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A Sufficient Condition for Simultaneous 
Stabilization 

V. Blondel, G. Campion, and M. Gevers 

Abstract-In this note, we study the following problem, “Under what 
conditiods) is it possible to find a single controller which stabilizes k 
single-input single-output linear time-invariant systems pi(s) ( i  = 
1, e, k)?”. We introduce the concept of avoidance in the complex plane 
and use it to derive a sufficient condition for R systems to be simultane- 
ously stabilizable. A method for constructing a simultaneous stabilizing 
controller is also provided and illustrated by an example. 

I. INTRODUCTION 
Simple questions cannot always be simply answered. In this 

note, we give a very partial answer to a simple question in 
control theory which, for being open for ten years, does not 
seem to have a simple answer. The question is known under the 
name of simultaneous stabilization problem and is the following, 
“Under what conditiods) is it possible to find a single controller 
c(s) which stabilizes k SISO linear time-invariant systems p,( s) 
( i  = 1,. . . , k)?”. 

When k = 2 a tractable necessary and sufficient condition, 
known as the parity interlacingproperty, exists (see [12], 1181, [15]). 
The problem becomes harder when k 2 3 and most papers on 
the simultaneous stabilization problem deal either with neces- 
sary or with sufficient conditions ([21, [41,[91, 1101, and [161). 
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The connection between interpolation in the complex plane 
and the simultaneous stabilization problem was pointed out by 
various authors ([5]-[8]). In the same spirit, we present the 
problem in this note as an avoidance problem between complex 
valued functions. Roughly speaking, a set of k SISO linear 
time-invariant systems {pl(s),-*-, pk(s)}  will be shown to be si- 
multaneously stabilizable if and only if there exists a k + l th 
system pk+  &) which avoids, in a sense that we will define, the 
systems p l ( s ) ; . - , pk ( s )  for all s in the extended closed right-half 
plane. With this view of the problem we will prove a new 
sufficient condition under which k systems are simultaneously 
stabilizable. 

A method for constructing a simultaneous stabilizing con- 
troller is provided and illustrated with an example. 

11. NOTATIONS-DEFINITIONS 

W(s) is the set of real rational functions. C, is the extended 
complex plane C U {a} adequately topologized. Cl is any subset 
of C,. We shall suppose throughout this note that Cl is symmet- 
ric with respect to the real axis (if s E Cl then S E a), that it is 
closed, simply connected, contains (4 and that its complement 
in C, contains at least one value of R U {m}. is to be thought 
of as the complement in C, of a region of stability. A real 
rational function f(s) E W(s) is a-stable if it has no poles in Cl 
(we draw the reader’s attention to the fact that &stability is 
defined by other authors in exactly the opposite way). S ( 0 )  is 
the set of all 0-stable functions and N O >  is the set of functions 
that are in S(Cl) and that have their inverse in S(Cl): they are 
the units of the ring S(n). 

111. AVOIDANCE AND INTERSECTION 

Immediate checking shows that, whatever Cl, S(n) is a com- 
mutative ring. It is also known that under our hypothesis on a, 
the field of fractions of S(0)  is R(s) (see e.g., [13, p. 501). This 
means that if p ( s )  E R(s) then there exist n(s) ,  d(s)  E S ( a )  
such that p ( s )  = ( n ( s ) / d ( s ) )  where n(s )  and d(s )  have no 
common zeros in Cl. Such a fractional decomposition of p ( s )  is 
called an Cl-coprime decomposition. We may now define what we 
mean by the intersections of two functions pl(s),p2(s) E R(s) 
in 0. 

Definition: Let pl (s ) ,  p2 ( s )  E W(s) and let n,(s) ,  d,(s) E S(Cl) 
be fractional &coprime decompositions of p , ( s )  i = 1,2. The 
intersections of p, (s )  and p J s )  in are the zeros of n,(s)d2(s) 
- d l ( s )n2( s )  E S(Cl) in Q. If n,(s)d,(s) - d l ( s )n2( s )  E U ( W ,  
then pl(s) and p J s )  have no intersections in fl and we say that 
they avoid each other in Cl. 

This definition may look somewhat mysterious. In fact, it is 
very natural and the procedure to compute the intersections 
between systems is very simple. Consider pl(s), p 2 ( s )  E R(s) 
and decompose p J s )  = ( n l ( s ) / d l ( s ) )  and pz ( s )  = (&)/dz(s)), 
where n,(s) ,  d,(s)  are polynomials with no common zeros ( i  = 

1,2). The finite intersections of p l ( s )  and p2($ )  in are simply 
the zeros in Cl of the polynomial nl(s)d2(s)  - dl(s)n2(s) ,  
whereas the possible additional intersections at infinity may be 
checked by inspection of the relative degree and gain of the 
functions. For example, the rational functions p, (s )  = (2s/(s + 
1Xs - 1)) and p,(s)  = ( l /s  - 3) have their intersections at the 
zeros of 24s  - 3) - (s + 1Xs - 1) = s2  - 6s + 1 and at the 
point at infinity since pl(m) = p2(m) = 0. 
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IV. SIMULTANEOUS STABILIZATION 
A controller c(s) E R(s) is said to be an R-stabilizing con- 

troffer of p ( s )  E R(s) if and only if all the transfer functions 
p(s)c(sXl + p(s)c(sN-l,  c(sX1 + p(s)c(s))-’  and p(sX1 + 
p(s)c(s))-’  are in S(R). This notion of R-stabilization is strongly 
connected to that of avoidance in 51. 

Lemma: Let p(s ) ,  c(s) E R(s). Then the controller c(s) inter- 
nally &stabilizes p ( s )  if and only if -c-l(s) avoids p ( s )  in n. 

Proofi Let p ( s )  = (n,(s)/d,(s)) and 4 s )  = (n,(s)/d,(s))  
be R-coprime decompositions of p ( s )  and c(s). It is well known 
that 4s) internally R-stabilizes p ( s )  if and only if n,(s)n,(s) + 
d,(s)d,(s) E U ( 0 )  (see (131). This last condition is satisfied if 

As a consequence of this lemma, the systems p , ( s )  E R(s) 
(i = 1,. . . , k )  are simultaneously 0-stabilizable if and only if 
there exists a c(s) E R(s) such that -c-’(s) avoids p,(s) in R 
(i = 1, ..., k) .  In the next theorem, we exploit this fact by 
providing a condition under which k systems are simultaneously 
R-stabilizable, The underlying idea is the following: a finite set 
of systems is simultaneously R-stabilizable if and only if there 
exists an additional “system” which avoids all of them in R. 
Suppose now that in a set of k systems {p l ,*** ,pk}  one of the 
systems (say p , )  avoids all the others in R. Then by the lemma 
the systems p 2 ,  p3 ,”- ,  Pk are simultaneously R-stabilizable by 
-p;’. In fact it is then possible to do more than that: it is then 
possible to find an R-stabilizing controller for the whole set 
(p , , . . . ,  p k } .  In addition to this, if one of the systems pl,”-, P k  is 
strictly proper then the resulting controller is proper. This is 
essentially what is contained in the next theorem. 

Theorem: Let p, (s )  E R(s) (i = l;.., k )  and suppose that there 
exists a j (1 I: j I k )  such that p,(s) avoids p , ( s )  in R (i = 

l;.., k and i # j ) .  Suppose also that one of the systems p, (s )  E 

R(s) (i = l , . . . ,k)  is strictly proper. Then the systems p,(s) 
( j  = 1, ... , k )  are simultaneously a-stabilizable by a proper con- 
troller. 

Proat Suppose without loss of generality that j = 1. Find an 
R-coprime fractional decomposition of pl(s), p , ( s )  = 
(nl(s)/dl(s)) with n,(s), d,(s) E S(R). We know that under our 
assumptions on R, S(R) is an Euclidean ring (see [131 for more 
details). Hence, there exist x(s) ,  y ( s )  E S(R) such that 
n, ( s )x ( s )  + d , ( s ) y ( s )  = 1. Since p,(s) avoids p, (s )  in R ( i  = 

2;.-, k )  we have n,(s)dl(s) - d,(s)n,(s) E U(R) ( i  = 2;.-,  k )  
and we define u,(s) n,(s)dl(s)  - d,(s)n,(s) E U(R) (i = 
2;--, k) .  The set R is closed in the extended complex plane C, 
and therefore S := mini=2,-,k(infsc.lu,(s)l/sup,, nlx(s>n,(s) + 
y(s)d,(s)l) is well defined and strictly greater than zero. We 
choose E with 0 < E < S and claim that q(s )  := (nl(s) - 
~ y ( s ) ) / ( d , ( s )  + 4 s ) )  E R(s) avoids p , ( s )  in R (i = l;.., k) .  
Indeed, if i = 1 then n,(sXd,(s) + 4 s ) )  - d,(sXn,(s) - 
~ y ( s ) )  = ~ ( n , ( s ) x ( s )  + d,(s)y(s))  = E E U(R). Whereas for i 
2 2 we have n,(sXdl(s) + EX(S) )  - d,(sXn,(s) - ~ y ( s ) )  = 

(x(s )n , ( s )  + y(s)d,(s)) .  By construction of E it is clear that 
u,(s) + e(x(s)n,(s) + y(s)d,(s))  + 0 for every s E R (i = 
2,- - - ,  k). This shows that U,($) + ~ ( x ( s ) n , ( s )  + y(s)d,(s)) E 
U(R) (i = 2 , - . , k )  and thus q(s )  = (n,(s) - ~ y ( s ) ) / ( d , ( s )  + 
EX(S) )  avoids p, (s )  in R (i = 2;*., k) .  But q(s )  also avoids p, (s )  
in R and thus -q-’(s)  is a simultaneous stabilizing controller 
for p, (s )  ( i  = l;..,k). It remains to show that - q - ’ ( s )  is 
proper, i.e., that q(s )  has no zeros at infinity. But this follows 
trivially from the fact that, by assumption, one of the p , ( s )  has a 

The assumption that one of the systems is strictly proper can 

and only if -c(s)-’ avoids p ( s )  in R. 

n,(s)d,(s> - d,(s)n,(s) + E(x(s)n,(s) + y ( s )d , ( s ) )  = u,(s) + E 

zero at infinity and that q ( s )  avoids p, (s )  at m E R. 

actually be removed without altering the final result (see (11 for 
this). 

V. EXAMPLE 

2/5s - 1) and p4(s) = (s2 - 3s + 1/7s2 - s + 2). It is easy to 
see that p, (s )  does not intersect any of the p, (s )  in 
(i = 2,3,4) and hence, by our theorem, the systems p , ,  p 2 ,  p 3 ,  
and p4 are simultaneously 63, ,-stabilizable. 

We construct a stabilizing controller for these systems by 
using the proof procedure of the theorem. 

A coprime fractional decomposition of pl(s) is given by p, (s )  
= (n,(s)/d,(s)) = ((l/s + l)/(s - l/s + 1)). A solution of the 
Bezout equation 

Let p , ( s )  = (l/s - l), p 2 ( s )  = (-s/3s + 11, p, (s )  = - (s - 

n , ( s ) x ( s )  + d , ( s ) y ( s )  = 1 

is given by x ( s )  = 2, y ( s )  = 1. 

E, we have that 
By the proof of the theorem, and for a small enough positive 

1 
n,(s> - E y b )  
d,(s) + 4 s )  

s+l - E  = 1 - E ( S  + 1) 
(s - 1) + 2 4 s  + 1) 

avoids pl, p z ,  p 3 ,  and p4 in We take E = 0.01 and get 
q ( s )  = (99 - s/lOls - 99). Finally, using our lemma we have 
that 

- q ( s )  := - 
+ 2E 

s + l  

1 101s - 99 
c(s) := -- = 

q ( s )  s - 99 

is a simultaneous stabilizing controller for p , ,  p 2 ,  p 3 ,  and p4. 
It is even possible to say more. p,(s) intersects p,(s) (i = 

2,3,4) at the unique point - 1 E C and hence the systems pl, 
p 2 ,  p 3 ,  and p4 are simultaneously R-stabilizable for any region 
R that does not contain { - 1). 
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vector, obtained by superimposing the columns of the matrix) or 
at an arbitrary K [6] to be equal to the rank of FK = 

[col CB, col CHB,... ,  col CH“B] ,  where H = A + BKC. The lat- 
ter expression is not very convenient for the calculation of the 
rank at a generic K; instead, we propose an alternative expres- 
sion of the form (DT)KFs where T is a function of K only and 
Fs is the reduced Plucker matrix of the system S and which is a 
complete invariant [4]. The relationship between the reduced 
Plucker matrix and the Markov parameters is established; in 
fact, it is shown that the Markov parameters may be computed 
by selecting certain rows of the Plucker matrix. It is shown that 
the rank of the Plucker matrix provides us with an upper bound 
for both the dimensions of the image of the complex and real 
PPM as well as an upper bound for the set {rank F‘}. As a result 
of the above properties, necessary tests for the pole assignability 
of a system S(A, B,  C )  are derived. 

11. STATEMENT OF THE PROBLEM 

Let S(A, B ,  C )  be the state space description of a linear 
strictly proper system of p inputs, m outputs, and n states. Let 
also G(s) = N(s)D(s)-’  be a coprime matrix fraction descrip- 
tion of the transfer function of the system. The pole placement 
problem is to examine whether there is a solution to the equa- 

det ( [ I ,  K l [  g::;]) = det ( [ I ,  K l M ( s ) )  

The Pole Placement Map, its Properties, and 
Relationships to System Invariants tion 

John Leventides and Nicos Karcanias 

Abstract-A number of new properties of the complex and real pole 
placement map (PPM) are derived which relate to the dimension of their 
images and relate them to known system invariants. It is shown that 
those two dimensions are equal and that their computation is equivalent 
to a rank determination of the corresponding differential. A new expres- 
sion of the differential of the PPM, allows the derivation of relationships 
between the Markov parameters and the Plucker matrix invariant of the 
system. Finally, conditions for pole assignability are derived, based on 
the relationships between the rank of the Plucker matrix and the rank of 
the differential of the PPM. 

I. INTRODUCTION 
The aim of this note is to establish a number of properties of 

the pole placement map under complex and real output feed- 
back and especially properties of the image of this map. One of 
the important questions connected with the pole placement 
problem under constant (or dynamic) output feedback, is the 
derivation of a reasonable measure for the size of the set of 
polynomials, which for a system S(A, B,  C )  of p-inputs, m-out- 
puts, and n-states can be assigned. We choose as a measure of 

= S” +pnsn-’ + a . .  +pl (2.1) 

where M ( s )  is the column reduced and least degree composite 
matrix for S, or equivalently, to the equation 

det ( Is  - A  - BKC) = s” + pnsn- l  + ... +pl (2.2) 

with respect to K E R p x m  and for a given ( p , ; * . , p l )  E R”. Of 
particular interest is to examine the size of this set of n-tuples. 
This is the same as in finding how large the image of the 
function ,y is. The function, x, from R P m  to R”, maps every K 
to (p , ; . . ,  pl) under the relation (2.1) or the equivalent relation 
(2.2) and is called the pole placement map (PPM) [2]. Its 
extension i ,  from CPm to C”, is called the complex pole 
placement map (CPPM). The image of CPPM can be examined 
more easily than that of PPM since there is sufficient algebraic 
geometry on the field of complex numbers. 

Example 2.1: Consider the strictly proper system S whose 
transfer function G(s) is expressed as a right coprime MFD as 

- 1  
l s s  ihe size of this set, the dimension of the image of the real or the 

the image of the complex PPM is different than that of the real 
PPM (and in fact the complex case is nicer than the real), it is 
shown that both dimensions of the real and complex PPM 
(which are invariants of the system) are the same. The above 
dimensions are also shown to be equal to the rank of the 
differential of the corresponding PPM at a generic feedback K. 
The rank of this differential at K = 0 was shown 181 to be equal 
to the rank of Fo = [col CB, col CAB,... ,  col C4”B] ,  (the ‘col’ 
operation on a matrix implies the formation of a composite 

complex pole placement map (PPM). Although the structure of = [ _8-3 :::I = [ o  

[::: :::I 
:z] * 

If we apply to G(s) constant output feedback 

then the closed-loop pole polynomial is given by 

p ( s )  = s4 + kZ1s3 + kzzs2 - k l z s  + kZ2kl1  - kl2kZ1 

and so, the pole placement map defined previously is given by 
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