 1)α− 1

)
1

0 ωα 1
2

(
(ω2 − 1)α+ 1

)
0 0 ω2α

 ,

w3(α) :=

 α 1
2 ((ω − 1)α− 1) 1

0 ω2α 1
2 ((ω − 1)α+ 1)

0 0 ωα

 .

1The element ω ∈ Fsep shall denote a primitive cube root of unity in the rest of

the chapters.
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For ξ1, . . . , ξr ∈ M3(F ), we write spanF 〈ξ1, . . . , ξr〉 for the F -vector sub-
space of M3(F ) spanned by ξ1, . . . , ξr. We put

Vα := spanFsep
〈u, v, w1(α)〉

for α ∈ Fsep. We call a non-singular cubic subspace of M3(F ) which is
spanned by u, v, wi(α) for some α ∈ F and some i = 1, 2, 3, a special
subspace of M3(F ).

Theorem 4.2.6 Let V be a non-singular cubic subspace of M3(Fsep).
Then V is conjugate to the spanFsep

〈u, v, wi(α)〉 for some α ∈ Fsep and
some i ∈ {1, 2, 3}.

Proof : Let ũ, ṽ, w̃ ∈ V be such that ũF is a flex of the cubic curve
{fV (ξ) = 0}, ṽF is a harmonic point of ũF and w̃F is the Hessian point
of ũF . Since ũF is a flex of the cubic curve {fV (ξ) = 0} and ṽF is a
harmonic point of ũF , the determinants of ũ and ṽ are zero, tr(ũṽ2) = 0
and tr(ũ2ṽ) 6= 0. Moreover ṽ2 6= 0 because V is non-singular. Thus,
by Proposition 4.2.4, there exist a matrix m ∈ GL3(Fsep) and scalars
λ, µ ∈ F×sep such that

mũm−1 = λu and mṽm−1 = µv.

Put w := mw̃m−1. Let wij ∈ Fsep denote the element on row i and
column j in w. Since tr(w̃) = 0, tr(ũw̃) = 0 and tr(ṽw̃) = 0, we have
tr(w) = 0, tr(uw) = 0 and tr(vw) = 0. Thus w33 = −w11 − w22,
w32 = −w21 and w23 = w12 + w13 and

w =

 w11 w12 w13

w21 w22 w12 + w13

w31 −w21 −w11 − w22

 .

We have w13 6= 0 for otherwise tr(ṽ2ξ) = 0 for all ξ ∈ V and ṽF would
be singular. Because tr(w̃2) = 0, we have

w31 = w21 − w−1
13 (w2

11 + w2
22 + w11w22).

Since w̃F is the Hessian point of ũF , we have tV (ũ, w̃, ξ) = 0 for all
ξ ∈ F . But tV (ũ, w̃, ũ) = 0 implies

w21 = w−1
13 (w2

11 + w2
22 + w11w22);

next tV (ũ, w̃, ṽ) = 0 implies

w12 = −1
2

(w13 + 2w11 + w22);
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and finally tV (ũ, w̃, w̃) = 0 implies

w22 = −2w11 or w2
11 + w2

22 + w11w22 = 0.

If w22 = −2w11, then wFsep = w1(α)Fsep with α = w11w
−1
13 . On the

other hand, if w2
11 +w2

22 +w11w22 = 0, then w22 = ωw11 or w22 = ω2w11.
Hence either wFsep = w2(α)Fsep or wFsep = w3(α)Fsep with α = w11w

−1
13 .
2

Therefore, up to conjugacy, the non-singular subspaces of M3(Fsep) are
special subspaces. We can prove more:

Theorem 4.2.7 The pairs (M3(Fsep), Vα) for α ∈ Fsep \ {0, 1
8 ,

1
9}, are

non-singular cubic pairs over Fsep, and any non-singular cubic pair over
Fsep is isomorphic to (M3(Fsep), Vα) for some α ∈ Fsep \ {0, 1

8 ,
1
9}.

Proof : It is easy to check that (M3(Fsep), Vα) is a cubic pair for all
α ∈ Fsep, and is non-singular if and only if α 6∈ {0, 1

8 ,
1
9}.

To prove that an arbitrary non-singular cubic pair over Fsep is iso-
morphic to (M3(Fsep), Vα) for some α, it is sufficient to prove that the
non-singular cubic subspaces of M3(Fsep) spanned by u, v and wi(β) are
isomorphic to Vα for some α ∈ Fsep. Observe that spanFsep

〈u, v, w2(β)〉 is
a cubic subspace of M3(Fsep) for all β ∈ Fsep and is non-singular if and
only if β 6= 0, −ω

2

3 , −ω
2

9 . Let β ∈ Fsep \ {0, −ω
2

3 , −ω
2

9 }, θ ∈ Fsep a cube
root of 9ωβ + 1 and let m be the matrix

1 ωθ2+θ+ω2

3β
θ−1

(ω−ω2)β
θ2−9ωβ−1

(ω2−1)(9ωβ+1)
ω2θ2

9ωβ+1
−ω2θ2−ω2(9β+ω2)−9ωβ−1

3β(9ωβ+1)
−θ2−ω2θ+3(ω−ω2)β−ω

3(9ωβ+1)
(ω2−ω)(θ−1)

3(9ωβ+1)
−ω2θ−ω
9ωβ+1

 .

Then m ∈ GL3(Fsep) and

m · spanFsep
〈u, v, w2(β)〉 ·m−1 = Vα

with α = β(9β + ω2)−1. In the same way, we can prove that any non-
singular cubic subspaces of M3(Fsep) spanned by u, v and w3(β) is con-
jugate to Vα for some α ∈ F : the matrix obtained replacing ω by ω2

and θ by a cube root of 9ω2β + 1 in m, conjugates spanFsep
〈u, v, w3(β)〉

into Vα with α = β(9β + ω)−1 (explanations on these computations are
given in Section A.2 of the appendix). 2
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4.3 Automorphism group

In order to classify the non-singular cubic pairs over F , we compute the
automorphism group of an arbitrary non-singular cubic pair over Fsep.
Suppose that (A, V ) and (A′, V ′) are F -cubic pairs and there exists an
Fsep-isomorphism Θ: (A, V )Fsep → (A′, V ′)Fsep , then

Aut(A′, V ′)(Fsep) = Θ ◦ Aut(A, V )(Fsep) ◦Θ−1.

By the previous section, we know that a non-singular cubic pair over Fsep

is isomorphic to (M3(Fsep), Vα), for some α ∈ Fsep. Therefore we only
need to compute the automorphism group of the pairs (M3(Fsep), Vα),
for α ∈ Fsep. By the Skolem-Noether Theorem,

Aut
(
M3(Fsep), Vα

)
(Fsep) = {mF×sep ∈ PGL3(Fsep) | mVαm−1 = Vα},

hence we want to find the invertible matrices, up to scalar, which con-
jugate Vα into itself.

First we give some results which hold for arbitrary cubic subspaces
of M3(Fsep).

Lemma 4.3.1 Let V be a cubic subspace of M3(Fsep). If m ∈ GL3(Fsep)
then mVm−1 is also a cubic subspace of M3(Fsep).

Proof : Clearly, mVm−1 is a 3-dimensional subspace of M3(Fsep). The
properties of the trace imply that the trace of any matrix in mVm−1

is zero and mVm−1 is totally isotropic for the trace quadratic form
qM3(Fsep). Thus mVm−1 is a cubic subspace of M3(Fsep). 2

The group GL3(Fsep) acts on P (M3(Fsep)):

m ? uFsep = mum−1Fsep

for m ∈ GL3(Fsep) and uFsep ∈ P (M3(Fsep)). This action induces an
action of PGL3(Fsep) on P (M3(Fsep)):

mF×sep ? uFsep = m ? uFsep

for mF×sep ∈ PGL3(Fsep) and uFsep ∈ P (M3(Fsep)).
The following lemma says that particular points of P(M3(Fsep)) are

preserved under the action of GL3(Fsep).

Lemma 4.3.2 Let V be a cubic subspace of M3(Fsep), m ∈ GL3(Fsep)
and put V ′ := mVm−1. Suppose that ũ, ṽ, w̃ ∈ V are such that ũFsep
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is a flex of the cubic curve {fV (ξ) = 0}, ṽFsep is a harmonic point of
ũFsep and w̃Fsep is the Hessian point of ũFsep. Then m ? ũFsep is a flex
of {fV ′(ξ) = 0}, m?ṽFsep is a harmonic point of m?ũFsep and m?w̃Fsep

is the Hessian point of m ? ũFsep.

Proof : This follows easily from the fact that tr(mξm−1) = tr(ξ) for all
ξ ∈ M3(Fsep). 2

We use the notation introduced on page 53 to state the following theo-
rem.

Theorem 4.3.3 Let V be a non-singular cubic subspace of M3(Fsep) and
ũ, ṽ, w̃ ∈ V such that ũF is a flex of the cubic curve {fV (ξ) = 0}, ṽF is
a harmonic point of ũF and w̃F is the Hessian point of ũF . Then there
exists a unique mF×sep ∈ PGL3(Fsep) such that

mF×sep ? ũFsep = uFsep and mF×sep ? ṽFsep = vFsep.

Moreover, we have mF×sep ? w̃Fsep = wi(α)Fsep for some α ∈ Fsep and
i ∈ {1, 2, 3} and in particular mVm−1 is a special subspace.

Proof : The proof of Theorem 4.2.6 gives the existence of mF×sep. The
unicity follows from Lemma 4.2.5. 2

Thus, for a non-singular special subspace V of M3(Fsep), the elements
mF×sep ∈ PGL3(Fsep) such that mVm−1 is special, are in correspondence
with the pairs (ũFsep, ṽFsep) where ũFsep is a flex of {fV (ξ) = 0} and
ṽFsep is a harmonic point of ũFsep: the element mF×sep ∈ PGL3(Fsep) such
that mVm−1 is special, corresponds to (m−1 ? uFsep,m

−1 ? vFsep) (the
point m−1 ? uFsep is a flex of {fV (ξ) = 0} and m−1 ? vFsep is a harmonic
point of m−1 ? uFsep because uFsep is a flex of {fV (ξ) = 0} and vFsep is
a harmonic point of uFsep).

We can deduce an upper bound for the number of elements in the
automorphism group of

(
M3(Fsep), Vα).

Lemma 4.3.4 Let α ∈ Fsep \ {0, 1
8 ,

1
9}. There are exactly 27 elements

mF×sep ∈ PGL3(Fsep) such that mVαm−1 is a special subspace. In par-
ticular, there are at most 27 elements in the automorphism group of
(M3(Fsep), Vα).

Proof : Since a non-singular cubic curve has exactly 9 flexes and given
any flex, there are exactly 3 harmonic points of this flex, by Theo-
rem 4.3.3, there are exactly 27 elements mF×sep ∈ PGL3(Fsep) such that
mVαm

−1 is a special subspace. 2
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The following is a corollary of Theorem 4.3.3.

Corollary 4.3.5 Let α ∈ Fsep \ {0, 1
8 ,

1
9}. If m ∈ GL3(Fsep) is such that

m ? uFsep = uFsep and m ? vFsep = vFsep, then m ∈ F×sep.

Since uFsep is a flex of {fVα(ξ) = 0}, there exist three distinct ele-
ments mF×sep ∈ PGL3(Fsep) such that mVαm−1 is a special subspace and
mF×sep ?uFsep = uFsep, one element for each harmonic points of uFsep and
two of them being non-trivial.

Lemma 4.3.6 Let α ∈ Fsep \ {0, 1
8 ,

1
9} and m ∈ GL3(Fsep) such that

m 6∈ F×sep, mVαm−1 is a special subspace and m ? uFsep = uFsep. Then
mVαm

−1 = Vα if and only if α = 1
6 .

Proof : Since mum−1 = λu, for some λ ∈ F×sep, by straightforward
computations we deduce that

mF×sep =

 λ2 λa b

0 λ a

0 0 1

F×sep

for some a, b ∈ Fsep. Suppose that mVαm−1 = Vα. Then by Lem-
ma 4.3.2, the point m?w1(α)Fsep is the Hessian point of m?uFsep = uFsep

and by unicity of the Hessian point, we have m?w1(α)Fsep = w1(α)Fsep.
Hence mw1(α) = νw1(α)m for some ν ∈ Fsep. For ξ ∈ M3(Fsep), let ξij
denote the element on the i-th row and the the j-th column in ξ. Then

(mw1(α))21 = ν(w1(α)m)21 implies λν = 1,

(mw1(α))33 = ν(w1(α)m)33 implies ν = (1− 3αa)−1.

We deduce from (mw1(α))12 = ν(w1(α)m)12 that b = a2/2. Then
(mw1(α))13 = ν(w1(α)m)13 if and only if (1− 9α)(3α2a2− 3αa+ 1) = 0
or a = 0. If a = 0, then m ∈ F×sep which contradicts the hypothesis.
Thus 3α2a2 − 3αa+ 1 = 0 because α 6= 1

9 . We obtain that

• either λ = ω2, ν = ω and mF×sep =

 ω ω2−ω
3α

−ω2

6α2

0 ω2 1−ω2

3α

0 0 1

F×sep,

• or λ = ω, ν = ω2 and mF×sep =

 ω2 ω−ω2

3α
−ω
6α2

0 ω 1−ω
3α

0 0 1

F×sep.
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Since m ? vFsep is a harmonic point of uFsep, it lies on the line passing
through uFsep and wFsep. Thus we have mvm−1 = y0v + z0w1(α) for
some y0, z0 ∈ Fsep and in particular (mvm−1)12 = − 1

2 (mvm−1)13. In
both cases, it implies that α = 1

6 . Conversely, the distinct elements
m1F

×
sep,m2F

×
sep ∈ PGL3(Fsep) with

mi =

 1 2(ωi − 1) −6ωi

0 ωi 2(ω2i − ωi)
0 0 ω2i


are such that mi 6∈ F×sep, miV 1

6
m−1
i = V 1

6
and miF

×
sep ? uFsep = uFsep.

Since there exist at most two such elements, we deduce that either
mF×sep = m1F

×
sep or mF×sep = m2F

×
sep and thus mV 1

6
m−1 = V 1

6
. 2

We can now give the automorphism group of M3(Fsep), Vα) in the
particular case α = 1

6 . First we give a notation: we denote by µ3 the set
of cube roots of unity in Fsep.

Proposition 4.3.7 For α = 1
6 we have a Γ-group isomorphism

Aut
(
M3(Fsep

)
, Vα)(Fsep) ∼= µ3 × Z/3.

Proof : Put

m :=

 1 −3 6
1
2 −2 3
0 − 1

2 1

 , m′ =

 1 2(ω − 1) −6ω
0 ω 2(ω2 − ω)
0 0 ω2


and G := {mim′jF×sep | i, j ∈ Z}. Then the group G contains exactly
9 elements, namely the mim′j for i, j = 0, 1, 2, and G is a subgroup of
Aut(M3(Fsep), Vα)(Fsep). Let θ ∈ Fsep be a cube root of −2. Put

m2 :=

 −θ2 − ω2θ + 2 −6 6(ω2θ + 2)
−θ2 + θ 2(θ2 + ωθ + ω) 2(ω − 1)(θ2 + ωθ − 2)

θ 2(−θ + ω) 2(ωθ2 + θ − 2ω)


then m2 ∈ GL2(Fsep) and m2Vαm

−1
2 is the span of u, v and w2(−ω

2

3 ).
Hence the set m2F

×
sepG contains 9 elements and is a subset of{

nF×sep ∈ PGL3(Fsep) | nVαn−1 is the span of u, v, w2(
−ω2

3
)
}
.

Put

m3 :=

 −θ2 − ωθ + 2 −6 6(ωθ + 2)
−θ2 + θ 2(θ2 + ω2θ + ω2) 2(ω2 − 1)(θ2 + ω2θ − 2)

θ 2(−θ + ω2) 2(ω2θ2 + θ − 2ω2)





60 Classification of non-singular cubic pairs

then m3 ∈ GL3(Fsep) and m3Vαm
−1
3 is the span of u, v and w3(−ω3 ). The

set m3F
×
sepG contains 9 elements and is a subset of{
nF×sep ∈ PGL3(Fsep) | mVαm−1 is the span of u, v, w3(

−ω
3

)
}
.

Therefore, the set G∪m2F
×
sepG∪m3F

×
sepG consists of 27 elements nF×sep

such that nVαn−1 is a special subspace. So by Theorem 4.3.3, the set
G ∪m2F

×
sepG ∪m3F

×
sepG is equal to

{nF×sep ∈ PGL3(Fsep) | nVαn−1 is a special subspace}.

Hence Aut(M3(Fsep), Vα)(Fsep) = G. Because

m′2F×sep =

 1 2(ω2 − 1) −6ω2

0 ω2 2(ω − ω2)
0 0 ω

F×sep

the mappings mF×sep 7→ (1, 1 + 3Z) and m′F×sep 7→ (ω, 3Z) define a group
isomorphism G → µ3 × Z/3 which is compatible with the action of Γ.
Thus

Aut(M3(Fsep), Vα)(Fsep) ∼= µ3 × Z/3.

2

In fact, we can prove that, up to conjugacy, the only non-singular cubic
subspace V of M3(Fsep) such that Aut

(
M3(Fsep), V

)
(Fsep) is isomorphic

to Z/3× Z/3 as an abstract group, is V 1
6
. But first we need a lemma.

Lemma 4.3.8 Let G ⊂ PGL3(Fsep) be a subgroup which is isomorphic
to Z/3×Z/3 (as an abstract group). Then G is conjugate in PGL3(Fsep)
to the subgroup of PGL3(Fsep) generated by

• either

 0 1 0
0 0 1
1 0 0

F×sep and

 1 0 0
0 ω 0
0 0 ω2

F×sep

• or

 1 0 0
0 1 0
0 0 ω

F×sep and

 1 0 0
0 ω 0
0 0 ω2

F×sep.

Proof : Let Θ: G → Z/3 × Z/3 be a group isomorphism and aF×sep and
bF×sep inverse images of (1, 0) and (0, 1). Since a3F×sep = F×sep, changing
the representative of aF×sep if necessary, we may assume that a3 = 1.
Similarly, we may assume that b3 = 1. So the minimal polynomial of b
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divides x3 − 1 and thus b is diagonalizable and its eigenvalues are cube
roots of unity. Hence there exists m ∈ GL3(Fsep) such that

mbm−1 =

 θ1 0 0
0 θ2 0
0 0 θ3

 ,

where the θi’s are cube roots of unity in Fsep. We want to describe G up
to conjugacy, so we may assume that

b =

 θ1 0 0
0 θ2 0
0 0 θ3

 .

Because abF×sep = baF×sep, there exists ρ ∈ F×sep such that ba = ρab. Let
e ∈ F 3

sep be an eigenvector of b with eigenvalue θ. Then

ba(e) = ρab(e) = ρθa(e).

Hence a(e) is an eigenvector of b with eigenvalue ρθ. We deduce that
ρ is a cube root of the unity. Let (e1, e2, e3) be the canonical basis
of F 3

sep, then, for all i = 1, 2, 3, the vector a(ei) is a multiple of some
ej . If ρ = 1, then a(ei)Fsep = eiFsep for all i = 1, 2, 3. Indeed, since
a3 = 1, either a(ei)Fsep = eiFsep for all i or a(ei)Fsep 6= eiFsep for all i.
If a(e1)Fsep 6= e1Fsep then we may assume that

a =

 0 θ′2 0
0 0 θ′3
θ′1 0 0

 .

But ba = ab implies θ1 = θ2 = θ3 which is impossible. Thus

a =

 θ′1 0 0
0 θ′2 0
0 0 θ′3


for some θ′i ∈ Fsep with θ′3i = 1 since a3 = 1. In this case, G is conjugate
to the group { ρ1 0 0

0 ρ2 0
0 0 ρ3

F×sep | ρ3
i = 1

}
which is generated by 1 0 0

0 ω 0
0 0 ω2

F×sep and

 1 0 0
0 1 0
0 0 ω

F×sep.
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Now assume that ρ 6= 1. If a(e1)F×sep = e1F
×
sep then a(e1) = θ′1e1 for

some θ′1 ∈ Fsep and

θ1θ
′
1e1 = ba(e1) = ρab(e1) = ρθ1θ

′
1e1.

This implies ρ = 1, so a(ei)F×sep 6= eiF
×
sep for all i and we may assume

that

a =

 0 θ′3 0
0 0 θ′2
θ′1 0 0


for some θ′1, θ

′
2, θ
′
3 ∈ F×sep with θ′1θ

′
2θ
′
3 = 1 since a3 = 1. Put

m :=

 1 0 0
0 θ′1θ

′
2 0

0 0 θ′1


then m−1bm = b and

m−1am =

 0 1 0
0 0 1
1 0 0

 .

The scalars θ1, θ2, θ3 are distinct pairwise because ba = ρab and ρ 6= 1.
Therefore G is conjugate to the subgroup of PGL3(Fsep) generated by 0 1 0

0 0 1
1 0 0

F×sep and

 1 0 0
0 ω 0
0 0 ω2

F×sep.

2

Theorem 4.3.9 If V is a non-singular subspace of M3(Fsep) such that
Aut
(
M3(Fsep), V

)
(Fsep) is isomorphic to Z/3×Z/3 as an abstract group

then V is conjugate to V 1
6
.

Proof : By the previous lemma, the group Aut(M3(Fsep), V )(Fsep) is con-
jugate to the subgroup G of PGL3(Fsep) generated by aF×sep and bF×sep
where

b =

 1 0 0
0 ω 0
0 0 ω2

 and

either a =

 0 1 0
0 0 1
1 0 0

 or a =

 1 0 0
0 1 0
0 0 ω

 .
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Let m ∈ GL3(Fsep) be such that

mF×sep · Aut
(
M3(Fsep), V

)
(Fsep) ·m−1F×sep = G.

Then G = Aut(M3(Fsep), Ṽ ) with Ṽ = mVm−1. We have a group ho-
momorphism

G→ GL(Ṽ ) : gF×sep → (ĝ : ξ 7→ gξg−1).

So âb̂ = b̂â because abF×sep = baF×sep. We deduce from Corollary 4.3.5 that
ĝ ∈ F×sep implies g ∈ F×sep. Thus the subgroup of PGL3(Fsep) generated
by âF×sep and b̂F×sep is isomorphic to Z/3 × Z/3. Using the proof of the
previous lemma, the eigenvalues of â and b̂ are cube roots of unity and
we may find a basis of Ṽ which diagonalizes both â and b̂.

Assume that

a =

 1 0 0
0 1 0
0 0 ω

 .

Let D denote the subspace of M3(Fsep) of the diagonal matrices and
{eij | i, j = 1, 2, 3} the canonical basis of M3(Fsep). Let ṽ ∈ Ṽ be a
common eigenvector of â and b̂, then â(ṽ) = λ1ṽ and b̂(ṽ) = λ2ṽ for some
cube roots λ1, λ2 ∈ Fsep of unity. This implies that either ṽFsep = eij
for some i, j or ṽ is a diagonal matrix. Since Ṽ is non-singular, it does
not contain any eij . So Ṽ = D which is impossible since D 6⊂ M3(Fsep)◦.
Therefore

a =

 0 1 0
0 0 1
1 0 0

 .

We shall prove that Ṽ is conjugate to spanFsep
〈a, b, ab〉. Let ṽ ∈ Ṽ be

a common eigenvector of â and b̂. The set

{aibj | i, j = 0, 1, 2}

is a basis of M3(Fsep), thus there exist scalars αij ∈ Fsep such that
ṽ =

∑
αija

ibj . Using the relations a3 = 1, b3 = 1 and ba = ω2ab, we
deduce that {

â(ṽ) = ωiṽ

b̂(ṽ) = ωj ṽ
⇐⇒ ṽFsep = a2jbiFsep.

Hence Ṽ is spanned by ṽ1, ṽ2, ṽ3, where ṽ1, ṽ2, ṽ3 are distinct vectors
among aibj for i, j ∈ {0, 1, 2}. Since Ṽ is a non-singular cubic sub-
space of M3(Fsep), we have Ṽ ⊂ M3(Fsep)◦; so ṽi 6∈ Fsep for all i.
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Also Ṽ is totally isotropic for the trace quadratic form qM3(Fsep), so
ṽiFsep 6= ṽ2

jFsep for all i 6= j. The fact that fṼ is non-singular im-
plies that ṽ1ṽ2ṽ3 6∈ Fsep. Clearly, the matrices ṽ1 and ṽ2 commute if and
only if ṽ2Fsep ∈ {Fsep, ṽ1Fsep, ṽ

2
1Fsep}; hence ṽ1 and ṽ2 do not commute.

Since the subgroup of PGL3(Fsep) generated by ṽ1F
×
sep and ṽ2F

×
sep is iso-

morphic to Z/3 × Z/3 and v1, v2 do not commute, by the proof of the
previous lemma, it is conjugate to the subgroup generated by aF×sep and
bF×sep. Therefore we may assume that ṽ1 = a and ṽ2 = b and so

ṽ3 6∈ {1, a, a2, b, b2, (ab)2}.

If ṽ3 = a2bFsep, using again the proof of the previous lemma, there exists
an m′ ∈ GL3(Fsep) such that m′ ? aFsep = aFsep and m′ ? a2bFsep = bFsep.
Then m′?bFsep = abFsep and Ṽ is conjugate to the span of a, b, ab. In the
same way, if ṽ3Fsep = ab2Fsep, then there exists an m′ ∈ GL3(Fsep) such
that m?ab2Fsep = aFsep and m? bFsep = bFsep. Then m?aFsep = abFsep

and Ṽ is conjugate to the span of a, b, ab. Thus we may assume that
ṽ3 = ab.

Finally, let θ ∈ Fsep be a cube root of −2 and put

m′ :=

 2(ω2θ2 + ω2θ + 1) 2(θ2 + ω2θ + ω2) 2(θ2 + ωθ + 1)
ω2θ2 + 2 θ2 + 2ω2 θ2 + 2

1 ω2 1

 .

Then m′Ṽ m′−1 = V 1
6
. Hence V is conjugate to V 1

6
. 2

We say that a special subspace is exceptional if it is conjugate to
V 1

6
and it is non-exceptional otherwise. We shall now compute the auto-

morphism group Aut
(
M3(F ), V

)
(Fsep) for a non-exceptional subspace V .

The group PGL3(Fsep) acts on the pairs (V, ũFsep), where V is a special
subspace and ũFsep is a flex of {fV (ξ) = 0} as follows:

mF×sep ? (V, ũFsep) = (mVm−1,m ? ũFsep).

Lemma 4.3.6 says that, if V is a non-exceptional special subspace, then
the stabilizer PGL3(Fsep)(V,uFsep) of (V, uFsep) is trivial. We deduce the
following:

Lemma 4.3.10 Let V be a non-exceptional special subspace and ũFsep

a flex of {fV (ξ) = 0}. Then PGL3(Fsep)(V,ũFsep) = 1.

Proof : There exists an m ∈ GL3(Fsep) such that m ? ũFsep = uFsep and
Ṽ := mVm−1 is special. Hence

mF×sep ? (V, ũFsep) = (Ṽ , uFsep)
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and also
PGL3(Fsep)(V,ũFsep)

∼= PGL3(Fsep)(Ṽ ,uFsep)
= 1

as claimed. 2

Thus, if V is non-exceptional, then the non-trivial elements of the auto-
morphism group Aut(M3(Fsep), V ) do not fix any flex.

Lemma 4.3.11 Let V be a non-exceptional subspace and ũFsep a flex
of {fV (ξ) = 0}. Then there exists at most one mF×sep ∈ PGL3(Fsep) such
that mF×sep ? (V, ũFsep) = (V, uFsep).

Proof : Suppose that mF×sep,m
′F×sep ∈ PGL3(Fsep) are such that

mF×sep ? (V, ũFsep) = (V, uFsep) = m′F×sep ? (V, ũFsep).

Then m′m−1F×sep ∈ PGL3(Fsep)(V,uFsep) = 1, so mF×sep = m′F×sep. 2

Recall that, given a special subspace V , the mF×sep ∈ PGL3(Fsep) such
that mVm−1 is a special subspace, are in correspondence with the pairs
(ũFsep, ṽFsep) where ũFsep is a flex of {fV (ξ) = 0} and ṽFsep is a harmonic
point of ũFsep: the pair corresponding to an element mF×sep ∈ PGL3(Fsep)
such thatmVm−1 is special, is (m−1?uFsep,m

−1?vFsep). By the previous
lemma, the map

Aut
(
M3(Fsep), V

)
(Fsep)→

{
flexes of {fV (ξ) = 0}

}
which maps mF×sep to m−1 ? uFsep, is injective. Thus there exist at most
9 elements in Aut

(
M3(Fsep), V

)
.

Lemma 4.3.12 Let V be a non-exceptional subspace and mF×sep a non-
trivial element of PGL3(Fsep) such that mVm−1 = V . Then the order of
mF×sep is equal to 3.

Proof : By Proposition 1.3.9, the flexes of a non-singular cubic curve and
the lines through them have the configuration of the affine plane F2

3. We
fix an isomorphism between the flexes of {fV (ξ) = 0} and F2

3. Since an
element of Aut(M3(Fsep), V )(Fsep) preserves the collinearity, the isomor-
phism induces a group homomorphism Θ from Aut(M3(Fsep), V )(Fsep) to
the group A2(F2

3) of affine transformations of F2
3. By Lemma 4.3.10, if

an element mF×sep such that mVm−1 = V preserves a flex of {fV (ξ) = 0}
then it is trivial. In particular Θ is injective. Let G denotes the image
of Θ, then it is sufficient to prove that a non-trivial element of G has
order 3.
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By Lemma 4.3.10, a non-trivial element of G does not fix any point
of F2

3. Let g ∈ G be non-trivial. We may change the affine coordinates so
that g(0, 0) = (0, 1). If g2 = 1, then g(0, 1) = (0, 0) and since g preserves
the collinearity, we have g(0, 2) = (0, 2); thus g = 1 which contradicts the
hypothesis. Therefore the order of g is not 2. Suppose that g preserves
the line passing through (0, 0), (0, 1) and (0, 2), then g(0, 1) = (0, 2) and
g(0, 2) = (0, 0). In particular, g3(0, 0) = (0, 0) and g3 = 1; hence g has
order 3. Now suppose that g does not preserve the line passing through
(0, 0), (0, 1) and (0, 2). Then we may assume that g(0, 1) = (1, 2). We
show that g is completely determined. There exist a 6= b ∈ F3 such that

g(x, y)t =
(
a 1
b 1

)(
x

y

)
+
(

0
1

)
.

Since g does not fix any points, the linear system{
(a− 1)x+ y = 0
bx = −1

has no solutions, and therefore b = 0. Would a = 2, then g3(0, 2) = (0, 2)
and so g3 = 1; but on the other hand g3(0, 0) = (1, 0) and thus we get a
contradiction. Hence a = 1, so that g3(0, 0) = (0, 0) and g has order 3.

2

Thus the group Aut(M3(Fsep), V ) is either trivial or isomorphic to Z/3,
because by Theorem 4.3.9 it is not isomorphic to Z/3× Z/3.

Lemma 4.3.13 Let α ∈ Fsep \ {0, 1
8 ,

1
9}, then Aut(M3(Fsep), V ) is not

trivial.

Proof : Put

m :=

 α 0 −1
α −2α 0

3α2 −α α

 .

Then m is invertible and mVαm
−1 = Vα. Thus mF×sep is a non-trivial

element of Aut(M3(Fsep), Vα)(Fsep). 2

We proved the following theorem:

Theorem 4.3.14 Let α ∈ Fsep \ {0, 1
8 ,

1
9}. Then

Aut(M3(Fsep), Vα) ∼=
{

Z/3× Z/3 if α = 1
6 ,

Z/3 otherwise

as abstract groups.



4.4 Classification of cubic pairs of the first kind 67

We say that a non-singular cubic pair is of the first kind if its automor-
phism group is Z/3 and of the second kind otherwise.

4.4 Classification of cubic pairs of the first kind

We shall classify the non-singular cubic pairs over F with an automor-
phism group isomorphic to Z/3 (as an abstract group).

Fix (A, V ) a non-singular F -cubic pair of the first kind. By Theo-
rem 4.1.2, if Aut(A, V )(Fsep) is isomorphic to Z/3 as Γ-groups then there
is a bijection

H1(F,Z/3)←→


F -isomorphism classes of

the F -cubic pairs which are
isomorphic to (A, V )Fsep over Fsep

 .

As H1(F,Z/3) classifies the Galois Z/3-algebras over F (see (28.15) in
[Knus et al., 1998]), there is a one to one correspondence between the
isomorphism classes of F -cubic pairs (A′, V ′) which are isomorphic to
(A, V )Fsep over Fsep, and the isomorphism classes of Galois Z/3-algebras
over F . The bijection is defined as follows: let m ∈ A× be such that

Aut(A, V )(Fsep) = {F×sep,mF×sep,m2F×sep};

for an F -cubic pair (A′, V ′) which is isomorphic to (A, V )Fsep over Fsep, let
(aσF×sep) be the corresponding 1-cocycle with values in Aut(A, V )(Fsep).
Let

H = {σ ∈ Γ | aσ ∈ F×sep}.

Then H is an open-closed subgroup of Γ and so there exists a field
extension L/F with L ⊂ Fsep such that H = Gal(Fsep/L). If H = Γ
(i.e. (A′, V ′) is F -isomorphic to (A, V )), then [(F 3, ρ)] where ρ is the
automorphism of F 3 defined by ρ(x, y, z) = (y, z, x), is the corresponding
isomorphism class of Galois Z/3-algebra. If H 6= Γ, let σ0 be such that
aσ0F

×
sep = mF×sep. Since Γ = H ∪ σ0H ∪ σ2

0H and

τH = {σ ∈ Γ | aσF×sep = aτF
×
sep} = Hτ

for all τ ∈ Γ, the extension L/F is Galois of degree 3. Then [(L, σ0|L)] is
the isomorphism class of Galois Z/3-algebra corresponding to [(A′, V ′)].
Conversely, for a non-trivial Galois Z/3-algebra (L, ρ), we define

aσ =


1 if σ|L = idL,

m if σ|L = ρ,

m2 if σ|L = ρ2.
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Then the isomorphism class of F -cubic pair corresponding to [(L, ρ)],
is the one associated to [aσ]. By Theorem 4.2.7 and Theorem 4.3.14, a
non-singular cubic pair (A, V ) of the first kind is isomorphic over Fsep

to the pair (M3(Fsep), Vα) for some α ∈ Fsep \ {0, 1
8 ,

1
9 ,

1
6}. In general, α

may not be in F . First, we classify the cubic pairs (A, V ) of the first
kind such that there exists α ∈ F so that (A, V )Fsep

∼= (M3(Fsep), Vα)
and next we classify the ones which do not have this property.

First we fix two notations: for a, b ∈ F (ω)×, let (a, b)ω,F (ω) denote
the symbol F -algebra generated by ξ0 and η0 such that ξ3

0 = a, η3
0 = b

and ξ0η0 = ωη0ξ0; and for a ∈ F×, L/F a cyclic extension of degree 3
and ρ a generator of the Galois group Gal(L/F ), let (a, L/F, ρ) denote
the cyclic algebra

⊕2
i=0 Le

i with multiplication defined by e3 = a and
eξ = ρ(ξ)e for all ξ ∈ L.

Case 1: Let α ∈ F \ {0, 1
8 ,

1
9 ,

1
6}. We want to describe all the F -cubic

pairs (A, V ) such that

(A, V )Fsep
∼=
(
M3(Fsep), Vα

)
.

Put A := M3(F ), V := spanF 〈u, v, w1(α)〉 and

m :=

 α 0 −1
α −2α 0

3α2 −α α


so that Aut(A, V )(Fsep) = {F×sep,mF×sep,m2F×sep}. Note that Γ acts triv-
ially on Aut(A, V )(Fsep) so Aut(A, V )(Fsep) and Z/3 are isomorphic as
Γ-groups. Let (L, ρ) be a non-trivial Galois Z/3-algebra. We define, for
σ ∈ Γ,

aσ =


1 if σ|L = idL,

m if σ|L = ρ,

m2 if σ|L = ρ2.

The isomorphism class of cubic pair corresponding to [(L, ρ)] is [(A′, V ′)]
with

A′ = {ξ ∈ Asep | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ}

and
V ′ = {ξ ∈ Vsep | aσσ(ξ)a−1

σ = ξ for all σ ∈ Γ}.

To determine V ′, it is sufficient to find three linearly independent vec-
tors ξ in VL such that mρ(ξ)m−1 = ξ. By Corollary 4.3.5, the group
homomorphism

Aut(A, V )(Fsep)→ GL(V ) : gF×sep 7→ (ĝ : V → V : ξ 7→ gξg−1)
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is injective. Since the order of mF×sep divides 3, so does the order of
m̂. Therefore, the minimal polynomial of m̂ divides x3 − 1, so m̂ is
diagonalizable and its eigenvalues are cube roots of unity. We observe
that m2 ∈ V thus m2 is an eigenvector of m̂ with eigenvalue 1 and in
particular m2 ∈ V ′.

First we assume that F contains a primitive cube root of unity. Then
Z/3 = µ3 and the isomorphism classes of the Galois Z/3-algebras are in
one to one correspondence with the elements of F×/F×3: the class of
(L, ρ) corresponds to dF×3 ∈ F×/F×3, such that there exists θ ∈ L

with θ3 = d ∈ F and ρ(θ) = ωθ. To determine V ′, it is sufficient to
find the eigenvectors of m̂. Indeed, if ξ0 ∈ V is an eigenvector of m̂ with
eigenvalue ωi then θ−iξ0 ∈ V ′. Put

ξ0 := α(6α− 1)v − 2w1(α),

η0 :=
1
2

(ω − ω2)(8α− 1)θu+ α(1− 9α)θv − θw1(α),

ζ0 :=
1
2

(ω2 − ω)(8α− 1)θ2u+ α(1− 9α)θ2v − θ2w1(α),

then ξ0, η0, ζ0 ∈ V ′ are linearly independent and

ξ3
0 = α(8α− 1)2, η3

0 = dα(8α− 1)2(9α− 1), ξ0η0 = ωη0ξ0

(we have ξ0η0 = ωη0ξ0 because ξ0F = m2F ). Hence V ′ is the vector
subspace of Asep spanned by ξ0, η0, ζ0 and A′ is the symbol algebra(

α(8α− 1)2, dα(8α− 1)2(9α− 1)
)
ω,F

generated by ξ0 and η0. Replacing θ by 1, we obtain that the algebra(
α(8α− 1)2, α(8α− 1)2(9α− 1)

)
ω,F

is trivial since it is generated by ξ0, η0 ∈ M3(F ). So A′ is Brauer equiv-
alent to (α(8α− 1)2, d)ω,F . We have

ζ0 =
3ω2

(8α− 1)(9α− 1)
ξ0η

2
0 −

ω(6α− 1)
α(8α− 1)2(9α− 1)

ξ2
0η

2
0

and
fA′,V ′ = aξ?30 + bη?30 + cζ?30 − 3λξ?0η

?
0ζ
?
0

where (ξ?0 , η
?
0 , ζ

?
0 ) denotes the dual basis of (ξ0, η0, ζ0) and

a = α(8α− 1)2, b = dα(8α− 1)2(9α− 1),

c = d2α(8α− 1)2(9α− 1), λ = dα(8α− 1)2(1− 6α).
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The scalars a, b, c, λ satisfy the relation2

abc− λ3

a2
=
(
3dα(8α− 1)

)3 ∈ F×3.

Thus we already proved:

Theorem 4.4.1 Assume F contains a primitive cube root of unity. Let
α ∈ F \ {0, 1

8 ,
1
9 ,

1
6}. Then, up to F -isomorphism, the F -cubic pairs

which are isomorphic to (M3(Fsep), Vα) over Fsep, are the pairs((
α(8α− 1)2, dα(8α− 1)2(9α− 1)

)
ω,F

, spanF 〈ξ0, η0, ζ0〉
)
,

for all dF×3 ∈ F×/F×3, where ξ0, η0 are generators of the symbol algebra
such that ξ3

0 = α(8α− 1)2, η3
0 = dα(8α− 1)2(9α− 1), ξ0η0 = ωη0ξ0 and

ζ0 = 3ω2α(8α− 1)ξ0η2
0 − ω(6α− 1)ξ2

0η
2
0 .

The associated cubic forms are semi-diagonal.

Note that, by Theorem 3.1.3 the cubic curve {(ξ?0η?0ζ?0 )(ξ) = 0} is an
inflexional triangle of fA′,V ′ whose lines are defined over F .

Now we assume that F does not contain a primitive cube root of
unity and F is infinite. By Proposition (18.32) in [Knus et al., 1998],
there exists θ ∈ L such that L = F (θ) and the minimal polynomial of
θ over F is x3 − 3x + λ for some λ ∈ F \ {2,−2}. Let θ′ = ρ(θ) and
θ′′ = ρ2(θ) be the other roots of x3−3x+λ in Fsep. Since θ+θ′+θ′′ = 0
and θθ′ + θθ′′ + θ′θ′′ = −3, we have

θ′ =
−θ + δ

2
and θ′′ =

−θ − δ
2

,

where
δ2 = 12− 3θ2 =

3
4− λ2

(2θ2 + λθ − 4)2 ∈ F (θ)×2.

So δ = x−1
0 (2θ2 + λθ − 4), where x0 ∈ F is a square root of (4− λ2)/3.

Using Cardano’s method, we may write

θ = −φ− φ−1

where φ ∈ Fsep is a cube root of (λ+ (ω − ω2)x0)/2, and then

θ′ = −ωφ− ω2φ−1 and θ′′ = −ω2φ− ωφ−1.

2The details of these computations are given in Section A.3 of the appendix.
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Put

ξ0 := α(6α− 1)v − 2w1(α),

η0 :=
1
2

(1− 8α)δu+ α(9α− 1)θv + θw1(α),

ζ0 :=
3
2

(8α− 1)θu+ α(9α− 1)δv + δw1(α),

then ξ0, η0, ζ0 are linearly independent vectors of V ′, so V ′ is the F -vector
subspace of M3(Fsep) spanned by ξ0, η0 and ζ0. Put

η1 :=
1
2
η0 +

ω2 − ω
6

ζ0 =
1
2

(ω − ω2)(8α− 1)φu+ α(1− 9α)φv − φw1(α).

Then ξ0, η1 ∈ A′ ⊗F F (ω) are such that

ξ3
0 = α(8α− 1)2, η3

1 = φ3α(8α− 1)2(9α− 1) and ξ0η1 = ωη1ξ0.

So A′⊗F F (ω) =
(
α(8α−1)2, φ3α(8α−1)2(9α−1)

)
ω,F (ω)

is the symbol
F (ω)-algebra generated by ξ0 and η1. We shall find a subfield of A′

which is a Galois extension of degree 3 over F . We use the following
notation: for a, b ∈ F , we write

a+ ωb = a+ ω2b

and, for ξ =
∑
ξi ⊗ xi ∈ A′ ⊗F F (ω), we write

ξ =
∑

ξi ⊗ xi.

Put
η2 :=

3
(8α− 1)(9α− 1)

ξ0η1 −
6α− 1

α(8α− 1)2(9α− 1)
ξ2
0η1,

then η3
2 = φ3 ∈ F (ω). Let τ, τ ′ be the F -automorphisms of F (η2) defined

by τ(η2) = ωη2 and τ ′(η2) = η−1
2 . Then τ ′(η2) = η2 since η2η2 = 1 and

we have τ ′τ = ττ ′. So the subfield

L′ = {ξ ∈ F (η2) | ξ = ξ}

of F (η2) is a Galois extension of degree 3 over F with Galois group
generated by τ |L′ , and it is contained in

A′ = {ξ ∈ A′F (ω) | ξ = ξ}.

Put η3 := −η2−η−1
2 , then L′ = F (η3). Moreover we have ξ0η3 = τ(η3)ξ0

because ξ0η2 = ωη2ξ0. Hence A′ is the cyclic algebra(
α(8α− 1)2, L′/F, τ |L′

)
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generated by ξ0 and η3. Observe that the mapping η3 7→ θ defines an
isomorphism between the Galois Z/3-algebras (L′, τ |L′) and (L, ρ). We
shall write η0 and ζ0 in function of ξ0 and η3. We have

η0 = η1 + η1 and ζ0 = (ω − ω2)(η1 − η1).

But

η1 =
( 3

(8α− 1)(9α− 1)
ξ0 −

6α− 1
α(8α− 1)2(9α− 1)

ξ2
0

)−1

η2

and since τ(η3) = −ωη2 − ω2η−1
2 we get

η2 =
1

ω2 − ω
(
− ω2η3 + τ(η3)

)
.

Therefore{
η0 = 1

1−9α

(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ2

0

)
η3,

ζ0 = 1
1−9α

(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ2

0

)(
η3 + 2τ(η3)

)
.

We shall give explanations over these computations in the appendix.
Now we describe the cubic form fA′,V ′ . Let (ξ?0 , η

?
1 , η1

?) denote the dual
basis of (ξ0, η1, η1). We observe that the cubic curve {(ξ?0η?1η1

?)(ξ) = 0}
is an inflexional triangle of fA′,V ′ . The triangle {(ξ?0η?1η1

?)(ξ) = 0} is
a priori defined over Fsep. But the line {ξ?0(ξ) = 0} is defined over F
because η0F and ζ0F are distinct F -points of {ξ?0(ξ) = 0}. Hence the
triangle {(ξ?0η?1η1

?)(ξ) = 0} is defined over F and the cubic form fA′,V ′

is a semi-trace form. We have

f(xξ0 + yη0 + zζ0) =
(
xξ0 + y′η1 + z′η1

)3

= a1x
3 + b2y

′3 + b3z
′3 − 3µxy′z′

where y′ = y + (ω − ω2)z, z′ = y − (ω − ω2)z and

a1 = α(8α− 1)2, b2 = φ3α(8α− 1)2(9α− 1),

b3 = φ−3α(8α− 1)2(9α− 1), µ = α(8α− 1)(1− 6α).

Put K = F × F (ω) and define Θ: V ′ → K by

Θ(xξ0 + yη0 + zζ0) =
(
x, y + (ω − ω2)z

)
.

The scalars a2 = 1
2λα(8α− 1)2(9α− 1) and a3 = 1

2x0α(8α− 1)2(9α− 1)
are such that {

a2 + (ω − ω2)a3 = b2,

a2 − (ω − ω2)a3 = b3
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thus we have

f(ξ) = TrK/F
(
aΘ(ξ)3

)
− 3µNK/F

(
Θ(ξ)

)
where a =

(
a1, a2 + (ω − ω2)a3

)
. Also the elements a and µ satisfy the

relation
NK/F (a)− µ3

a2
1

=
a1b2b3 − µ3

a2
1

∈ F×3.

We shall prove that fA′,V ′ is not semi-diagonal. The line {η?1(ξ) = 0} is
not defined over F because otherwise the intersection point η1Fsep of this
line and {ξ?0(ξ) = 0} would be defined over F and it would contradict
the assumption that F does not contain a primitive cube root of unity.
We consider the action of Γ on A′sep defined by

σ ? ξ = aσσ(ξ)a−1
σ .

The points uFsep, mum−1Fsep and m2um−2Fsep are flexes of the curve
{fA′,V ′(ξ) = 0} and they lie on the line {ξ?0(ξ) = 0}. Let T be an
inflexional triangle of fA′,V ′ distinct from {(ξ?0η?1η1

?)(ξ) = 0}. Then
a line of the triangle T passes through one and only one point among
uFsep, mum−1Fsep and m2um−2Fsep; thus it is not preserved under the
action of Γ and it is not defined over F . Hence there does not exist an
inflexional triangle of fA′,V ′ whose lines are defined over F ; so fA′,V ′ is
not semi-diagonal.

We shall prove that also fA,V is semi-trace but not semi-diagonal.
Observe that V is spanned by

ξ0 := α(6α− 1)v − 2w1(α),

η0 :=
1
2

(8α− 1)δu+ α(9α− 1)θv + θw1(α),

ζ0 :=
3
2

(8α− 1)θu+ α(9α− 1)δv + δw1(α)

where θ = −2 and δ = 0. The F (ω)-algebra A ⊗ F (ω) is generated by
ξ0 and η1 where

η1 :=
1
2
η0 +

ω2 − ω
6

ζ0 =
1
2

(ω − ω2)(8α− 1)φu+ α(1− 9α)φv − φw1(α)

for φ = 1. Note that φ3 =
(
λ + (ω − ω2)x0

)
/2 with x0 = 0 and λ = 2,

and

θ = −φ− φ−1,
−θ + δ

2
= −ωφ− ω2φ−1,

−θ − δ
2

= −ω2φ− ωφ−1



74 Classification of non-singular cubic pairs

are the roots of the polynomial x3 − 3x+ λ. The matrix

η2 :=
3

(8α− 1)(9α− 1)
ξ0η1 −

6α− 1
α(8α− 1)2(9α− 1)

ξ2
0η1

is such that η3
2 = φ3. We have{

η0 = 1
1−9α

(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ0

)
η3,

ζ0 = 1
1−9α

(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ0

)
(η3 + 2η′3)

where η3 = −η2−η−1
2 and η′3 = −ωη2−ω2η−1

2 . Put L′ := F ⊕Fη3⊕Fη′3
and let ρ be the F -algebra automorphism of L′ defined by ρ(η3) = η′3
and ρ(η′3) = −η3 − η′3. We note that the map Ψ: L′ → F 3 defined by

Ψ(x+ yη3 + zη′3) = (x+ y + z, x− 2y + z, x+ y − 2z)

is an F -algebra isomorphism such that ρ
(
Ψ−1(1, 0, 0)

)
= Ψ−1(0, 1, 0) and

ρ
(
Ψ−1(0, 1, 0)

)
= Ψ−1(0, 0, 1). Also A =

⊕2
i=0 L

′ξi0 with ξ0ξ = ρ(ξ)ξ0
for all ξ ∈ L′ and 1, η3, ρ(η3) span L′ such that

(x− η3)
(
x− ρ(η3)

)(
x− ρ2(η3)

)
= x3 − 3x+ λ.

We can prove that fA,V is a semi-trace form which is not semi-diagonal
by letting θ = −2, δ = 0 = x0, λ = 2 and φ = 1 in the relations that we
found for (A′, V ′).

We proved:

Theorem 4.4.2 Assume that F is an infinite field which does not con-
tain a primitive cube root of unity and let α ∈ F \ {0, 1

8 ,
1
9 ,

1
6}. Then,

up to F -isomorphism, the cubic pairs over F which are isomorphic to(
M3(Fsep), Vα

)
over Fsep, are either

(
M3(F ), spanF 〈u, v, w1(α)〉

)
or the

pairs ((
α(8α− 1)2, L/F, ρ

)
, spanF 〈ξ0, η0, ζ0〉

)
,

for all non-trivial isomorphism classes [(L, ρ)] of Galois Z/3-algebras,
where ξ0 and L = F (θ) generate the cyclic algebra such that ξ0θ = ρ(θ)ξ0,
ξ3
0 = α(8α− 1)2, θ3 − 3θ ∈ F , and

η0 =
(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ2

0

)
θ,

ζ0 =
(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ2

0

)
ρ(θ).

The associated cubic forms are semi-trace forms and they are not semi-
diagonal.
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Case 2: Now we classify the F -cubic pairs (A, V ) of the first kind such
that (A, V )Fsep is not isomorphic to (M3(Fsep), Vβ) for any β ∈ F . Let
(A, V ) be such a cubic pair. Then there exists an Fsep-isomorphism

Θ: (A, V )Fsep →
(
M3(Fsep), Vα

)
for some α ∈ Fsep \ {0, 1

8 ,
1
9 ,

1
6}. For σ ∈ Γ, the composition

Θ ◦ (idA ⊗ σ) ◦Θ−1 ◦ σ−1

is an Fsep-algebra automorphism of M3(Fsep). Thus, by the Skolem-
Noether Theorem, there exists aσ ∈ GL3(Fsep) such that

Θ ◦ (idA ⊗ σ) ◦Θ−1 ◦ σ−1 = int(aσ).

Put

σ ? ξ := Θ ◦ (idA ⊗ σ) ◦Θ−1(ξ) = aσσ(ξ)a−1
σ

for σ ∈ Γ and ξ ∈ M3(Fsep). Then we obtain a continuous action of Γ on
M3(Fsep) by semi-linear Fsep-algebra automorphism and we have

Θ|A : (A, V ) ∼=
(
M3(Fsep)Γ, V Γ

α

)
.

For all σ ∈ Γ and ξ ∈ Vα, we have σ ? ξ ∈ Vα and σ(ξ) ∈ Vσ(α). Thus
aσVσ(α)a

−1
σ = Vα and Vα is conjugate to Vσ(α). Therefore we need to

know whenever Vβ is isomorphic to Vβ′ .
For α ∈ Fsep \ {0, 1

8 ,
1
9}, we fix ρ a square root of 1− 8α in Fsep and

we put

α′ :=
(18α− 1)(8α− 1) + (6α− 1)ρ

16(9α− 1)2
,

α′′ :=
(18α− 1)(8α− 1)− (6α− 1)ρ

16(9α− 1)2
.

Lemma 4.4.3 Let α ∈ Fsep\{0, 1
8 ,

1
9 ,

1
6}. There are exactly three distinct

values for β ∈ Fsep such that Vα ∼= Vβ, namely α, α′ and α′′.

Proof : By Lemma 4.3.4, there are exactly 27 distinct elements nF×sep in
PGL3(Fsep) such that nVαn−1 is a special subspace. We already know
that the automorphism group Aut(A, Vα)(Fsep) contains 3 elements. Let
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mF×sep ∈ PGL3(Fsep) be a generator of the group Aut(A, Vα)(Fsep). Put

m′ :=


−72α2+16α−1+(12α−1)ρ

2(8α−1)
−6α+1−(18α−1)ρ

8α−1
36α−5+3ρ

8α−1

0 −8α+1−(12α−1)ρ
2(8α−1)

3(8α−1)+ρ
8α−1

0 0 1

 ,

m′′ :=


−72α2+16α−1−(12α−1)ρ

2(8α−1)
−6α+1+(18α−1)ρ

8α−1
36α−5−3ρ

8α−1

0 −8α+1+(12α−1)ρ
2(8α−1)

3(8α−1)−ρ
8α−1

0 0 1


then m′Vαm

′−1 = Vα′ and m′′Vαm
′′−1 = Vα′′ . By the proof of Theo-

rem 4.2.7, the subspace spanFsep
〈u, v, w2(β)〉 is conjugate to Vβ(9β+ω2)−1

for all β ∈ Fsep\{0,−ω
2

3 ,−
ω2

9 }. So Vα is conjugate to spanFsep
〈u, v, w2(β)〉

with β = −ω2α
9α−1 . Let m2 ∈ GL3(Fsep) be such that

m2Vαm
−1
2 = spanFsep

〈u, v, w2(β)〉.

Suppose that an invertible matrix n is such that the subspace

n · spanFsep
〈u, v, w2(β)〉 · n−1

is special and n ? uFsep = uFsep. Then there exists λ ∈ F×sep such that
nun−1 = λu and it implies that

nF×sep =

 λ2 λa b

0 λ a

0 0 1

F×sep

for some a, b ∈ Fsep. We deduce that

nw2(β)n−1 =

 β ? ?

0 ωβ ?

0 0 ω2β


and n · spanFsep

〈u, v, w2(β)〉 · n−1 = spanFsep
〈u, v, w2(β′)〉 for some scalar

β′ ∈ Fsep. Therefore there exist matrices m′2,m
′′
2 ∈ GL3(Fsep) such that

m′2Vαm
′−1
2 = spanFsep

〈u, v, w2(β′)〉,

m′′2Vαm
′′−1
2 = spanFsep

〈u, v, w2(β′′)〉

for some β′, β′′ ∈ Fsep and m2F
×
sep,m

′
2F
×
sep,m

′′
2F
×
sep are distinct pairwise.

In the same way, we can prove that there exist m3,m
′
3,m

′′
3 ∈ GL3(Fsep)



4.4 Classification of cubic pairs of the first kind 77

such that

m3Vαm
−1
3 = spanFsep

〈u, v, w3(γ)〉,

m′3Vαm
′−1
3 = spanFsep

〈u, v, w3(γ′)〉,

m′′3Vαm
′′−1
3 = spanFsep

〈u, v, w3(γ′′)〉.

for some γ, γ′, γ′′ ∈ Fsep and m3F
×
sep,m

′
3F
×
sep,m

′′
3F
×
sep are distinct pair-

wise. We put m1 := 1, m′1 := m′ and m′′1 := m′′ so that the set

{mim
jF×sep,m

′
im

jF×sep,m
′′
im

jF×sep | i, j = 1, 2, 3}

consists of the 27 elements nF×sep such that nVαn−1 is a special subspace.
Thus Vα is conjugate to Va if and only if a is equal to α, α′ or α′′. 2

Lemma 4.4.4 Let α ∈ Fsep \ {0, 1
8 ,

1
9 ,

1
6}. There exists an F -cubic pair

(A, V ) such that (A, V )Fsep
∼=
(
M3(Fsep), Vα

)
and (A, V )Fsep is not iso-

morphic to (M3(Fsep), Vβ) for all β ∈ F , if and only if the minimal
polynomial of α over F is equal to

x3 − tx2 +
8t− 1

36
x− 8t− 1

648

for some t ∈ F .

Proof : Suppose that (A, V ) is an F -cubic pair which is isomorphic to(
M3(Fsep), Vα

)
over Fsep and such that (A, V )Fsep is not isomorphic to

(M3(Fsep), Vβ) for all β ∈ F . By the previous lemma the scalars α, α′, α′′

are not in F . The action of Γ on Fsep restricts to {α, α′, α′′}. Indeed,
for all σ ∈ Γ, the subspaces Vα and Vσ(α) are conjugate. Thus by the
previous lemma σ(α) ∈ {α, α′, α′′}. There exist matrices a, b ∈ GL3(Fsep)
such that aVαa−1 = Vα′ and bVαb

−1 = Vα′′ . Since

σ(a)Vσ(α)σ(a)−1 = Vσ(α′) and σ(b)Vσ(α)σ(b)−1 = Vσ(α′′)

the subspaces Vσ(α′) and Vσ(α′′) are both conjugate to Vα and we have
σ(α′), σ(α′′) ∈ {α, α′, α′′} for all σ ∈ Γ. Because α, α′, α′′ 6∈ F the
minimal polynomial of α over F is equal to

(x− α)(x− α′)(x− α′′) = x3 − tx2 +
8t− 1

36
x− 8t− 1

648
,

where

t =
648α3 − 18α+ 1

8(9α− 1)2
∈ F.
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Conversely, suppose that the minimal polynomial of α over F is equal
to

x3 − tx2 +
8t− 1

36
x− 8t− 1

648
for some t ∈ F . Then

t =
648α3 − 18α+ 1

8(9α− 1)2

and the other roots of the minimal polynomial are α′ and α′′. Put

aσ =


1 if σ(α) = α,

m′ if σ(α) = α′,

m′′ if σ(α) = α′′

where m′,m′′ are the matrices introduced in the proof of Lemma 4.4.3.
Then (aσF×sep)σ∈Γ is a 1-cocycle with values in PGL3(Fsep) and by Galois
Descent, the pair (A, V ) with

A = {ξ ∈ M3(Fsep) | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ},

V = {ξ ∈ Vα | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ}

is an F -cubic pair which is isomorphic to (M3(Fsep), Vα) over Fsep. 2

Let α ∈ Fsep with minimal polynomial over F equal to

x3 − tx2 +
8t− 1

36
x− 8t− 1

648

for some t ∈ F . We observe that t 6= 1
2 since otherwise α = 1

6 . Similarly
we have t 6= 1

8 . Put

ξ0 :=

 0 1 0
0 0 1
0 0 0

 , η0 :=

 2(2t− 1) 1
2

1
4

0 −4(2t− 1) − 1
2

−48(2t− 1)2 0 2(2t− 1)



and ζ0 :=

 0 0 1
24(2t−1)

2(2t− 1) 0 0
0 −2(2t− 1) 0

 ,

then
(
M3(F ), spanF 〈ξ0, η0, ζ0〉

)
Fsep

∼=
(
M3(Fsep), Vα

)
. Indeed, put

a :=

 18(6α− 1)4 6(6α− 1)2(9α− 1) (9α− 1)2

0 18α(6α− 1)2(9α− 1) 6α(9α− 1)2

0 0 18α2(9α− 1)2





4.4 Classification of cubic pairs of the first kind 79

then a ∈ GL3(Fsep) and

aξ0a
−1 =

(6α− 1)2

α(9α− 1)
u,

aη0a
−1 = −27α2(6α− 1)2

(9α− 1)2
v +

3(6α− 1)2(3α− 1)
α(9α− 1)2

w1(α),

aζ0a
−1 =

6α− 1
2α(9α− 1)

w1(α).

We put A := M3(F ) and V := spanF 〈ξ0, η0, ζ0〉 so that (A, V ) is a cubic
pair over F which is isomorphic to (M3(Fsep), Vα) over Fsep. Put

m :=

 2t− 1 1
2 − 1

8

0 −2(2t− 1) − 1
2

24(2t− 1)2 0 2t− 1

 ,

then m ∈ GL3(F ) and

Aut(A, V )(Fsep) = {F×sep,mF×sep,m2Fsep}.

Since Γ acts trivially onmF×sep, the Γ-group Aut(A, V )(Fsep) is isomorphic
to Z/3.

The isomorphism classes of F -cubic pairs which are isomorphic to
(A, V )Fsep over Fsep are in bijection with the isomorphism classes of Galois
Z/3-algebras over F . Let (L, ρ) be a non-trivial Galois Z/3-algebra over
F . For σ ∈ Γ, we put

aσ :=


1 if σ|L = idL,

m if σ|L = ρ,

m2 if σ|L = ρ2.

Then the isomorphism class of F -cubic pair corresponding to [(L, ρ)] is
[(A′, V ′)] with

A′ = {ξ ∈ Asep | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ},

V ′ = {ξ ∈ Vsep | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ}.

As in the first case, the endomorphism m̂ : V → V : ξ 7→ mξm−1 is
diagonalizable and its eigenvalues are cube roots of unity. Since m2 ∈ V ,
we deduce that m2 is an eigenvector with eigenvalue 1 and in particular
m2 ∈ V ′.
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Suppose that F contains a primitive cube root of unity. Let θ ∈ L
be such that θ3 = d ∈ F and ρ(θ) = ωθ. Put

ξ1 := η0 + 6ζ0,

η1 :=
( 1− 8t

4(ω − ω2)
ξ0 +

1
2
η0 − 4(2t− 1)ζ0

)
θ,

ζ1 :=
( 8t− 1

4(ω − ω2)
ξ0 +

1
2
η0 − 4(2t− 1)ζ0

)
θ2.

Then ξ1, η1, ζ1 are linearly independent vectors of V ′ such that

ξ3
1 = −4(8t− 1)2(2t− 1), η3

1 =
2d
3

(8t− 1)2(2t− 1)2, ξ1η1 = ωη1ξ1

(we have ξ1η1 = ωη1ξ1 because ξ1F = m2F ). Therefore V ′ is the sub-
space of Asep spanned by ξ1, η1, ζ1 and A′ is the symbol F -algebra(

− 4(8t− 1)2(2t− 1),
2d
3

(8t− 1)2(2t− 1)2
)
ω,F

.

We have

ζ1 = − ω2

2(8t− 1)(2t− 1)
ξ1η

2
1 −

ω

2(8t− 1)2(2t− 1)
ξ2
1η

2
1

and the cubic form fA′,V ′ is semi-diagonal:

fA′,V ′ = aξ?31 + bη?31 + cζ?31 − 3λξ?1η
?
1ζ
?
1

for some scalars a, b, c, λ ∈ F such that (abc − λ2)a−2 ∈ F×3, where
(ξ?1 , η

?
1 , ζ

?
1 ) denotes the dual basis of (ξ1, η1, ζ1).

We have thus shown:

Theorem 4.4.5 Suppose that F contains a primitive cube root of unity.
Let α ∈ Fsep be such that its minimal polynomial over F is equal to

x3 − tx2 +
8t− 1

36
x− 8t− 1

648

for some t ∈ F . Up to F -isomorphism, the F -cubic pairs which are
isomorphic to

(
M3(Fsep), Vα

)
over Fsep are the pairs((

− 4(8t− 1)2(2t− 1),
2d
3

(8t− 1)2(2t− 1)2
)
ω,F

, spanF 〈ξ1, η1, ζ1〉
)

for all dF×3 ∈ F×/F×3, where ξ1, η1 are generators of the symbol algebra
such that

ξ3
1 = −4(8t− 1)2(2t− 1), η3

1 =
2d
3

(8t− 1)2(2t− 1)2, ξ1η1 = ωη1ξ1
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and ζ1 = ω2(8t − 1)ξ1η2
1 + ωξ2

1η
2
1. The cubic forms associated to these

cubic pairs are semi-diagonal.

Now we assume that F does not contain a primitive cube root of
unity and F is infinite. Let θ ∈ L be such that the minimal polynomial
of θ over F is x3 − 3x+ λ for some λ ∈ F \ {2,−2}. Put θ′ := ρ(θ) and
θ′′ := ρ2(θ). Then

θ′ =
−θ + δ

2
, θ′′ =

−θ − δ
2

,

where δ = x−1
0 (2θ2 + λθ − 4) and x0 ∈ F is a square root of (4− λ2)/3.

Also, there exists a cube root φ of (λ+ (ω − ω2)x0)/2 in Fsep such that

θ = −φ− φ−1, θ′ = −ωφ− ω2φ−1, θ′′ = −ω2φ− ωφ−1.

Put

ξ1 := η0 + 6ζ0,

η1 :=
1
12

(8t− 1)δξ0 +
1
2
θη0 − 4(2t− 1)θζ0,

ζ1 :=
1
4

(1− 8t)θξ0 +
1
2
δη0 − 4(2t− 1)δζ0.

Then ξ1, η1, ζ1 are linearly independent vectors of V ′, thus V ′ is the span
of ξ1, η1, ζ1. Put

η2 := −1
2
η1 +

ω − ω2

6
ζ1 =

( 1− 8t
4(ω − ω2)

ξ0 +
1
2
η0 − 4(2t− 1)ζ0)

)
φ

then ξ1, η2 ∈ A′ ⊗F F (ω) are such that

ξ3
1 = −4(8t− 1)2(2t− 1), η3

2 =
2
3
φ3(8t− 1)2(2t− 1)2, ξ1η2 = ωη2ξ1.

Therefore A′ ⊗F F (ω) is the symbol algebra(
− 4(8t− 1)2(2t− 1),

2
3
φ3(8t− 1)2(2t− 1)2

)
ω,F (ω)

generated by ξ1 and η2. Put

η3 := − 1
2(8t− 1)(2t− 1)

ξ1η2 −
1

2(8t− 1)2(2t− 1)
ξ2
1η2

then η3
3 = φ3 and η3η3 = 1. Put η4 := −η3 − η−1

3 , then L′ := F (η4) is
a Galois extension of degree 3 over F with Galois group generated by τ
where

τ(η4) = −ωη3 − ω2η−1
3
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and L′ is contained in A′. Since ξ1η4 = τ(η4)ξ1, the algebra A′ is the
cyclic algebra

(
− 4(8t − 1)2(2t − 1), L′/F, τ

)
generated by ξ1 and η4,

where (L′, τ) ∼= (L, ρ) : η4 7→ θ. We can write η1 and ζ1 in function of ξ1
and η4:

η1 =
(2

3
(8t− 1)(2t− 1)− 2

3
(2t− 1)ξ1 +

1
6
ξ2
1

)
η4,

ζ1 =
(2

3
(8t− 1)(2t− 1)− 2

3
(2t− 1)ξ1 +

1
6
ξ2
1

)(
η4 + 2ρ(η4)

)
.

Again fA′,V ′ is a semi-trace form. Let (ξ?1 , η
?
2 , η2

?) denote the dual ba-
sis of (ξ1, η2, η2). The cubic curve {(ξ?1η?2η2

?)(ξ) = 0} is an inflexional
triangle of fA′,V ′ and the line {ξ?1(ξ) = 0} is defined over F . Hence
{(ξ?1η?2η2

?)(ξ) = 0} is defined over F and fA′,V ′ is a semi-trace form:

fA′,V ′(ξ) = TrK/F
(
aΘ(ξ)3

)
− 3µNK/F

(
Θ(ξ)

)
where K = F × F (ω), the map Θ: V ′ → K is defined by

Θ(xξ1 + yη1 + zζ1) =
(
x, y + (ω − ω2)z

)
,

a =
(
a1, a2 + (ω − ω2)a3

)
with

a1 = −4(8t− 1)2(2t− 1),

a2 = −λ
3

(8t− 1)2(2t− 1)2,

a3 = −x0

3
(8t− 1)2(2t− 1)2

and µ = 4
3 (8t− 1)2(2t− 1)2. The elements a and µ satisfy the relation

NK/F (a)− µ3

a2
1

=
(
− 1

3
(8t− 1)(2t− 1)

)3

∈ F×3.

The line {ξ?1(ξ) = 0} passes through the flexes ξ0Fsep, mξ0m−1Fsep and
m2ξ0m

−2Fsep. Therefore a line of an inflexional triangle distinct from
{(ξ?1η?2η2

?)(ξ) = 0} is not defined over F . Since the line {η?2(ξ) = 0} is
not defined over F the form fA′,V ′ is not semi-diagonal.

We note that the vector space V is spanned by

ξ1 := η0 + 6ζ0,

η1 :=
1
12

(8t− 1)δξ0 +
1
2
θη0 − 4(2t− 1)θζ0,

ζ1 :=
1
4

(1− 8t)θξ0 +
1
2
δη0 − 4(2t− 1)δζ0
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with δ = 0 and θ = −2. We put

η2 := −1
2
η1 +

ω − ω2

6
ζ1,

η3 := − 1
2(8t− 1)(2t− 1)

ξ1η2 −
1

2(8t− 1)2(2t− 1)
ξ2
1η2,

η4 := −η3 − η−1
3 ,

η′4 := −ωη3 − ω2η−1
3 .

Then η3
3 = φ3 for φ = 1 and

η1 =
(2

3
(8t− 1)(2t− 1)− 2

3
(2t− 1)ξ1 +

1
6
ξ2
1

)
η4,

ζ1 =
(2

3
(8t− 1)(2t− 1)− 2

3
(2t− 1)ξ1 +

1
6
ξ2
1

)(
η4 + 2η′4

)
.

Put L′ := F ⊕ Fη4 ⊕ Fη′4 and let ρ be the F -algebra automorphism of
L′ defined by ρ(η4) = η′4 and ρ(η′4) = −η4 − η′4. Then 1, η4, ρ(η4) span
L′ and

(x− η4)
(
x− ρ(η4)

)(
x− ρ2(η4)

)
= x3 − 3x+ λ

for λ = 2. There exists an F -algebra isomorphism Ψ: L′ → F 3 such
that

ρ
(
Ψ−1(1, 0, 0)

)
= Ψ−1(0, 1, 0) and ρ

(
Ψ−1(0, 1, 0)

)
= Ψ−1(0, 0, 1).

We have A =
⊕2

i=0 L
′ξi1 with ξ1ξ = ρ(ξ)ξ1 for all ξ ∈ L′. We can

prove that fA,V is semi-trace but not semi-diagonal by letting θ = −2,
δ = 0 = x0, λ = 2 and φ = 1 in the relations we proved for (A′, V ′).

Theorem 4.4.6 Suppose that F is infinite and does not contain a prim-
itive cube root of unity. Let α ∈ Fsep be such that its minimal polynomial
over F is equal to x3− tx2 + (8t− 1)/36x− (8t− 1)/648 for some t ∈ F .
Then, up to F -isomorphism, the F -cubic pairs which are isomorphic to
(M3(Fsep), Vα) over Fsep, are either

(
M3(F ), spanF 〈ξ0, η0, ζ0〉

)
, where

ξ0 =

 0 1 0
0 0 1
0 0 0

 , η0 :=

 2(2t− 1) 1
2

1
4

0 −4(2t− 1) − 1
2

−48(2t− 1)2 0 2(2t− 1)



and ζ0 :=

 0 0 1
24(2t−1)

2(2t− 1) 0 0
0 −2(2t− 1) 0

 ,
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or the pairs((
− 4(8t− 1)2(2t− 1), L/F, ρ

)
, spanF 〈ξ1, η1, ζ1〉

)
for all non-trivial isomorphism classes [(L, ρ)] of Galois Z/3-algebras,
where ξ1 and L = F (θ) generates the cyclic algebra in such a way that
ξ1θ = ρ(θ)ξ1, θ3 − 3θ ∈ F and ξ3

1 = −4(8t− 1)2(2t− 1), and

η1 =
(2

3
(8t− 1)(2t− 1)− 2

3
(2t− 1)ξ1 +

1
6
ξ2
1

)
θ,

ζ1 =
(2

3
(8t− 1)(2t− 1)− 2

3
(2t− 1)ξ1 +

1
6
ξ2
1

)
ρ(θ).

The associated cubic forms are semi-trace forms and not semi-diagonal.

4.5 Classification of cubic pairs of the second kind

We classify up to F -isomorphism the non-singular cubic pairs (A, V )
over F such that Aut(A, V )(Fsep) ∼= Z/3 × Z/3 as an abstract group,
i.e. the F -cubic pairs (A, V ) such that (A, V )Fsep

∼= (M3(Fsep), V 1
6
). Put

w := w1( 1
6 ), A := M3(F ) and V := spanF 〈u, v, w〉. Then

Aut(A, V )(Fsep) = {mi
1m

j
2F
×
sep | i, j = 0, 1, 2}

with

m1 =

 1 0 −6
1 −2 0
1
2 −1 1

 and m2 =

 1 2(ω − 1) −6ω
0 ω 2(ω2 − ω)
0 0 ω2


and the mappings m1F

×
sep 7→ (1+3Z, 1) and m2F

×
sep 7→ (3Z, ω) define a Γ-

group isomorphism from Aut(A, V )(Fsep) to Z/3×µ3. By Theorem 4.1.2,
there is a bijection

H1(F,Z/3× µ3)←→


F -isomorphism classes of

the F -cubic pairs which are
isomorphic to (A, V )Fsep over Fsep

 .

Since the action of Γ on Z/3× µ3 restricts to Z/3 and µ3, we have

H1(F,Z/3× µ3) ∼= H1(F,Z/3)× H1(F, µ3).

The characteristic of F is different from 3, thus

H1(F, µ3) ∼= F×/F×3
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(see (30.1) in [Knus et al., 1998]). So, there is a one to one correspon-
dence between the F -isomorphism classes of non-singular F -cubic pairs
of the second kind, and the product Isom(Z/3-GalF )×

(
F×/F×3

)
, where

Isom(Z/3-GalF ) denotes the set of isomorphism classes of Galois Z/3-
algebras over F .

Let (L1, ρ1) be a Galois Z/3-algebra and d2F
×3 ∈ F×/F×3. Let

(ai,σF×sep)σ∈Γ be the 1-cocycle with values in {F×sep,miF
×
sep,m

2
iF
×
sep} cor-

responding to (L1, ρ1) for i = 1, and d2F
×3 for i = 2. Let θ2 ∈ Fsep

be such that θ3
2 = d2 and put aσF×sep := a1,σa2,σF

×
sep. The F -cubic pair

corresponding to the 1-cocycle (aσF×sep)σ∈Γ is the pair (A′, V ′) with

A′ = {ξ ∈ Asep | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ},

V ′ = {ξ ∈ Vsep | aσσ(ξ)a−1
σ = ξ for all σ ∈ Γ}.

First we assume that F contains a primitive cube root of unity. If L1

is a field then there exists θ1 ∈ L1 such that L1 = F (θ1), θ3
1 = d1 ∈ F and

ρ1(θ1) = ωθ1. If L1 = F 3
1 we put θ1 := 1. Suppose that L1

∼= F (θ2) 6= F

and d2F
×3 = d1F

×3. Then we may assume that d1 = d2, θ1 = θ2 and

aσ =


1 if σ(θ1) = θ1,

m1m2 if σ(θ1) = ωθ1,

m2
1m

2
2 if σ(θ1) = ω2θ1.

If L1
∼= F (θ2) 6= F and d2F

×3 = d2
1F
×3, then we may assume that

d2 = d2
1, θ2 = θ2

1 and

aσ =


1 if σ(θ1) = θ1,

m1m
2
2 if σ(θ1) = ωθ1,

m2
1m2 if σ(θ1) = ω2θ1.

Now we suppose that L1 6∼= F (θ2). Then we may assume that ai,σ = 1 if
di ∈ F×3 and

ai,σ =


1 if σ(θi) = θi,

mi if σ(θi) = ωθi,

m2
i if σ(θi) = ω2θi,

if di 6∈ F×3. Put

ξ0 := 12wθ2
2,

η0 :=
(

(ω2 − ω)u+
1
2
v + 6w

)
θ1θ2,

ζ0 :=
(

(ω − ω2)u+
1
2
v + 6w)

)
θ2

1θ2.



86 Classification of non-singular cubic pairs

Then ξ0, η0, ζ0 are linearly independent vectors of V ′ such that

ξ3
0 = −4d2

2, η3
0 = −2d1d2, ξ0η0 = ωη0ξ0.

So V ′ = spanF 〈ξ0, η0, ζ0〉 and A′ = (−4d2
2,−2d1d2)ω,F is the F -algebra

generated by ξ0 and η0. We have

ζ0 =
ω2

2d2
ξ0η

2
0

and the associated cubic form fA′,V ′ is diagonal:

fA′,V ′ = aξ?30 + bη?30 + cζ?30

where a = −4d2
2, b = −2d1d2 and c = −2d2

1d2 and (ξ?0 , η
?
0 , ζ

?
0 ) denotes

the dual basis of (ξ0, η0, ζ0). The scalars a, b, c satisfy the relation

abc

a2
= (−d1)3 ∈ F×3.

We proved the following:

Theorem 4.5.1 Assume that F contains a primitive cube root of unity.
Then, up to F -isomorphism, the non-singular F -cubic pairs of the second
kind are the pairs(

(−4d2
2,−2d1d2)ω,F , spanF 〈ξ0, η0, ζ0〉

)
,

for all d1F
×3, d2F

×3 ∈ F×/F×3 where ξ0, η0 are generators of the sym-
bol algebra such that ξ3

0 = −4d2
2, η3

0 = −2d1d2, ξ0η0 = ωη0ξ0, and
ζ0 = ξ0η

2
0. The cubic forms associated to these cubic pairs are diagonal.

Now we assume that F is an infinite field which does not contain a
primitive cube root of unity. In the case where L1/F is a Galois extension
of degree 3, there exists θ1 ∈ L1 such that L1 = F (θ1) and the minimal
polynomial of θ1 over F is x3 − 3x+ λ1 for some λ1 ∈ F \ {2,−2} with
(4− λ2

1)/3 ∈ F 2. Let θ′1 = ρ1(θ1) and θ′′1 = ρ2
1(θ1) be the other roots of

x3 − 3x+ λ1. We may choose x1 ∈ F with x2
1 = (4− λ2

1)/3 such that

θ1 = −φ1 − φ−1
1

θ′1 = −ωφ1 − ω2φ−1
1 =

−θ1 + δ1
2

θ′′1 = −ω2φ1 − ωφ−1
1 =

−θ1 − δ1
2

,

where δ1 = x−1
1 (2θ2

1+λ1θ1−4) and φ1 is a cube root of (λ1+(ω−ω2)x1)/2
in Fsep. In the case where L1 = F 3, we put θ1 := −2, δ1 := 0 and φ1 := 1
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(then we have θ3
1 − 3θ1 + λ1 = 0 with λ1 = 2). We can observe that

L1 6∼= F (θ2) since either L1/F is an Galois extension of degree 3 or
L1 = F 3 and F (θ2) is a field which is not a Galois extension of degree 3
over F . If d2 6∈ F×3, let ρ2 ∈ Gal(F (θ2)/F ) be defined by ρ2(θ2) = ωθ2.
Then, we may assume that ai,σ = 1 if θi ∈ F , and

ai,σ =


1 if σ|Li = idLi ,

mi if σ|Li = ρi,

m2
i if σ|Li = ρ2

i ,

otherwise. Put

ξ0 := 12θ2
2w,

η0 := −δ1θ2u+
1
2
θ1θ2v + 6θ1θ2w,

ζ0 := 3θ1θ2u+
1
2
δ1θ2v + 6δ1θ2w.

Then ξ0, η0, ζ0 are linearly independent vectors of V ′, so V ′ is the span
of ξ0, η0, ζ0. Put

η1 := −1
2
η0 +

ω − ω2

6
ζ0 =

(
(ω2 − ω)u+

1
2
v + 6w

)
φ1θ2,

then
ξ3
0 = −4d2

2, η
3
1 = −2φ3

1d2, ξ0η1 = ωη1ξ0.

So A′F (ω) is the F (ω)-algebra (−4d2
2,−2φ3

1d2)ω,F (ω) generated by ξ0 and
η1. Put η2 := (2d2)−1ξ0η1, then η3

2 = φ3
1.

Suppose that L1 = F 3, then A′F (ω) is split. But F (ω)/F is a field
extension of degree 2, thus A′ is also split. The vector space V ′ is spanned
by 12θ2

2w, θ2u and θ2(v + 12w). Put

n :=

 θ−2
2 −2θ−2

2 2θ−2
2

0 θ−1
2 −2θ−1

2

0 0 1


then n is an invertible matrix such that

n(θ2
2u)n−1 =

 0 1 0
0 0 1
0 0 0

 , n(12θ2
2w)n−1 =

 0 0 4
d2 0 0
0 −d2 0

 ,

and n
(
θ2(v + 12w)

)
n−1 =

 0 −2 0
0 0 2
d2 0 0

 .
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Thus (A′, V ′) is isomorphic to
(
M3(F ), spanF 〈ξ′0, η′0, ζ ′0〉

)
with

ξ′0 =

 0 1 0
0 0 1
0 0 0

 , η′0 =

 0 0 4
d2 0 0
0 −d2 0

 , ζ ′0 =

 0 −2 0
0 0 2
d2 0 0

 .

Now we assume that L1 is a field. Put η3 := −η2 − η−1
2 then

L′ = F (η3) is a Galois extension of degree 3 over F with Galois group
generated by τ where τ(η3) = −ωη2 − ω2η−1

2 . Moreover L′ is contained
in A′ because η2η2 = 1. Since ξ0η2 = ωη2ξ0, we have ξ0ξ = τ(ξ)ξ0 for
all ξ ∈ L′. So A′ is the cyclic F -algebra (−4d2

2, L
′/F, τ) generated by

ξ0 and η3. Note that the Galois Z/3-algebras (L′, τ) and (L1, ρ1) are
isomorphic. Also we have

η0 = − 1
2d2

ξ2
0η3,

ζ0 = − 1
2d2

ξ2
0

(
η3 + 2ρ(η3)

)
.

The form fA′,V ′ is a semi-trace form:

fA′,V ′(ξ) = TrK/F
(
aΘ(ξ)3)

where K = F × F (ω), the map Θ: V ′ → K is defined by

Θ(xξ0 + yη0 + zζ0) =
(
x, y + (ω − ω2)z

)
,

a = (−4d2
2, 2φ

3
1d2). We have the relation

NK/F (a)
(−4d2

2)2
= (−1)3 ∈ F×3

and again fA′,V ′ is not semi-diagonal.
We observe that, if L1 = F 3, then

η0 = − 1
2d2

ξ2
0η3, ζ0 = − 1

2d2
ξ2
0(η3 + 2η′3)

where η3 = −η2−η−1
2 and η′3 = −ωη2−ω2η−1

2 . Put L′ := F ⊕Fη3⊕Fη′3
and let ρ be the F -algebra automorphism of L′ defined by ρ(η3) = η′3
and ρ(η′3) = −η3 − η′3. Then 1, η3 and ρ(η3) span L′ such that

(x− η3)
(
x− ρ(η3)

)(
x− ρ2(η3)

)
= x3 − 3x+ λ

for λ = 2, and there exists an F -algebra isomorphism Ψ from L′ to F 3

such that

ρ
(
Ψ−1(1, 0, 0)

)
= Ψ−1(0, 1, 0) and ρ

(
Ψ−1(0, 1, 0)

)
= Ψ−1(0, 0, 1).
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We also have A =
⊕2

i=0 L
′ξi0 with ξ0ξ = ρ(ξ)ξ0 for all ξ ∈ L′. We can

prove that fA′,V ′ is a semi-trace form and is not semi-diagonal if L1 = F 3

by letting θ1 = −2, δ1 = 0 = x1, λ1 = 2 and φ1 = 1 in the relations that
we found in the case where L1 is a field.

Thus we arrive at:

Theorem 4.5.2 Suppose that F is infinite and does not contain a prim-
itive cube root of unity. Then, up to F -isomorphism, the non-singular
F -cubic pairs of the second kind are either the pairs(

M3(F ), spanF 〈ξ′0, η′0, ζ ′0〉
)

for all d2F
×3 ∈ F×/F×3, where

ξ′0 =

 0 1 0
0 0 1
0 0 0

 , η′0 =

 0 0 4
d2 0 0
0 −d2 0

 , ζ ′0 =

 0 −2 0
0 0 2
d2 0 0

 ,

or the pairs (
(−4d2

2, L1/F, ρ1), spanF 〈ξ0, η0, ζ0〉
)

for all d2F
×3 ∈ F×/F×3 and for all non trivial isomorphism classes

[(L1, ρ1)] of Galois Z/3-algebras, where ξ0 and L1 = F (θ1) generate the
cyclic algebra such that

ξ3
0 = −4d2

2, θ
3
1 − 3θ1 ∈ F, ξ0θ1 = ρ1(θ1)ξ0,

and η0 = ξ2
0θ1, ζ0 = ξ2

0ρ1(θ1). The associated cubic forms are semi-trace
forms and are not semi-diagonal.





5

Classification

of singular cubic pairs

We classify the isomorphism classes of singular cubic pairs.
We split the classification into nine parts corresponding to
the zero cubic curve and the eight different kinds of non-
zero singular cubic curves. In the case of the triangle we use
Galois cohomology but for the rest we use another method.

5.1 A useful proposition

To classify non-singular cubic pairs, we shall use an easier method than
the one used for the classification of non-singular cubic pairs. Clearly,
if two non-singular cubic pairs are isomorphic, their associated cubic
curves are singular curves of the same kind. Thus we may split the
classification of non-singular cubic pairs into nine parts. Before we give
the new method, we need preliminaries.

We have a continuous action of Γ on P(M3(Fsep)) induced by the
action on M3(Fsep):

σ(uFsep) = σ(u)Fsep.

Lemma 5.1.1 We have that P(M3(Fsep))Γ = P(M3(F )).

Proof : Let p = uFsep ∈ P(M3(Fsep))Γ. Then σ(uFsep) = uFsep for all
σ ∈ Γ; thus there exists a scalar λσ ∈ F×sep such that σ(u) = λσu.
Because στ(u) = σ(τ(u)), we have

λστ = λσσ(λτ ).

Hence (λσ)σ∈Γ is a 1-cocycle with values in F×sep. By Hilbert’s Theo-
rem 90, there exists µ ∈ F×sep such that λσ = µσ(µ)−1. Hence we can

91
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deduce that µu ∈ M3(F ):

σ(µu) = σ(µ)λσu = µu;

and therefore p ∈ P(M3(F )). 2

Similarly if ϕ ∈ V ?sep is such that σϕ = λσϕ for all σ ∈ Γ then there exists
µ ∈ F×sep such that µϕ ∈ V ?.

By section 1.6, the number of singular points of a cubic curve with
finitely many singular points is less than or equal to three and the singu-
lar points are defined over Fsep. Note that the action of Γ on P

(
M3(Fsep)

)
permutes the singular Fsep-points of a cubic curve over F .

We deduce the following proposition from the previous lemma.

Proposition 5.1.2 Suppose that (A, V ) is a singular cubic pair over
F where A is a division algebra. Then the associated cubic curve is a
triangle.

Proof : Since A is division, there are no F -points on the cubic curve
{fA,V (ξ) = 0}. Indeed, if uF is a F -point of {fA,V (ξ) = 0}, then u ∈ A
and u3 = 0 which is impossible in a division algebra. In particular the
cubic curve fA,V is non-zero.

Suppose that the cubic curve {fA,V (ξ) = 0} has one singular point
in P(Vsep). Then the action of Γ on P(Vsep) leaves this singular point
invariant. By Lemma 5.1.1 the singular point is defined over F and in
particular there exists an F -point of {fA,V (ξ) = 0}; this is impossible
since A is division. Suppose that {fA,V (ξ) = 0} has two singular points
in P(Vsep). Then the action of Γ on the singular points is not trivial
since otherwise there would exist an F -point of {fA,V (ξ) = 0}. Thus
the subgroup of Γ which leaves the singular points invariant, has index
two. So, there exists a point of {fA,V (ξ) = 0} over a quadratic extension
of F . But A remains division after extending the scalars to a quadratic
extension, thus we get a contradiction. Now if fA,V = l21 · l2 for some
l1, l2 ∈ V ?sep, then Γ leaves the line {l1(ξ) = 0} invariant. Thus it is
defined over F and in particular there is a point of {fA,V (ξ) = 0} over
F ; this is impossible. Therefore, by Section 1.6, the curve {fA,V (ξ) = 0}
is a triangle. 2

Hence, if (A, V ) is a singular cubic pair over F such that the associated
cubic curve is not a triangle, then A ∼= M3(F ). To classify such cubic
pairs up to isomorphism we may thus assume that the algebra of the
cubic pair is M3(F ). In the case where the associated cubic curve is a
triangle, we use Theorem 4.1.2.
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The following lemma shall be useful to classify singular cubic pairs.

Lemma 5.1.3 Let V be a cubic subspace of M3(F ) and (e1, e2, e3) a
basis of V . Then fV (x1e1 + x2e2 + x3e3) is equal to

3∑
i=1

e3
ix

3
i +

3∑
i6=j=1

tr(e2
i ej)x

2
ixj + tr(e1e2e3 + e1e3e2)x1x2x3.

Proof : We have fV (x1e2 + x2e2 + x3e3) = (x1e1 + x2e2 + x3e3)3. The
fact that

(x1e1 + x2e2 + x3e3)3 =
1
3

tr
(

(x1e2 + x2e2 + x3e3)3
)

implies the result. 2

5.2 Zero projective curve

We shall describe up to F -isomorphism the cubic pairs over F with the
zero projective curve as associated cubic curve.

Suppose that V is a cubic subspace of M3(F ) such that fV = 0. We
want to describe V up to conjugacy. Suppose that ξ2 = 0 for all ξ ∈ V
then we may assume that

u :=

 0 0 1
0 0 0
0 0 0

 ∈ V.
For ξ ∈ M3(Fsep), let ξij denote1 the scalar on row i and column j in ξ.
Since fA,V = 0, we have tr(ξηζ+ξζη) = 0 for all ξ, η, ζ ∈ V . Let v, w ∈ V
be such that (u, v, w) is a basis of V . Because tr(v) = 0 and tr(uv) = 0
we have v33 = −v11 − v22 = 0 and v31 = 0. Since v3 = (u + v)3 = 0 we
have v2 = 0 and uv+ vu = 0. But uv+ vu = 0 implies v32 = 0, v22 = 0,
v21 = 0, and v2 = 0 implies v11 = 0 and v12v23 = 0. Replacing v by
v − v13u if necessary, we may assume that v13 = 0, hence

v =

 0 v12 0
0 0 v23

0 0 0

 .

1This notation shall be used in the remainder of this chapter.
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In the same way, we can prove that

w =

 0 w12 0
0 0 w23

0 0 0


with w12w23 = 0. Since v and w are linearly independent there exists
a matrix ξ ∈ V such that ξ2 6= 0 and it contradicts the assumption.
Therefore there exists a matrix u ∈ V such that u2 6= 0. Because u3 = 0
we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .

Suppose that u2 and v2 are linearly independent. We need the following
lemma.

Lemma 5.2.1 Let V be a cubic subspace of M3(F ) and u, v ∈ V . Sup-
pose that (xu + yv)3 = 0 for all x, y ∈ F and u2, v2 are linearly in-
dependent, then there exist m ∈ GL3(F ) and non-zero λ, µ ∈ F such
that

mum−1 = λ

 0 1 0
0 0 1
0 0 0

 and mvm−1 = µ

 0 0 0
1 0 0
0 −1 0

 .

Proof : Since u3 = 0 and u2 6= 0, we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .

Because tr(v) = 0, tr(uv) = 0 and tr(u2v) = 0, we have

v33 = −v11 − v22, v32 = −v21, v31 = 0.

Then tr(uv2) = 0 implies v21(2v11 + v22) = 0. If v21 = 0, then tr(v2) = 0
and v3 = 0 imply v11 = v22 = 0; this contradicts the fact that u2 and v2

are linearly independent. So v21 6= 0 and v22 = −2v11. Replacing v by
v−1

21 v if necessary, we may assume that v21 = 1. We have v23 = v12 +3v2
11

and v13 = v3
11 because tr(v2) = 0 and v3 = 0. Put α := v11, β := v12

and

m :=

 1 −α 2α2 + β

0 1 −α
0 0 1


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then m ∈ GL3(Fsep), mum−1 = u and

mvm−1 =

 0 0 0
1 0 0
0 −1 0


which concludes the proof. 2

By this lemma, we may now assume that

v =

 0 0 0
1 0 0
0 −1 0

 .

Since tr(w) = 0, tr(uw) = 0, tr(u2w) = 0, tr(vw) = 0 and tr(v2w) = 0
we have

w33 = −w11 − w22, w32 = −w21, w31 = 0, w23 = w12, w13 = 0;

thus

w =

 w11 w12 0
w21 w22 w12

0 −w21 −w11 − w22

 .

Replacing w by w−w12u−w21v if necessary, we may assume that w12 = 0
and w21 = 0. So tr(w2) implies w22 = ρw11 for some primitive cube root
ρ ∈ Fsep of unity and w3 = 0 implies w = 0. We get a contradiction,
thus u2 and v2 are linearly dependent. Since tr(v) = 0, tr(uv) = 0 and
tr(u2v) = 0 we have

v33 = −v11 − v22, v32 = −v21, v31 = 0.

But v2 = λu2 for some λ ∈ F , so

v11 = 0, v21 = 0, v22 = 0

and v is an upper triangular matrix. Similarly, since u2 and w2 are
linearly dependent, we can prove that w is an upper triangular matrix.
Hence V is the subspace of M3(F ) of upper triangular matrices.

Theorem 5.2.2 Up to F -isomorphism there exists one F -cubic pair
such that the associated cubic curve is the zero projective curve, namely
the pair

(
M3(F ), V

)
where V is the subspace of M3(F ) of upper triangu-

lar matrices.
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5.3 Triple line

We want to describe up to F -isomorphism the cubic pairs over F with a
triple line as associated cubic curve. To do this it is sufficient to describe,
up to conjugacy, the singular cubic subspaces of M3(F ), such that the
associated cubic curve is a triple line.

Suppose that V is a singular cubic subspace of M3(F ) such that
{fV (ξ) = 0} is a triple line: fV = l3 for some non-zero l ∈ V ?sep. Clearly,
the group Γ acts trivially on {l(ξ) = 0}, so {l(ξ) = 0} is defined over
F . Hence l = µϕ for some µ ∈ Fsep and ϕ ∈ V ?. Thus fV = λϕ3 with
λ = µ3 ∈ F× since fV ∈ S3(V ?) and ϕ ∈ V ?. We describe V up to
conjugacy.

Case 1: Suppose that there exists u ∈ V such that u3 = 0 and u2 6= 0.
Then we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .

Let v, w ∈ V be such that u and v span the kernel of ϕ and ϕ(w) = 1.
Then (u, v, w) is a basis of V and

(xu+ yv + zw)3 = λz3.

By Lemma 5.1.3, we have{
u3 = v3 = tr(u2v) = tr(uv2) = tr(u2w) = tr(uw2) = 0,
tr(v2w) = tr(vw2) = tr(uvw + uwv) = 0 and w3 6= 0.

For all ξ ∈ V , we have

ξ33 = −ξ11 − ξ22, ξ32 = −ξ21, ξ31 = 0, ξ21(2ξ11 + ξ22) = 0

since tr(ξ) = 0, tr(uξ) = 0, tr(u2ξ) = 0 and tr(uξ2) = 0. Replacing v by
v − v12u and w by w−w12u, we may assume that v12 = 0 and w12 = 0.
Thus

v =

 v11 0 v13

v21 v22 v23

0 −v21 −v11 − v22

 , w =

 w11 0 w13

w21 w22 w23

0 −w21 −w11 − w22


and v21(2v11 + v22) = 0 = w21(2w11 + w22). Suppose v21 6= 0, then
v22 = −2v11 and replacing v by 1

v21
v if necessary, we may assume that
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v21 = 1. Since tr(v2) = 0 and v3 = 0, we have v23 = 3v2
11 and v13 = v3

11.
Put α := v11, then

v =

 α 0 α3

1 −2α 3α2

0 −1 α

 .

If w21 = 0, then tr(w2) implies w2
11 + w11w22 + w2

22 = 0. So w22 = ρw11

for some ρ ∈ Fsep with ρ2 + ρ+ 1 = 0 and

w =

 w11 0 w13

0 ρw11 w23

0 0 ρ2w11


with w11 6= 0 because w3 = λ 6= 0. But tr(uvw + uwv) = 0 implies
(1 − ρ2)w11 = 0 thus we get a contradiction. Now if w21 6= 0, then
w22 = −2w11. We have

w23 = 3w2
11w
−1
21 , w11 = αw21, w13 = α3w21

because tr(w2) = 0, tr(vw) = 0 and tr(v2w) = 0. So

w =

 w21α 0 w21α
3

w21 −2w21α 3w21α
2

0 −w21 w21α

 = w21v

and we have a contradiction; therefore v21 = 0. Since tr(v2) = 0 and
v3 = 0, we have v22 = v11 = 0. So

v =

 0 0 v13

0 0 v23

0 0 0

 .

If v23 = 0, then we may assume that v13 = 1. Replacing w by
w − w13v if necessary, we may assume that w13 = 0. Since tr(w2v) = 0,
tr(w2) = 0 and w3 6= 0, we have

w21 = 0, w22 = ρw11, w11 6= 0

where ρ ∈ Fsep is a primitive cube root of unity. Note that ρ ∈ F because
w11 ∈ F , ρw11 ∈ F and w11 6= 0. Put

m :=

 1 0 0
0 1 w23

(ρ−ρ2)w11

0 0 1


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then m ∈ GL3(F ) is such that mum−1,mvm−1 ∈ spanF 〈u, v〉 and

mwm−1 = w11

 1 0 0
0 ρ 0
0 0 ρ2

 .

Hence V is conjugate to the subspace of M3(F ) spanned by 0 1 0
0 0 1
0 0 0

 ,

 0 0 1
0 0 0
0 0 0

 ,

 1 0 0
0 ρ 0
0 0 ρ2

 .

If v23 6= 0, then we may assume that v13 = 0 and v23 = 1. Indeed,
the invertible matrix

m =

 1 −v13v
−1
23 0

0 1 −v13v
−1
23

0 0 1


is such that mum−1 = u and

mvm−1 = v23

 0 0 0
0 0 1
0 0 0

 .

Replacing w by w−w23v, we may assume that w23 = 0. Then tr(w2) = 0,
tr(vw) = 0 and w3 6= 0 imply

w22 = ρw11, w21 = 0, w11 6= 0

where ρ ∈ F is a primitive cube root of unity. We may assume that
w11 = 1 and w13 = 0 because

m =

 1 0 w13
(1−ρ2)w11

0 1 0
0 0 1

 ∈ GL3(F )

is such that mum−1 = u, mvm−1 = v and

mwm−1 = w11

 1 0 0
0 ρ 0
0 0 ρ2

 .

Theorem 5.3.1 Suppose that F contains a primitive cube root of unity.
The F -cubic pairs (A, V ) such that the associated cubic curve is a triple
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line and there exists an element ξ0 ∈ V such that ξ3
0 = 0 and ξ2

0 6= 0, are
F -isomorphic to the pair

(
M3(F ), spanF 〈u, v, w〉

)
where

either u =

 0 1 0
0 0 1
0 0 0

 , v =

 0 0 1
0 0 0
0 0 0

 , w =

 1 0 0
0 ρ 0
0 0 ρ2


or u =

 0 1 0
0 0 1
0 0 0

 , v =

 0 0 0
0 0 1
0 0 0

 , w =

 1 0 0
0 ρ 0
0 0 ρ2

 .

for some primitive cube root of unity ρ. There are, up to isomorphism,
four such cubic pairs.

Proof : Put

v1 :=

 0 0 1
0 0 0
0 0 0

 , v2 :=

 0 0 0
0 0 1
0 0 0

 , wi =

 1 0 0
0 ρi 0
0 0 ρ2

i

 ,

for i = 1, 2, where ρi is a primitive cube root of unity. If spanF 〈u, v1, w1〉
is conjugate to spanF 〈u, v2, w2〉 then spanF 〈u, v1〉 and spanF 〈u, v2〉 are
conjugate. We observe that (αu + βv1)2 = 0 if and only if α = 0 and
(αu + βv2)2 = 0 if and only if α = 0 or α = −β. Thus spanF 〈u, v1〉 is
not conjugate to spanF 〈u, v2〉. By straightforward computations one can
check that spanF 〈u, vi, w1〉 is not conjugate to spanF 〈u, vi, w2〉 if ρ1 6= ρ2.

2

Case 2: Assume ξ3 = 0 implies ξ2 = 0 for all ξ ∈ V . Let u, v, w ∈ V be
such that u and v span the kernel of ϕ and ϕ(w) = 1. Since u3 = 0, we
have u2 = 0 and we may assume that

u =

 0 0 1
0 0 0
0 0 0

 .

Replacing v by v−v13u and w by w−w13u, we may assume that v13 = 0
and w13 = 0. For ξ ∈ V , we have tr(ξ) = 0 and tr(uξ) = 0, thus

ξ33 = −ξ11 − ξ22, ξ31 = 0.

Since v3 = 0 and (u+ v)3 = 0, we deduce that v2 = 0 and uv + vu = 0.
But uv + vu = 0 implies v32 = v21 = v22 = 0 and v2 = 0 implies v11 = 0
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and v12v23 = 0. Hence

v =

 0 v12 0
0 0 v23

0 0 0


and either v12 = 0 or v23 = 0.

If v23 = 0, then we may assume that v12 = 1. Replacing w by
w − w12v, we may assume that w12 = 0. Since tr(vw) = 0 we have
w21 = 0, thus

w =

 w11 0 0
0 w22 w23

0 w32 −w11 − w22

 .

Suppose that F contains a primitive cube root of unity. If w32 6= 0 then
tr(w2) = 0 implies w23 = −w−1

32 (w2
11 +w2

22 +w11w22). Put α := w11w
−1
32

and β := w22w
−1
32 , then α 6= 0 because w3 6= 0. The matrix

m =

 (ω − ω2)α 0 0
0 1 ωα− β
0 1 ω2α− β

 ∈ GL3(F )

is such that mum−1,mvm−1 ∈ spanF 〈u, v〉 and

mwm−1 = αw32

 1 0 0
0 ω 0
0 0 ω2

 .

Now suppose that w32 = 0. We have w22 = ρw11 for some primitive
cube root ρ of unity because tr(w2) = 0. Put α := w11, β := w23 then
α 6= 0 because w3 6= 0. The invertible matrix

m =

 1 0 0
0 1 β

(ρ−ρ2)α

0 0 1


is such that mum−1,mvm−1 ∈ spanF 〈u, v〉 and

mwm−1 = α

 1 0 0
0 ρ 0
0 0 ρ2

 .

Hence we may assume that

w =

 1 0 0
0 ρ 0
0 0 ρ2

 .
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Since the invertible matrix

m′ =

 1 0 0
0 0 1
0 1 0


is such that m′um′−1,m′vm′−1 ∈ spanF 〈u, v〉 and

m′

 1 0 0
0 ω 0
0 0 ω2

m′−1 =

 1 0 0
0 ω2 0
0 0 ω

 ,

the vector space V is conjugate to the subspace of M3(F ) spanned by 0 0 1
0 0 0
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 ,

 1 0 0
0 ω 0
0 0 ω2

 .

Now suppose that F does not contain a primitive cube root of unity. If
w32 = 0, then tr(w2) = 0 implies w22 = ρw11 for some primitive cube
root of unity ρ ∈ Fsep. Since w3 6= 0 we have w11 6= 0 and it contradicts
the fact that F does not contain ρ; thus w32 6= 0. Because tr(w2) = 0,
we have

w23 = −w−1
32 (w2

11 + w2
22 + w11w22).

Put α := w11w
−1
32 and β := w22w

−1
32 then α 6= 0 because w3 6= 0. The

invertible matrix

m =

 −α 0 0
0 α−1 −1− α−1β

0 α−1 −α−1β


is such that mum−1,mwm−1 ∈ spanF 〈u, v〉 and

mwm−1 = αw32

 1 0 0
0 0 −1
0 1 −1

 .

Therefore V is conjugate to the subspace of M3(F ) spanned by 0 0 1
0 0 0
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 ,

 1 0 0
0 0 −1
0 1 −1

 .

If v12 = 0, then we may assume that v23 = 1. Replacing w by
w − w23v, we may assume that w23 = 0. We have

w32 = 0, w11 + w22 6= 0
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because tr(vw) = 0 and w3 6= 0. Suppose that F contains a primitive
cube root of unity. If w21 6= 0, then tr(w2) = 0 implies

w12 = − 1
w21

(w2
11 + w2

22 + w11w22).

Put α := w11w
−1
21 , β := w22w

−1
21 and

m :=

 1 ω2α− ωβ 0
1 ωα− ω2β 0
0 0 1


then m ∈ GL3(F ), mum−1,mvm−1 ∈ spanF 〈u, v〉 and

mwm−1 = −w21(α+ β)

 ω 0 0
0 ω2 0
0 0 1

 .

Thus we may assume that w21 = 0. Since tr(w2) = 0, there exists a
primitive cube root of unity ρ such that w22 = ρw11. Put α := w11 and
β := w12 then α 6= 0 because w3 6= 0. The invertible matrix

m =

 1 β
(1−ρ)α 0

0 1 0
0 0 1


is such that m ∈ GL3(F ), mum−1,mvm−1 ∈ spanF 〈u, v〉 and

mwm−1 = α

 1 0 0
0 ρ 0
0 0 ρ2

 .

Therefore V is conjugate to the span of 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

 ,

 1 0 0
0 ρ 0
0 0 ρ2

 .

We may assume that ρ = ω since

m′ =

 0 1 0
1 0 0
0 0 −1


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is such that m′um′−1,m′vm′−1 ∈ spanF 〈u, v〉 and

m′

 1 0 0
0 ω 0
0 0 ω2

m′−1 = ω

 1 0 0
0 ω2 0
0 0 ω

 .

Now assume that F does not contain a primitive cube root of unity, then
w21 6= 0 and we have w12 = −w21(w2

11 +w2
22 +w11w22) since tr(w2) = 0.

Put α := w11w
−1
21 and β := w22w

−1
21 then α + β 6= 0 because w3 6= 0.

The invertible matrix

m =

 0 1 0
−(α+ β)−1 α(α+ β)−1 0

0 0 α+ β


is such that mum−1,mvm−1 ∈ spanF 〈u, v〉 and

mwm−1 = w21(α+ β)

 1 −1 0
1 0 0
0 0 −1

 .

Therefore V is conjugate to the subspace of M3(F ) spanned by 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

 ,

 1 −1 0
1 0 0
0 0 −1

 .

We note that the subspace of M3(F ) spanned by 0 0 1
0 0 0
0 0 0

 and

 0 1 0
0 0 0
0 0 0


is not conjugate to the one spanned by 0 0 1

0 0 0
0 0 0

 and

 0 0 0
0 0 1
0 0 0

 .

Thus, we have the following theorems:

Theorem 5.3.2 Suppose that F contains a primitive cube root of unity.
The cubic pairs (A, V ) over F with a triple line as associated cubic curve
and such that ξ3 = 0 implies ξ2 = 0 for all ξ ∈ V , are F -isomorphic to
the pair

(
M3(F ), V

)
where V is the subspace of M3(F ) spanned by
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• either

 0 0 1
0 0 0
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 ,

 1 0 0
0 ω 0
0 0 ω2



• or

 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

 ,

 1 0 0
0 ω 0
0 0 ω2

 .

There are exactly two such cubic pairs up to isomorphism.

Theorem 5.3.3 Suppose that F does not contain a primitive cube root
of unity. The cubic pairs over F with a triple line as associated cubic
curve are F -isomorphic to the pair

(
M3(F ), V

)
where V is the subspace

of M3(F ) spanned by

• either

 0 0 1
0 0 0
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 ,

 1 0 0
0 0 −1
0 1 −1



• or

 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

 ,

 1 −1 0
1 0 0
0 0 −1

 .

There are exactly two such cubic pairs up to isomorphism.

5.4 Double line plus simple line

We want to describe up to conjugacy the F -cubic subspaces of M3(F )
such that the associated cubic curve is a double line plus simple line.

Thereto, suppose that V is a cubic subspace of M3(F ) such that the
cubic curve {fV (ξ) = 0} is a double line plus simple line. There exist
linearly independent l1, l2 ∈ V ?sep such that fV = l21l2. Clearly the lines
{l1(ξ) = 0} and {l2(ξ) = 0} are invariant under the action of Γ. So there
exist linearly independent ϕi ∈ V ? and µi ∈ F×sep such that li = µiϕi.
Hence fV = λϕ2

1ϕ2 with λ = µ2
1µ2 ∈ F . Replacing ϕ2 by λ−1ϕ2 if

necessary, we may assume that λ = 1. Let (u, v, w) be a basis of V such
that ϕ1(u) = ϕ2(v) = 1, the vectors u,w span the kernel of ϕ2 and v, w

span the kernel of ϕ1. Because tr(u2v) 6= 0 we have u2 6= 0. Since u3 = 0
we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .
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For all ξ ∈ V , we have tr(ξ) = 0 and tr(uξ) = 0, so

ξ33 = −ξ11 − ξ22, ξ32 = −ξ21.

Case 1: Suppose that v2 6= 0. By Lemma 4.2.4 and since u and v

are determinant zero matrices of V such that v2 6= 0, tr(u2v) 6= 0 and
tr(uv2) = 0, we may assume that

v =

 0 0 0
1 0 0
1 −1 0

 .

Because tr(vw) = 0, tr(u2w) = 0 and tr(v2w) = 0, we have

w23 = w12, w31 = 0, w13 = 0.

So tr(w2) = 0 implies w22 = ρw11 for some primitive cube root of unity
ρ ∈ Fsep, next tr(uvw+uwv) = 0 implies w12 = ρ2−1

2 w11 and tr(vw2) = 0
implies w11 = 0. Hence

w = w21

 0 0 0
1 0 0
0 −1 0


and V is the subspace of M3(F ) spanned by 0 1 0

0 0 1
0 0 0

 ,

 0 0 0
1 0 0
0 −1 0

 ,

 0 0 0
0 0 0
1 0 0

 .

Case 2: Suppose that v2 = 0. We use the following lemma:

Lemma 5.4.1 Let V be a cubic subspace of M3(F ) and u, v ∈ V deter-
minant zero matrices such that v2 = 0 and tr(u2v) 6= 0. Then there exist
m ∈ GL3(F ) and scalars λ, µ ∈ F× such that

mum−1 = λ

 0 1 0
0 0 1
0 0 0

 and mvm−1 = µ

 0 0 0
0 0 0
1 0 0

 .
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Proof : Because u3 = 0 and u2 6= 0, we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .

Since tr(v) = 0, tr(uv) = 0, tr(u2v) 6= 0, we have

v33 = −v11 − v22, v32 = −v21, v31 6= 0.

Put α := v11v
−1
31 and β := v21v

−1
31 then v2 = 0 implies

v = v31

 α −αβ α(−α+ β2)
β −β2 β(−α+ β2)
1 −β −α+ β2

 .

The invertible matrix

m =

 1 −β −α+ β2

0 1 −β
0 0 1


is such that mum−1 = u and

mvm−1 = v31

 0 0 0
0 0 0
1 0 0

 .

2

Since u, v ∈ V are determinant zero matrices such that v2 = 0 and
tr(u2v) 6= 0, we may assume that

v =

 0 0 0
0 0 0
1 0 0

 .

We have
w31 = 0, w13 = 0, w23 = −w12

because tr(u2w) = 0, tr(vw) = 0 and tr(uvw + uwv) = 0. Then the
relations tr(vw2) = 0, tr(w2) = 0 and w3 = 0 imply w12, w11, w22 = 0.
Thus

w = w21

 0 0 0
1 0 0
0 −1 0


and we obtain the same subspace as in the first case. So we obtain the
following theorem:
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Theorem 5.4.2 Up to F -isomorphism, there is one F -cubic pair such
that the associated cubic curve is a double line plus simple line, namely
the pair (M3(F ), spanF 〈u, v, w〉) where

u =

 0 1 0
0 0 1
0 0 0

 , v =

 0 0 0
0 0 0
1 0 0

 , w =

 0 0 0
1 0 0
0 −1 0

 .

5.5 Three concurrent lines

We want to describe up to F -isomorphism the F -cubic pairs such that
the associated cubic curve is three concurrent lines.

Suppose that V is a cubic subspace of M3(F ) such that the curve
{fV (ξ) = 0} is three concurrent lines. Then there exists a basis (u, v, w)
of Vsep such that

fV (xu+ yv + zw) = x2y + xy2.

Since tr(u2v) = 1 we have u2 6= 0. But u3 = 0 so we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .

If ξ ∈ Vsep, then
ξ33 = −ξ11 − ξ22, ξ32 = −ξ21

because tr(ξ) = 0 and tr(uξ) = 0. We have

w31 = 0, w21(2w11 + w22) = 0

since tr(u2w) = 0 and tr(uw2) = 0. Suppose that w21 = 0, then we
have w22 = ρw11 for some primitive cube root of unity ρ ∈ Fsep because
tr(w2) = 0, and w3 = 0 implies w11 = 0. Therefore w2 = w12w23u

2

and uw + wu = (w12 + w23)u2. But tr(u2v) 6= 0, tr(w2v) = 0 and
tr(uwv+wuv) = 0, so w12 = w23 = 0 and w = w13u

2. Since tr(u2v) 6= 0
and tr(vw) = 0, we have w13 = 0 and so w = 0; we get a contradiction.
Thus we have w21 6= 0, and u2 and w2 are linearly independent. By
Lemma 5.2.1, we may assume that

w =

 0 0 0
1 0 0
0 −1 0

 .
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We have
v31 = 1, v23 = v12, v13 = 0

since tr(u2v) = 1, tr(vw) = 0 and tr(vw2) = 0. Then tr(v2) = 0,
tr(uvw + uwv) = 0 and v3 = 0 imply

v =

 0 0 0
v21 0 0
1 −v21 0


and this contradicts the fact that tr(uv2) = 1.

Therefore we obtain the following result:

Theorem 5.5.1 There is no cubic pair over F such that the associated
cubic curve is three concurrent lines.

5.6 Conic plus tangent

We want to classify up to F -isomorphism the F -cubic pairs such that
the associated cubic curve is a conic plus tangent.

Suppose that V is a cubic subspace of M3(F ) such that {fV (ξ) = 0}
is a conic plus tangent. Then there exists a basis (u, v, w) of Vsep such
that

fV (xu+ yv + zw) = (x2 − yz)z.

Since tr(vw2) 6= 0 we have w2 6= 0. So u and w are determinant
zero matrices such that w2 6= 0, tr(u2w) 6= 0 and tr(uw2) = 0 and
by Lemma 4.2.4, we may assume that

u =

 0 1 0
0 0 1
0 0 0

 and w =

 0 0 0
1 0 0
1 −1 0

 .

Because tr(v) = 0, tr(uv) = 0, tr(u2v) = 0, tr(vw) = 0 and tr(vw2) = −1,
we deduce that

v =

 v11 v12 1
v21 v22 v12 + 1
0 −v21 −v11 − v22

 .

Then tr(uv2) = 0 implies v21(2v11 + v22) = 0. Suppose that v21 = 0,
then v11 = 0, v22 = 0 and v12 = − 1

2 because tr(v2) = 0, v3 = 0 and
tr(uvw+uwv) = 0; it contradicts the fact that tr(v2w) = 0. Now suppose
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that v21 6= 0, then v22 = −2v11. We have v12 = − 1
2 and v21 = 3v2

11

because tr(uvw + uwv) = 0 and tr(v2) = 0. Since tr(v2w) = 0 and
v3 = 0, we have

6v2
11 − 3v11 +

1
4

= 0 and v3
11(1− 9v11) = 0;

which is impossible.
We proved the following:

Theorem 5.6.1 There is no F -cubic pair with a conic plus tangent as
associated cubic curve.

5.7 Conic plus chord

We want to classify the F -cubic pairs such that the associated cubic
curve is a conic plus chord. To do this we need to describe a cubic form
over V with a conic plus chord as associated cubic curve.

Proposition 5.7.1 Let f ∈ S3(V ?) be a singular cubic form such that
the cubic curve {f(ξ) = 0} is a conic plus chord. Then there exist a
basis (u, v, w) of V and non-zero scalars a, b ∈ F such that

f(xu+ yv + zw) = (x2 − ay2 + bz2)z.

Proof : There exist q ∈ S2(V ?sep) and l ∈ V ?sep such that f = q · l. Since
Γ acts trivially on the line {l(ξ) = 0} we may assume that l ∈ V ?.
Let (u, v, w) be a basis of V such that l(w) = 1. We know that the
curve {f(ξ) = 0} has two distinct singular points p1 and p2. Thus the
subgroup of Γ which leaves the singular points invariant has index less
than or equal to 2 and the singular points are defined over a quadratic
extension of F . Let a ∈ F× be such that the singular points are defined
over F (

√
a) (if Γ acts trivially on the singular points, we may choose

a ∈ F×2). We know that the line {l(ξ) = 0} passes through the singular
points and is not the tangent at these points. Changing the basis if
necessary we may assume that p1 = (

√
au+ v)F and p2 = (−

√
au+ v)F

are the singular points and the tangents at these points intersect at wF .
Let λi,j,k ∈ F be such that q(xu+ yv + zw) is equal to

λ2,0,0x
2 + λ0,2,0y

2 + λ0,0,2z
2 + λ1,1,0xy + λ1,0,1xz + λ0,1,1yz.

Since p1 and p2 lies on the conic {q(ξ) = 0}, we deduce that λ1,1,0 = 0
and λ0,2,0 = −aλ2,0,0. The F -points of the tangent to {q(ξ) = 0} at
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p1 are the points (xu + yv + zw)F for all x, y, z ∈ F not all zero such
that x =

√
ay, so

√
aλ1,0,1 + λ0,1,1 = 0. Similarly, using the tangent

to {q(ξ) = 0} at p2, we deduce that −
√
aλ1,0,1 + λ0,1,1 = 0, and thus

λ1,0,1 = λ0,1,1 = 0. Hence

f(xu+ yv + zw) = (λ2,0,0x
2 − aλ2,0,0y

2 + λ0,0,2z
2)z

with λ2,0,0, λ0,0,2 6= 0 since q is irreducible. Replacing w by λ−1
2,0,0w we

may assume that λ2,0,0 = 1. Thus

f(ux+ yv + zw) = (x2 − ay2 + bz2)z

where a, b 6= 0. 2

Let V be a cubic subspace of M3(F ) such that the curve {fV (ξ) = 0}
is a conic plus chord. By the previous lemma, there exist a basis (u, v, w)
of V and non-zero a, b ∈ F such that

fV (xu+ yv + zw) = (x2 − ay2 + bz2)z.

Since u3 = 0 and tr(u2w) 6= 0, we have u2 6= 0 and we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .

Then for ξ ∈ V , we have

ξ33 = −ξ11 − ξ22, ξ32 = −ξ21

since tr(ξ) = 0 and tr(uξ) = 0. Because tr(u2v) = 0 and tr(uv2) = 0, we
deduce that

v31 = 0, v21(2v11 + v22).

Suppose that v21 = 0, then tr(v2) = 0 and v3 = 0 imply

v =

 0 v12 v13

0 0 v23

0 0 0

 .

So v2 = v12v23u
2 and uv + vu = (v12 + v23)u2. But tr(u2w) = 1,

tr(v2w) = −a and tr(uvw + uwv) = 0, thus v23 = −v12 and v2
12 = a.

Hence a ∈ F×2 and we may assume that a = 1 and v12 = 1. Put

m :=

 1 v13
2 0

0 1 v13
2

0 0 1


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then m is an invertible matrix such that mum−1 = u and

mvm−1 =

 0 1 0
0 0 −1
0 0 0

 .

So we may assume that v13 = 0. Since tr(vw) = 0, tr(u2w) = 1,
tr(uw2) = 0, tr(vw2) = 0 and tr(w2) = 0, we have

w21 = 0, w31 = 1, w12 = 0, w23 = 0, w13 = −w2
11 − w2

22 − w11w22.

We have w22 6= 0 because w3 6= 0. The invertible matrix

m =

 1 0 −w11

0 1 0
0 0 w22


is such that mum−1,mvm−1 ∈ spanF 〈u, v〉 and

mwm−1 = w22

 0 0 −1
0 1 0
1 0 −1

 .

So V is conjugate to the subspace of M3(F ) spanned by 0 1 0
0 0 1
0 0 0

 ,

 0 1 0
0 0 −1
0 0 0

 ,

 0 0 −1
0 1 0
1 0 −1

 .

Now suppose that v21 6= 0, then u2 and v2 are linearly independent.
Since (xu+ yv)3 = 0 for all x, y ∈ Fsep, by Lemma 5.2.1 we may assume
that

v =

 0 0 0
1 0 0
0 −1 0

 .

Since we know that tr(u2w) = 1, tr(vw) = 0, tr(uvw + uwv) = 0,
tr(uw2) = 0, tr(w2) = 0, tr(vw2) = 0 and w3 6= 0, we have

w =

 w11 0 −3w2
11

0 −2w11 0
1 0 w11


with w11 6= 0. Since a = −tr(v2w) = −3w2

11 and b = w3 = −8w3
11,

we deduce that a ∈ F (ω)×2 and b ∈ F×3. Suppose that F contains a
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primitive cube root of unity, then we can change the basis (u, v, w) of V
so that

fV (xu+ yv + zw) = (x2 + 3y2 − 8z2)z.

Thus we may assume that

w =

 1 0 −3
0 −2 0
1 0 1

 .

Therefore, the vector space V is spanned by 0 1 0
0 0 1
0 0 0

 ,

 0 0 0
1 0 0
0 −1 0

 ,

 1 0 −3
0 −2 0
1 0 1

 .

We proved the following:

Theorem 5.7.2 Suppose that F contains a primitive cube root of unity.
The F -cubic pairs such that the associated cubic curve is a conic plus
chord are F -isomorphic to the pair

(
M3(F ), V

)
where V is the subspace

of M3(F ) spanned by

• either

 0 1 0
0 0 1
0 0 0

 ,

 0 1 0
0 0 −1
0 0 0

 ,

 0 0 −1
0 1 0
1 0 −1



• or

 0 1 0
0 0 1
0 0 0

 ,

 0 0 0
1 0 0
0 −1 0

 ,

 1 0 −3
0 −2 0
1 0 1

.

Theorem 5.7.3 Suppose that F does not contain a primitive cube root
of unity. The cubic pairs over F with a conic plus chord as associated
cubic curve are F -isomorphic to the pair

(
M3(F ), V

)
where V is the

subspace of M3(F ) spanned by

• either

 0 1 0
0 0 1
0 0 0

 ,

 0 1 0
0 0 −1
0 0 0

 ,

 0 0 −1
0 1 0
1 0 −1



• or

 0 1 0
0 0 1
0 0 0

 ,

 0 0 0
1 0 0
0 −1 0

 ,

 α 0 −3α2

0 −2α 0
1 0 α

 ,

for some α ∈ F .
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5.8 Cuspidal curve

We want to classify up to F -isomorphism the F -cubic pairs such that
the associated cubic curve is cuspidal. First we need to describe a cubic
form over V with a cuspidal associated cubic curve.

Lemma 5.8.1 Let f ∈ S3(V ?) be such that the curve {f(ξ) = 0} is
cuspidal. Then there exist a basis (u, v, w) of V and a non-zero λ ∈ F
such that

f(xu+ yv + zw) = λ(z3 + x2y).

Proof : The cubic curve {f(ξ) = 0} has one flex, one singular point and
one tangent at the singular point which are all defined over Fsep. Thus
these points and their tangents are invariant under the action of Γ and
so there are defined over F . Let u, v, w ∈ V be such that uF is the
flex, vF is the singular point and wF is the intersection F -point of the
tangents. Then (u, v, w) is a basis of V . Let λi,j,k ∈ F be such that

f(xu+ yv + zw) =
∑

λi,j,kx
iyjzk

where the sum runs over all the positive integers i, j and k such that
i + j + k = 3. Since uF is a flex of {f(ξ) = 0} and the F -points of
its tangent are the (αu+ βw)F for all α, β ∈ F not both zero, the root
z = 0 of the polynomial

f(u+ zw) = λ3,0,0 + λ2,0,1z + λ1,0,2z
2 + λ0,0,3z

3

has a multiplicity equal to 3. Therefore λ3,0,0 = λ2,0,1 = λ1,0,2 = 0 and
λ0,0,3 6= 0. Because vF is a singular point and the F -points of its double
tangent are the (αv + βw)F for all α, β ∈ F not both zero, we have

λ0,3,0 = λ0,1,2 = λ1,2,0 = λ1,1,1 = λ0,2,1 = 0 and λ2,1,0 6= 0.

Hence
f(xu+ yv + zw) = λ0,0,3z

3 + λ2,1,0x
2y.

Replacing v by λ−1
2,1,0λ0,0,3v, we may assume that λ2,1,0 = λ0,0,3 and

f(xu+ yv + zw) = λ0,0,3(z3 + x2y)

as wanted. 2

Suppose that V is a cubic subspace of M3(F ) such that the curve
{fV (ξ) = 0} is cuspidal. We shall describe V up to conjugacy. By the
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previous lemma, there exist a basis (u, v, w) of V and a non-zero λ ∈ F
such that

fV (xu+ yv + zw) = λ(z3 + x2y).

Suppose that v2 6= 0. Since u, v ∈ V are determinant zero matrices such
that tr(u2v) = λ and tr(uv2) = 0, by Lemma 4.2.4 we may assume that

u =

 0 1 0
0 0 1
0 0 0

 and v = λ

 0 0 0
1 0 0
1 −1 0

 .

Since tr(w) = 0, tr(uw) = 0, tr(u2w) = 0, tr(vw) = 0, tr(v2w) = 0,
tr(uvw + uwv) = 0 and tr(vw2) = 0, we deduce that

w =

 w11 0 0
w21 −2w11 0
0 −w21 w11

 .

Then tr(w2) = 0 imply w11 = 0 and it contradicts the fact that w3 = 0.
Suppose that v2 = 0, since tr(u2v) = λ 6= 0, by Lemma 5.4.1 we may
assume that

u =

 0 1 0
0 0 1
0 0 0

 and v = λ

 0 0 0
0 0 0
1 0 0

 .

Since tr(w) = 0, tr(uw) = 0, tr(u2w) = 0, tr(vw) = 0, tr(uvw+uwv) = 0
and tr(vw2) = 0, we have

w =

 w11 0 0
w21 w22 0
0 −w21 −w11 − w22

 .

So tr(w2) = 0 implies w22 = ρw11 for some primitive cube root of unity
ρ ∈ Fsep. Since w3 = λ 6= 0 we have w11 6= 0 and the cube root ρ is in F .
Then tr(uw2) = 0 imply w21 = 0. Therefore V is the subspace of M3(F )
spanned by 0 1 0

0 0 1
0 0 0

 ,

 0 0 0
0 0 0
1 0 0

 ,

 1 0 0
0 ρ 0
0 0 ρ2

 .

So we obtain:
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Theorem 5.8.2 Suppose that F does not contain a primitive cube root
of unity, then there is no F -cubic pair with a cuspidal associated cubic
curve.

Theorem 5.8.3 Suppose that F contains a primitive cube root of unity
and (A, V ) is a F -cubic pair such that {fA,V (ξ) = 0} is cuspidal, then
(A, V ) is F -isomorphic to the pair (M3(F ), spanF 〈u, v, w〉), where

u =

 0 1 0
0 0 1
0 0 0

 , v =

 0 0 0
0 0 0
1 0 0

 , w =

 1 0 0
0 ρ 0
0 0 ρ2


for some ρ ∈ F such that ρ2 + ρ+ 1 = 0. There are two such cubic pairs
up to isomorphism.

Proof : Let W be the subspace of M3(F ) spanned by u, v and 1 0 0
0 ω 0
0 0 ω2


and W ′ the one spanned by u, v and 1 0 0

0 ω2 0
0 0 ω

 .

Suppose that m ∈ GL3(F ) is such that mWm−1 = W ′. Since uFsep is
a flex of {fW (ξ) = 0} the point m ? uFsep is a flex of {fW ′(ξ) = 0}.
Therefore m ? uFsep = uFsep. We can also prove that m ? vFsep = vFsep.
By straightforward computations we deduce that

mF×sep =

 λ2 0 0
0 λ 0
0 0 1

F×sep

for some λ ∈ F×sep and mwm−1 = w; so we get a contradiction. 2

5.9 Nodal curve

Suppose that V is a cubic subspace of M3(F ) such that {fV (ξ) = 0} is
nodal. We want to describe V up to conjugacy. Thereto we first describe
those cubic forms over F which have a nodal associated cubic curve.



116 Classification of singular cubic pairs

Lemma 5.9.1 Let f ∈ S3(V ?) be such that {f(ξ) = 0} is nodal. Then
there exist a basis (u, v, w) of V and λ, µ, ν ∈ F with µ 6= 0 such that

f(xu+ yv + zw) = λz3 + xy2 − µxz2 + νyz2.

Moreover uFsep is the unique singular point of {f(ξ) = 0}.

Proof : The curve {f(ξ) = 0} has a unique singular point, thus it is
defined over F . Let u ∈ V be such that uF is the singular point. The
three flexes of {f(ξ) = 0} are collinear, hence there is a unique line which
passes through the flexes and it is defined over F . At the singular point,
there are two simple tangents, so these tangents are defined at least over
a quadratic extension of F . Let v, w ∈ V be linearly independent and
b ∈ F× such that vF and wF lie on the line passing through the flexes
and the F -points of the tangents at the singular point are the points
(xu + yv + zw)F for all x, y, z ∈ F not all zero such that y2 − bz2 = 0.
Let λi,j,k ∈ F be such that

f(xu+ yv + zw) =
∑

i+j+k=3

λi,j,kx
iyjzk = c(x, y, z).

Then the first partial derivatives of c cancel at (1, 0, 0), so

λ3,0,0 = λ2,1,0 = λ2,0,1.

Using the tangents at uF , we have

λ1,1,1 = 0, λ1,0,2 = −bλ1,2,0, λ1,2,0 6= 0.

Let h ∈ S3(V ?) be defined by

h(a1u+ a2v + a3w) = det


∂2c
∂x2 (a) ∂2c

∂x∂y (a) ∂2c
∂x∂z (a)

∂2c
∂x∂y (a) ∂2c

∂y2 (a) ∂2c
∂y∂z (a)

∂2c
∂x∂z (a) ∂2c

∂y∂z (a) ∂2c
∂z2 (a)


for all a = (a1, a2, a3), so that {h(ξ) = 0} is the Hessian curve Hf . Then
h(yv + zw) is a multiple of

λ0,1,2y
3 + b2λ0,2,1z

3 + (2bλ0,2,1 + 3λ0,0,3)y2z + (2bλ0,1,2 + 3b2λ0,3,0)yz2.

Since the F -points of the line passing through the flexes are the points
(xu + yv + zw)F for all x, y, z ∈ F not all zero such that x = 0, we
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deduce that h(yv + zw) is a multiple of f(yv + zw). Thus there exists
α ∈ F× such that

λ0,3,0 = αλ0,1,2,

λ0,0,3 = αb2λ0,2,1,

λ0,2,1 = α(2bλ0,2,1 + 3λ0,0,3),
λ0,1,2 = α(2bλ0,1,2 + 3b2λ0,3,0).

If λ0,2,1 = λ0,1,2 = 0 then λ0,3,0 = λ0,0,3 = 0 and f is reducible. Thus
either λ0,2,1 6= 0 or λ0,1,2 6= 0 and we obtain that 3b2α2 + 2bα − 1 = 0.
Hence either α = − 1

b or α = 1
3b . If α = − 1

b , then

f(xu+ yv + zw) =
(
− λ0,1,2

b
y + λ0,2,1z + λ1,2,0x

)
(y2 − bz2);

this is impossible because f is irreducible. Thus α = 1
3b and we obtain

that f(xu+ yv + zw) is equal to

λ0,1,2

3b
y3 +

bλ0,2,1

3
z3 + λ1,2,0xy

2 + λ0,2,1y
2z − bλ1,2,0xz

2 + λ0,1,2yz
2.

Replacing u by λ−1
1,2,0u we may assume that λ1,2,0 = 1. Now we put

u′ := u, v′ := −λ0,1,2
3b u+ v, w′ := −λ0,2,1u+ w, then

f(xu′ + yv′ + zw′) =
4bλ0,2,1

3
z3 + xy2 − bxz2 +

4λ0,1,2

3
yz2

in which indeed b 6= 0. 2

We keep the notation as in the statement of the lemma.
Suppose that u2 6= 0. Since tr(u2v) = 0 and tr(uv2) = 1, we may

assume that

u =

 0 0 0
1 0 0
1 −1 0

 and v =

 0 1 0
0 0 1
0 0 0

 .

Since tr(w) = 0, tr(uw) = 0, tr(u2w) = 0, tr(vw) = 0 and tr(v2w) = 0,
we have

w =

 w11 w12 0
w21 w22 w12

0 −w21 −w11 − w22

 .

Then tr(w2) implies w22 = ρw11 for some ρ ∈ Fsep such that ρ2+ρ+1 = 0,
and tr(uvw+uwv) = 0 implies w12 = ρ2−1

2 w11. We have w11 6= 0 because
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w3 6= 0 and in particular ρ ∈ F . Hence V is conjugate to the span of 0 1 0
0 0 1
0 0 0

 ,

 0 0 0
1 0 0
1 −1 0

 ,

 1 0 0
0 ρ 0
α 0 ρ2


for some α ∈ F . So we obtain:

Theorem 5.9.2 Suppose that F does not contain a primitive cube root
of unity. Then there is no F -cubic pair with a nodal associated cubic
curve and such that the unique singular point ũF satisfies ũ2 6= 0.

Theorem 5.9.3 Suppose that F contains a primitive cube root of unity
and (A, V ) is an F -cubic pair such that {fA,V (ξ) = 0} is nodal with ũF
as the unique singular point. If ũ2 6= 0, then (A, V ) is F -isomorphic to
the pair (M3(F ), spanF 〈u, v, w〉) where

u =

 0 0 0
1 0 0
1 −1 0

 , v =

 0 1 0
0 0 1
0 0 0

 , w =

 1 0 0
0 ρ 0
α 0 ρ2


for some α ∈ F and some primitive cube root of unity ρ.

Now we suppose that u2 = 0. Since tr(uv2) = 1, we may assume that

u =

 0 0 0
0 0 0
1 0 0

 and v =

 0 1 0
0 0 1
0 0 0

 .

Because tr(w) = 0, tr(uw) = 0, tr(uvw + uwv) = 0, tr(vw) = 0 and
tr(v2w) = 0, we deduce that

w =

 w11 w12 0
w21 w22 −w12

0 −w21 −w11 − w22

 .

Since tr(uw2) = −µ, we have w2
12 = µ and in particular µ ∈ F×2.

Replacing w by w−1
12 w we may assume that w12 = 1 and µ = 1. Put

α := w11 and β := w22, then tr(w2) = 0 implies w21 = − 1
2 (α2 +β2 +αβ);

so

w =

 α 1 0
− 1

2 (α2 + β2 + αβ) β −1
0 1

2 (α2 + β2 + αβ) −α− β

 .

We proved:
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Theorem 5.9.4 Let (A, V ) be an F -cubic pair such that {fA,V (ξ) = 0}
is nodal and ũF its unique singular point. Suppose that ũ2 = 0 then
(A, V ) is F -isomorphic to the pair (M3(F ), spanF 〈u, v, w〉) where

u =

 0 0 0
0 0 0
1 0 0

 , v =

 0 1 0
0 0 1
0 0 0



and w =

 α 1 0
− 1

2 (α2 + β2 + αβ) β −1
0 1

2 (α2 + β2 + αβ) −α− β


for some α, β ∈ F .

5.10 Triangle

We shall classify the singular cubic pairs over F such that the associated
cubic curve is a triangle. To do this we follow the method described in
Section 4.1 which uses Theorem 4.1.2.

Triangles over the separable closure

Suppose that V is a cubic subspace of M3(Fsep) such that the curve
{fV (ξ) = 0} is a triangle: there exists a basis (u, v, w) of V such that

fV (xu+ yv + zw) = xyz.

We shall describe V up to conjugacy.
First suppose that u2 6= 0, then we may assume that

u =

 0 1 0
0 0 1
0 0 0

 .

For all ξ ∈ V , we have tr(ξ) = 0, tr(uξ) = 0 and tr(u2ξ) = 0, so

ξ33 = −ξ11 − ξ22, ξ32 = −ξ21, ξ31 = 0.

Since tr(uv2) = 0, we deduce that v21(2v11 + v22) = 0. If v21 = 0, then
tr(v2) = 0 and v3 = 0 imply v11 = v22 = 0, thus uv+vu = (v12 +v23)u2.
But tr(u2w) = 0 and tr(uvw + uwv) = 1, so we get a contradiction. If
v21 6= 0 then u, v ∈ V are such that (xu+yv)3 = 0 for all x, y ∈ Fsep and
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u2, v2 are linearly independent, thus by Lemma 5.2.1 we may assume
that

v =

 0 0 0
1 0 0
0 −1 0

 .

Since tr(vw) = 0, tr(v2w) = 0, tr(uvw + uwv) = 0 and tr(w2) = 0, we
have

w =

 0 w12 0
w21 0 w12

0 −w21 0

 ,

and it contradicts the fact that u, v, w are linearly independent.
Next suppose that u2 = 0, then we may assume that

u =

 0 0 1
0 0 0
0 0 0

 .

For ξ ∈ V , we have tr(ξ) = 0 and tr(uξ) = 0, hence

ξ33 = −ξ11 − ξ22 and ξ31 = 0.

Using the first case we know that v2 = 0 and w2 = 0; so v21v32 = 0 and
w21w32 = 0. Since tr(uvw + uwv) = 1, we have v32w21 + v21w32 = 1,
hence either v32 = w21 = 0 and v21, w32 6= 0 or v21 = w32 = 0 and
v32, w21 6= 0. By symmetry, we may assume that v32 = w21 = 0 and
v21, w32 6= 0. Replacing v by v−1

21 v if necessary, we may assume that
v21 = 1, and then w32 = 1. Because v2 = 0, we deduce that

v22 = −v11, v12 = −v2
11, v13 = v11v23.

Put

m :=

 1 −v11 v23

0 1 0
0 0 1


then m ∈ GL3(Fsep), mum−1 = u and

mvm−1 =

 0 0 0
1 0 0
0 0 0

 .

So we may assume that v11 = 0 and v23 = 0. Since tr(vw) = 0 and
w2 = 0 we have

w12 = 0, w11 = 0, w23 = −w2
22, w13 = 0.
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Put

m :=

 1 0 0
0 1 −w22

0 0 1


then m ∈ GL3(Fsep), mum−1 = u, mvm−1 = v and

mwm−1 =

 0 0 0
0 0 0
0 1 0

 .

So we proved the following:

Theorem 5.10.1 Suppose that (A, V ) is a cubic pair over Fsep such that
the curve {fA,V (ξ) = 0} is a triangle, then (A, V ) is isomorphic to the
pair (M3(Fsep), spanF 〈u, v, w〉) where

u =

 0 0 1
0 0 0
0 0 0

 , v =

 0 0 0
1 0 0
0 0 0

 , w =

 0 0 0
0 0 0
0 1 0

 .

Automorphism group

The cubic pairs over Fsep with a triangle as associated cubic curve being
classified, we compute the automorphism group of such cubic pairs. Let
A be the matrix algebra M3(Fsep) and V the subspace of A spanned by
u, v, w where

u =

 0 0 1
0 0 0
0 0 0

 , v =

 0 0 0
1 0 0
0 0 0

 , w =

 0 0 0
0 0 0
0 1 0

 .

Suppose that m ∈ GL3(Fsep) is such that mVm−1 = V . The singular
points of the triangle {fA,V (ξ) = 0} are the points uFsep, vFsep and
wFsep. Thus m ? uFsep is equal to uFsep, vFsep or wFsep.

Case 1: Suppose that m ? uFsep = uFsep, There exists λ ∈ F×sep such
that mu = λum, thus

m =

 λm33 m12 m13

0 m22 m23

0 0 m33

 .

Since mvm−1 ∈ V we have m12 = m13 = 0 and then mwm−1 ∈ V

implies m23 = 0. Thus m is diagonal matrix, and conversely, if n is
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an invertible diagonal matrix then we can check that nV n−1 = V and
n ? uFsep = uFsep. Let G0 denote the subgroup of PGL3(Fsep) which
consists of the elements nF×sep where n is an invertible diagonal matrix.

Case 2: Suppose that m ? uFsep = vFsep. Put

m′ :=

 0 0 1
1 0 0
0 1 0


then m′V m′−1 = V and m′−1m ? uFsep = uFsep. Thus m′−1mF×sep ∈ G0

and
mF×sep ∈ m′F×sepG0.

Conversely, it is easy to check that nV n−1 = V and n ? uFsep = vFsep if
nF×sep ∈ m′F×sepG0.

Case 3: Suppose that m ? uFsep = wFsep. Put

m′′ :=

 0 1 0
0 0 1
1 0 0


then m′′V m′′−1 = V and m′′−1m ? uFsep = uFsep. Thus

mF×sep ∈ m′′F×sepG0.

Conversely, if nF×sep ∈ m′′F×sepG0 then one can check that nV n−1 = V

and n ? uFsep = wFsep.
We proved that Aut(A, V )(Fsep) is equal to

G0 ∪

 0 0 1
1 0 0
0 1 0

F×sep ·G0 ∪

 0 1 0
0 0 1
1 0 0

F×sep ·G0.

First cohomology set

Let A be the matrix algebra M3(F ) and V the subspace of A spanned
by  0 0 1

0 0 0
0 0 0

 ,

 0 0 0
1 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 1 0

 .

We want to describe the elements of the first set H1(F,Aut(A, V )) of
cohomology.
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First we prove that H1(Γ, G0) = 1. We consider the split exact
sequence of abelian groups

1 // F×sep // D3
//

s
��

G0
// 1

where D3 is the subgroup of GL3(Fsep) of diagonal matrices and

s

 a 0 0
0 b 0
0 0 c

F×sep

 =

 1 0 0
0 ba−1 0
0 0 ca−1

 .

It induces the following exact sequence

H1(Γ, D3) // H1(Γ, G0)
δ1 // H2(Γ, F×sep).

But H1(Γ, D3) = 1 and Remark (28.7) in [Knus et al., 1998] says that δ1
is trivial. Thus H1(Γ, G0) = 1.

Next we putG := Aut(A, V )(Fsep) and we consider the exact sequence
of groups

1 // G0
// G // G/G0

// 1.

It induces an exact sequence

1 = H1(Γ, G0) // H1(Γ, G)
f

// H1(Γ, G/G0)

where f([aσ]) = [aσG0] for a 1-cocycle (aσ)σ∈Γ with values in G. The
mapping  0 0 1

1 0 0
0 1 0

F×sepG0 7→ 1 + 3Z

defines a Γ-group isomorphism between G/G0 and Z/3. Suppose that
[aσ] ∈ H1(Γ, G) is non-trivial, then there exists a Galois extension L over
F of degree 3 such that

{σ ∈ Γ | aσ ∈ G0} = Gal(Fsep/L).

Put Γ′ := Gal(Fsep/L), then (aσ)σ∈Γ′ is a 1-cocycle with values in G0.
Since H1(Γ′, G0) = 1, there exists b ∈ G0, such that

aσ = bσ(b)−1



124 Classification of singular cubic pairs

for all σ ∈ Γ′. Replacing (aσ)σ∈Γ by
(
b−1aσσ(b)

)
σ∈Γ

if necessary, we
may assume that aσ = 1 for all σ ∈ Γ′. Let σ0 ∈ Γ be such that

aσ0G0 =

 0 0 1
1 0 0
0 1 0

F×sepG0.

Since L is a Galois extension of F , σΓ′ = Γ′σ for all σ ∈ Γ. So for all
τ ∈ Γ′ there exists τ ′ ∈ Γ′ such that τσ0 = σ0τ

′. Let τ ∈ Γ′, then

τ(aσ0) = aττ(aσ0) = aτσ0 = aσ0τ ′ = aσ0σ0(aτ ′) = aσ0

where τ ′ ∈ Γ′ is such that τσ0 = σ0τ
′. Thus there exist λ, µ ∈ L such

that aσ0 = mF×sep and

m =

 0 0 1
λ 0 0
0 µ 0

 .

Using the fact that (aσ)σ∈Γ is a 1-cocycle, we deduce that

aσ =


F×sep if σ ∈ Γ′,
mF×sep if σ ∈ σ0Γ′,
mσ0(m)F×sep if σ ∈ σ2

0Γ′

for all σ ∈ Γ, and mσ0(m)σ2
0(m) ∈ F×sep. We may assume that λ = 0:

indeed put

c :=

 λ 0 0
0 1 0
0 0 σ0(λ)


then

σ0(c)mc−1 =

 0 0 1
1 0 0
0 σ2

0(λ)µ 0

 .

Since mσ0(m)σ2
0(m) ∈ F×sep we have λ ∈ F×. Now suppose that the

1-cocycles (a1,σ)σ∈Γ and (a2,σ)σ∈Γ are equivalent where

ai,σ =


F×sep if σ ∈ Γ′,
miF

×
sep if σ ∈ σ0Γ′,

m2
iF
×
sep if σ ∈ σ2

0Γ′

and

mi =

 0 0 1
1 0 0
0 λi 0

 ,
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with λi ∈ F×. Then we can prove by straightforward computations that

λ2 ∈ NL/F (L×)λ1.

Classification

Let A be the matrix algebra M3(F ) and V the subspace of A spanned
by

u =

 0 0 1
0 0 0
0 0 0

 , v =

 0 0 0
1 0 0
0 0 0

 , w =

 0 0 0
0 0 0
0 1 0

 .

We shall describe the isomorphism classes of F -cubic pairs which are
isomorphic to (A, V )Fsep over Fsep. We know by Theorem 4.1.2 that they
are in correspondence with the elements of H1

(
F,Aut(A, V )

)
. Let α

be a non-trivial cocycle with values in Aut(A, V ), then by the previous
subsection there exist a non-trivial Galois Z/3-algebra (L, ρ) and a scalar
µ ∈ F× such that [α] = [aσ] where

aσ =


F×sep if σ|L = idL,

mF×sep if σ|L = ρ,

m2F×sep if σ|L = ρ2

for all σ ∈ Γ, and

m =

 0 0 1
1 0 0
0 µ 0

 .

The F -cubic pair corresponding to [α] is the pair (A′, V ′) where

A′ = {ξ ∈ AL | mρ(ξ)m−1 = ξ},
V ′ = {ξ ∈ VL | mρ(ξ)m−1 = ξ}.

Suppose that F contains a primitive cube root of unity. Let θ ∈ L
be such that θ3 = d ∈ F and ρ(θ) = ωθ. Put

ξ0 := u+ v + µw,

η0 := θu+ ωθv + ω2µθw,

ζ0 := θ2u+ ω2θ2v + ωµθ2w

then ξ0, η0, ζ0 are linearly independent matrices of V ′ such that ξ3
0 = µ,

η3
0 = dµ and ξ0η0 = ω2η0ξ0. Therefore V ′ is the subspace of M3(Fsep)
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spanned by ξ0, η0, ζ0 and A′ is the symbol algebra (dµ, µ)ω,F generated
by ξ0 and η0. We have

ζ0 =
ω2

µ
ξ2
0η

2
0

and f is semi-diagonal:

f = aξ?30 + bη?30 + cζ?30 − 3λξ?0η
?
0ζ
?
0

for some a, b, c, λ ∈ F which satisfy the relation

abc = λ3

and where (ξ?0 , η
?
0 , ζ

?
0 ) is the dual basis of (ξ0, η0, ζ0).

Theorem 5.10.2 Suppose F contains a primitive cube root of unity.
Then, up to F -isomorphism, the F -cubic pairs with a triangle as asso-
ciated cubic curve are the pairs(

(a, b)ω,F , spanF 〈ξ0, η0, ξ
2
0η

2
0〉
)

for all a, b ∈ F×, where ξ0 and η0 are generators of the symbol algebra
such that ξ3

0 = a, η3
0 = b and ξ0η0 = ωη0ξ0. The cubic forms associated

to these cubic pairs are semi-diagonal.

Now suppose that F does not contain a primitive cube root of unity
and F is infinite. Let θ ∈ L be such that its minimal polynomial over
F is equal to x3 − 3x+ λ for some λ ∈ F \ {2− 2}. Put θ′ = ρ′(θ) and
θ′′ = ρ2(θ). Then we may choose a square root x0 of (4 − λ2)/3 in F

and a cube root φ of (λ+ (ω − ω2)x0)/2 in Fsep such that

θ = −φ− φ−1,

θ′ = −ωφ− ω2φ−1 =
−θ + δ

2
,

θ′′ = −ω2φ− ωφ−1 =
−θ − δ

2

where δ = x−1
0 (2θ2 + λθ − 4). Put

ξ0 := u+ v + µw,

η0 := θu+
1
2

(−θ + δ)v +
1
2

(−θ − δ)µw,

ζ0 := δu+
1
2

(−3θ − δ)v +
1
2

(3θ − δ)µw
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then ξ0, η0, ζ0 are linearly independent vectors of V ′. Put

η1 := −1
2
η0 +

ω − ω2

6
ζ0 = φu+ ωφv + ω2φµw

then ξ3
0 = µ, η3

1 = φ3µ and ξ0η1 = ω2η1ξ0. Therefore A′ ⊗F F (ω) is the
symbol algebra (φ3µ, µ)ω,F (ω) generated by ξ0 and η1. Put η2 = µ−1ξ2

0η1,
then η3

2 = φ3 and η2η2 = 1. Hence the subfield L′ := F (−η2 − η−1
2 ) of

A′ is a Galois extension of degree 3 over F with Galois group generated
by τ where τ(−η2−η−1

2 ) = −ωη2−ω2η−1
2 . Since ξ0η2 = ω2η2ξ0 we have

ξ0(−η2 − η−1
2 ) = τ2(−η2 − η−1

2 )ξ0.

Thus A′ is the cyclic algebra (µ,L′/F, τ2) generated by ξ0 and L′. We
observe that the mapping−η2−η−1

2 7→ θ defines an isomorphism between
(L′, τ) and (L, ρ). Furthermore η0 = ξ0η3 and ζ0 = ξ0

(
η3 + 2τ(η3)

)
where η3 = −η2 − η−1

2 . In particular V = ξ0L
′. By Lemma 3.2.3 we

know that the cubic form associated to (A′, V ′) is a semi-trace form since
{fA′,V ′(ξ) = 0} is a triangle. More precisely we have

fA′,V ′(ξ0ξ) = ξ3
0NL′/F (ξ)

for all ξ ∈ L′. We can also write

f(ξ) = TrK/F
(
aΘ(ξ)3

)
− 3µNK/F

(
Θ(ξ)

)
where K = F × F (ω), Θ: V → K is the F -vector space isomorphism
defined by

Θ(xξ0 + yη0 + zζ0) =
(
x,−y − (ω − ω2)z

)
and a = µ(1, φ3). Note that the elements a and µ satisfy the relation
NK/F (a) = µ3. However, the cubic form fA′,V ′ is not semi-diagonal.
Indeed, if fA′,V ′ is semi-diagonal, then the lines of the cubic curve
{fA′,V ′ = 0} are defined over F and also their intersection points; this
contradicts the assumption that F does not contain a primitive cube
root of unity.

We note that V is spanned by

ξ0 := u+ v + µw,

η0 := θu+
1
2

(−θ + δ)v +
1
2

(−θ − δ)µw,

ζ0 := δu+
1
2

(−3θ − δ)v +
1
2

(3θ − δ)µw
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for θ = −2 and δ = 0. The matrix η2 = µ−1ξ2
0η1 where

η1 := −1
2
η0 +

ω − ω2

6
ζ0

is such that η3
2 = φ3 for φ = 1. Put

η3 := −η2 − η−1
2 , η′3 := −ω2η2 − ωη−1

2 ,

then η0 = ξ0η3 and ζ0 = ξ0(η3 + 2η′3). Put L′ := F ⊕ Fη3 ⊕ Fη′3 and
let ρ be the F -algebra automorphism of L′ defined by ρ(η3) = η′3 and
ρ(η′3) = −η3 − η′3. There exists an F -algebra isomorphism Ψ: L → F 3

such that

ρ
(
Ψ−1(1, 0, 0)

)
= Ψ−1(0, 1, 0) and ρ

(
Ψ−1(0, 1, 0)

)
= Ψ−1(0, 0, 1).

It is also true that A =
⊕2

i=0 L
′ξi0 where ξ0ξ = ρ(ξ)ξ0 for all ξ ∈ L′.

Note that

fA,V (ξ) = Tr(F×F (ω))/F

(
αΘ(ξ)3

)
− 3µN(F×F (ω))/F

(
Θ(ξ)

)
where Θ: V → F × F (ω) is defined by

Θ(xξ0 + yη0 + zζ0) =
(
x,−y − (ω − ω2)z

)
,

α = µ(1, φ3) and N(F×F (ω))/F (α) = µ3. But fA,V is also semi-diagonal:

fA,V = u?v?w?

where (u?, v?, w?) is the dual basis of (u, v, w).

Theorem 5.10.3 Suppose that F is infinite and does not contain a
primitive cube root of unity. Up to F -isomorphism, the F -cubic pairs
with a triangle as associated cubic curve, are either(

M3(F ), spanF 〈u, v, w〉
)

where

u =

 0 0 1
0 0 0
0 0 0

 , v =

 0 0 0
1 0 0
0 0 0

 , w =

 0 0 0
0 0 0
0 1 0


or the pairs (

(µ,L/F, ρ), ξ0L)

for all non trivial isomorphism classes [(L, ρ)] of Galois Z/3-algebras and
for all µNL/F (L×) ∈ F×/NL/F (L×), where ξ0 and L = F (θ) generate
the cyclic algebra such that ξ3

0 = µ, θ3 − 3θ ∈ F and ξ0θ = ρ(θ)ξ0. The
associated cubic forms are semi-diagonal.
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We shall summarize our results on the classification of cubic pairs.
First we deal with the non-singular cubic pairs over the field F and

we assume that F contains a primitive cube root of unity. By Theo-
rems 4.4.1, 4.4.5 and 4.5.1, if (A, V ) is a non-singular cubic pair over F
then there exist a, b ∈ F× and α ∈ F such that (A, V ) is F -isomorphic
to (

(a, b)ω,F , spanF 〈ξ0, η0, ξ0η
2
0 + αξ2

0η
2
0〉
)

where ξ0, η0 are generators of the symbol algebra (a, b)ω,F such that
ξ3
0 = a, η3

0 = b and ξ0η0 = ωη0ξ0.
Conversely, let a, b ∈ F× and α ∈ F . Put A := (a, b)ω,F and

V := spanF 〈ξ0, η0, ξ0η
2
0 + αξ2

0η
2
0〉

where ξ0, η0 are generators of the symbol algebra A such that

ξ3
0 = a, η3

0 = b, ξ0η0 = ωη0ξ0.

One can check that (A, V ) is a cubic pair over F . The associated cubic
form fA,V is semi-diagonal:

fA,V (xξ0 + yη0 + zζ0) = ax3 + by3 + (ab2 + α3a2b2)z3 − 3(ω2αab)xyz.

Observe that

ab(ab2 + α3a2b2)− (ω2αab)3 = a2b3 6= 0,

thus by Lemma 3.1.2 the cubic form fA,V is non-singular if and only if
ab2 + α3a2b2 6= 0, i.e. α3 6= −a−1.

Lemma. With the notation as above and α3 6= −a−1, the cubic pair
(A, V ) is of the second kind if and only if α = 0.

129
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Proof : Suppose that α = 0 then

(A, V )Fsep
∼=
(
M3(Fsep), spanFsep

〈ξ1, η1, ξ1η
2
1〉
)

with

ξ1 =

 0 1 0
0 0 1
a 0 0

 and η1 =

 1 0 0
0 ω 0
0 0 ω2

 .

Let θ ∈ Fsep be a cube root of a and put

m :=

 ω2θ2 0 0
0 θ 0
0 0 1

 ,

then

mξ1m
−1 = ωθ

 0 ω 0
0 0 ω2

1 0 0

 and mη1m
−1 =

 1 0 0
0 ω 0
0 0 ω2

 .

So spanFsep
〈ξ1, η1, ξ1η

2
1〉 is conjugate to the subspace of M3(Fsep) spanned

by  0 1 0
0 0 1
1 0 0

 ,

 1 0 0
0 ω 0
0 0 ω2

 ,

 0 ω 0
0 0 ω2

1 0 0

 .

Using the proof of Theorem 4.3.9 we deduce that the automorphism
group of (A, V )Fsep is isomorphic to Z/3 × Z/3; therefore (A, V ) is a
cubic pair of the second kind.

Conversely, suppose that (A, V ) is a cubic pair of the second kind.
By Theorem 4.3.9 the subspace V is conjugate to spanFsep

〈ξ0, η0, ξ0η
2
0〉.

So there exist an m ∈ GL3(Fsep) and λi, µi, νi ∈ F not all zero such that

mξ0m
−1 = λ1ξ0 + µ1η0 + ν1(ξ0η2

0 + αξ2
0η

2
0),

mη0m
−1 = λ2ξ0 + µ2η0 + ν2(ξ0η2

0 + αξ2
0η

2
0),

mξ0η
2
0m
−1 = λ3ξ0 + µ3η0 + ν3(ξ0η2

0 + αξ2
0η

2
0).

Since the coefficient of ξ2
0η0 in mξ0η0m

−1−ωmη0ξ0m
−1 is equal to zero

we have ν1ν2 = 0. Similarly we can prove that ν1ν3 = 0 and ν2ν3 = 0.
We cannot have ν1 = ν3 = 0, since otherwise

mξ0(ξ0η2
0)m−1 = ω2m(ξ0η2

0)ξ0m−1
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implies mξ0m−1 = µ1η0 and mξ0η
2
0m
−1 = λ3ξ0, and then

mξ0(ξ0η2
0)2m−1 6= ωab

(
λ2ξ0 + µ2η0 + ν2(ξ0η2

0 + αξ2
0η

2
0)
)
.

Similarly we cannot have ν2 = ν3 = 0, thus ν1 = ν2 = 0. Because

mξ0η0m
−1 = ωmη0ξ0m

−1

we have mξ0m−1 = λ1ξ0 and mη0m
−1 = µ2η0. Then

mξ0η
2
0m
−1 = λ3ξ0 + µ3η0 + ν3(ξ0η2

0 + αξ2
0η

2
0)

implies α = 0. 2

We obtain the following theorem:

Theorem I Suppose that F contains a primitive cube root of unity. Up
to F -isomorphism, the non-singular cubic pairs over F are the pairs(

(a, b)ω,F , spanF 〈ξ0, η0, ξ0η
2
0 + αξ2

0η
2
0〉
)

for all a, b ∈ F× and α ∈ F with α3 6= −a−1, where ξ0, η0 are generators
of the symbol algebra such that ξ3

0 = a, η3
0 = b and ξ0η0 = ωη0ξ0. Such

a cubic pair is of the second kind if and only if α = 0. The associated
cubic form is always semi-diagonal and it is diagonal if the pair is of the
second kind:(

xξ0 + yη0 + z(ξ0η2
0 + αξ2

0η
2
0)
)3 = ax3 + by3 + cz3 − 3λxyz

where c = ab2 +α3a2b2, λ = ω2αab and a−2(abc−λ3) = b3 is a non-zero
cube in F .

Now we suppose that F does not contain a primitive cube root of
unity and is infinite. By the remarks preceding Theorems 4.4.2, 4.4.6
and 4.5.2, if (A, V ) is a non-singular cubic pair over F , then there exist
a Galois Z/3-algebra (L, ρ) and a, α, β ∈ F , a 6= 0 such that

(A, V ) ∼=
( 2⊕
i=0

Lei, spanF 〈ξ0, η0, ζ0〉
)

with eξ = ρ(ξ)e for all ξ ∈ L, e3 = a and

ξ0 = e, η0 = (α+ βe+ e2)t, ζ0 = (α+ βe+ e2)ρ(t)

where 1, t, ρ(t) span L and

(x− t)
(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ
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for some λ ∈ F .
Conversely, let (L, ρ) be a Galois Z/3-algebra and a, α, β ∈ F such

that a 6= 0. Let t ∈ L be such that 1, t, ρ(t) span L and

(x− t)
(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ

for some λ ∈ F . We may name θ, θ′, θ′′ the roots of x3−3x+λ in Fsep so
that there exists an F -algebra isomorphism Ψ: L→ F ⊕ F t̃⊕ F t̃′ with
Ψ(t) = t̃, and Ψ

(
ρ(t)

)
= t̃′ where

t̃ =

 θ 0 0
0 θ′ 0
0 0 θ′′

 , t̃′ =

 θ′ 0 0
0 θ′′ 0
0 0 θ

 .

Thus we may assume that L = F ⊕ Ft⊕ Fρ(t) with t = t̃ and ρ(t) = t̃′.
Put

e :=

 0 1 0
0 0 1
a 0 0


then e3 = a and eξ = ρ(ξ)e for all ξ ∈ L. Put

A :=
2⊕
i=0

Lei and V := spanF 〈ξ0, η0, ζ0〉

where

ξ0 = e, η0 = (α+ βe+ e2)t, ζ0 = (α+ βe+ e2)
(
t+ 2ρ(t)

)
.

Then (A, V ) is a cubic pair if and only if β = a−1α2. Suppose that
β = a−1α2. There exist a square root x0 ∈ F of (4 − λ2)/3 and a cube
root φ of (λ+ (ω − ω2)x0)/2 such that

θ = −φ− φ−1, θ′ = −ωφ− ω2φ−1, θ′′ = −ω2φ− ωφ−1.

Put

η1 := −1
2
η0 +

ω − ω2

6
ζ0, ζ1 := −1

2
η0 +

ω2 − ω
6

ζ0.

We note that, if α3 = a2 then η2
1 = 0 and (A, V ) is singular. Suppose

that α3 6= a2 then

(xξ0 + yη1 + zζ1)3 = ax3 + b′y3 + c′z3 − 3µxyz
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where b′ = φ3a−2(α3− a2)2, c′ = φ−3a−2(α3− a2)2, µ = a−1α(α3− a2).
Since α3 6= a2 we have b′, c′ 6= 0 and ab′c′ 6= µ3, so fA,V is non-singular.
Observe that ξ0η1 = ωη1ξ0 and ξ0ζ1 = ω2ζ1ξ0, thus

ζ1 = α02η
2
1 + α12ξ0η

2
1 + α22ξ

2
0η

2
1

with α02 = 0 since tr(η1ζ1) = 0. By the lemma above, the pair (A, V ) is
of the second kind if and only if η1ζ1 = ω2ζ1η1, i.e. α = 0.

By the remarks preceding Theorems 4.4.2, 4.4.6 and 4.5.2 we know
that fA,V is semi-trace but non semi-diagonal. Moreover we may choose
the cubic étale F -algebra to be F ×F (ω) when we write fA,V as a semi-
trace form: for ξ = xξ0 + yη0 + zζ0 ∈ V ,

fA,V (ξ) =
(
xξ0 +

(
− y − (ω − ω2)z

)
η1 +

(
− y + (ω − ω2)z

)
ζ1

)3

= Tr(F×F (ω))/F

(
γΘ(ξ)3

)
− 3µN(F×F (ω))/F

(
Θ(ξ)

)
where Θ(ξ) =

(
x,−y − (ω − ω2)z

)
, γ = (a, φ3a−2(α3 − a2)2) and

N(F×F (ω))/F (γ)− µ3

a2
=
(
a−1(a2 − α3)

)3 ∈ F×3.

Altogether we proved:

Theorem II Suppose that F does not contain a primitive cube root of
unity and is infinite. Up to F -isomorphism, the non-singular cubic pairs
over F are the pairs ( 2⊕

i=0

Lei, spanF 〈ξ0, η0, ζ0〉
)

for all Galois Z/3-algebras (L, ρ) and a, α ∈ F such that a 6= 0 and
α3 6= a2, where e3 = a, eξ = ρ(ξ)e for all ξ ∈ L,

ξ0 = e, η0 = (α+ a−1α2e+ e2)t, ζ0 = (α+ a−1α2e+ e2)
(
t+ 2ρ(t)

)
and t ∈ L is such that 1, t, ρ(t) span L and

(x− t)
(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ

for some λ ∈ F . Such a cubic pair is of the second kind if and only if
α = 0. The associated cubic form f is semi-trace, and we may choose
the cubic étale algebra over F to be F × F (ω):

f(ξ) = Tr(F×F (ω))/F

(
γΘ(ξ)3

)
− 3µN(F×F (ω))/F

(
Θ(ξ)

)
with the notation from above. However the cubic form is not semi-
diagonal.
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Now we deal with the singular cubic pairs over F . By Proposi-
tion 5.1.2 we know that, if (A, V ) is a singular cubic pair over F such that
the curve {fA,V (ξ) = 0} is not a triangle, then A ∼= M3(F ). Therefore
the classification of these cubic pairs was done by matrix computations in
Chapter 5. In the next statement we draw some particularly interesting
conclusions.

Theorem III There is no cubic pair over F such that the associated
cubic curve is three concurrent lines or a conic plus tangent. There
exists at least one cubic pair over F such that the associated cubic curve
is cuspidal if and only if F contains a primitive cube root of unity. There
always exists at least one cubic pair over F such that the associated cubic
curve is the zero curve, a triple line, a double line plus simple line, a
conic plus chord or a nodal curve.

Finally we treat the cubic pairs with a triangle as associated cubic
curve. By Theorem 5.10.2 we have:

Theorem IV Suppose that F contains a primitive cube root of unity.
Then, up to F -isomorphism, the F -cubic pairs with a triangle as asso-
ciated cubic curve are the pairs(

(a, b)ω,F , spanF 〈ξ0, η0, ξ
2
0η

2
0〉
)

for all a, b ∈ F×, where ξ0 and η0 are generators of the symbol algebra
such that ξ3

0 = a, η3
0 = b and ξ0η0 = ωη0ξ0. The associated cubic form

is semi-diagonal:

(xξ0 + yη0 + zξ2
0η

2
0)3 = ax3 + by3 + cz3 − 3λxyz

where c = a2b2, λ = ω2ab and abc = λ3.

Suppose that F does not contain a primitive cube root of unity and is
infinite. By the remarks preceding Theorem 5.10.3, if (A, V ) is a cubic
pair over F such that {fA,V (ξ) = 0} is a triangle, then there exist a
Galois Z/3-algebra (L, ρ) and a ∈ F× such that

(A, V ) ∼=
( 2⊕
i=0

Lei, spanF 〈e, et, eρ(t)〉
)

where e3 = a, eξ = ρ(ξ)e for all ξ ∈ L, and t ∈ L is such that 1, t, ρ(t)
span L and (x− t)

(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ for some λ ∈ F .
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Conversely, let (L, ρ) be a Galois Z/3-algebra and a ∈ F×. Let t ∈ L
be such that 1, t, ρ(t) span L and

(x− t)
(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ

for some λ ∈ F . We may assume that

t =

 θ 0 0
0 θ′ 0
0 0 θ′′

 and ρ(t) =

 θ′ 0 0
0 θ′′ 0
0 0 θ


where θ, θ′, θ′′ are the roots of x3 − 3x+ λ. Put

e :=

 0 1 0
0 0 1
a 0 0

 ,

A :=
⊕2

i=0 Le
i and V = spanF 〈e, et, eρ(t)〉. Then the cubic curve asso-

ciated to fA,V is a triangle: for ξ = xe+ yet+ zeρ(t) ∈ V ,

fA,V (ξ) = aNL/F
(
x+ yt+ zρ(t)

)
= a(x+ yθ + zθ′)(x+ yθ′ + zθ′′)(x+ yθ′′ + zθ).

We may also choose the cubic étale algebra to be F × F (ω) when we
write fA,V as a semi-trace form. Indeed, put

η1 := −1
2
et+

ω − ω2

6
e
(
t+ 2ρ(t)

)
, ζ1 := −1

2
et+

ω2 − ω
6

e
(
t+ 2ρ(t)

)
,

and let x0 ∈ F be a square root of (4− λ2)/3 and φ ∈ Fsep a cube root
of
(
λ+ (ω − ω2)x0

)
/2 such that

θ = −φ− φ−1, θ′ = −ωφ− ω2φ−1, θ′′ = −ω2φ− ωφ−1.

Then for all ξ = xe+ yet+ ze
(
t+ 2ρ(t)

)
∈ V

fA,V (ξ) =
(
xξ0 +

(
− y − (ω − ω2)z

)
η1 +

(
− y + (ω − ω2)z

)
ζ1

)3

= ax3 + aφ3y3 + aφ−3z3 − 3axyz

= Tr(F×F (ω))/F

(
αΘ(ξ)3

)
− 3µN(F×F (ω))/F

(
Θ(ξ)

)
where Θ(ξ) =

(
x,−y − (ω − ω2)z

)
, α = (a, aφ3), µ = a and

N(F×F (ω))/F (α) = µ3.
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Theorem V Suppose that F is infinite and does not contain a primi-
tive cube root of unity. Up to F -isomorphism, the F -cubic pairs with a
triangle as associated cubic curve, are the pairs

( 2⊕
i=0

Lei, spanF 〈e, et, eρ(t)〉
)

for all Galois Z/3-algebras (L, ρ) and a ∈ F×, where e3 = a, eξ = ρ(ξ)e
for all ξ ∈ L, and t ∈ L is such that 1, t, ρ(t) span L and

(x− t)
(
x− ρ(t)

)(
x− ρ2(t)

)
= x3 − 3x+ λ

for some λ ∈ F . The associated cubic form f is semi-trace, and we may
choose the cubic étale F -algebra to be F × F (ω):

f(ξ) = Tr(F×F (ω))/F

(
αΘ(ξ)3

)
− 3µN(F×F (ω))/F

(
Θ(ξ)

)
with notation as above.

Taken together, Theorems I–V above lead to the following result on
division algebras:

Theorem VI Let (A, V ) be a cubic pair over F such that A is a division
algebra. If F contains a primitive cube root of unity then the associated
cubic form fA,V is semi-diagonal. If F is infinite and does not contain a
primitive cube root of unity then fA,V is semi-trace, and we may choose
the cubic étale algebra over F to be F × F (ω).

By this theorem, the results of Haile and Tignol which we mentioned in
the introduction can be improved as follows:

Theorem VII Suppose that (A, V ) is a F -cubic pair where F con-
tains a primitive cube root of unity and A is a division algebra, and
let (ϕ1, ϕ2, ϕ3) be a basis of V ?, a1, a2, a3, λ ∈ F such that

f = a1ϕ
3
1 + a2ϕ

3
2 + a3ϕ

3
3 − 3λϕ1ϕ2ϕ3,

Then either a1a2a3 = λ3 or there exists one and only one i ∈ {1, 2, 3}
such that (a1a2a3 − λ3)a−2

i is a non-zero cube in F ; in the first case
necessarily

A ∼= (a1, a2)ω±1,F
∼= (a1, a3)ω±1,F

∼= (a2, a3)ω±1,F ;

in the second case necessarily A ∼= (ai, aj) for all j ∈ {1, 2, 3}, i 6= j.
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In particular, we deduce the following theorem:

Theorem VIII Let A,A′ be division algebras of degree 3 over F . If
V, V ′ are such that (A, V ) and (A′, V ′) are F -cubic pairs and fA,V is
equivalent to fA′,V ′ , then the algebras A and A′ are either isomorphic or
anti-isomorphic.

Proof : Let Aop denote the opposite algebra of A. By Theorem VII we
have either A ⊗F F (ω) ∼= A′ ⊗F F (ω) or Aop ⊗F F (ω) ∼= A′ ⊗F F (ω).
In other words, the field F (ω) is a splitting field of either Aop ⊗F A′ or
A⊗F A′. Since the algebras Aop⊗F A′ and A⊗F A′ are degree 9 central
simple F -algebras, and the degree of the field extension F (ω)/F divides
2, we deduce that either A ∼= A′ or Aop ∼= A′. 2





Appendix

Some heavy computations in Chapter 4 were not done by
hand: an Apple computer equipped with Wolfram’s Mathe-
matica software was of great help. We explain the use of
Mathematica on several examples.

A.1 Some of Mathematica’s commands

In this thesis we used Mathematica as a powerful calculator that can
deal with matrices, polynomials, etc. The following commands were
particularly useful:

• Clear[a, b, c, . . .] initializes the variables a, b, c, . . .;

• a = 1 associates to the variable a the value 1;

• ; executes a computation without showing it;

• {{1, 2, 3}, {4, 5, 6}} represents the matrix 2× 3 with (1, 2, 3) on
the first line and (4, 5, 6) on the second one;

• I represents a complex number with square equal to −1;

• m[[i, j]] gives the element on row i and column j in the matrix m;

• Det[m] gives the determinant of the matrix m;

• Tr[m] gives the trace of the matrix m;

• m. n gives the multiplication of two matrices m and n;

• Inverse[m] gives the inverse of the matrix m;

• IdentityMatrix[n] gives the identity matrix of order n;
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• D[f , x, y] gives the partial derivative ∂2f
∂x∂y ;

• Simplify[a] gives a in a “more simplified way”

• a /.b − > c gives a replacing the variable b by the value c;

• Factor[p] factorizes the polynomial p;

• Solve[{a == 0, b == 0}, {x, y, z}] gives the solutions (x, y, z)
of the system of equations a = 0, b = 0.

A.2 Conjugation of cubic subspaces

In the proof of Theorem 4.2.7 we state the existence of a matrix which
conjugates two special subspaces of M3(Fsep). Recall that a special sub-
space of M3(Fsep) is a cubic subspace of M3(Fsep) which is spanned by
u, v, wi(α) for some i = 1, 2, 3 and some α ∈ Fsep, where u, v, wi(α) are
the matrices introduced on page 53. We observed earlier that, given a
special subspace V there are exactly 27 elements mF×sep ∈ PGL3(Fsep)
such that mVm−1 is also special. These elements mF×sep are completely
determined by their action on the flexes and the harmonic points of the
cubic curve {fV (ξ) = 0}.

Let us, as an example of our use of Mathematica, compute one of
these elements. Thereto we must first find the flexes of {fVα(ξ) = 0}
where Vα = spanFsep

〈u, v, w1(α)〉.
Let p be a flex of {fVα(ξ) = 0}. Since p is a point of {fVα(ξ) = 0},

we may write p =
(
au+ bv + cw1(α)

)
Fsep with

a2b = α3(9α− 1)c3 + b2c+
1
4

(24α2 − 12α+ 1)bc2.

Indeed,

In[1]:= Clear[α]
In[2]:= u = {{0, 1, 0}, {0, 0, 1}, {0, 0, 0}};

v = {{0, 0, 0}, {1, 0, 0}, {1,−1, 0}};
w = {{α, −1

2
, 1}, {3α2,−2α, 1

2
}, {0,−3α2, α}};

In[5]:= Clear[x, y, z]
In[6]:= f = Det[x u + y v + z w];
In[7]:= Simplify[

f−
(x2y−
(α3(9α− 1)z3 + y2z + 1

4
(24α2 − 12α+ 1)yz2))]

Out[7]= 0
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If c = 0, then p = uFsep because a2b = 0 and

−8b3 + 2(24α2 − 12α+ 1)a2b = 0

as verified by:

In[8]:= h = Det[{{D[f , x, x],D[f , x, y],D[f , x, z]},
{D[f , x, y],D[f , y, y],D[f , y, z]},
{D[f , x, z],D[f , y, z],D[f , z, z]}}];

In[9]:= z = 0;
In[10]:= Simplify[h− (−8y3 + 2(24α2 − 12α+ 1)x2y)]

Out[10]= 0

Now if c = 1, then either b = α(9α− 1) or

b3 + α(9α− 1)b2 + α2(3α− 1)(9α− 1)b+ 3α5(9α− 1)

as shown by:

In[11]:= z = 1;
In[12]:= r =

y h /.

x2 →
(
α3(9α− 1) + y2 +

(
6α2 − 3α+ 1

4

)
y
)

y−1;
In[13]:= Factor[r]

Out[13]= −8(y + α− 9α2)(y3 − y2α+ yα2+
9y2α2 − 12yα3 + 27yα4 − 3α5 + 27α6)

In[14]:= Simplify[
r− (−8)(y − α(9α− 1))
(y3 + α(9α− 1)y2 + α2(3α− 1)(9α− 1)y+
3α5(9α− 1))]

Out[14]= 0

We shall find the roots of the polynomial

s = y3 + α(9α− 1)y2 + α2(3α− 1)(9α− 1)y + 3α5(9α− 1)

using Cardano’s method:

In[15]:= s = y3 + α(9α− 1)y2 + α2(3α− 1)(9α− 1)y+
3α5(9α− 1);

In[16]:= a = α(9α− 1);
b = α2(3α− 1)(9α− 1);
c = 3α5(9α− 1);

In[19]:= y = t− a
3
;

In[20]:= Simplify[
s−



142 Appendix(
t3 + 2

3
(1− 9α)α2t + 1

27
α3(9α− 1)(72α− 7)

)
]

Out[20]= 0
In[21]:= p = 2

3
α2(1− 9α);

q = 1
27
α3(9α− 1)(72α− 7);

In[23]:= Simplify[q
2

4
+ p3

27
−
(
α3

6
(8α− 1)(9α− 1)

)2

]

Out[23]= 0

In[24]:= Simplify[q
2
− α3

6
(8α− 1)(9α− 1)−

(
−α
3

)3

(1− 9α)]

Out[24]= 0
In[25]:= θ = (1− 9α)1/3;

In[26]:= y = p
3

(
−α
3
θ
)−1

−
(
−1
3
θ
)
− a

3
;

In[27]:= Simplify[y − α
3

(−2θ2 + θ + 1− 9α)]
Out[27]= 0

So the roots of s are those x = α
3 (−2θ2 + θ + 1− 9α) where θ is a cube

root of 1− 9α. Since

In[28]:= ω = 1
2
(−1 + I

√
3);

In[29]:= Simplify

[
(
y2 + α3(9α− 1) + y

(
6α2 − 3α+ 1

4

))
y−1−(

ω−ω2

18
(−4θ2 + 2θ − 1)

)2

]

Out[29]= 0
In[30]:= y = α(9α− 1);
In[31]:= Simplify[(

y2 + α3(9α− 1) + y
(
6α2 − 3α+ 1

4

))
y−1−(

1
2
(8α− 1)

)2

]

Out[31]= 0

the nine flexes of {fVα(ξ) = 0} are

uFsep (a′u+ b′v + w)Fsep (−a′u+ b′v + w)Fsep

(a1u+ b1v + w)Fsep (a2u+ b2v + w)Fsep (a3u+ b3v + w)Fsep

(−a1u+ b1v + w)Fsep (−a3u+ b3v + w)Fsep (−a2u+ b2v + w)Fsep

where

a′ =
1
2

(8α− 1),

b′ = α(9α− 1),

a1 =
ω − ω2

18
(−4θ2 + 2θ − 1),

b1 =
α

3
(−2θ2 + θ + 1− 9α),
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ai = σi(a1), bi = σi(b1) and w = w1(α), the automorphism σ of F (θ, ω)
being defined by σ(ω) = ω and σ(θ) = ωθ.

Now that we have described all the flexes of {fVα(ξ) = 0}, for an
arbitrary flex, we shall give a harmonic point for each of them. Let(
au+bv+w1(α)

)
Fsep be a flex of {fVα(ξ) = 0}. Put u2 = au+bv+w1(α)

and u3 = −au+ bv +w1(α). Then u3Fsep is a flex and the points uFsep,
u2Fsep, u3Fsep are collinear. By Proposition 2.3.5 there is a harmonic
point of u2Fsep on the line passing through vFsep and u3Fsep. Thus there
exists a unique c ∈ Fsep such that v2Fsep =

(
− au+ cv+w1(α)

)
Fsep is a

harmonic point of u2Fsep, namely

c =
α3(1− 9α)b+ b3

α3(1− 9α) + 4a2b+ b2
.

Indeed det(v2) = 0, tr(u2v
2
2) = 0 and

In[32]:= Clear[a, b, c]
In[33]:= u2 = a u + b v + w;

v2 = −a u + c v + w;
In[35]:= r = Tr[u2. v2. v2];

Simplify[Det[v2]]

Out[36]= −c2 + α3 − 9α4 + c
(
− 1

4 + a2 + 3α− 6α2
)

In[37]:= s = r /. c2 → α3 − 9α4 + c
(
− 1

4
+ a2 + 3α− 6α2

)
;

In[38]:= t =
s /.

α2 → −1
6

(
− a2 + α3(9α− 1)b−1 + b− 3α+ 1

4

)
;

In[39]:= Simplify[
b t−
(α3(1− 9α)b + b3 − c(α3(1− 9α) + 4a2b + b2))]

Out[39]= 0

In the preceding computations we may replace α2 by

−1
6

(
− a2 + α3(9α− 1)b−1 + b− 3α+

1
4

)
in s because a2b + α3(1 − 9α) − b2 − (6α2 − 3α + 1/4)b = 0. We have
α3(1 − 9α) + 4a2b + b2 6= 0 since otherwise α3(1 − 9α)b + b3 = 0 and
a = 0 which is impossible because u2Fsep is not a point on the harmonic
polar at uFsep.

To find all the matrices which conjugate Vα into another special sub-
space of M3(Fsep), we search for any flex ũFsep of {fVα(ξ) = 0} and for
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any harmonic point ṽFsep of ũFsep, the unique mF×sep ∈ PGL3(Fsep) such
that

mũm−1Fsep = uFsep and mṽm−1Fsep = vFsep.

We shall give the example where the flex ũFsep is
(
a′u+ b′v+w1(α)

)
Fsep

and the harmonic point ṽFsep is
(
− a′u+ c′v + w1(α)

)
Fsep with

c′ =
α3(1− 9α)b′ + b′3

α3(1− 9α) + 4a′2b′ + b′2
:

In[40]:= a = 1
2
(8α− 1);

b = α(9α− 1);

c = α3(1−9α)b+b3

α3(1−9α)+4a2b+b2 ;
In[43]:= Clear[m11,m12,m13,m21,m22,m23,

m31,m32,m33, λ, µ]
In[44]:= m = {{m11,m12,m13}, {m21,m22,m23},

{m31,m32,m33}};
In[45]:= Solve[{(m. u2− λu.m)[[1, 1]] == 0,

(m. u2− λu.m)[[1, 2]] == 0,
(m. u2− λu.m)[[1, 3]] == 0,
(m. u2− λu.m)[[2, 1]] == 0,
(m. u2− λu.m)[[2, 2]] == 0,
(m. u2− λu.m)[[2, 3]] == 0,
(m. u2− λu.m)[[3, 1]] == 0,
(m. u2− λu.m)[[3, 2]] == 0,
(m. u2− λu.m)[[3, 3]] == 0,
(m. v2− µv.m)[[1, 1]] == 0,
(m. v2− µv.m)[[1, 2]] == 0,
(m. v2− µv.m)[[1, 3]] == 0,
(m. v2− µv.m)[[2, 1]] == 0,
(m. v2− µv.m)[[2, 2]] == 0,
(m. v2− µv.m)[[2, 3]] == 0,
(m. v2− µv.m)[[3, 1]] == 0,
(m. v2− µv.m)[[3, 2]] == 0,
(m. v2− µv.m)[[3, 3]] == 0},
{m12,m13,m21,m22,m23,m31,m32,
m33, λ, µ}]

Out[47]=

{{
m31→ 3m11α,

λ→ 1− 8α, m21→ m11, m32→ −m11,
µ→ α− 8α2, m12→ 0, m33→ m11,

m22→ −2m11, m13→ −m11
α , m23→ 0

}}
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So the matrix

m =

 α 0 −1
α −2α 0

3α2 −α α


is such that

mũm−1F = uF and mṽm−1F = vF.

We determine mVαm−1 computing mw1(α)m−1:

In[48]:= m = {{α, 0,−1}, {α,−2α, 0}, {3α2,−α,α}};
In[49]:= Simplify[m.w. Inverse[m]−(

1
4
(1− 6α)u− α(6α−1)(9α−1)

2(8α−1)
v+

10α−1
2(8α−1)

w
)
]

Out[49]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}]

So mVαm−1 = Vα and mF×sep ∈ Aut
(
M3(Fsep), Vα

)
(Fsep).

We use the same method to find an invertible matrix such that{
m
(
a1u+ b1v + w1(α)

)
m−1Fsep = uFsep,

m
(
− a1u+ c1v + w1(α)

)
m−1Fsep = vFsep

with

c1 =
α3(1− 9α)b1 + b31

α3(1− 9α) + 4a2
1b1 + b21

.

But the computations take much more time and the solution of these
equations given by Mathematica is too complicated. To find the solution
we helped Mathematica to simplify the computations. We shall only give
a matrix and check that it is an invertible matrix that satisfies these
equations.

First we note that the Hessian point of u2Fsep =
(
au+bv+w1(α)

)
Fsep

is equal to w2Fsep =
(
du+ ev + gw1(α)

)
Fsep with

d = −ab−1e, e = 3α3(1− 9α) + b2, g = α3(1− 9α)b−1 − b.

Indeed, we have tr(u2w2ξ + w2v2ξ) = 0 for all ξ ∈ Vα and

In[50]:= Clear[a, b, d, e, g]
In[51]:= w2 = du + ev + gw;
In[52]:= Simplify[Tr[(u2.w2 + w2. u2). u]]

Out[52]= 2(bd + ae)
In[53]:= Simplify[Tr[(u2.w2 + w2. u2). v]+

2b−1
(
(a2 + b)e +

(
b2 +

(
6α2 − 3α+ 1

4

)
b
)
g
)
]

Out[53]= 0
In[54]:= Simplify[Tr[(u2.w2 + w2. u2).w]+
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2
((

b + 6α2 − 3α+ 1
4

)
e+(

3α3(9α− 1) + (6α2 − 3α+ 1
4

)
b
)
g
)
]

Out[54]= 0

Since
6α2 − 3α+

1
4

= α3(1− 9α) + a2b− b2

we have

(a2 + b)e+ (α3(1− 9α) + a2b)g = 0,(
α3(1− 9α)b−1 + a2

)
e+

(
2α3(9α− 1)− b2

)
g = 0

and we obtain(
α3(1− 9α)b−1 − b

)
e+

(
3α3(9α− 1)− b2

)
g = 0.

Now we give a matrix which is a solution of the equations:

In[55]:= a = ω−ω2

18
(−4θ2 + 2θ − 1);

b = α
3

(−2θ2 + θ + 1− 9α);
In[57]:= g = α3(1− 9α)b−1 − b;

e = 3α3(1− 9α) + b2;
d = −ab−1(3α3(1− 9α) + b2);

In[60]:= m11 = 1;
m12 = 1

3α
(ωθ2 + ω2θ + 1− 9α);

m13 = 1−ω2

3α
(θ2 + 9α− 1);

m21 = ω−1
3

(θ − 1);
m22 = ω2θ;
m23 = 1

3α
(−ω2θ2 + (9α− 1)θ + ω(9α− 1));

m31 = 1
3
(−ω2θ2 − θ + 3(ω − ω2)α− ω);

m32 = 1
ω−ω2 (θ2 + 9α− 1);

m33 = −ω2θ2 + ω(9α− 1);
In[69]:= m = {{m11,m12,m13}, {m21,m22,m23},

{m31,m32,m33}};
In[70]:= Simplify[

Det[m](
−ω+4(ω−1)α

3(8α−1)2(9α−1)
θ2 − ω+2(1−4α)α

3(8α−1)2(9α−1)
θ−

ω+3(1−3ω)α−24α2

3(8α−1)2(9α−1)

)
]

Out[70]= 1
In[71]:= λ = 1

3(ω−ω2)
(2θ2 − θ + 36α− 4);

In[72]:= µ = 1
9

(
6α−1
1−9α

θ2 − θ + 12α− 1
)
;

In[73]:= ν = 2
9
(9α− 1)
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(−(−6α− 1)θ2 − (9α− 1)θ + (9α− 1)(12α− 1));
In[74]:= β = −ω2α

9α−1
;

In[75]:= w′ = {{β, 1
2
(ω2 − 1)β − 1), 1},

{0, ωβ, 1
2
((ω2 − 1)β + 1)}, {0, 0, ω2β}};

In[76]:= Simplify[Inverse[m]. u2.m− λ u]
Out[76]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
In[77]:= Simplify[Inverse[m]. v2.m− µ v]

Out[77]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
In[78]:= Simplify[Inverse[m].w2.m− ν w′]

Out[78]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

A.3 Description of cubic pairs

In the classification of non-singular cubic pairs, we gave an explicit repre-
sentative for each F -isomorphism class of F -cubic pairs. We shall explain
how we found this representative for the classification of cubic pairs of
the first kind.

We put A := M3(F ) and V := spanF 〈u, v, w1(α)〉 with notation as on
page 53. For a non-trivial Galois Z/3-algebra (L, ρ) we want to describe
(A′, V ′) where

A′ = {ξ ∈ AL | mρ(ξ)m−1 = ξ},
V ′ = {ξ ∈ VL | mρ(ξ)m−1 = ξ}.

Suppose that F contains a primitive cube root of unity. Let θ ∈ L
be such that θ3 = d ∈ F and ρ(θ) = ωθ. To describe V ′ it is sufficient
to find the eigenvectors of the endomorphism m̂ : V → V : ξ 7→ mξm−1:
if ξ0 ∈ V is a eigenvector of m̂ with eigenvalue ωi then θ2−iξ0 ∈ V ′. The
eigenvectors of m̂ are

α(1− 6α)v + w1(α),
1
2

(ω2 − ω)(8α− 1)u+ α(9α− 1) + w1(α),

1
2

(ω − ω2)(8α− 1)u+ α(9α− 1) + w1(α),

with eigenvalues 1, ω2 and ω respectively:

In[1]:= Clear[α]
In[2]:= u = {{0, 1, 0}, {0, 0, 1}, {0, 0, 0}};

v = {{0, 0, 0}, {1, 0, 0}, {1,−1, 0}};
w = {{α,−1

2
, 1}, {3α2,−2α, 1

2
}, {0,−3α2, α}};

In[5]:= m = {{α, 0,−1}, {α,−2α, 0}, {3α2,−α,α}};
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In[6]:= ω = 1
2
(−1 + I

√
3);

In[7]:= Clear[x, y, z]
In[8]:= ξ = x u + y v + z w;
In[9]:= Solve[{(m. ξ. Inverse[m]− ξ)[[1, 1]] == 0,

(m. ξ. Inverse[m]− ξ)[[1, 2]] == 0,
(m. ξ. Inverse[m]− ξ)[[1, 3]] == 0,
(m. ξ. Inverse[m]− ξ)[[2, 1]] == 0,
(m. ξ. Inverse[m]− ξ)[[2, 2]] == 0,
(m. ξ. Inverse[m]− ξ)[[2, 3]] == 0,
(m. ξ. Inverse[m]− ξ)[[3, 1]] == 0,
(m. ξ. Inverse[m]− ξ)[[3, 2]] == 0,
(m. ξ. Inverse[m]− ξ)[[3, 3]] == 0}, {x, y}]

Out[9]=
{{

x→ 0, y→ 1
2 (zα− 6zα2)

}}
In[10]:= Solve[{(m. ξ. Inverse[m]− ω2ξ)[[1, 1]] == 0,

(m. ξ. Inverse[m]− ω2ξ)[[1, 2]] == 0,
(m. ξ. Inverse[m]− ω2ξ)[[1, 3]] == 0,
(m. ξ. Inverse[m]− ω2ξ)[[2, 1]] == 0,
(m. ξ. Inverse[m]− ω2ξ)[[2, 2]] == 0,
(m. ξ. Inverse[m]− ω2ξ)[[2, 3]] == 0,
(m. ξ. Inverse[m]− ω2ξ)[[3, 1]] == 0,
(m. ξ. Inverse[m]− ω2ξ)[[3, 2]] == 0,
(m. ξ. Inverse[m]− ω2ξ)[[3, 3]] == 0}, {x, y}]

Out[10]=
{{

x→ − 1
2 i(−
√

3z + 8
√

3zα), y→ α(−z + 9zα)
}}

In[11]:= Simplify[
−1

2
I(−
√

3z + 8
√

3zα)− 1
2
(ω2 − ω)(8α− 1)z]

Out[11]= 0
In[12]:= Solve[{(m. ξ. Inverse[m]− ωξ)[[1, 1]] == 0,

(m. ξ. Inverse[m]− ωξ)[[1, 2]] == 0,
(m. ξ. Inverse[m]− ωξ)[[1, 3]] == 0,
(m. ξ. Inverse[m]− ωξ)[[2, 1]] == 0,
(m. ξ. Inverse[m]− ωξ)[[2, 2]] == 0,
(m. ξ. Inverse[m]− ωξ)[[2, 3]] == 0,
(m. ξ. Inverse[m]− ωξ)[[3, 1]] == 0,
(m. ξ. Inverse[m]− ωξ)[[3, 2]] == 0,
(m. ξ. Inverse[m]− ωξ)[[3, 3]] == 0}, {x, y}]

Out[12]=
{{

x→ 1
2 i(−
√

3z + 8
√

3zα), y→ α(−z + 9zα)
}}

In[13]:= Simplify[
1
2
I(−
√

3z + 8
√

3zα)− 1
2
(ω − ω2)(8α− 1)z]

Out[13]= 0
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Thus V ′ is the F -vector subspace of M3(Fsep) spanned by

ξ0 = α(6α− 1)v − 2w1(α),

η0 =
1
2

(ω − ω2)(8α− 1)θu+ α(1− 9α)θv − θw1(α),

ζ0 =
1
2

(ω2 − ω)(8α− 1)θ2u+ α(1− 9α)θ2v − θ2w1(α).

Since we have ω ∈ F , the algebra A′ is a symbol algebra. We note that
m2 ∈ A′ and m2η0 = ωη0m

2. But m6 ∈ F× because m ∈ GL3(Fsep) and
mF×sep has order 3; also η3

0 ∈ F×:

In[14]:= Clear[d]
In[15]:= θ = d1/3;
In[16]:= η0 = 1

2
(ω − ω2)(8α− 1)θu + α(1− 9α)θv − θw;

In[17]:= Simplify[Det[η0]]− dα(8α− 1)2(9α− 1)]
Out[17]= 0

So A′ is the symbol F -algebra generated by m2 and η0. We have

In[18]:= ξ0 = α(6α− 1)v − 2w;
ζ0 = 1

2
(ω2 − ω)(8α− 1)θ2u + α(1− 9α)θ2v − θ2w;

In[19]:= Simplify[ξ0− α−1m.m]
Out[19]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
In[20]:= Simplify[Det[ξ0]− α(8α− 1)2]

Out[20]= 0
In[22]:= Simplify[

ζ0−
(

3ω2

(8α−1)(9α−1)
ξ0. η0. η0−

ω(6α−1)
α(8α−1)2(9α−1)

ξ0. ξ0. η0. η0
)
]

Out[22]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

Hence A′ is the symbol F -algebra
(
α(8α− 1)2, dα(8α− 1)2(9α− 1)

)
ω,F

generated by ξ0 and η0, and

ζ0 =
3ω2

(8α− 1)(9α− 1)
ξ0η

2
0 −

ω(6α− 1)
α(8α− 1)2(9α− 1)

ξ2
0η

2
0 .

The cubic form fA′,V ′ is semi-diagonal: we have

fA′,V ′ = aξ?30 + bη?30 + cζ?30 − 3λξ?0η
?
0ζ
?
0

where (ξ?0 , η
?
0 , ζ

?
0 ) is the dual basis of (ξ0, η0, ζ0), and a, b, c, λ satisfies

abc− λ3

a2
∈ F×3.

Indeed:
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In[23]:= f = Det[x. ξ0 + y. η0 + z. ζ0];
In[24]:= a = α(8α− 1)2;

b = dα(8α− 1)2(9α− 1);
c = d2α(8α− 1)2(9α− 1);
λ = dα(8α− 1)2(1− 6α);

In[28]:= Simplify[f − (ax3 + by3 + cz3 − 3λxyz)]
Out[28]= 0
In[29]:= Simplify[abc−λ3

a2 − (3dα(8α− 1))3]
Out[29]= 0

Now we suppose that F does not contain a primitive cube root of
unity and F is infinite. Let θ ∈ L be such that its minimal polynomial
over F is equal to x3−3x+λ for some λ ∈ F . Then there exists a square
root x0 of (4− λ2)/3 in F such that

θ = −φ− φ−1,

ρ(θ) = −ωφ− ω2φ−1 =
−θ + δ

2
,

ρ2(θ) = −ω2φ− ωφ−1 =
−θ − δ

2

where δ = x−1
0 (2θ2 + λθ− 4) and φ is a cube root of

(
λ+ (ω−ω2)x0

)
/2

in Fsep. Thus we have

ρ(δ) =
−3θ − θ

2
.

To find V ′ we solve the equation mρ(ξ)m−1 = ξ where

ξ = (λ0 + λ1θ + λ2δ)u+ (µ0 + µ1θ + µ2δ)v + (ν0 + ν1θ + ν2δ)w1(α) :

In[30]:= Clear[θ, δ]
In[31]:= a1 = −1

2
;

a2 = α(9α−1)
8α−1

;
a3 = 1

8α−1
;

In[34]:= Simplify[m. u. Inverse[m]− (a1 u + a2 v + a3 w)]
Out[34]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
In[35]:= b1 = − 1

2α
;

b2 = α
1−8α

;
b3 = 1

α(1−8α)
;

In[38]:= Simplify[m. v. Inverse[m]− (b1 u + b2 v + b3 w)]
Out[38]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
In[39]:= c1 = 1

4
(1− 6α);

c2 = α(6α−1)(9α−1)
2(1−8α)

;
c3 = 10α−1

2(8α−1)
;
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In[42]:= Simplify[m.w. Inverse[m]− (c1 u + c2 v + c3 w)]
Out[42]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
In[43]:= Solve

[{
a1 λ0 + b1 µ0 + c1 ν0 == λ0,

a1
(
λ1−1

2
+ λ2−3

2

)
+ b1

(
µ1−1

2
+ µ2−3

2

)
+

c1
(
ν1−1

2
+ ν2−3

2

)
== λ1,

a1
(
λ11

2
+ λ2−1

2

)
+ b1

(
µ11

2
+ µ2−1

2

)
+

c1
(
ν11

2
+ ν2−1

2

)
== λ2,

a2 λ0 + b2 µ0 + c2 ν0 == µ0,

a2
(
λ1−1

2
+ λ2−3

2

)
+ b2

(
µ1−1

2
+ µ2−3

2

)
+

c2
(
ν1−1

2
+ ν2−3

2

)
== µ1,

a2
(
λ11

2
+ λ2−1

2

)
+ b2

(
µ11

2
+ µ2−1

2

)
+

c2
(
ν11

2
+ ν2−1

2

)
== µ2,

a3 λ0 + b3 µ0 + c3 ν0 == ν0,

a3
(
λ1−1

2
+ λ2−3

2

)
+ b3

(
µ1−1

2
+ µ2−3

2

)
+

c3
(
ν1−1

2
+ ν2−3

2

)
== ν1,

a3
(
λ11

2
+ λ2−1

2

)
+ b3

(
µ11

2
+ µ2−1

2

)
+

c3
(
ν11

2
+ ν2−1

2

)
== ν2

}
,

{λ0, λ1, λ2, µ0, µ1, µ2}
]

Out[43]=

{{
λ0→ 0, µ0→ 1

2 (ν0 α− 6ν0 α2),

λ1→ 3
2 (−ν2 + 8ν2 α), λ2→ 1

2 (ν1− 8ν1 α),

µ1→ −ν1 α+ 9ν1 α2, µ2→ −ν2 α+ 9ν2 α2
}}

Using the fact that(
u, θu, δu, v, θv, δv, w1(α), θw1(α), δw1(α)

)
is a basis of VL we obtain that the vectors

ξ0 = α(6α− 1)v + w1(α),

η0 =
1
2

(1− 8α)δu+ α(9α− 1)θv + θw1(α),

ζ0 =
3
2

(8α− 1)θu+ α(9α− 1)δv + δw1(α)

span V ′. Using the case where F contains a primitive cube root of unity
we know that A′F (ω) is the cyclic algebra(

α(8α− 1)2, φ3α(8α− 1)2(9α− 1)
)
ω,F (ω)
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generated by ξ0 and η1 where

η1 =
1
2
η0 +

ω2 − ω
6

ζ0 =
1
2

(ω − ω2)(8α− 1)φu+ α(1− 9α)φv − φw1(α)

(since φ = − 1
2θ + ω−ω2

6 δ). To describe A′ we shall find a subfield of A′

which is Galois extension of degree 3 over F . Thereto we search a matrix
in A′F (ω) with its cube equal to φ3. Since

η1 =
1
2

(ω2 − ω)(8α− 1)φ−1u+ α(1− 9α)φ−1v − φ−1w1(α),

using the case where F contains ω, we have

φ3η1 =
3ω2

(8α− 1)(9α− 1)
ξ0η

2
1 −

ω(6α− 1)
α(8α− 1)2(9α− 1)

ξ2
0η

2
1

and η1
3 = η3

1 . Because ξ0η1 = ωη1ξ0 and F (ξ0) is a field we deduce that

η2 :=
3

(8α− 1)(9α− 1)
ξ0η1 −

6α− 1
α(8α− 1)2(9α− 1)

ξ2
0η1

is such that η3
2 = φ3. We have η2η2 = 1:

In[44]:= Clear[λ]

In[45]:= x0 =
(

4−λ2

3

)1/2

;

φ =
(
λ+(ω−ω2)x0

2

)1/3

;

θ = −φ− φ−1;
δ = x0−1(2θ2 + λθ − 4);

In[49]:= η0 = 1
2
(1− 8α)δu + α(9α− 1)θv + θw;

ζ0 = 3
2
(8α− 1)θu + α(9α− 1)δv + δw;

In[51]:= η1 = 1
2
η0 + ω2−ω

6
ζ0;

η1 = 1
2
η0 + ω−ω2

6
ζ0;

In[53]:= η2 = 3
(8α−1)(9α−1)

ξ0. η1− 6α−1
α(8α−1)2(9α−1)

ξ0. ξ0. η1;
η2 = 3

(8α−1)(9α−1)
ξ0. η1− 6α−1

α(8α−1)2(9α−1)
ξ0. ξ0. η1;

In[55]:= Simplify[η2. η2]
Out[55]= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

Therefore F (η3) is contained in A′ where η3 = −η2 − η−1
2 and it is a

Galois field extension of degree 3 over F . We shall write η0 and ζ0 in
function of ξ0 and η3. We have

η1 =
(3α(6α− 1)(8α− 1)

9α− 1
+

(6α− 1)2

9α− 1
ξ0 +

9α
9α− 1

ξ2
0

)
η2

because
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In[56]:= Simplify[(
3α(6α−1)(8α−1)

9α−1
IdentityMatrix[3]+

(6α−1)2

9α−1
ξ0 + 9α

9α−1
ξ0. ξ0

)
.(

3
(8α−1)(9α−1)

ξ0−
6α−1

α(8α−1)2(9α−1)
ξ0. ξ0

)
]

Out[56]= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

Hence{
η0 = 1

1−9α

(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ2

0

)
η3,

ζ0 = 1
1−9α

(
3α(6α− 1)(8α− 1) + (6α− 1)2ξ0 + 9αξ2

0

)(
η3 + 2τ(η3)

)
.
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Index of notation

A a central simple algebra of degree 3 over F
A◦ the subspace of reduced trace zero elements of A
(A, V ) a cubic pair
Aut(A, V ) the group scheme of automorphisms of (A, V )
F a field of characteristic neither 2 nor 3
F an algebraic closure of F
Fsep the separable closure of F in F

{f(ξ) = 0} the projective curve associated to f
{f(ξ) = 0}L the set of the L-points of {f(ξ) = 0}
fA,V the cubic form associated to (A, V )
fV the cubic form associated to V
Γ the absolute Galois group of F
Hf the Hessian curve of f
NK/F the norm form of the F -algebra K
ω a primitive cube root of unity in Fsep

P(V ) the projective space associated to V
〈p, q〉 the line passing through p and q

qA the trace quadratic form of A
Sd(V ?) the d-th symmetric power of V ?

spanF 〈ξ1, . . . ξr〉 the F -vector space spanned by ξ1, . . . , ξr
tf the symmetric trilinear form associated to f
tV the symmetric trilinear form associated to fV
TrK/F the trace form of the F -algebra K
TrdA the reduced trace of A
V a 3-dimensional vector space over F
VR V ⊗F R
V VF
Vsep VFsep

V ? the dual space of V
ξij the element on row i and column j in ξ
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Index

canonical pencil, 20
conic, 11
conic plus chord, 23
conic plus tangent, 23
cubic pair, 46

non-singular, 46
of the first kind, 67
of the second kind, 67

singular, 46
cubic subspace, 49

non-singular, 49
singular, 49

curve
cubic, 10
cuspidal, 24
defined over L, 11
Hessian, 14
nodal, 24
non-singular, 13
singular, 13
zero, 11

double line plus simple line, 22

equivalent, 20

F -isomorphism, 46
flex, 14

form
cubic, 10
degree d, 10
diagonal, 35
irreducible, 10
non-singular, 13
normal, 16
reducible, 10
semi-diagonal, 35
semi-trace, 39
singular, 13
symmetric trilinear, 10

Γ-group, 39

harmonic polar, 30

j-invariant, 20

line, 11

multiplicity, 12
intersection multiplicity, 12

point
defined over L, 11
harmonic, 33
Hessian, 26
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L-point, 11
non-singular, 13
singular, 13

special subspace, 54
exceptional, 64
non-exceptional, 64

tangent, 12
double, 23
simple, 23

three concurrent lines, 22
triangle, 21, 22

inflexional, 21
triple line, 22


