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Stable Adaptive Observers for Nonlinear 
Time-Varying Systems 

Abstract-We describe an adaptive observerlidentifier for single 
input-single output observable nonlinear systems that can be transformed 
to a certain observable canonical form. We provide sufficient conditions 
for stability of this observer. These conditions are in terms of the 
structure of the system and its canonical form, the boundedness of the 
parameter variations, and the sufficient richness of  some signals. We 
motivate the scope of our canonical form and the use of our observer/ 
identifier by presenting applications to time-invariant bilinear systems, 
nonlinear systems in phase-variable form, a biotechnological process, and 
a robot manipulator. In each case we present the specific stability 
conditions. 

I. INTRODUCTION 

GOAL in many practical applications is to combine a priori A knowledge about a physical system with experimental data to 
provide on-line estimation of states or parameters of that system. 
A common situation is where one has a single input-single output 
(SISO) nonlinear time-varying deterministic system described as 
follows: 

where u ( t )  E D, E R is a measurable input, possibly 
constrained to a subspace D, of W, y ( t )  E W is a measurable 
output, z ( t )  E Rn is a state vector, p ( t )  E Dp C Rq is a vector 
of unknown bounded possibly time-varying parameters, and f (  e )  

is a smooth vector field on a smooth n-dimensional manifold. The 
parameters p( t )  can be (possibly unknown) functions of z( t ) ,  as 
in the example of Section VII, but they will be treated as unknown 
possibly time-varying parameters. A priori knowledge may 
constrain p (  t )  to be in a subspace Dp of Wq. The structure of the 
system [i.e., the function f(.)] is known from physical laws or 
from the user’s experience, i.e., from a priori knowledge. Most 
often also, the states z,( t )  and some of the unknown parameters 
p l ( t )  in (1.1) have a clear physical significance. Therefore, 
throughout this paper, we shall call (1.1) the given physical 
system, abbreviated GPS. 

Now the user may want to combine this a priori knowledge 
with on-line measurements of U( t )  and y (  t )  to solve one of the 
following three problems. 

Problem I :  The on-line estimation of the nonmeasured states 
z , ( t )  of the GPS from input-output (I/O) data. This is called 
adaptive state estimation. 

Problem 2: The on-line estimation of some of the physical 
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parameters p I  ( t )  of the GPS from I/O data. This is called adaptive 
parameter identification. 

Problem 3: The design of an adaptive observer for the on-line 
estimation of the states, possibly in an equivalent state-space 
model. This is called adaptive observer design. It is to be 
distinguished from Problem 1 in that the states here need not be 
the physical z, of the GPS; their estimates might be needed for a 
state-feedback controller, say. 

Problem 2 makes sense only if the GPS is parameter identifi- 
able, while Problems 1 and 3 require that, in addition, for all U ( t )  
E D, and all p (  t )  E Dp the GPS be locally observable: see [ 11. 
We shall, therefore, make these assumptions throughout the 
paper. 

One commonly used method to solve these three problems is to 
augment the state z ( t )  with the parameter vector p ( t )  and to 
implement an extended Kalman filter (EKF): see, e.g., [2]. In our 
opinion, such an approach has several important drawbacks. 

1) A stability analysis for the EKF applied to the parameter 
estimation of a nonlinear system is very difficult and, to our 
knowledge, has never been performed. Even for a linear system, 
the EKF can diverge or lead to biased estimates; see [3]. 

2) The EKF is very expensive in computations and can be 
numerically ill-conditioned. 

3) The use of the EKF requires an a priori choice of a 
stochastic model for the time variations of the parameter vector 
p ( t ) .  This model may have no connection whatsoever with the 
physical reality. 

There is therefore a clear incentive to search for simpler 
adaptive observerdidentifiers that can be guaranteed stable. For 
linear time-invariant systems, stable adaptive observers have been 
proposed by, e.g., Luders and Narendra [4]-[6], Narendra [7], 
and Kreisselmeier [8], [9]. The robustness of these observers in 
the case of unmodeled fast parasitic modes has been analyzed by 
Ioannou and Kokotovic [ 101. 

Even in the case where f (.) is a known function of z ,  the design 
of asymptotically stable observers for general nonlinear systems is 
a very hard task; see [l 11. The purpose of this paper is to show 
that, for many nonlinear systems of the form ( l . l ) ,  Problem 3, 
and to a lesser eztent, Problems 1 and 2, can be solved using a 
special adaptive observedidentifier, presented in Section 111, 
which alleviates some of the disadvantages of the brute force EKF 
approach. This adaptive observer/identifier is an extension to 
nonlinear time-varying systems of the observer of Liiders and 
Narendra [5], which is known to be exponentially asymptotically 
stable (EAS) when applied to linear time-invariant systems; see 
[12]. The main advantages of our observer over the EKF are that: 

1) its stability can be proved under reasonable conditions on the 
GPS and, in particular, for arbitrarily fast parameter variations 
with the proviso, however, that some signals must be sufficiently 
rich; 

2) it is computationally much simpler than the EKF and, in 
particular, does not require the solution of a Riccati equation; 

3) it does not need any dynamical model of the parameter 
variations (although if such a model were given, it could easily be 
incorporated). 

A major feature of our approach is to transform the nonlinear 
GPS into a time-varying observable canonical form (called 
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AOCF) which has the property that it is linear in the unknown 
quantities. These can include states, parameters, or combinations 
thereof. An adaptive observer is then derived for this canonical 
form and the main issue is to prove its global stability. This 
involves conditions on the structure of the GPS and on the input 
that guarantee the boundedness of these unknown quantities and 
their time variations, the persistence of excitation of certain 
regressors, the output reachability of certain auxiliary filters, etc. 
The proofs use mostly standard arguments on adaptive systems 
analysis and persistence of excitation, and extensions of these. 

The outline of the paper is as follows. In Section I1 we describe 
the canonical form (AOCF) mentioned above, and motivate its 
use, while in Section 111 we show how an adaptive observer/ 
identifier can be derived from this form. In Section IV we give a 
precise and complete set of sufficient conditions on the GPS and 
on the signals for the global stability of the observerhdentifier. 
Our adaptive observer can be applied to all GPS for which a 
transformation to the AOCF exists. In order to show that this 
includes a very large number of observable and parameter 
identifiable nonlinear systems, we illustrate this with a number of 
examples: 

the class of time-invariant observable bilinear systems in 
Section V; 

the class of observable second-order nonlinear systems in 
"phase variable form" in Section VI; 

a nonlinear biotechnological process in Section VII; 
a nonlinear robotics application in Section VIII. 

In each case, we will specify which of Problems 1, 2, or 3 can 
be solved and we will give conditions on the system (or the classes 
of systems) that guarantee the global stability of the adaptive 
observer and/or identifier. 
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11. TRANSFORMATION TO A CANONICAL REPRESENTATION 

A .  The Adaptive Observer Canonical Form 

From now on we consider the nonlinear systems of the form 
(1.1) which can be transformed, by a time-invariant possibly 
nonlinear smooth transformation 

into the following equivalent form, which we shall call for 
convenience the adaptive observer canonical form (AOCF): 

In (2.1) and (2.2): 
x ( t )  E kin is a state-vector of the same dimension as z ( t ) ;  
$ ( t )  E $1" is a vector of unknown time-varying parameters, 

which will be estimated on-line; 
U(  t )  E $is is a vector of known functions of U (  t )  and y (  t ) ,  

e.g., ~ ( t )  = , [u( t ) ,  y ( t ) ,  y 2 ( t ) ,  siny(t)]; 
O(w(t)) is an n x m matrix whose elements are all of the 

form Q,,(w(t)) = a; ,w( t )  for known constant, possibly zero, 
vectors a,] E W; 

R is a known constant n x m matrix of the following form: 

, k,l (2.3) 

where k2, ' . . , k,  are known constants and F(c2, . . . , c,) is a 

(n  - 1 )  x (n  - 1) constant matrix whose eigenvalues can be 
freely assigned by a proper choice of the constant design 
parameters c2, . . . , c,. Typically, F = diag ( -  c2, . . . , - c,) 
with c, > 0; 

g ( t )  E R" is a vector of known functions of time; 
T( .) E $1, +" is a continuous smooth transformation from ( z ,  

p )  to (x, 0) parametrized by n - 1 parameters c2,  . . * ,  c, . 
For the system (2.2) we shall describe an adaptive observer and 

provide sufficient conditions on the GPS (1.1) to guarantee its 
global stability. This will provide a solution to Problem 3. If the 
transformation T in (2.1) is such that the inverse transformation 

z = H , ( x ,  0, c2, . . ., c,) (2.4) 

exists, is unique, and is continuous for all U E D,, then this will 
simultaneously solve Problem 1. If the inverse transformation 

P = H ~ ( x ,  8, ~ 2 ,  . . ., c,)  ( 2 . 5 )  

exists, is unique, and is continuous for all U E D,, this will also 
provide a solution to Problem 2. The applications in Sections VI1 
and VI11 will illustrate these points. 

B. Discussion and Motivation 

The structure of the AOFC (2.2) might appear very strange. Its 
crucial feature is its linearity in the unknown quantities x( t )  and 
O(t); notice that Q(w(t)) is a possibly nonlinear or time-varying 
but known function of the data u ( t )  and y ( t ) .  

The motivation for introducing the AOFC is twofold. 
First its linear structure in x( t )  and e( t )  allows us to derive a 

globally stable adaptive observerhdentifier for (2.2), which we 
describe in Section 111. This observer is closely related to one 
initially derived by Liiders and Narendra [5] for linear time- 
invariant systems. An important new issue in our extension of the 
Luders-Narendra observer is that of identifiability of O( t )  in the 
structure (2.2); this is related to the persistence of excitation of the 
regression vector that will appear in the adaptive observer. 
Conditions on R and Q that guarantee this persistence of excitation 
(and are needed for global stability of the observer) will be 
derived in Section IV-C. They are one of the contributions of our 
paper. 

Another major contribution is to show that large numbers of 
SISO nonlinear systems of practical interest can be transformed 
into AOCF, even though some effort may be needed to find the 
transformation T: this will be illustrated in Sections V-VIII. The 
systems that can be transformed to AOCF include all time varying 
observable linear systems, all time-invariant observable bilinear 
systems, as well as second-order nonlinear systems in phase 
variable form (such as many mechanical systems). 

111. THE ADAPTIVE OBSERVER 

For the system described by (2.2) we propose the following 

State Estimation: 
adaptive observer. 

(3.lb) 
where cI is an arbitrary positive constant, and c2, * . . , c, are 
chosen such that the eigenvalues of F(c,, * * * , c,) are in the open 
left-half plane. 

Parameter Adaptation: 

m =rP( t ) J ( t )  (3 .1~)  

where r is an arbitrary positive definite matrix, normally chosen 
as r = diag (y,, * * . ,  ym), y, > 0. 
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Auxiliary Filter: V( t )  is an (n - 1) x m matrix and ‘p( t) is an 
m-vector; they are the solution of the following auxiliary filter: 

v ( t )  = FV(t) + Q(w(t)) ,  V(0) = 0 (3.ld) 

‘p ( t )  = Vr( t )  k + il :(U ( t ) )  (3. le) 

where Q, is the first row of Q(w( t ) )  and fi are the remaining rows, 
i.e., 

(3.2) 

Recall that F and k are submatrices of R defined by (2.3), that 
Q(o(t)) and g( t )  are known functions and-that y = x1 is 
measured. It is worth noting that, most often, Q(w( t ) )  contains a 
number of zero elements. If, in addition, F is diagonal, then the 
corresponding elements of V ( t )  are identically zero, and the 
solution of (3.ld), (3. le) simplifies considerably. 

IV. STABILITY CONDITIONS FOR THE ADAPTIVE OBSERVER 

In this section we derive a complete set of sufficient conditions 
on the GPS and on the signals for the global stability of the 
observer (3.1). To do this, we first have to derive stability 
conditions for the error system. Then we shall transfer these 
stability conditions to conditions on the GPS; this will involve 
analyzing the output reachability of the auxiliary filter. 

A .  The Error System 

following auxiliary error vector: 
We define f P x - 2, 8 i2 8 - 8 and we introduce the 

z* 4 k- [ 4 . (4.1) 

Using (2.2) and (3.1) we can then write, after some lengthy but 
straightforward manipulations, the following error system: 

where 

Note that dim V ( t )  = ( n  - 1) x m. Recall also that F is a 
constant matrix whose eigenvalues are completely determined by 
the parameters c2, , c, , which are at the designer’s disposal in 
the transformation (2.1) that leads to the AOCF (2.2). As 
mentioned before, F will often be diag ( -  c2, * e ,  - c,,) with ci 
> 0 and all different. It is then immediately clear from the error 
system that, if 8 = 8, the error 3 is the solution of a linear time- 
invariant equation whose poles are entirely determined by the 
design parameters cI ,  * * e ,  c,,. 

B. Stability Conditions on the Error System 

We describe a set of sufficient conditions that guarantee: 
i) that the homogeneous part of the error system is exponen- 

ii) that the error system is therefore BIBS.stable; 
iii) that 3 and 8 are therefore bounded if 8 is bounded. 

tially asymptotically stable (EAS); 

We denote 
- -  

(4.4) 

and SA any set of signals r ( t )  such that: 
1) r ( t )  is bounded tlt 2 0; 
2) i ( t )  is bounded tlt 2 0 except possibly at a countable 

number of points { t i }  such that min I ti - til 2 A > 0 for some 
arbitrary fixed A. 

Theorem 4.1: If 
i) c1 > 0 and c2,  * a ,  c, are chosen such that Re [hi(F)] < 0 vi 
ii) ‘p(t)  E SA 
iii) there exist positive constants a and T such that tlt 2 0 

iv) there exists a positive constant MI such that tlt 2 0 

I V(t)e(ol < MI < 00 (4.6) 

then there exist finite constants K1 , K 2 ,  and K3 such that 

1) le(t)l < Kl(e(0)l + K 2  v t  2 0 (4.7a) 

2) lim sup le(t)l < K3Ml .  (4.7b) 

Proof: We first consider the homogeneous part of (4.2). By 
eliminating f* we can write (with a slight, but by now standard 
abuse of notation) 

I’M 

m= - r (P( t )H(s) {qT( t )~( f ) }  (4.8) 

where H(s) = er(sI - R*)-Iel = l/s + cI [with e: P (1 0 
0)l. 

We note that H(s)  is strictly positive real (SPR) since cI > 0. 
Using Theorem 2.3 of [13], it now follows from assumptions i)- 
iii) that the homogeneous part of the error system (4.2) is 
exponentially asymptotically stable. The result (4.7) then follows 
from Theorem 3.1, p. 105 of [14], using assumption iv) and the 
relation (4.1) between f* and 2. 

The remainder of this section is concerned with transferring the 
conditions of Theorem 4.1 to stability conditions on the GPS and 
its representation in AOCF. 

C. An Output Reachability Condition 

We first give a structural condition on the AOCF which 
guarantees the output reachability of the auxiliary filter (3. Id), 
(3.le). This in turn will ensure that q ( t )  is persistently exciting 
[cfr. condition iii)] when w(t )  is sufficiently rich. We define the 
following m x m matrix S(w(t)):  

where [see (3.ld), (3.le)l 

sl=ill, s j=krFJ-2Q,  j = 2 ,  * e * ,  m. (4.9b) 

Theorem 4.2: The auxiliary filter (3.ld), (3.le) is output 
reachable from w( t )  if and only if S(o( t ) )  has full column rank 
over W, i.e., iff there exists no constant m-vector 0 # 0 such that 
S(w(t))O = 0. 

Proof: Denote by t ( t )  the vector made up of all nonzero 
elements of V( t ) ,  arranged in arbitrary order, and let dim C; = q. 
Since each element of f i (w( t ) )  and Q,(w( t ) )  can be written as 
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a'w(t), it follows that (3.ld), (3.le) is equivalent with 

( t )  = A  t; ( t )  + B w  ( t )  
(4.10) 

IP(t)=CE(t)+Dw(t) 

where A ,  B ,  C ,  D are constant matrices of dimensions q X q, 
q x s, m x q, and m x s, respectively. Therefore, (3.ld), 
(3.le) is output reachable from w(t) if and only if (4.10) is so, 
i.e., if and only if the following m x ms output reachability 
matrix for (4.10) has full rank: 

M = [ D  CB CAB . . .  CA"'-ZB]. 

Now, because (3.ld), (3.1e), and (4.10) are equivalent, it follows 
that 

s:(w(t)) = Q ? ( W ( t ) )  =Dw(t)  

.T (w( ' ) )=~ ' (w( t ) ) k=CBw( t )  

~ T ( o ( t ) ) = ~ ' ( w ( f ) ) F ' k = C A B w ( t )  

etc ... 
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Equivalently 

S ( 4 ) )  = [r. I : ' ] M T .  (4.11) 

The system is output reachable if and only if there exists no p # 0 
such that MTp = 0. The result follows immediately from (4.11). 

Comment 4.1: Note that Theorem 4.2 is a condition on the 
structure of the canonical form (2.2), since k ,  F, R I  , and R are all 
defined by R and R in (2.2). Hence, the output reachability of the 
auxiliary filter of our adaptive observer can be checked right from 
the start. 

w' 

D. Conditions on the GPS for  the Stability of the Adaptive 
Observer 

Using Theorems 4.1 and 4.2, we can now spell out conditions 
on the GPS, the transformation Tof (2. l) ,  and the signals that will 
guarantee global stability of our adaptive observer. 

We distinguish between conditions on the system (which can be 
checked beforehand) and conditions on the signals. 

Structural Conditions (On the GPS and the Transformation 

S. I :  The GPS (1.1) is BIBO stable. 
S.2: The GPS and the transformation Tare  such that 

T): 

S.2.1: the elements of w(t)  are bounded functions of u ( t )  
and Y ( t )  

S.2.2: R and R in (2.2) make S(w(t))  in (4.9) of full column 
rank over $I (i.e., the auxiliary filter (3.ld), (3.le) is output 
reachable). 

S.3: The parameter variation p(  t )  and the transformation Tare 
such that 

l e ( t ) (  < MI< 00 for all t 2 0. 

Conditions on the Signals: 
SI.1: u ( t )  E SA for some A > 0. 
S1.2: There exist positive constants y and T such that 

5:" W(7)W7(7) d7 2 y1>0 V t  2 0 (4.12a) 

with 

(4.12b) 

where 6 > 0 but otherwise arbitrary, and q is the number of 
elements of V( t )  which are not identically zero. 

Theorem 4.3: If the conditions S.l-S.3 and 3 . 1 ,  SI.2 are 
satisfied, and if the design parameters c1, . * . , c, are chosen such 
that c1 > 0 and Re [Xi(F(c2, . . , c,))] < 0 V i ,  then there exist 
positive constants K1 and K2 such that (4.7) is satisfied. 

Proof: The proof consists of checking that the conditions i)- 
iv) of Theorem 4.1 are satisfied. i) is obvious. cp( t )  is the output of 
the BIBO filter (3. Id), (3. le) driven by elements of Q(w( t ) )  which 
are all of the form CY 'w (  t )  for some real CY. Therefore, cp( t )  E SA 
by S.2.1, SI.l, and S.l, and hence ii) is satisfied. Since V ( t )  in 
(3.1) contains q nonzero elements, the auxiliary filter can be 
modeled by a vector differential equation such as (4.10) with dim < = q. By S.2.2 the auxiliary filter is output reachable. Condition 
iii) then follows from S1.2, using Theorem 4.2 of Mareels and 
Gevers [15]. Finally, iv) follows from S.3 and the stability 
assumption on F. 

In the remaining sections we shall apply our observer to a 
number of nonlinear systems. In each case we shall specialize the 
structural stability conditions to the specific application. 

As for the stability conditions on the signals: condition SI. 1 can 
of course always be met; 3.2 is a condition on the sufficient 
richness of u ( t )  and on the unknown GPS. Explicit conditions can 
only be given in specific cases. Using some recent results of [15] 
we shall derive conditions on the GPS and on u ( t )  which will 
entail SI.2 for three out of our four applications. The purpose in 
presenting these applications is twofold: first to show that many 
realistic applications can be transformed to the AOCF (2.2); 
second to show that for these nonlinear applications all the 
required stability conditions can be satisfied provided the parame- 
ter variations are not too fast. 

v. APPLICATION TO BILINEAR SYSTEMS 

Consider that the GPS is a time-invariant observable bilinear 
system described by 

i(O=M(p&f)z(t) + u(t)N(p.W)z(t) +K(px)uW 
Y ( t )  = ZI (0 (5.1) 

where A4 and N are constant n x m matrices and K is a constant 
n-vector, which depend on the constant but unknown irectors of 
physical parameters p M ,  p N ,  and p ~ ,  respectively, and where 
u ( t )  E SA for some A.  Then it was shown by Williamson [16] 
that there exists a constant nonsingular matrix TI such that, with 
{ = Tlz ,  the GPS (5.1) is equivalent with 

(5.2a) 

(5.2~) 

Note that ( 5 . 2 )  is a special case of the following "observer form" 

y=zl .  (5.3) 
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Therefore, by applying the transformation described in the 
Appendix, (5.2a) will be transformed to the AOCF (2.2) with R 
and Q as in (A. 10) and (AS), g( t)  = 0 and 8 and x given by 

where 
and, using (5.2b), 

and t l  are defined in the Appendix, a 2 ( a l ,  * . - a,,) 

b(x)=BTx+ TIK. (5 .5 )  

We can now apply the adaptive observer to this AOCF; the 
stability conditions are given in the following theorem. 

Theorem 5 .  I: Let the GPS be given by (5.1). Then (5.1) can be 
transformed into AOCF by a constant transformation T.  The 
adaptive observer (3.1) for this system is then globally stable (i.e., 
(4.7) is satisfied) if the following conditions hold. 

B.I: The GPS (5.1) is BIBS stable. 
B.2: The coefficients c1 , . . . , c,, are all positive and c2, - , c,, 

are all different. 
B.3: There exists T > 0 such that for all t and for all s, 7 E ( t ,  

t + T ) ,  IIGx(s) - Gx(~)ll < E for E > 0 and Sufficiently small. 
B.4: U( t)  E SA for some A > 0 and U( t )  is sufficiently rich of 

order 2n, i.e., there exist constants t l ,  (Y > 0 and T > 0 such 
that, for any 6 > 0, the vector 

satisfies 

A T i l+T$(~)$T(~)  d7 2 (YI vt  2 t , .  

Proof: The existence of the transformation T follows from 
the discussion above. B. 1 implies S. 1. The structure of 52 and R, 
together with B.2, imply S.2. It follows from (5.4) and (5.5) that 

where B and TI are constant. Now, B. 1 and B.4 imply that there 
exists y such that 

(5.7) 

Hence, S.3 is satisfied. SI. 1 follows from B.4. Instead of proving 
SI.2, we prove directly that ( ~ ( 7 )  in (3. le) is persistently exciting: 
see condition iii) of Theorem 4.1. We note that in this case the 
regression vector cp( t )  takes the special form 

14 G l lMl l lzl+ lulllNlllzl+ I lKl l IUI G Y < W *  

U I .  L Y  s+c2 S+C, s+c2 s+c, 
c P T ( t ) =  y ~ ... - y U U . . .  - 

Condition (4.5) now follows from B.3 and B.4 using Corollary 
4.2 and Theorem 6.2 of [15]. 

Comment 5.1: Conditions B.3 and B.4 essentially tell us that 
the regressor p ( t )  will be persistently exciting if u ( t )  is 
sufficiently rich and if )I  GY(t)ll is uniformly sufficiently small, 
i.e., if the bilinear system does not deviate too much from a linear 
one. 

Comment 5.2: Theorem 5 .  I tells us under what conditions the 
adaptive observer of Section I11 is globally stable for the AOCF 
obtained from the GPS (5.1). This gives a comp_lete solution to 
Problem 3: it provides bounded estimates P and 8. By (5.4) and 
(5.3, this yields bounded f, 6, and 6. Whether Problems 1 and 2 
can also be solved therefore depends on whether the constant 
transformation TI has a unique inverse for z andlor p ;  see Section 
11-A. 

VI. APPLICATION TO SECOND-ORDER NONLINEAR SYSTEMS 

Suppose the GPS has the following form: 

j;(O+a1(3, Y1 P, t)Jw+a2(3, YI P, t ) y ( t ) = b ( 3 ,  Y, P,  t )u ( t )  

(6.1) 

where a 1 ,  cy2, and b are functions of y ,  y, t and possibly of an 
unknown parameterp(t), and where u(t) E D, E SA for some A 
> 0. The important point is that we shall treat a l ,  a2, and b as 
unknown time-varying parameters. Systems of the form (6.1) 
have applications in mechanics and robotics. 

We observe that the GPS can be written in the “observer form” 
(5.3) 

( Y = z I  

where 

a l = a l ,  a 2 = ~ 2 - ~ 1  

z1=y, z2=3+(Y1y. (6.3) 

The form (6.2) can now be transformed into AOCF (see the 
Appendix) and the adaptive observer of Section 111 can be applied. 
The following theorem states the stability conditions for the 
observer. 

Theorem 6. I: Let the GPS be given by (6.1). Then this system 
can be transformed to AOCF. The corresponding adaptive 
observer (3.1) is then globally stable if the following conditions 
hold. 

P.I: The system (6.1) is BIBO stable. 
P.2:lhll <KK,Ih21 < K , l h l  <K,lill g K f o r a l l t a n d f o r  

P.3: u( t )  and y ( t )  belong to SA for some A > 0. 
P.4: There exist 6 > 0, to > 0 and a1 > 0 such that Vt 2 to 

K Sufficiently small. 

I:’* W(7) WT(7) d7 2 a l l  

where 

WT(7) =- [U su S 2 U  ?U] 
(s+rI3 

for some arbitrary y > 0. 
Proof: See [17]. 

Comment 6. I: Sufficient conditions for BIBO stability (P. 1) 
can be expressed in terms of bounds on the parameters a I ( t ) ,  
a2 ( t ) ,  and b( t ) ;  see [17]. Conditions P.2 and P.4 will guarantee 
that the regression vector p ( t )  of the adaptive observer is 
persistently exciting; condition P.2 states that the parameters must 
vary slowly enough. 

Comment 6.2: Theorem 6.1 provides a complete solution to 
Problems 3 and 1. In particular, ityields on-line estimates of j (  t)  
using the transformations z( t )  = Tx(t) ,  (A.6), (A. 1 l),  and (6.3). 
For systems of order higher than 2, the relationships (6.3) 
between the derivatives of y and the states zi will depend upon 
derivatives of the a;, and therefore only Problem 3 can be solved 
for such systems. 

VII. APPLICATION TO A NONLINEAR BIOTECHNOLOGICAL SYSTEM 

A fermentation is a process of growth of a biomass by the 
consumption of an appropriate substrate under suitable environ- 
mental conditions. A critical issue in controlling fermentation 
processes is that cheap and reliable sensors for on-line measure- 

T T  I I  
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ment of the main biological variables (i.e., biomass, substrate, or 
byproducts concentrations), are most often not available. The use 
of adaptive observers as “software sensors” for some of these 
variables can therefore constitute a valuable alternative. Here we 
apply our adaptive observer to one such problem. A more 
complete overview of several different adaptive observers applied 
to a variety of biotechnological problems can be found in [18], 

The growth of biomass in a continuous stirred tank reactor is 
most often described by the following second-order model (with a 
unit flow rate): 

1191. 

Fig. 1. 

where z I ,  z2 ,  u l ,  u2 ,  pz, p3 are, respectively, the substrate 
concentration, the biomass concentration, the substrate feed rate, 
the biomass feed rate, the yield parameter, and the maintenance 
parameter. The time-varying parameterPo = plzl is known as the 
“specific growth rate. ” It has been described by many different 
analytical expressions in the literature; among the most commonly 

(7.6b) -x2+(1 - C d Y  
93 

22 = 

(c2 - 2 - e l x i  - c2) + e2 
PI = (7 .6~)  

used expressions are ‘93 22 

P*ZI 
Km + ~1 

the Monod law: po(z1,z2, t ) = -  

P*ZI the Contois law: po(z~,zz, t ) = -  
K Z 2  + 21 

(7.2) (7.6d) 

Therefore, on-line estimates of z2, pI , p z ,  p3 can be recovered 
from on-line estimates of x2, e l ,  0 2 ,  0 3 ,  thereby solving Problems 
1 and 2. 

(7.3) 

Stability of the Observer: On the basis of physical consider- 

F.1: The specific growth rate is positive and bounded: 
where Km, K,  are positive Constants and P* is the maximum 
growth rate (which depends on temperature, pH, . * a ) .  

One problem of practical interest is to design an adaptive 
ations, the following assumptions are quite realistic. 

0 Q p0(zl, z2, t )  Q Po v zI,  z2, t .  observekdentifier f i r  the on-line estimation of <( t ) ,  p1  ( t ) ;  p 2 ,  
and p3 from on-line measurements of uI ( t ) ,  u2( t ) ,  and z1 ( t ) ;  this 
is Problems 1 and 2 as described in Section 11. We shall now show 
that our adaptive observer can Solve these problems without 
making any assumption on a particular structure for po(zI  , z2, t ) .  

Transformation to AOCF: We first transform the GPS (7.1) 
into AOCF as follows: 

F.2: p2, p3 constant; pz > 0; p2p3 Q 1. 
F.3: The derivative o f p ,  is bounded 

/5/ Q M < W V t .  

XI =21 (7.44 F.4: The biomass and substrate feed rates fulfill the following - 
conditions: 

XZ = (1 - cZ)z1 -P3ZZ (7.4b) a)p2p3urnaX Q ui + ~ 2 1 ~ 2  < urn, 
b) til and tiz E SA for some A 
c) U = (uI u2) is sufficiently rich in the sense of assumption el = - PI - z2 + (c2 - 2) (7.44 

Pz B.4. 
F.5: The initial conditions z1 (0) and zz(0) are such that 

(7.4d) 
z1(0) Q Urnax ~ ~ ( 0 1  Q ~2~rna.x. 

e3 = -p3 .  (7.44 Then, under these assumptions, the adaptive observer (3.1) 
applied to the AOCF (7.5) can be shown to be globally stable 
(i.e., the conditions S.1-S.3 and SI1, SI2 hold) by combining 
appropriately : 

This leads to the following AOCF: 

a trivial extension of Lemma 1 in [20] 
Theorem 3.2 of chapter 4 in [ 141 
Corollary 4.2 and Theorem 6.2 of [15] [ z ; ]  = [ ‘‘z] + [ :2] [ Theorem 4.2 of this paper. 

(7.5) 
VIII. APPLICATION TO A ROBOT MANIPULATOR 

We consider an application to a telescopic arm in a vertical 
plane which performs a “pick and place” operation; see Fig. 1. 
We call Mthe  mass of the load, f ( t )  the variable length of the arm, 

friction coefficients, CY$ and k, the stiffness coefficients, u1 and u2 
the voltages applied to the electrical motors in the joint and the 
arm, respectively. Assuming that the time constants of these 

Note that the transformation (7.4) is uniquely invertible as y ( t )  the angle with vertical axis,  CY^ and kF the viscous 
follows: 

1 
y=x1.  

P3= -03 (7.6a) 

I 
- T r - ~  1 1 -- -11 1 1  



656 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. I, JULY 1988 

motors are negligible, the torque in the joint and the longitudinal 
force in the arm are TI = a,uI and T2 = kmu2, respectively, 
where am and k,  are unknown constants. We assume that the arm 
mass is negligible w.r.t. the load. 

Then, the equations of motion are as follows: 

MI2y + 2MIly + C Y F ~  + a s y  + Mlg sin y = amuI (8.1) 

MI+k,J+k, l -Mg COS y - y 2 M I = k m ~ 2 .  (8.2) 

We consider an application where the angular position y( t ) ,  the 
length l( t ) ,  and the voltages uI ( t )  and u2( t )  are measured on line, 
where the load M i s  known, and where it is desired to estimate the 
angular speed j t (  I), the longitudinal speed I( t ) ,  the coefficients 
aF, as, kF, k,, and the motor parameters C Y ,  and k, . The idea of 
performing an experiment to estimate the mechanical parameters 
of a robot is typical in robotics applications. 

We now rewrite (8.1) and (8.2) as follows: 

g .  UI j j + a 1 j r + a 2 y + -  sin y = a m  - 
I MIz (8.3) 

(8.4) 
U2 

M 
i + a 3 i + a 4 ~ - g ~ ~ ~ ~ = k , -  

where 

kF ks 
a,=% a 4 ( t ) = - - j 2 .  M 

( 8 . 5 )  

We now apply the following transformation T: 

XI =Y 

x2=jr++w-c2)Y 

x , = l  

x4 = i+ (Qj - c4)l 

81 =cz-a1 

e2 = & I -  (a2 + c201) 

e, = a, 

e 4  = c4 - a3 

e5 = a4 + c4e4 

e6 = k,. 

Equations (8.3) and (8.4) can then be written in the following 
two AOCF: 

[::I = [: - l C 2 ]  [ ::] 
+[: ; ][SI.[ - 

Y4 I I 0 I ,̂  .̂ 

Using the adaptive observer of Section 111 on both AOCF (8.7) 
and (8.8), we obtain the following on line estimates: 

j = f 2  + e ,  y 

i= f4 + $,I 
&F = MI2 (C2 - 81 ) - 2Mli 

Grn = e 3  

/ f ~ =  M(C4 - 8 4 )  

E, = M(e5 - ~4 8 4 )  +I’ 
E m  = 86. 

Therefore, the adaptive observer provides a solution to Prob- 
lems 1 and 3 and, partially, to Problem 2. We shall not derive the 
explicit stability conditions here. 

IX . CONCLUSIONS 

We have shown how a large number of observable nonlinear 
SISO systems can be transformed to a “canonical form” that has 
the crucial property of being “linear in the unknown quantities.” 
We have then shown how an adaptive observer, inspired by an 
earlier observer for linear time-invariant systems, can be applied 
to this transformed system. Our main contribution, besides this 
canonical form, has been to establish a precise set of sufficient 
conditions for global stability of our observer. In conclusion, we 
should like to point out two limitations of our present theory, 
which may also be avenues for further research. 

First, it is not clear how general our AOCF is. We have worked 
with numerous observable nonlinear models, originating from 
practical applications, for which a transformation to AOCF could 
be found. In this paper, we have tried to convince the reader of the 
wide applicability of this canonical form by presenting four 
examples of very diverse nonlinear models or classes of models. 
However, we have not been able to prove that any observable 
system can be transformed to AOCF and it would be interesting to 
find the exact conditions on the GPS that make it equivalent to an 
AOCF. 

Secondly, it appears from our stability theorems that stability of 
the adaptive observer will be guaranteed for arbitrarily fast 
parameter variations, as long as they are bounded. This is an 
important feature, which contrasts with the more classical result 
on time-varying systems (see [21]), which roughly states that if an 
error system, say, is exponentially stable for all values of a 
parameter p(  t )  in a compact set, then there exists a 6 such that the 
system remains exponentially stable if I @( t )  I < 6. This 6 could be 
arbitrarily small, while our bounds on or I el can be arbitrarily 
large. However, there is a condition on sufficient richness of u ( t )  
in all our theorems which introduces an upper bound on the 
allowable speed of parameter variation. 

APPENDIX 

TRANSFORMATION FROM (5.3) TO THE AOCF (2.2) 

First observe that (5.3) can be rewritten as 

where 

T 
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with obvious definitions of a(z, t )  and b(z ,  t )  and where 

w T = [ u  y ]  (A.4) 

r y  0 - 0  0 . -  01 1 . (A.5) 
* .  0 : . .  0 

Q(w)  = 

The transformation from (A. 1) to AOCF proceeds in two steps. 
Step I :  We apply a similarity transformation z = Tx initially 

proposed by Luders and Narendra [4] in their derivation-of an 
adaptive observer for linear time-invariant systems. Let T be a 
constant n x n matrix defined as follows: 

where tl E Rn-I. The column vector 

LI 
is made up of the coefficients of I I : = ,  (s + c;), while the column 
vector tj is made up of the coefficients of IIyZ2 (s + ci) for 

j = 2, * . , n. The coefficients c2, . * e ,  c, are those appearing in 
the transformation Tof  (2.1); they are all different (which implies 
that is nonsingular), but otherwise arbitrary. Then, with z = 
Tx, (A.l)  is equivalent with (see [4]) 

i#j 

l 1  r_-__l_------_______- 
m , :  l . . . .  

y=xi (A.7) 

where d(w) = T-lQ(w) and the constant vector mT S [ml  . . . 
m,] is uniquely defined from (c2,  * . . , c,) by - -  

T m = l  ‘d I . 
L A  

Step 2: It follows from (A.3) and (AS)  that 

- T-Ia(z ,  t )  !3(w)8 4 T - 1 Q ( w ) 8 = Q ( w )  [ T’lb(z, t )  ] . (A.9) 

(A. 10) 

with 

(A. 11) 

Notice that the transformations from z to x, and from fi to 0 are 
invertible, since T and m depend only on the known constants c2 ,  
* . . , c, . This means that if the GPS is given in the form (5.3), any 
solution to Problem 3 also solves Problems 1 and 2. 
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