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Abstract

This paper addresses a question that has been posed to us:“Is it neces-
sary to excite all reference signals for the identification of a multivariable
system operating in closed loop with a linear time-invariant controller?”
In this paper we follow a careful re-examination of the notions of identifia-
bility and informative experiments for multi-input multi-output (MIMO)
closed-loop systems, which provides a negative answer to this question.
Our analysis also allows to establish conditions on the controller complex-
ity that guarantee existence of a unique global minimum of the identi-
fication criterion in the absence of external excitation; these conditions
extend to the MIMO case conditions that were known for the SISO case.
We illustrate our results for 2-input 2-output systems by presenting var-
ious possible experiment designs that produce a unique global minimum
for the identification criterion.

1 Introduction

This paper re-examines the identifiability of closed-loop systems with a double
objective: (i) clarify the differences between several definitions of identifiability
and propose one that is realistic from a practical point of view; (ii) for the
case of multi-input multi-output (MIMO) systems, establish conditions on the
controller complexity and on the external excitation signals that guarantee that
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the asymptotic identification criterion has a unique global minimum at the true
parameter value. Our results shed new light on the experiment design question
for MIMO systems; in particular they provide an answer to the question raised
in the abstract about the necessity (or not) of excitating all external references.

Identifiability of linear systems operating in closed loop was a much studied
problem in the 1970’s and early 1980’s. Results in [24, 25, 21, 1] seemed to fully
answer all questions about the identifiability of closed-loop systems under differ-
ent feedback configurations and for different assumptions about the excitation
signals and the measured signals. Recently, there has been a renewed interest in
closed-loop identification in the context of least costly identification experiment
for control [5, 13]. Briefly speaking, this concept refers to achieving a prescribed
accuracy at the lowest possible price, measured in terms of the duration of the
identification experiment, the perturbation induced by the excitation signal, or
any combination of these.

In this context, our recent work has focused on experiment design questions
such as the respective contributions of the noise and of the external excitation
signal to the accuracy of the parameters and the transfer function estimates
[4, 19], and the necessary and sufficient conditions on the controller complexity
and on the excitation signals that make the data informative [8, 9, ?]. The
main contribution of this paper, which has its origins in the conference paper
[2], is to extend several of the earlier results on identifiability, informativity and
uniqueness of the global minimum to MIMO systems by addressing a series of
questions along the following lines: what are the exact experimental conditions
that are required to make a MIMO system identifiable? under which conditions
on the controller complexity can one identify a MIMO system without external
excitation? assuming that external excitation is required for reasons of either
identifiability or accuracy, is it necessary that all reference inputs be excited in
a MIMO system?

In addressing these questions, we have observed the need for a reassessment
of the definitions of identifiability that were in use during the 1970’s and which
apparently still influence today’s practice. Indeed, some of these definitions
are unnecessarily demanding in terms of a realistic identification setup. For
example, the main result in [25] states that in the case of a time-invariant
controller a MIMO closed-loop system is strongly system identifiable if and only
if all reference inputs are excited by persistently exciting signals. On the basis
of such results, it is assumed by some in the system identification community
that it is necessary to excite all external reference inputs if one wants to identify
a system under closed-loop conditions. We show in this paper that this is not
the case.

The reason for this is that for all practical purposes the definition of strong
system identifiability is unnecessarily demanding and has since been replaced by
the separate and more realistic concepts of identifiability of the model structure
and informativity of the data set : see e.g. [17]. Furthermore, our analysis will
show that a certain accuracy level can be obtained using a variety of possible
external excitation schemes including, possibly, no excitation at all, or excitation
by just one of the external reference signals.
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The definitions of identifiability and informativity given in Section 2 are very
general, in that they apply equally well to the situation where the system is in
the model set as to the situation where it is not. However, the results of our
paper, on convergence to the true system and on experiment design issues, are
restricted to the situation where the system is in the model set.

Our first contribution, therefore, is one of clarification. We recall the def-
initions of identifiability as they have evolved, and adopt the complementary
definitions of identifiability of a model structure, and informativity (or richness)
of the data set, which have been prevalent in the engineering community of sys-
tem identification over the last 20 years. These definitions allow one to separate
conditions on the parametric model structure (identifiability), and conditions
on the experiment (informativity). The separation of these two concepts shows
much more clearly what the user’s choices are. When the system is in the model
set, the combination of an identifiable model structure and informative exper-
iments yields, asymptotically, a unique global minimum for the identification
criterion.

Our second contribution is to show that for MIMO systems operating in
closed loop, if the controller is chosen of sufficient complexity with respect to the
chosen model structure and if this model structure is globally identifiable, then
a unique model can always be obtained without any external excitation, using
information from the noise source only. This is an extension to MIMO systems
of known results for SISO systems. These allow a significant relaxation of the
constraints on the experiment design. In particular, the separate excitation of
all external reference signals is not a necessary condition for convergence to a
unique global minimum. By adding external excitation at one or several of the
reference inputs, one can achieve the desired accuracy in a shorter time, as has
been shown in [20].

Our third contribution is to illustrate the possible experiment design choices
on a 2 × 2 closed-loop system. By particularizing our analysis to this case,
the respective contributions of each external signal to the overall identification
goal become more apparent. This illustrates the general concepts presented and
results in guidance for experiment design choices.

The outline of our paper is as follows. In section 2 we present the key con-
cepts of identifiability and of informativity of the data set. Section 3 establishes
convergence conditions for the situation where the true system is contained in
the model set. A discussion of various experimental conditions that ensure
convergence to the true system for two-input two-output systems operating in
closed loop is given in Section 4; these are illustrated with a numerical example.
Concluding remarks appear in Section 5.
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2 Identifiability and Informativity

2.1 Definitions of identifiability

The concept of identifiability has been given different contents in the economet-
rics and in the engineering literature [22] and the prevailing definition has also
evolved over the years. [16] establishes a useful distinction between consistency-
oriented and uniqueness-oriented definitions of identifiability.

Consistency-oriented identifiability deals with the question of whether the
parameter estimate θ̂N converges to the ‘true’ parameter θ0 in some stochastic
sense. This definition was prevalent until the late 1970’s when system identifi-
cation was perceived as an exercise in finding the ‘true system’. When identifi-
cation began to be viewed as an exercise in finding the best approximate system
within a parametrized model set, convergence to a true θ0 became meaningless,
since the model set may very well not contain a description of the true system,
i.e. there is no ‘true θ0’. This is a severe limitation of the consistency-oriented
definition of identifiability.

Uniqueness-oriented identifiability [3] deals with the question of whether the
model structure is such that the identification criterion has a unique global
minimum. While this no longer requires that the true system is in the model
set, the existence of a unique minimum imposes conditions both on the model
structure and on the data set used for identification.

From a users’ point of view, it is important to work with a definition that
clearly separates conditions on the model structure, and conditions on the exper-
imental conditions that generate the data. Thus, in the 1980’s, the consistency-
oriented definitions of identifiability were replaced by two separate concepts :
identifiability of the model structure and informativity of the data [17]. Identi-
fiability of the model structure means that the map from parameter to model is
injective, i.e. the same model cannot be described by two different parameter
vectors. In the engineering literature, the concept of structural identifiability
can be traced back to [3]. The choice of an identifiable model structure is en-
tirely a user choice; it does not depend on the experimental conditions or on
the identification criterion. Informativity of the data relates to the experimental
conditions: the input-output data are informative if they cannot be produced
by different models within the chosen model set.

These definitions, which we state formally in the remainder of this section,
are operational in the following sense. The user first selects a model structure
with the knowledge that it is identifiable. He or she then selects experimental
conditions that make the data informative with respect to that model structure.
The generation of informative data depends on the true system (since it is the
true system that generates the data), but also to a large extent on users’ choices:
open- or closed-loop configuration, complexity of the controller (in a closed-
loop setup), richness of the externally applied signals. These definitions do not
require that the system is in the model set. However, if the true system can be
exactly described within the chosen model structure, then the combination of
an identifiable model structure and of informative data yields an identification
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criterion which, asymptotically, has a unique global minimum. We now describe
the Prediction Error Identification (PEI) setup, and recall the definitions of
identifiability and informativity as described in [17, 18].

2.2 The identification setup

We consider that the data are generated by a true system S, which is described
by

y(t) = G0(q
−1)u(t) +H0(q

−1)e(t) (1)

where G0(q
−1) is a p×m causal, rational transfer function matrix, and H0(q

−1)
is a p× p stable and inversely stable transfer function matrix; it is also assumed
that H0(0) = I. To be precise, we shall define S , [G0(q

−1) H0(q
−1)]. The

signal y(t) ∈ Rp is the output of the true plant, u(t) ∈ Rm is the control signal,
while e(t) ∈ Rp is a zero-mean white noise input with diagonal covariance matrix
Λ = diag[λ1, λ2, . . . , λp], with λi > 0. This true system is under feedback control
with a stabilizing controller K(q−1), a m × p causal rational transfer function
matrix:

u(t) = K(q−1)[r(t) − y(t)]. (2)

where r(t) ∈ ℜp is the reference,which is a quasi-stationary signal [18].
The system (1) is identified using a model structure parametrized by a vector

θ ∈ Rd:
y(t) = G(q−1, θ)u(t) +H(q−1, θ)e(t) (3)

where G(q−1, θ) andH(q−1, θ) are, respectively, p×m and p×p rational transfer
function matrices parametrized by a vector θ ∈ Rd. For a given θ ∈ Rd,
M(θ) , [G(q−1, θ) H(q−1, θ)] is called a model, while the model structure M is
defined as a differentiable mapping from a connected open subset Dθ ∈ Rd to
a model set M∗:

M : θ ∈ Dθ −→M(θ) = [G(q−1, θ) H(q−1, θ)] ∈ M∗. (4)

It is assumed that the loop transfer function G0(q
−1)K(q−1) is strictly causal,

i.e. limz→∞G0(z
−1)K(z−1) = 0, and that the same holds for

G(q−1, θ)K(q−1) ∀θ ∈ Dθ. For brevity, we will most often drop the argument
q−1, thus referring to G(θ) and H(θ). The true system belongs to this model
set, S ∈ M∗, if there is a θ0 such that M(θ0) = [G0(q

−1) H0(q
−1)]. In our

definitions of identifiability, we shall not necessarily assume that S ∈ M∗. A
model M(θ) = [G(θ) H(θ)] uniquely defines the one-step-ahead predictor of
y(t) given all input/output data up to time t:

ŷ(t|t− 1, θ) = Wu(θ)u(t) +Wy(θ)y(t), where (5)

Wu(θ) = H−1(θ)G(θ), Wy(θ) = [I −H−1(θ)]. (6)

For later use, we introduce the following notation:

W (θ) , [Wu(θ) Wy(θ)], z(t) ,

[

u(t)
y(t)

]

(7)
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where W (θ) denotes the p × (m + p) rational transfer function matrix. Since
there is a one-to-one relationship between [G(θ) H(θ)] and [Wu(θ) Wy(θ)], a
model M(θ) will indistinctly refer to the pair [G(θ) H(θ)] or to the predictor
W (θ). The one-step-ahead prediction error is defined as:

ε(t, θ) , y(t) − ŷ(t|t− 1, θ) = H−1(θ) [y(t) −G(θ)u(t)] . (8)

Using a set of input-output data of length N , the estimate θ̂N is calculated via
the prediction error criterion [18]:

θ̂N = arg min
θ∈Dθ

1

N

N
∑

t=1

εT (t, θ)ε(t, θ). (9)

Under mild technical conditions on the data set this estimate converges w.p. 1
to a value θ∗ [18]:

θ̂N
N→∞−→ θ∗ , arg min

θ∈Dθ

V̄ (θ), (10)

with
V̄ (θ) , Ē[εT (t, θ)ε(t, θ)]. (11)

where Ē[f(t)]
∆
= limN→∞

1
N

∑N
t=1E[f(t)]

2.3 Identifiability of a model structure

Here we adopt the definition proposed in [18]; much of the paper serves to
explain why this is an operational definition.

Definition 2.1 A model structure M is globally identifiable at a value θ1 ∈ Dθ

if, for all θ ∈ Dθ, M(θ) = M(θ1) ⇒ θ = θ1. It is locally identifiable at θ1 if
M(θ) = M(θ1) ⇒ θ = θ1 for all θ in |θ − θ1| < ǫ for some ǫ > 0. It is globally
identifiable if it is globally identifiable at almost all θ ∈ Dθ.

This definition is a property of the parametrization of [G(θ), H(θ)]. It says
nothing about possible convergence to a value θ∗, as defined in (10), or to a
“true” parameter value θ0. The definition does not require that the system is
in the model set, but it applies of course also to the situation where S ∈ M∗.

We now provide another characterization of local identifiability. With W (θ)
defined as in (7), we introduce:

~W (θ) , [W1(θ) W2(θ) . . .Wp(θ)] (12)

where Wk(θ) denotes the k-th row of W (θ) with dimension m+ p. Thus, ~W is
a p(m + p) row vector of transfer functions. We also define the d × p matrix
ψ(t, θ) as:

ψ(t, θ) , −∂ε(t, θ)
∂θ

=
∂ŷ(t|t− 1, θ)

∂θ
(13)
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Using (12), the matrix ψ(t, θ) can be written as

ψ(t, θ) =
∂ ~W (θ)

∂θ
diag[z(t), z(t), . . . , z(t)] (14)

where ∂ ~W (θ)
∂θ

is a d×p(m+p) matrix of transfer functions, while diag[z(t), z(t), . . . , z(t)]
is a (m+ p)p× p block-diagonal matrix with z(t) in the diagonal blocks.

We now introduce the identifiability Gramian Γ1(θ) ∈ Rd×d:

Γ1(θ) ,

∫ π

−π

∂ ~W (e−jω , θ)

∂θ

∂ ~WH(e−jω , θ)

∂θ
dω (15)

where ~WH(ejω) denotes ~WT (e−jω). The following result shows an alternative
interpretation of local identifiability of a model structure; see problem 4G.4 in
[18] for a SISO version of this result.

Theorem 2.1 A parametric model structure M is locally identifiable at θ1 if
Γ1(θ1) is nonsingular.
Proof. For θ close to θ1 we can write

~W (e−jω, θ) = ~W (e−jω , θ1) + (θ − θ1)
T ∂

~W (e−jω , θ)

∂θ
+ σ(|θ − θ1|2) (16)

where limθ→θ1

σ(|θ−θ1|
2)

|θ−θ1|
= 0. Assume that for θ close to θ1 we have W (e−jω , θ) =

W (e−jω, θ1) for all ω. It then follows from (16) that (θ−θ1)T ∂ ~W (e−jω ,θ)
∂θ

+σ(|θ−
θ1|2) = 0 for all ω. Multiplying this equation by its conjugate transpose and in-
tegrating over ω yields

(θ − θ1)
T Γ1(θ1)(θ − θ1) = 0 (17)

If Γ1(θ1) is nonsingular, this implies θ = θ1.

2.4 Informative experiments for a model structure

If a model structure is globally identifiable at some value θ1, it means that the
model M(θ1) cannot be represented by any other M(θ) within the model set.
However, not all experiments allow to distinguish between M(θ1) and any other
model M(θ). Since we consider that the data are quasi-stationary, an exper-
iment refers to the data generation mechanism which defines the asymptotic
properties, and in particular the spectrum, of the joint input-output process
z(t) defined in (7); it does not refer to a particular set of N data.

Definition 2.2 An experiment z(t) is called informative with respect to a model
set M∗ if, for any two models W (1) and W (2) in that set,

E{|[W (1)(q−1, θ) −W (2)(q−1, θ)]z(t)|2} = 0 (18)

implies
W (1)(e−jω) = W (2)(e−jω) for almost all ω, (19)

where W (i)(q−1, θ) are defined from a model by (6)-(7).
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The definition means that there cannot be two different models within the
model set that give exactly the same predictions, when excited by the same
experiment. It is easy to show [18] that an experiment that yields Φz(ω) > 0
for almost all ω is informative for all model structures.
Comments: (i) The definition of informative experiment is with respect to a
given model set, not with respect to the true system, which may or may not
belong to the model set. In an identification experiment, one typically first
selects a globally identifiable model structure; this is a user’s choice. Experi-
mental conditions must then be selected that are informative with respect to
that structure; this is again a user’s choice. However, the data are generated
by the true system, in open or in closed loop. Thus, the conditions that make
a data set z(t) informative with respect to some model structure depend on
the true system, on the feedback configuration, and on the externally applied
signals.
(ii) Informative experiments guarantee that no two different models within the
set can generate the same predictions. A globally identifiable model structure
additionally guarantees that almost all models in the set are represented by a
unique parameter vector. The selection of a globally identifiable model struc-
ture, together with an experiment that is informative with respect to that model
structure then guarantees that, asymptotically, the minimum of the criterion is
almost surely unique, since the mapping from θ to M(θ) is injective at almost
every θ.

Now, suppose that the true system belongs to the model set (S ∈ M∗), that
is, M(θ0) = S for some θ0; then θ∗ = θ0. Moreover, if the model structure is
globally identifiable at θ0 and the experiment is informative enough with re-
spect to this model structure, then the parameter error converges to a Gaussian
random variable: √

N(θ̂N − θ0)
N→∞−→ N (0, Pθ), (20)

where N (a, b) represents a normal distribution with mean a and variance b and

Pθ = [I(θ)]
−1 |θ=θ0

, (21)

I(θ) = Ē
(

ψ(t, θ)Λ−1ψ(t, θ)T
)

, (22)

with ψ(t, θ) defined in (13). The matrix I(θ0) is called the information matrix.
In the remainder of this paper, we take (22) as the definition of the informa-
tion matrix I(θ) for any value of θ; of course, the relationship (21) between the
asymptotic covariance matrix and the information matrix holds only at θ = θ0.

For large enough N , it is customary to approximate the covariance of the
Gaussian random variable θ̂N − θ0 by

Cov(θ̂N − θ0) ≈
1

N
Pθ =

1

N
[I(θ0)]

−1 (23)

Thus, for a large enough data set, the inverse of the information matrix is a
measure of the accuracy of the estimated parameter vector. We therefore exam-
ine in more detail the role of the information matrix. Consider an identification
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experiment which generates quasi-stationary data z(t) with a power spectrum
Φz(ω). Combining (22), (14) and the definition of the noise matrix Λ yields:

I(θ) =
1

2π

∫ π

−π

∂ ~W (e−jω , θ)

∂θ
diag

[

λ−1
1 Φz(ω), . . . , λ−1

p Φz(ω)
] ∂ ~WH(e−jω , θ)

∂θ
dω

=
1

2π

p
∑

k=1

λ−1
k

∫ π

−π

∂Wk(e−jω, θ)

∂θ
Φz(ω)

∂WH
k (e−jω, θ)

∂θ
dω (24)

We can now state the following theorem.

Theorem 2.2 Consider an identification experiment where Φz(ω) is the spec-
trum of the data generated by this experiment and W (q−1, θ) is the model struc-
ture. Then I(θ1) > 0 if the following two conditions hold:
(i) the identifiability Gramian is nonsingular at θ1: Γ1(θ1) > 0;
(ii) Φz(ω) > 0 for almost all ω.
Proof: The result follows immediately by comparing (15) and (24) and using
the positivity of Φz(ω).

Comments: (i) The positivity of the information matrix at a value θ1 results
from the combination of the two ingredients that are required to insure con-
vergence to a unique minimum of an identification criterion at θ1: the local
identifiability of the model structure at θ1 and the informativity of the data
with respect to that model structure.
(ii) The conditions of Theorem 2.2 are sufficient but they are by no means nec-
essary. As we shall see later, condition (ii) is much stronger than is needed. As
for condition (i), expression (24) shows that it can be achieved if the rows of

one or several of the matrices ∂Wk(e−jω ,θ)
∂θ

are linearly independent.

3 Convergence to the true system

We now consider the situation where the system is in the model set: S ∈ M∗.
Thus there exists a parameter vector θ0 such that W (q−1, θ0) = W0(q

−1), where
W0(q

−1) is the one-step ahead prediction filter corresponding to the true system:
W0(q

−1) , [H−1
0 (q−1)G0(q

−1) I −H−1
0 (q−1)]. This means, equivalently, that

G(q−1, θ0) = G0(q
−1) and H(q−1, θ0) = H0(q

−1). In addition, we assume
that the model structure is globally identifiable at θ0. We combine these two
assumptions in a single statement.

Assumption 1 The model structure M is such that M(θ0) = S for some θ0
and it is globally identifiable at θ0.

Assumption 1 does not necessarily imply that the model M(θ) has the same
structure as the true system; it can be an overparametrization of S. For exam-
ple, consider that the true system is a single-input single-output ARX system
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described by (1 + 0.8q−1)y(t) = 0.5u(t− 1) + e(t). This system is contained in
the model set M∗ defined by the following ARMAX structure:

M(θ) : (1 + aq−1)y(t) = bu(t− 1) + (1 + cq−1)ε(t),

where θ , (a, b, c), which is globally identifiable at θ0 = (0.8, 0.5, 0). However,
the model structure (1+a1q

−1+a2q
−2)y(t) = (b0+b1q

−1)u(t−1)+(1+cq−1)ε(t)
is not globally identifiable at θ0. For MIMO systems, overlapping parametriza-
tions whose structure indices add up to the McMillan degree of the true system
are identifiable [6, 11]. However, conditions under which this remains true when
some structure indices are overestimated are more complicated to establish.

The following result shows the roles of informativity of data and of the
information matrix.

Theorem 3.1 Consider a model structure that obeys Assumption 1, and let
V̄ (θ) be defined by (11). Then
(i) θ0 is the unique minimum of V̄ (θ) if the data are informative with respect
to the model structure M.
(ii) θ0 is an isolated minimum of V̄ (θ) if I(θ0) > 0.
Proof: (i) Let ŷ0(t) denote the optimal predictor for the true system (1), such
that for this true system: y(t) = ŷ0(t) + e(t). The asymptotic cost criterion
V̄ (θ) can then be written as

V̄ (θ) = Ē[|y(t) − ŷ(t|t− 1, θ)|2]
= Ē[|ŷ0(t) − ŷ(t|t− 1, θ)|2] + trΛ. (25)

Clearly, θ0 is a global minimum of V̄ (θ), yielding ŷ0(t) = ŷ(t|t − 1, θ0) and
V̄ (θ0) = trΛ. Let θ̄ be another global minimum. This implies that Ē[|ŷ(t|t −
1, θ0)− ŷ(t|t− 1, θ̄)|2] = 0. Since the data is informative with respect to M, this
implies W (θ̄) = W (θ0). By the global identifiability assumption at θ0, this in
turn implies that θ̄ = θ0.
(ii) We compute the first and second derivative of V̄ (θ) - V̄ ′ and V̄ ′′.

V̄ ′(θ) = −2Ē

[

∂ŷ(t|t− 1, θ)

∂θ
ε(t, θ)

]

= 0 at θ = θ0. (26)

As for V̄ ′′(θ), it is a d× d matrix whose (k, j)-th element is

[

V̄ ′′(θ)
]

k,j
= −2Ē

{

p
∑

l=1

∂2ŷl(t|t− 1, θ)

∂θk∂θj

εl(t, θ)

}

(27)

+2Ē

{

∂ŷ(t|t− 1, θ)

∂θk

∂ŷT (t|t− 1, θ)

∂θj

}

Since ε(t, θ0) = e(t) and since e(t) is uncorrelated with the predictions up to
time t− 1, the first term of (27) is zero at θ = θ0. The result then follows, since
V̄ ′′(θ0) = I(θ0).

10



We can find ourselves in much more restrictive situations when applying
consistency-oriented notions of identifiability. Take the classical notion of strong
system identifiability [24, 25], which implies that the model estimate must con-
verge to the true system for all model structures that can represent the true
system. It was shown in [25] that, in the case of a closed-loop experiment with
a time-invariant controller, strong system identifiability can be achieved only if
all references are excited. This requirement is too strong to be practical, since
in practice the user selects a particular model structure.

Informativity of the data depends on the model structure and, in a closed-
loop experiment, also on the controller. It can be obtained in a number of
different excitation scenarios, as is discussed in the sequel.

3.1 Identification without external excitation: r = 0.

We first show that if one selects a model structure that obeys Assumption 1, and
if the identification is performed in closed loop without any external excitation
(i.e. r ≡ 0) but with a controller K(q−1) of “sufficient complexity”, then the
asymptotic criterion V̄ (θ) has a unique global minimum at the value θ0 for
which M(θ0) = S. First we state two technical lemma’s that will be needed
subsequently.

Lemma 3.1 [7] Let D(q−1) be a row reduced1 polynomial matrix of full row
rank and let ρ(q−1) = p(q−1)D(q−1) where p(q−1) is any polynomial row vector.
Then

deg ρ(q−1) = maxj:pj(q−1) 6=0[deg pj(q
−1) + kj ] (28)

where the degree of a vector is defined as the highest degree of any of its elements,
pj(q

−1) is the j-th entry of p(q−1), and kj is the degree of the j-th row of D(q−1).

Lemma 3.2 [15] Consider the Diophantine equation

AX +BY = 0, (29)

where A,B,X, Y are polynomial matrices, with X and Y given, and A and B

unknown. The general solution of this equation can be written as

B = −PX1, A = PY1, (30)

where X1, Y1 are a coprime solution of Y1X = X1Y and P is an arbitrary
polynomial matrix.

1See [14] for properties of polynomial matrices, such as coprime factorizations, column- or
row-reduced matrices, etc.
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Now, consider Definition 2.2 and assume that

Ē{|[W (θ1) −W (θ2)]z(t)|2} = 0. (31)

Remembering (7), introducing ∆Wu(θ1, θ2) , Wu(θ1)−Wu(θ2), ∆Wy(θ1, θ2) ,

Wy(θ1) −Wy(θ2), and substituting u(t) = −Ky(t), we can rewrite (31) as

Ē{|[∆Wy(θ1, θ2) − ∆Wu(θ1, θ2)K]y(t)|2} = 0. (32)

Since Φy(ω) consists of filtered white noise, it is generically nonsingular for
almost all ω. This implies, using Parseval’s theorem and considering ∆Wy ,
∆Wu and K as rational transfer function matrices, that

∆Wy(θ1, θ2) − ∆Wu(θ1, θ2)K = 0. (33)

Now let
[∆Wy(θ1, θ2) − ∆Wu(θ1, θ2)] = D−1 [B A] (34)

be a left coprime polynomial factorization withD(q−1) row reduced, and let lmax

and lmin be respectively the largest and smallest row degrees of the polynomial
matrix [B A]. We can then state the following theorem.

Theorem 3.2 Let the true system (1) be identified in closed loop with a feed-
back controller u(t) = −K(q−1)y(t) without external excitation, using a model
structure that obeys Assumption 1. Let kmax and kmin denote, respectively, the
maximal and minimal observability indices of any irreducible representation of
K(q−1). We then have the following results:
(i) if kmin > lmax then θ0 is the unique global minimum of the asymptotic cri-
terion V̄ (θ);
(ii) if kmax < lmax then θ0 is NOT the unique global minimum of the asymptotic
criterion V̄ (θ).
Proof: Let K = XY −1 be a right coprime factorization. Then, using equation
(34), (33) can be written as:

AX +BY = 0 (35)

where A ∈ R
p×m[q−1], B ∈ R

p×p[q−1], X ∈ R
m×p[q−1], Y ∈ R

p×p[q−1].
By Lemma 3.2, the general solution of (35) is

[B A] = P [−X1 Y1] , (36)

where K = Y −1
1 X1 is a left coprime row reduced factorization of K, P is an

arbitrary polynomial matrix in R
p×m[q−1], while kmin is the smallest row degree

of the matrix [−X1 Y1] [14]. Therefore:
(i) if kmin > lmax then by Lemma 3.1 the only solution to (35) is obtained by
setting P = 0 in (36), which implies ∆Wy = 0 and ∆Wu = 0 by (34). The
result (i) then follows from part (i) of Theorem 3.1.
(ii) if kmax ≤ lmax then by Lemma 3.1 there exist non-zero solutions P of (36).
With these solutions ∆Wy 6= 0 and ∆Wu 6= 0, which implies that the data are
not informative with respect to the model structure.
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Notice that the choice of a controller that satisfies the complexity require-
ment of the Theorem depends only on the model structure chosen by the user
and not on the true system. A similar result can be found in [21]. The condi-
tions obtained there are consistent with but slightly different from ours, because
they are based on a factorization of the model G(q−1, θ), whereas ours are based
on the factorization (34) of [∆Wy(q−1, θ) ∆Wu(q−1, θ)], which also involves the
noise model H(q−1, θ) .

Comment: The result of Theorem 3.2 provides an answer to the question raised
in the abstract: for a MIMO system it is not necessary to excite all reference
signals in order to converge to the unique global minimum θ0 which represents
the true system. The reason why this result may not be widely known lies
in the inheritance of another concept of identifiability which prevailed in the
seventies, namely that of strong system identifiability. In [25] and [12] necessary
and sufficient conditions have been derived for strong system identifiability of
time-invariant MIMO systems; in the case of a time-invariant controller, these
require the excitation of all references. Our motivation for writing this paper
was to show that, for all practical purposes, strong system identifiability is an
unnecessarily strong concept. Indeed, it requires that the parameter estimate
θ̂N converges asymptotically to a value that represents the true system for all

model structures that contain the true system. This means in particular
that such convergence must hold for models whose polynomial degrees are all
allowed to grow unbounded. In practice, the user will always fix an upper bound
to the polynomial degrees of his/her model structure.

3.2 Identification with external excitation: r 6= 0

We have just shown that closed-loop identification can be performed without
external excitation, provided a controller of sufficient complexity is chosen. How-
ever, by doing so one may have to collect many data to arrive at a prescribed
level of accuracy. Applying external excitation signals adds contributions to the
information matrix I(θ), and therefore decreases the covariance matrix Pθ for a
given data length N .

Condition (31) can be rewritten as follows, using Parseval’s theorem:

tr{
∫ π

−π

[∆Wu(e−jω , θ1, θ2) ∆Wy(e−jω , θ1, θ2)]Φz(ω)

×[∆Wu(e−jω, θ1, θ2) ∆Wy(e−jωθ1, θ2)]
Hdω} = 0. (37)

This implies ∆Wu(e−jω , θ1, θ2) ≡ 0 and ∆Wy(e−jω , θ1, θ2) ≡ 0 if Φz(ω) > 0 for
almost all ω. The conditions under which this holds depend on the experimental
conditions, and therefore on the true system [G0 H0] and on the controller K.
The expression of z as a function of the true closed-loop system is as follows:

z(t) ,

(

u(t)
y(t)

)

=

[

I K

−G0 I

]−1 [
K 0
0 H0

](

r(t)
e(t)

)

(38)
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Since G0K is strictly causal, the first matrix is always nonsingular. Assuming
that K has full normal rank, then Φz(ω) > 0 for almost all ω if Φr(ω) > 0 for
almost all ω. However, while this is a sufficient condition for the generation
of informative data, it is by no means necessary. A complete analysis of the
conditions that make closed-loop data, obtained with a time-invariant controller,
informative with respect to a MIMO model structure is based on the analysis
of the linear dependencies of the matrix (see (37)):

[∆Wu(ejω , θ1, θ2) ∆Wy(ejω , θ1, θ2)]Φz(ω) (39)

when the data are generated by (38). Such an analysis for single-input single-
output systems has been performed in [9, ?], where necessary and sufficient con-
ditions for informativity of the data have been given. In multivariable systems
this analysis is more complex, and obtaining meaningful necessary conditions for
this case is still an open issue. Yet, it is clear from (39) that informativity can
be obtained in different scenarios. Informative data can be obtained from noise
excitation only (if K is sufficiently complex), from some or all of the reference
signals, or from a combination of reference signals and noise excitation. This is
further illustrated by detailing the case of two-input two-output systems, which
is done in the next Section.

4 Informative experiments for two-input two-

ouput systems

We make the simplifying assumption that the noise sources that affect the dif-
ferent components of the measured outputs are uncorrelated. We thus consider
that the true system S is described by

S : y(t) = G0(q
−1)u(t) +H0(q

−1)e(t)

=

[

G11 G12

G21 G22

]

u(t) +

[

H1 0
0 H2

]

e(t) (40)

where G11, G12, G21 and G22 are causal, rational transfer functions that are
not necessarily analytic outside the unit circle, and H1 and H2 are stable and
inversely stable transfer functions. The system S is controlled by the controller
u(t) = K[r(t) − y(t)]. The control signal can then be expressed as follows:

u(t) = U [r(t) −H0e(t)]

=

[

U11 U12

U21 U22

]

[r(t) −H0e(t)] (41)

where the input sensitivity function U is U = K(I +KG0)
−1, where I ∈ R2×2

is the identity matrix. Assume that we perform an identification of the system
(40) using a model structure M that is able to represent this true system, i.e.
S = M(θ0) for some θ0. For this model structure we have

ψ(t, θ) = [ψ1(t, θ) ψ2(t, θ)], Λ = diag(λ1, λ2)
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P−1
θ = Ē

(

2
∑

i=1

ψi(t, θ0)λ
−1
i ψi(t, θ0)

T

)

. (42)

Define, for convenience of notation, gθ
ij =

∂Gij(θ)
∂θ

∣

∣

∣

θ=θ0

and hθ
i = ∂Hi(θ)

∂θ

∣

∣

∣

θ=θ0

.

Combining (40), (41) and (8) yields:

ψi(t, θ0) = Hi
−1
[(

gθ
i1U11 + gθ

i2U21

)

r1(t) +
(

gθ
i1U12 + gθ

i2U22

)

r2(t)

−
(

gθ
i1U11H1 + gθ

i2U21H1

)

e1(t)

−
(

gθ
i1U12H2 + gθ

i2U22H2

)

e2(t) − hθ
i ei(t)

]

, Πi,r1
r1(t) + Πi,r2

r2(t) + Πi,e1
e1(t) + Πi,e2

e2(t) (43)

with the obvious definitions for Πi,r1
, Πi,r2

, Πi,e1
and Πi,e2

. Assuming that r1(t)
and r2(t) are independent, and using Parseval’s relationship, from (42) and (43)
it is possible to express P−1

θ as

P−1
θ =

1

2π

(

2
∑

i=1

∫ π

−π

λ−1
i [Πi,r1

ΠH
i,r1

Φr1
+ Πi,r2

ΠH
i,r2

Φr2
]dω

)

+
1

2π

(

2
∑

i=1

∫ π

−π

λ−1
i [Πi,e1

ΠH
i,e1

λ1 + Πi,e2
ΠH

i,e2
λ2]dω

)

. (44)

This expression clearly shows the separate contributions of the two reference
excitations and the two noise signals to the information matrix (i.e. the inverse
of Pθ). Identification by noise excitation alone is possible if the second term in
(44) is positive definite; this depends on the controller satisfying the complexity
requirement of Theorem 3.2. More information (and hence more accuracy) is
obtained when reference signals are added, but this often carries a price.

4.1 Experiment design for two-input two-ouput systems

Let us assume a situation where the system is to be identified in closed loop and
some accuracy level is imposed on the parameter covariance matrix. Further-
more, let us assume that it is not possible (or reasonable) to perform this task
without external excitation. This situation may happen when the controller is
not complex enough with respect to the chosen model structure, or when the
data length required to satisfy the prescribed level of accuracy is unreasonably
large. We explore whether it is possible to attain the desired accuracy by ex-
citing one of the reference signals only. There are many industrial examples
where it is not of interest to excite all reference signals. A typical example
is when the product quality and the production rate are the reference signals
or directly determined by them. It might then be reasonable to perform the
identification experiments with an additional excitation on the production rate
while not interfering with the product quality.

A generic experiment design problem that tackles the above mentioned ques-
tion can be formulated as follows. Let us consider that the chosen model struc-
ture is identifiable at θ0 and that the data length is fixed to a given N . The
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objective is to construct a closed-loop experiment informative enough subject to
constraints on: (i) model quality - here we shall require trPθ ≤ γ; (ii) reference
signals - it may be desirable to limit some reference signals or not to excite some
of them at all; we will impose that one of the reference signals, say r1(t), is equal
to zero; (iii) other signals in the loop - typical examples are the constraints on
the input and/or the output signals.

This problem can be expressed as an LMI optimization problem. Let us
consider the parametrization of the reference signal spectra [5],

Φri
(ω) = Rri

(0) + 2

m
∑

k=1

Rri
(k)cos(kω) ≥ 0 ∀ω (45)

where i = 1, 2, and m is a positive integer. To ensure that the constraints in
(45) are satisfied, the KYP lemma can be used [26, 23]. The quality constraint
trPθ ≤ γ may be expressed more conveniently as

γ − TrZ ≥ 0
[

Z I

I P−1
θ

]

≥ 0
(46)

with Z being the slack variable. When the parametrization (45) is used, the
inverse covariance matrix (44) is given by

P−1
θ (θ0) = M e1

p (θ0) +M e2

p (θ0) +M r1

p (θ0, 0) +M r2

p (θ0, 0)

+
m
∑

k=1

Rr1
(k)M r1

p (θ0, k) +
m
∑

k=1

Rr2
(k)M r2

p (θ0, k) (47)

where

M ei
p (θ0) = λi

∫ π

−π

Π1,ei
ΠH

1,ei

2πλ1
+

Π2,ei
ΠH

2,ei

2πλ2
dω,

M ri
p (θ0, 0) = Rri

(0)

∫ π

−π

(

Π1,ri
ΠH

1,ri

2πλ1
+

Π2,ri
ΠH

2,ri

2πλ2

)

dω,

and

M ri
p (θ0, k) =

∫ π

−π

(

Π1,ri
ΠH

1,ri

πλ1
+

Π2,ri
ΠH

2,ri

πλ2

)

cos(kω)dω,

with i = 1, 2. Observe that P−1
θ (θ0) in (47) is linear in Rr1

(k) and Rr2
(k). Since

the constraint (46) is convex in P−1
θ and the spectra Φr1

and Φr2
are finitely

parametrized, it is straightforward to incorporate this constraint into the convex
optimization procedure.

Due to actuator limitations it is common to include energy constraints on
the input signals

1

2π

∫ π

−π

Φui
(ω)dω ≤ Eui

, i = 1, 2. (48)
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These can be expressed linearly in Rr1
(k) and Rr2

(k) as follows. From (41) and
(45) one has:

1

2π

∫ π

−π

Φui
(ω)dω = M e

ui
(θ0) +M r1

ui
(θ0, 0) +M r2

ui
(θ0, 0)

+

m
∑

k=1

Rr1
(k)M r1

ui
(θ0, k) +

m
∑

k=1

Rr2
(k)M r2

ui
(θ0, k) (49)

where, for i = 1, 2 :

M e
ui

=

∫ π

−π

λ1

2π
|Ui1|2|H1|2 +

λ2

2π
|Ui2|2|H2|2dω,

M rj
ui

(θ0, 0) = Rrj
(0)

∫ π

−π

λ1

2π
|Uij |2dω,

and

M rj
ui

(θ0, k) =

∫ π

−π

λ1

π
|Uij |2cos(kω)dω.

4.2 Case study

The following ARX structure is considered:

A1y1(t) = B11u1(t) +B12u2(t) + e1(t)

A2y2(t) = B21u1(t) +B22u2(t) + e2(t)

with A1 = 1 − 0.9535q−1, B11 = 0.744q−1, B12 = −0.8789q−1, A2 = 1 −
0.9329q−1, B21 = 0.5786q−1, B22 = −1.302q−1; e1(t) and e2(t) are mutually
independent zero-mean white Gaussian noises with λ1 = λ2 = 0.05. We consider
the parameter vector θ = (b11, b12, b21, b22, a1, a2)

T . The plant is controlled
by a 2 × 2 PI controller which stabilizes the plant without other performance
considerations:

K(q−1) =

(

0.55−0.45q−1

(1−q−1)
0.15−0.08q−1

(1−q−1)
0.24−0.18q−1

(1−q−1)
−0.35+0.33q−1

(1−q−1)

)

. (50)

We want to attain the desired accuracy by exciting only one of the reference
signals. Thus, we parametrize the reference signal spectra as in (45) with i =
1, 2, and m = 50, and we consider the following experiment design problem [13]:

minimize
Φr1

,Φr2

Er2

subject to trPθ ≤ γ
1
2π

∫ π

−π
Φui

(ω)dω ≤ Eui
, i = 1, 2

1
2π

∫ π

−π
Φr2

(ω)dω ≤ Er2

Φr1
(ω) = 0, Φr2

(ω) ≥ 0 ∀ω

(51)
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where γ = 1, Eu1
= Eu2

= 0.4. The solution r2(t) with the minimal energy
required to satisfy the constraints yields Er2

= 1.777. A Monte-Carlo simulation
is performed to verify the results of the experiment design: r1(t) is kept equal
to zero, while r2(t) is generated according to the solution of the optimization
problem (51). The data length is N = 1000. The trace of Pθ computed by 500
Monte-Carlo runs is trPθ = 1.047. This slightly exceeds the bound γ = 1; this
is due to the fact that the optimization problem is solved using the asymptotic
covariance expression (see (21)-(22)), while the Monte-Carlo computations are
based on estimates obtained from 1000 data. The simulation confirms that it is
not necessary to excite both reference signals to attain a given accuracy level.

5 Conclusions

The origin of this work was to take a critical look at a statement made to us:
“For the identification of a MIMO system based on closed-loop data collected
with a time-invariant controller, it is necessary to excite all reference inputs.”
We have shown that this is not the case. In analyzing this question, we have
made a clear distinction between identifiability of a model structure, and selec-
tion of experimental conditions that make the data informative with respect to
that structure. We have shown that, once a model structure is selected, the user
can always chose a controller of sufficient complexity that will make the data
informative with respect to that model structure; we have quantifed this state-
ment, by providing a result which gives the required controller order. We have
also shown that the addition of reference signal excitation may serve to improve
the quality of the parameter estimates, but that several excitation scenarios can
typically be considered.
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