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Abstract— When one random variable is estimated from an-
other measured random variable through a nonlinear mapping
constituting the estimator, then any independent additive noise
present in the measured variable creates a bias error in the
estimated variable. This occurs even if the added noise has
zero mean and symmetric density. This bias error can be
computed approximately using the second derivative of the
mapping when this mapping is available analytically, and hence
a bias-corrected estimate can be constructed. We show that this
idea can be extended to the case where the mapping is implicitly
defined as the solution of a minimization problem, such as in
Maximum Likelihood estimation. We also analyze the effect of
this bias correction when applied to the estimation of a first
order transfer function at one frequency on the basis of a noisy
measurement of that transfer function at some other frequency.

I. INTRODUCTION

The problem considered in this paper can be motivated by
the following scenario. Suppose there is an underlying real
time-invariant system with a strictly proper transfer function
of known order. Suppose that at frequencies ω1, ω2, . . . , ωN

noisy measurements of the transfer function are obtained;
measurement noise is additive, bounded zero mean and of
known variance and its values at different frequencies are
independent. We seek to estimate the value of the transfer
function at some other frequency, ω0 say. How can we obtain
a bias-free, or possibly bias-corrected, estimate of that value?

A very simple version of the problem capturing most
aspects of the general problem is as follows: let W (s)
be an unknown first order transfer function and suppose
there is available a measurement of W (jω1) with ω1 6= 0
containing independent zero mean bounded variance additive
noise. How can one obtain a bias-free estimate of W (jω0)?
More generally, if we had available noisy measurements of
W (jωi), i = 1, 2, . . . , n, how could we obtain a bias-free
estimate of W (jω0)?

As we demonstrate, the most natural way to estimate the
value of a first order transfer function at one frequency given
its value at another frequency is to construct a mapping
from its real and imaginary parts at the first frequency
to its real and imaginary parts at the second frequency.
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The mapping is nonlinear; it is exact and unique when the
measurements are noiseless. It makes sense to use it when
the measurements are noisy. Now it is a crucial property of
any nonlinear mapping of an unbiased random variable that
the image is (generically) biased. Accordingly, carrying the
mapping applicable to the noiseless case over to the noisy
measurement case without any adjustment will introduce a
bias in the estimate. One of our contributions is to show how
to compute this bias and thus allow for its correction.

In the case of multiple measurements at different frequen-
cies of the first order transfer function, in the noiseless case
the data overdetermines the values of the real and imaginary
part at frequency ω0. In the noisy case, it makes sense to seek
a maximum likelihood estimate; this estimate is, obviously,
a value constructed as a result of mapping the given data,
i.e. there is underlying the construction a mapping (which
continues to be nonlinear). Accordingly, bias again is to be
expected, and one of our contributions is to show how to
compute it. Note that this bias is completely different to bias
in linear systems estimation problems caused by correlation
between a regressor vector and noise, see e.g. [3].

Our interest in removal of bias in this situation was sparked
through the study by one of us of the removal of bias in
localization problems, where noisy measurements related to
a ‘target’ at an unknown position are available, and through
the measurements one wishes to estimate the target position
[5]. An example of this phenomenon dating from a long
time ago [2] is the determination of the position of a target
by a radar which has noisy measurements of the target’s
range and bearing. Assuming these measurements are both
corrupted by additive noise, the estimates of the Cartesian
coordinates of the target are biased. The bias arises because
of the interaction between the presence of additive zero
mean noise in the data and the application of a nonlinear
transformation of that data to produce the desired estimate.

As summarized below, the bias itself, or an approximation
to it, is obtained by evaluating at the desired estimate the
second derivative of the function mapping the data to the
estimate. When the mapping from data to estimate is easily
constructed analytically, the computation of the bias is easy.
This is true for the problem of estimating for a first order
W (s) its value at ω0 given a measurement of its value of ω1,
as it is for the radar localization problem. However, when
the mapping is embedded within a maximum likelihood
procedure, the determination of the bias is a good deal more
difficult. There is very frequently no analytic expression for
the actual mapping. Part of our contribution is to explain
how to deal with this difficulty. We comment that in the
localization literature, the problem of determining bias when



a maximum likelihood method is used has been considered
in [4]; the method of that paper involves Taylor series
truncations and several approximations, and is certainly more
complicated than the method advanced here, even though it
may be abstractly equivalent.

The structure of the paper is as follows. In the next section,
we recall the standard calculations for obtaining the bias in
an estimate when it is derived by nonlinear transformation
of data corrupted by additive zero mean noise. Section III
explains the calculation of bias when a maximum likelihood
procedure underpins the generation of an estimate. Following
that, we illustrate in Section IV the concept with the simple
case of estimating for a first order transfer function W (s)
its value at ω0 given noisy measurements of its value at ω1.
Section V presents some simulation evidence in corrobora-
tion of the results, while Section VII contains conclusions
and suggestions for future work.

II. A BIAS FORMULA
In this section, we recall the bias formula mentioned in

the preceding section, see also [2]. Let p ∈ Rm denote
an underlying variable whose value is to be estimated, and
suppose that q ∈ Rn denotes a data vector, corresponding
to measurements. Most commonly, n ≥ m. In case q is
noiseless, suppose that p can be obtained from q via a
smooth function g : Rn → Rm, thus p = g(q). Suppose the
underlying value of p is p̄ and q̄ denotes the corresponding
value for the noiseless measurement vector. Then obviously,
p̄ = g(q̄).

Now suppose that noise is present, so that the measurement
is q̆ = q̄ + dq, where dq denotes zero mean noise with
covariance matrix Σ. It would seem logical to estimate p
by continuing to use the same formula, but with the noisy
argument replacing the noiseless argument; thus the estimate
would be p̂ = g(q̆). It is not difficult to obtain an approximate
expression for the bias; the approximation results from the
fact that a Taylor series is truncated:

p̂ = g(q̄ + dq) (1)

= g(q̄) +

n∑
j=1

∂g

∂qj
(q̄)dqj +

1

2

n∑
i,j=1

∂2g

∂qi∂qj
(q̄)dqidqj

+ higher order terms (2)

To abbreviate the expressions we shall adopt the Einstein
summation convention here and later in the paper. Thus
(2) can be rewritten (with the understanding that there are
summations over i and j) as

p̂ = g(q̄) +
∂g

∂qj
(q̄)dqj +

1

2

∂2g

∂qi∂qj
(q̄)dqidqj

+ higher order terms

Taking expectations, and neglecting the effect of the higher
terms results in

E[p̂]− p̄ =
1

2

∂2g

∂qi∂qj
(q̄)Σij (3)

where Σij denotes the (i, j) component of Σ. If we assume
that the two values of the Hessian gqq(q̄) and gqq(q̄+dq) are

suitably close, then an approximate expression for the bias
becomes

E[p̂]− p̄ =
1

2

∂2g

∂qi∂qj
(q̆)Σij (4)

This suggests that instead of using p̂ as an estimate of p̄, we
should use the bias-corrected estimate

p̂ = g(q̆)− 1

2

∂2g

∂qi∂qj
(q̆)Σij (5)

One should expect that use of the bias-corrected estimate will
improve the mean square error. Assume for convenience that
p, q are scalar. Then it is not hard to check that

E[p̂− p̄]2 = E[p̂− p̄]2 − [
1

2
g′′(q̄)g′′(q̆)− 1

4
g′′(q̆)2]σ4. (6)

If the two values of the Hessian g′′(q̄) and g′′(q̆) are close,
then the reduction in MSE is apparent.

We make no claim for the validity of this formula for
all possible noise distributions. In particular, a gaussian
distribution will give rise to particular noise values for which
the Taylor series truncation may be extremely inaccurate, and
in our simulations bounded noise has been used.

III. BIAS ASSOCIATED WITH MAXIMUM
LIKELIHOOD ESTIMATES

In this section, we explain how to obtain, at least ap-
proximately, a bias associated with a maximum likelihood
estimate. Suppose p ∈ Rm is the variable we are seeking to
estimate, q ∈ Rn denotes the measurement vector, assumed
to lie in some Q ⊂ Rn and in terms of a known smooth
function F : Rm × Rn → R , the following minimization
problem is well defined for all q ∈ Q:

p̂ = arg min
p
F (p, q). (7)

Requiring that the solution of the minimization problem
is well defined is equivalent to postulating the existence
of a function g : Q → Rm such that p = g(q) is the
achieved minimum. Note that we are not postulating analytic
knowledge of the function g. In many estimation problems,
g is in effect evaluated for a noisy version q̆ of q by a
program which solves an optimization problem, yielding a
biased estimate p̂ = arg minp F (p, q̆).

Now the bias in the estimate derived by this method in
principle would be definable as before in terms of the second
derivative of g. However if this derivative is not available,
one is led to ask: can we express the second derivative of g
evaluated at some q̆ in terms of derivatives of F , evaluated
at p̂, q̆, where p̂ = g(q̆)? The answer is yes, as we now show.

Theorem 1: Let F : Rm×Rn → R be a smooth function
for which a unique solution of the optimization problem
(7) is available for all q ∈ Q ⊂ Rn. Let g(q) denote the
minimizing value of p, i.e. g(q) = arg minp F (p, q). Let
w(p, q) = ∂F

∂p , defining a mapping from Rm × Rn to Rm.
Then the following hold at every point (p, q) = (g(q), q) for
q ∈ Q and for all i = 1, . . . ,m and k = 1, . . . , n:

m∑
j=1

∂wi

∂pj

∂gj

∂qk
+
∂wi

∂qk
= 0, (8)



which we can write more succinctly, using the Einstein
summation convention, as

wi
pj
gjqk + wi

qk
= 0, i = 1, . . . ,m; k = 1, . . . , n. (9)

Similarly, using the same convention, the following equations
hold for i = 1, . . . ,m; k = 1, . . . , n; t = 1, . . . , n:

wi
pj
gjqkqt = −[wi

pjps
gjqkg

s
qt + wi

pjqtg
j
qk

+ wi
psqk

gsqt + wi
qkqt

]

= −[gjqk 1]

[
wi

pjps
wi

pjqt

wi
psqk

wi
qkqt

] [
gsqt
1

]
(10)

Assuming invertibility for all q ∈ Q of the Jacobian matrix
with (i, j) entry wi

pj
, first derivatives of g can be expressed in

terms of first derivatives of w by (9), and second derivatives
of g can be expressed in terms of first and second derivatives
of w by (10).
Proof: Because g(q) is a minimizer of F (p, q), it is a zero
of ∂F

∂p = w(p, q), i.e.

w(g(q), q) = 0 ∀q (11)

Differentiating with respect to qk yields (9). Equation (10)
results from differentiation of (9) with respect to qt.

The condition that the Jacobian matrix be nonsingular is
not unreasonable; singularity of the Jacobian matrix gener-
ally implies that an estimation problem is not well posed.
It is a sufficient, though admittedly not necessary, condition
for the existence of a unique function g in the neighborhood
of any point q ∈ Q. If Q is compact, this means there is a
single global g (given the stated assumption on F ).

IV. ESTIMATING A FIRST ORDER TRANSFER
FUNCTION

In this section we apply the bias correction formulas of
Section II to the estimation of a first order transfer function at
some frequency ω0 from a noisy measurement of that same
transfer function at another frequency ω1.

A. The problem set-up

Suppose there is an underlying real system with a transfer
function W (s) = b̄

s+ā , with ā, b̄ real and ā > 0. Sup-
pose we measure the transfer function at some frequency
s = jω1, ω1 6= 0, with the aim of inferring the value
of the transfer function at some other frequency ω0. We
are typically interested in the quality of the estimate (bias,
variance) when there is zero mean noise of known variance
perturbing the measurement of W (jω1).

B. Calculations with noise-free measurements

For future convenience , we shall set

xi = Re[W (jωi)], yi = Im[W (jωi)]. (12)

Observe that from the definition of W (s), it follows easily
that

x1 =
āb̄

ω2
1 + ā2

, y1 =
−ω1b̄

ω2
1 + ā2

(13)

and so, in particular,

ā =
−ω1x1

y1
(14)

b̄ = −ω1(x2
1 + y2

1)

y1
(15)

We see also that

W (jω0) =
jω1 + ā

jω0 + ā
W (jω1) (16)

=
jω1 + −ω1x1

y1

jω0 + −ω1x1

y1

W (jω1)

=
ω1|W (jω1)|2

ω1x1 − jω0y1

The mapping from (x1, y1) to (x0, y0) is thus:

x0 + jy0 =
ω1(x2

1 + y2
1)(ω1x1 + jω0y1)

ω2
1x

2
1 + ω2

0y
2
1

(17)

whence we see that[
x0

y0

]
=

ω1(x2
1 + y2

1)

ω2
1x

2
1 + ω2

0y
2
1

[
ω1x1

ω0y1

]
(18)

Of course, it is quite legitimate, and perhaps more tradi-
tional, to think of the mapping as the composition of two
mappings, one from (x1, y1) to (ā, b̄) and then from (ā, b̄)
to (x0, y0). For our purposes, it is more convenient to work
with the single mapping.

C. Calculation of the bias

Our starting point is (18) where, in the notation of Sec-
tion II, the measured quantity is q = [x1, y1] and the quantity
to be estimated is p = [x0, y0]. Let us suppose that the
measured values of x1, y1 are x̆1, y̆1, due to perturbations
of the true values x̄1, ȳ1 by amounts dx1, dy1. With no bias
correction, the estimates x̂0, ŷ0 of the real and imaginary
parts of W (jω0) would be given by[

x̂0

ŷ0

]
=

ω1(x̆2
1 + y̆2

1)

ω2
1 x̆

2
1 + ω2

0 y̆
2
1

[
ω1x̆1

ω0y̆1

]
(19)

Note incidentally that if the noise can be large in relation
to the magnitude of, say, ȳ1, then y̆1 could be zero or even
negative, even though ȳ1 could never assume such a value.
This indirectly suggests that there will be clear problems
unless noise values are somehow limited, e.g. by assuming
uniform rather than gaussian distributions.

Now for convenience in the following manipulations,
define the functions

h(x1, y1) =
ω1(x2

1 + y2
1)

ω2
1x

2
1 + ω2

0y
2
1

(20)

k(x1, y1) =
2ω1(ω2

0 − ω2
1)x1y1

(ω2
1x

2
1 + ω2

0y
2
1)2

It is easily checked that ∂h
∂x1

= k(x1, y1)y1 and ∂h
∂y1

=

−k(x1, y1)x1. Also, ∂k
∂x1

x1 + ∂k
∂y1

y1 + 2k = 0. Evidently,
from (18) it follows that the two functions associated with
mapping the data to the desired estimates are g1(x1, y1) =
h(x1, y1)ω1x1 and g2(x1, y1) = h(x1, y1)ω0y1.



Using this, one can then obtain the following equations
for the second derivatives of g1, g2:[

∂2g1
∂x2

1

∂2g1
∂x1∂y1

∂2g1
∂x1∂y1

∂2g1
∂y2

1

]
= −ω1

∂k

∂y1

[
y1

−x1

]
[y1 −x1] (21)

and[
∂2g2
∂x2

1

∂2g2
∂x1∂y1

∂2g2
∂x1∂y1

∂2g2
∂y2

1

]
= ω0

∂k

∂x1

[
y1

−x1

]
[y1 − x1] (22)

The calculations lead to the following expressions for x̂0, ŷ0

where in these expressions, we have x̄i = Re[W (jωi)]
and ȳi = Im[W (jωi)] for i = 0, 1, and further, terms in
the Taylor series involving derivatives higher than 2 are
neglected:

x̂0 = x̄0 + [k(x̄1, ȳ1)x̄1ȳ1ω1 + h(x̄1, ȳ1)ω1]dx1

−k(x̄1, ȳ1)x̄2
1ω1dy1 (23)

−ω1

2

∂k

∂y1
[ȳ2

1(dx1)2 − 2x̄1ȳ1dx1dy1 + x̄2
1(dy1)2]

ŷ0 = ȳ0 + k(x̄1, ȳ1)ω0ȳ
2
1dx1

+[h(x̄1, ȳ1)ω0 − k(x̄1, ȳ1)ω0x̄1ȳ1]dy1 (24)

+
ω0

2

∂k

∂x1
[ȳ2

1(dx1)2 − 2x̄1ȳ1dx1dy1 + x̄2
1(dy1)2]

For notational convenience but with no real loss of generality,
let us assume, as will often occur, that the noises dx1, dy1

perturbing the true values of x̄1, ȳ1 in generating the mea-
surements are independent. Then the associated biases are

E[x̂0]−Re[W (jω0)] = −1

2
ω1

∂k

∂y1
[ȳ2

1σ
2
x1

+x̄2
1σ

2
y1

] (25)

E[ŷ0]−Im[W (jω0)] =
1

2
ω0

∂k

∂x1
[ȳ2

1σ
2
x1

+x̄2
1σ

2
y1

] (26)

with the derivatives being evaluated at (x̄1, ȳ1).
In order to reduce the bias in the estimates x̂0, ŷ0 obtained

using the formula (19), we propose the following estimates,
with derivatives computed not at (x̄1, ȳ1), but rather at the
measured values, i.e. at (x̆1, y̆1) = (x̄1 + dx1, ȳ1 + dy1):

x̂0 = x̂0 +
1

2
ω1

∂k

∂y1
[(y̆1)2σ2

x1
+ (x̆1)2σ2

y1
] (27)

ŷ0 = ŷ0 −
1

2
ω0

∂k

∂x1
[(y̆1)2σ2

x1
+ (x̆1)2σ2

y1
] (28)

Remark: It is of interest to understand when the bias
correction is likely to be large. Evidently, the values of
∂k
∂x1

, ∂k
∂y1

are crucial. One can verify that

∂k

∂x1
=

2ω1(ω2
0 − ω2

1)(ω2
0y

2
1 − 3ω2

1x
2
1)y1

(ω2
1x

2
1 + ω2

0y
2
1)3

(29)

∂k

∂y1
=

2ω1(ω2
0 − ω2

1)(ω2
1x

2
1 − 3ω2

0y
2
1)x1

(ω2
1x

2
1 + ω2

0y
2
1)3

(30)

These expressions show, for example, that bias is less of
a problem when ω0, ω1 are close. In Section V we shall
compare the standard and bias-corrected estimates on a
simulated example.

For the sake of completeness we shall also compare
the estimates for a and b, and illustrate their behaviour in
Section V. It follows from (14) that the standard estimates
are:

â =
−ω1x̆1

y̆1
(31)

b̂ = −ω1(x̆2
1 + y̆2

1)

y̆1
(32)

As for the bias-corrected estimates, simple calculations based
on the Taylor series approximations lead to the following
expressions:

â = â+
ω1x̆1

y̆3
1

σ2
y1

(33)

b̂ = b̂+
ω1

y̆1
σ2
x1

+
ω1x̆

2
1

y̆3
1

σ2
y1

(34)

D. Higher order transfer functions

Suppose that the first order transfer function W (s) is
replaced by a strictly proper n-th order transfer function.
Assume for definiteness that this transfer function has rela-
tive degree 1; thus it is parametrised by 2n real parameters.
If noiseless measurements are available of W (jωi), i =
1, 2, . . . , n, ωi 6= 0, ωi 6= ωj for i 6= j, then the coefficients
of the numerator and denominator polynomials of W (s) can
be expressed in terms of these measurements. Following
that, for any ω0, the value of W (jω0) can be determined.
With some extensive but no difficult calculations, one could
analytically express the values of the real and imaginary parts
as a function of the measurements.

Then the pattern of the previous calculations can be
followed, to determine the bias at least approximately in case
there is measurement noise, and a formula obtained for an
estimate in terms of the data with a bias correction.

To illustrate further, suppose that W (s) = (ās + b̄)(s2 +
c̄s + d̄)−1 and that measurements are taken at nonzero
frequencies ω1, ω2. Let xi, yi denote the real and imaginary
part of W (jωi). Then in the absence of noise, there holds

ω1 0 −ω1x1 −y1

0 1 ω1y1 −x1

ω2 0 −ω2x2 −y2

0 1 ω2y2 −x2



ā
b̄
c̄
d̄

 =


0

−ω2
1x1

0
−ω2

2x2

 (35)

and then [
x0

y0

]
=

 (āc̄−b̄)ω2
0+b̄d̄

(ω2
0−d̄)2+ω2

0 c̄
2

ω0(−ω2
0 ā+ād̄−b̄c̄)

(ω2
0−d̄)2+ω2

0 c̄
2

 (36)

Evidently, provided the matrix in (35) is nonsingular (and
it is provably so when ω1 6= ω2, ωi 6= 0,W (s) 6≡ 0)
the mapping from the data (x1, y1, x2, y2) to (x0, y0) is
analytically defined, and so a formula can be found for
approximating the bias in the event that the measurements
are contaminated by noise.

Generalization of the idea is obviously possible. There is
no conceptual difficulty; bookkeeping and formulas will be
more complicated.



V. ILLUSTRATIVE EXAMPLES

In this section we illustrate the behaviour of the bias
reduction method for the application described in Section IV,
where the task is to estimate the frequency response of a first
order transfer function at some frequency ω0 on the basis of
noisy measurements made at some other frequency ω1. We
shall illustrate the effect on the achievable bias reduction
of the noise level, and of the location of the frequency
of measurement, ω1, with respect to the frequency of the
estimate, ω0.

We shall assume, as stated earlier, that the real and imagi-
nary parts of W (jω1) are measured with two independent
noises, i.e. x̆1 = x̄1 + dx1 and y̆1 = ȳ1 + dy1, where
dx1 and dy1 are independent (see Section IV). Gaussian
noises may cause unacceptable behaviour, due to signals
that may become zero; note in particular that the standard
estimate of ā would be â = −ω1x̆1

y̆1
, which would cause

a problem if y̆1 = 0. As a result, in our simulations we
have chosen additive noises dx1 and dy1 that are indepen-
dent and that are uniformly distributed over the interval
[−0.95|x̄1|,+0.95|x̄1|] for the noise dx1, and over the in-
terval [−0.95|ȳ1|,+0.95|ȳ1|] for the noise dy1. As a result,
the noisy measurements x̆1 and y̆1 are never closer to zero
than 5% of |x1| and |y1|, respectively.

The simulations have been performed with the transfer
function W (s) = 10

s+1 . The first simulation examines the
effect of the noise level on the bias reduction achieved by
the bias-reduced estimates x̂0 and ŷ0 of (27)-(28). The bias
of the standard estimates x̂0, ŷ0 and of the bias-reduced
estimates x̂0, ŷ0 have been computed at frequency ω0 = 5
from noisy measurements made at frequency ω1 = 1, over
the range of standard deviations corresponding to the uniform
distributions defined above. The bias has been computed for
the two estimates by averaging over 50, 000 Monte Carlo
runs. Figure 1 shows the reduction of the bias obtained with
the bias-reduced estimate x̂0, i.e. the ratio of the absolute
value of the average bias of x̂0 over the absolute value of
the average bias of x̂0 as a function of the standard deviation
σ of the noises. Figure 2 shows the same results for ŷ0, while
Figures 3 and 4 present the same results for the biases on â
and â, and b̂ and b̂, respectively.

The figures show that a significant bias reduction is
obtained for small to medium noise levels, but that this
bias reduction disappears above a certain threshold in the
noise. This is due to the fact that for large noise levels the
Taylor series approximations performed in (23)-(24) and in
the derivations of (33)-(34) cease to be valid.

We now examine the performance of the bias-correction as
a function of the frequency difference between the measured
and estimated transfer functions. Thus, we have computed
the standard estimates, x̂0, ŷ0, â, b̂, and the corresponding
bias-corrected estimates in the frequency range ω0 ∈ [0.05 5]
using noisy measurements x̆1 and y̆1 made at frequency
ω1 = 1. The averages were again computed, for each
estimated frequency point, over 50, 000 noisy measurements.
The standard deviations of the noises on the measurements
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Fig. 1. Bias(|x̂0|)/Bias(|x̂0|) versus noise level (in %)
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Fig. 2. Bias(|ŷ0|)/Bias(|ŷ0|) versus noise level (in %)

were σx1
= σy1

= 0.58. In order to avoid dividing by
zero (which happens when ω0 passes through 1), we present
the bias errors (rather than their ratios) as a function of the
frequency at estimation, in Figure 5 for the estimation of x0

and in Figure 6 for the estimation of y0. As for the average
bias errors on the estimates of a and b, they are

bias â = 0.0140, bias â = −0.0005

bias b̂ = 0.1364, bias b̂ = 0.0104

The bias-corrected estimates â and b̂ are considerably
better than the standard estimates. In addition, figures 5
and 6 show that the bias-corrected estimates x̂0 and ŷ0 of
the transfer functions are uniformly better than the standard
estimates, except in the immediate vicinity of the measure-
ment frequency. This benefit increases with the distance
between the frequency at which the estimate is computed
and the frequency where the measurement is made. This
follows directly from the fact that the gains of the bias
correction terms ∂k

∂y1
and ∂k

∂x1
, which appear in (27)-(28) are

proportional to ω2
0 − ω2

1 , as shown by (29)-(30).

VI. EXTENSIONS

The problem addressed in Section IV can of course be
extended to the estimation of W (jω0) for some ω0 using
noisy estimates of W (jωi), i = 1, 2, . . . , n. The mapping
from the noisy data {Re[W̆ (ωi), Im[W̆ (ωi)], i = 1, . . . , n},
collected into a real vector q̆, to the 2-vector comprising the
real and imaginary parts of W (jω0) can be regarded as the
composition of two functions. The first function, g, maps q̆
into estimates (â, b̂) of (ā, b̄) and is defined by a maximum
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Fig. 3. Bias(|â|)/Bias(|â|) versus noise level (in %)
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Fig. 4. Bias(|b̂|)/Bias(|̂b|) versus noise level (in %)

likelihood criterion, such as

(â, b̂) = g(q̆) = arg min
a,b

n∑
i=1

|| b

jωi + a
− W̆ (jωi)||2. (37)

Note that the estimates of ā, b̄ in principle may be biased
or unbiased. If the end goal were simply to obtain bias-free
or approximately bias-free estimates of (ā, b̄), then naturally
one could contemplate introducing a bias correction to form
new estimates (â, b̂). The technique for obtaining that bias
correction has been explained in Section III.

However, if our interest is in obtaining estimates (indeed,
preferably bias-free estimates) of the real and imaginary parts
of W (jω0), then this requires a second function, call it h,
with components hr, hi which maps (â, b̂) to the estimate of
the real and imaginary part of W (jω0), call them Ŵ r

0 , Ŵ
i
0,

according to

Ŵ r
0 + jŴ i

0 =
b̂

jω0 + â
. (38)

In order to compute a bias-corrected estimate Ŵ r
0 , Ŵ

i
0 of

W (jω0) directly from the data q̆, one then needs to consider
the composite function h(g) taking q̆ to (Ŵ r

0 , Ŵ
i
0). This

requires the computation of the first and second derivatives of
g and h. The full expressions for these derivatives as well as
an application to the computation of bias-corrected estimates
Ŵ r

0 , Ŵ
i
0 based on noisy measurements at two frequencies are

given in [1].
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Fig. 5. Bias(x̂0) (black ∗) and Bias(x̂0) (red +) versus frequency
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Fig. 6. Bias(ŷ0) (black ∗) and Bias(ŷ0) (red +) versus frequency

VII. CONCLUSIONS

A bias error occurs when a variable is estimated through
a nonlinear mapping of a related noisy variable. This bias
error can be reduced by the use of a correction term that
involves the second derivative of the nonlinear map. We have
applied this procedure to the estimation of a transfer function
at one frequency directly from the noisy measurement of
that transfer function at some other frequency. We have also
shown that this bias-correction procedure can be extended to
the case where the mapping from measurement to estimated
quantity is not known, but results from the minimization of a
differentiable criterion, as is typical in maximum likelihood
estimation.
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