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1 Introduction

Do you believe that simple questions always have simple answers? If you do,
you may consider with interest the following problem: let p1(s) = 0, p2(s) =
2
17
s−1
s+1

and p3(s) = (s−1)2
(9s−8)(s+1)

be three continuous time rational transfer func-

tions. Is it possible to find a single rational controller c(s) that simultaneously
stabilizes pi(s) i = 1, 2, 3 (i.e. such that the closed loop transfer functions
pi(s)c(s)(1 + pi(s)c(s))

−1 have no poles in the complex right half plane for
i = 1, 2, 3)? The question may not look too hard: it merely asks whether
or not three plants are simultaneously stabilizable by a single controller. At
present nobody is capable of answering such a question and this paper is
devoted to it.

Let us first state the problem clearly. We restrict our attention to sin-
gle input single output systems that are described by linear, time invariant,
rational but not necessarily proper transfer functions. Each one of these sys-
tems is thus represented by an arbitrary real rational function pi(s) ∈ R(s)
i = 1, ..., k. To control our systems we allow ourselves to use a dynamic but
time invariant, rational and not necessarily proper controller c(s) ∈ R(s).
Finally, our goal is to achieve continuous time closed loop internal stabil-
ity with the controller. That is, we want that, with the chosen controller
c(s), the four transfer functions pic(1 + pic)

−1, pi(1 + pic)
−1, c(1 + pic)

−1 and
(1 + pic)

−1 have no poles in the extended right half plane. Our question is
now: under what conditions on the pi(s), i = 1, ..., k is it possible to find such
a simultaneous stabilizing controller? This problem has been formulated for
some years now (see e.g. [33]) and, despite many efforts, it has remained
unsolved for k ≥ 3. It is nowadays commonly referred to as the simultaneous
stabilization problem and is recognized as one of the hard open problem in
linear system theory.

Although this paper does not solve the simultaneous stabilization prob-
lem, we provide some fresh angle of attack by introducing the concept of
avoidance, we produce a range of new necessary and sufficient conditions
and, most importantly, we prove a negative result by showing that, unlike
the case k = 2, the simultaneous stabilizability question of more than two
plants cannot be answered by just checking whether a controller exist such
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that the closed loop transfer functions have no real unstable poles.

We would like to draw the reader’s attention to the crucial point that we
allow ourselves the use only of a time invariant controller. It is not always
possible to simultaneously stabilize two or more plants with such a controller.
To overcome this limitation, alternative strategies have recently been devel-
oped with time varying controllers and we refer the reader to the existing
literature for more details on this subject (see for example [24] and references
therein). This paper will deal only with the time invariant case.

Historically, the first line of attack on the simultaneous stabilization ques-
tion was given through the solution of a seemingly unrelated question: ’when
is it possible to stabilize a single plant with a stable controller?’. This ques-
tion, known as the strong stabilization problem, was fully solved by Youla et
al. [39] in a now classical paper. A plant is stabilizable by a stable controller
if and only if it has an even number of real unstable poles between each pair
of real unstable zeros. Such plants are said to have the parity interlacing
property. A most remarkable feature of this condition is that it involves only
the real unstable poles and zeros of the plant.

The link between strong stabilization and simultaneous stabilization of
two plants was discovered, and used, by Saeks and Murray [30]. Roughly
speaking, two plants p1 and p2 are simultaneously stabilizable if and only if
the plant p1−p2 is strongly stabilizable. Since a tractable condition for strong
stabilization is known, this solves the problem of simultaneous stabilization
of two plants. This result was further extended to a multi-input multi-output
setting by Vidyasagar and Viswanadham [33] where it was shown that from k
plants pi, i = 1, ..., k it is possible to construct k− 1 plants p′i, i = 1, ..., k− 1
in such a way that the plants pi are simultaneously stabilizable if and only
if the p′i are simultaneously stabilizable by a stable controller. This equiv-
alence, while theoretically interesting, does not provide a computable test
for the simultaneous stabilization of three or more plants since we have no
criteria to decide if two or more plants are simultaneously stabilizable by a
stable controller.

After these results were obtained, the main contributions to simultaneous
stabilization this last decade have been in the form of necessary or sufficient
conditions for simultaneous stabilization (but never necessary and sufficient
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conditions). At present no tractable necessary and sufficient conditions exist
for simultaneous stabilization except for the case of two plants.

The simultaneous stabilization of two plants is equivalent, as stated above,
to the stabilization of a single plant by a stable controller. This idea can be
extended to the simultaneous stabilization of three plants. Modulo an avoid-
ance condition, the simultaneous stabilization of three plants is equivalent
to the stabilization of a single plant by a stable controller whose inverse is
also stable. Such a controller is called a unit controller. The problem of
finding a condition under which a plant p can be stabilized by a unit con-
troller can thus be seen as an intermediate step towards the solution of the
simultaneous stabilization of three plants. It is easy to see that a necessary
condition is that both p and p−1 must have the parity interlacing property,
i.e. p must have an even number of real unstable poles between each pair
of real unstable zeros and vice versa. Such plants are referred to as having
the even interlacing property. It is shown in [36] that this even interlacing
property condition is also sufficient to ensure that the plant p is stabilizable
by a stable controller with no real unstable zeros. Note that such controller
may have complex unstable zeros, so that the result of [36] does not prove
that the even interlacing property of a plant p is sufficient for stabilization
by a unit controller. This even interlacing property also ensures that there
exists a unit controller such that the closed loop transfer function has no real
unstable poles. In the same vein, [37] and [38] gives a condition on three
plants p1, p2 and p3 under which it is possible to find a single controller such
that none of the closed loop transfer functions have real unstable poles.

In the first part of this paper, we shall pursue this line of thinking and we
shall give a thorough study of the question: ’given k plants pi, i = 1, ..., k,
under what condition is it possible to find a single controller such that none
of the closed loop transfer functions have real unstable poles?’. The motiva-
tions to develop such results are threefold. First, the conditions obtained are
tractable, which is seldom the case for simultaneous stabilization questions.
Second, such conditions remain necessary when the closed loop transfer func-
tions are constrained not only to have no real unstable poles but no unstable
poles at all. They are therefore necessary conditions for simultaneous stabi-
lization. Third, it is known that these conditions are also sufficient for the
strong stabilization of a single plant and for the simultaneous stabilization of
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two plants. A single plant is stabilizable by a stable controller if and only if
there exists a stable controller such that the closed loop transfer function has
no real unstable poles, and two plants p1 and p2 are simultaneously stabiliz-
able if and only if there exists a single controller such that the closed loop
transfer functions associated to p1 and to p2 have no real unstable poles.
By analogy it was hoped (see, for example, the conclusion in [37]) that this
property would extend to the simultaneous stabilization problem for three
or more plants. As we shall see at the very end of this paper, this is unfor-
tunately not the case.

The main contributions of this paper have been briefly described above.
The layout is as follows. We introduce, in Section 3, the simultaneous sta-
bilization problem as an avoidance problem in the complex plane. We shall
show that k plants are simultaneously stabilizable if and only if there exists
a controller that avoids, in a way that we shall define, the k plants in the
complex right half plane. We shall see that this reinterpretation in terms of
avoidance (i.e. non-intersection) of functions gives powerful new insights into
stabilization and simultaneous stabilization problems. We shall use these in-
sights in Section 4 where, after a quick review of some known results, we
answer the question: ’given k plants pi, i = 1, ..., k, under what condition is
it possible to find a single controller such that the closed loop transfer func-
tions associated to each plant have no real unstable poles’. Strikingly, we
shall see that under a weak assumption this can be achieved if and only if for
each pair of plants there exists such stabilizing controllers. The fulfillment of
these conditions can be checked by using the parity interlacing property so
that we have a tractable test to answer the above question. Finally, in Section
5 we present some negative results. We first show that the even interlacing
property is not sufficient for stabilizability of a plant by a unit controller. It
then follows that the condition given in [37] and presented in ourSsection 4
is not sufficient either for simultaneous stabilization of three plants.

2 Notations

R[s] is the set of real polynomials. R(s) is the set of real rational functions.
C∞ is the extended complex plane, C∪{∞}, adequately topologized, and R∞
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is the extended real line, R∪{∞}. D is the open unit disc {s ∈ C :| s |< 1}.
Ω is some chosen subset of C∞. We shall assume throughout this paper that
Ω is closed in the Riemann sphere topology, that it is symmetric with respect
to the real axis and that it contains at least one value of the extended real
line R∞ but not the whole extended real line R∞. Ω is to be thought of as the
complement in C∞ of a region of stability. Classical examples of regions Ω are
the closed unit disc D = {s ∈ C :| s |≤ 1} and the extended closed right half
plane C+∞ = {s ∈ C : Real(s) ≥ 0}∪{∞} which correspond, respectively, to
the complement in C∞ of the discrete and continuous time stability regions.
We define I = D ∩ R∞ = [−1, 1] and R+∞ = C+∞ ∩ R∞ = [0,∞]. The
subsets D,C+∞, I and R+∞ all satisfy the assumptions on Ω. A real rational
function f(s) ∈ R(s) is Ω-stable if it has no poles in Ω. S(Ω) is the set of all
Ω-stable rational functions. We use U(Ω) to denote the set of functions in
S(Ω) whose inverse are in S(Ω) and we call such rational functions Ω-units.
Finally, to shorten the notations, we define U = U(C+∞) and S = S(C+∞).

3 Stabilization as avoidance

The equivalence between the solvability of the simultaneous stabilization
problem of 2 plants and conditions of interpolation by real rational functions
was pointed out by various authors (see [39], [16], [18], [11] and [21]). By
a few algebraic manipulations it is possible to show that the problem of
stabilizing two plants simultaneously is equivalent to one of finding a stable
rational function having a stable inverse that interpolates a set of values at
a set of points in the right half plane. This interpretation of the problem has
the advantage of giving a geometrical insight to the problem. However, this
equivalence does not carry over when the number of plants is greater than or
equal to three. It is in no known way possible to formulate the simultaneous
stabilization question of three or more plants in terms of an interpolation
problem. In this section we develop a different view of the problem which we
call an ’avoidance’ approach. Roughly speaking a controller stabilizes a set
of k plants if and only if it avoids, in a sense that we will define, the k plants
in the extended right half plane. By the end of this section we hope that we
will have convinced the reader that stabilization and avoidance are different
names for the same mathematical question. We refer the reader to [6] or [7]
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for more details on avoidance concepts applied to simultaneous stabilization
problems.

3.1 Internal stabilization

We shall throughout this paper consider a controller to be within a unity
feedback loop with the plant and we shall adopt the following usual definition
of stability for this closed loop configuration.

Definition 3.1. A controller c(s) ∈ R(s) is an internal stabilizer of (or inter-
nally stabilizes) a plant p(s) ∈ R(s) if the four transfer functions p(s)c(s)(1+
p(s)c(s))−1, c(s)(1 + p(s)c(s))−1, p(s)(1 + p(s)c(s))−1 and (1 + p(s)c(s))−1

belong to S (i.e. they have no poles with nonnegative real part).

These four unpractical conditions for internal stability can elegantly be
condensed into a single one by using the so-called ’factorization approach’
described in [31] and [30]. We give hereafter a short introduction to this ap-
proach and refer the interested reader to [31] for more details. In the sequel
we will always understand ’internal stability’ when writing ’stability’.

It is easy to check that the set S of stable rational functions is a commu-
tative ring. The invertible elements (or units) in the ring S are the stable
real rational functions whose inverse are stable, that is the real rational func-
tions with no poles nor zeros in C+∞. We have denoted this set by U . Two
elements of S are called coprime if they have no common zeros in C+∞.
It can be proved (see [31] p. 10) that S is an Euclidean ring and hence,
if a(s), b(s) ∈ S are coprime, then there exists x(s), y(s) ∈ S such that
a(s)x(s) + b(s)y(s) = 1. Such an identity is called a Bezout identity. Finally,
the field of fractions of S is R(s). All this together shows that if p(s) ∈ R(s)

then there exists np(s), dp(s) ∈ S and x(s), y(s) ∈ S such that p(s) = np(s)
dp(s)

and np(s)x(s) + dp(s)y(s) = 1 (such a fractional decomposition of p(s) will
be called a coprime decomposition). This is the only property of S that we
will need in this paper. It provide us the following result (see [31] p. 45 for
a proof). For conciseness, we sometimes drop the reference to the complex
variable s when writing rational functions.

Theorem 3.2. Let p, c ∈ R(s) and let p = np
dp

and c = nc
dc

be any coprime

decompositions of p and c. Then c stabilizes p if and only if ncnp +dcdp ∈ U .
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As a corollary of this Theorem 3.2, we may formulate the simultaneous
stabilization problem under the following form.

Corollary 3.3. Let pi ∈ R(s), i = 1, ..., k and let pi = ni
di

be any coprime
decomposition of pi, i = 1, ..., k. Then pi are simultaneously stabilizable if
and only if there exist nc, dc ∈ S such that ncni + dcdi ∈ U , i = 1, ..., k.

A controller c ∈ R(s) is stable if it has no poles in C+∞, in other words
it is stable if for every coprime decomposition c = nc

dc
we have dc ∈ U . The

controller c is stable and inverse stable (we have called such functions units)
if both nc and dc are in U . In the next section we will need the following
natural definition:

Definition 3.4. Let p ∈ R(s) and let p = np
dp

be any coprime decomposition

of p in S. The plant p is strongly stabilizable (i.e. stabilizable by a stable
controller) if and only if there exist nc ∈ S and dc ∈ U such that ncnp+dcdp ∈
U . The plant p is unit stabilizable (i.e. stabilizable by a stable controller
whose inverse is stable) if and only if there exist nc ∈ U and dc ∈ U such
that ncnp + dcdp ∈ U .

Note that the definition above is independent of the choice of the coprime
decompositions. Theorem 3.2 and Corollary 3.3 above are proved for the case
where the stability region is the extended closed right half plane C+∞. It
may, however, be useful to define the concept of stability in a more general
framework. First, this allows to treat continuous and discrete time stabil-
ity questions in a general setting and, secondly, the use of stability regions
different from the extended right half plane may be justified for practical
purposes (see [32] for example). The generalisation goes exactly along the
same line. Let Ω be a closed subset of the extended complex plane C∞ sat-
isfying the assumptions given in Section 2. S(Ω) is the set of real rational
functions with no poles in Ω, and U(Ω) is the set of invertible elements of
S(Ω). Then the above results on the ring S carry over, namely S(Ω) is an
Euclidean commutative ring whose field of fractions is R(s). Since these were
the only properties that are needed to prove Theorem 3.2 and Corollary 3.3,
these results remain valid for a general stability region Ω. Let us state this
clearly.

Definition 3.5. Let Ω be a subset of C∞. A controller c(s) ∈ R(s) is an
internal Ω-stabilizer of a plant p(s) ∈ R(s) if and only if the four transfer
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functions p(s)c(s)(1 + p(s)c(s))−1, c(s)(1 + p(s)c(s))−1, p(s)(1 + p(s)c(s))−1

and (1 + p(s)c(s))−1 belong to S(Ω)) (i.e. they have no poles in Ω).

We then have.

Corollary 3.6. Let Ω be a subset of C∞ as described in Section 2. Let
pi ∈ R(s), i = 1, ..., k and let pi = ni

di
be any coprime decompositions of pi

in S(Ω), i = 1, ..., k. Then pi are simultaneously Ω-stabilizable if and only if
there exist nc, dc ∈ S(Ω) such that ncni + dcdi ∈ U(Ω), i = 1, ..., k.

Proof. Goes exactly along the same line as Theorem 3.2 and Corollary
3.3. See [31]. �

It is clear that if Ω′ is a subset of Ω, then an Ω-stabilizing controller of
a plant p is also an Ω′-stabilizing controller (since if the transfer functions
have no poles in Ω then they have no poles in Ω′). In particular, if we define
ω = Ω ∩ R∞ then an Ω-stabilizing controller is also an ω-stabilizing con-
troller. ω-stabilizability is thus a necessary condition for Ω-stabilizability.
This necessary condition will play a crucial role in Section 4. First we show
the link between stability and avoidance.

3.2 Avoidance

Functions in R(s) go from C∞ to C∞ and have the additional property that
they take extended real values on R∞. It is therefore easy to represent their
behaviour on R∞ with a two-dimensional graphic. On the other hand we
need four dimensions to represent their behaviour on the complex plane.
With these representations in mind we may figure out where two plants
p1(s), p2(s) ∈ R(s) possibly intersect on the R∞ axis, that is the set of values
s0 ∈ R∞ for which p1(s0) = p2(s0). It is still easy to define, but more difficult
to represent geometrically, the points in C∞\R∞ where two plants intersect.
We give a formal definition for this.

Definition 3.7. Let p1(s), p2(s) ∈ R(s), let Ω be a subset of C∞ and let

pi(s) = ni(s)
di(s)

be any coprime decompositions of pi(s) in S(Ω), i = 1, 2.

s0 ∈ Ω is a point of intersection of multiplicity n between p1(s) and p2(s) if
n1(s)d2(s)−n2(s)d1(s) ∈ S(Ω) has a zero of multiplicity n at s0. p1(s) avoids
p2(s) in Ω if p1(s) and p2(s) have no points of intersection in Ω.
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Note that the points of intersection in Ω between p1(s) and p2(s) (and
thus avoidance in Ω) do not depend on the particular choice of the coprime
factorizations in S(Ω).

To illustrate the Definition 3.7, consider, for example, p1(s) = s+1
s2

and
p2(s) = 5s−1

s2(s+1)
. The points of intersection between p1(s) and p2(s) in C+∞

are at s0 = 1, s0 = 2 and s0 = ∞ with multiplicity one and at s0 = 0 with
multiplicity two.
Again it is clear that if Ω′ ⊂ Ω ⊂ C∞, then p1 avoids p2 in Ω implies that p1
avoids p2 in Ω′. In particular, if two rational functions avoid each other on a
subset Ω of C∞, then they do so on ω = R∞ ∩ Ω.
The link between stabilization and avoidance is shown in the next theorem.

Theorem 3.8. Let p(s), c(s) ∈ R(s). Then the controller c(s) Ω-stabilizes
p(s) if and only if −c−1(s) avoids p(s) in Ω (or, equivalently, if and only if
−p−1(s) avoids c(s) in Ω).

Proof. Let p(s) = np(s)
dp(s)

and c(s) = nc(s)
dc(s)

be coprime decompositions of

p(s) and c(s) in S(Ω). By Theorem 3.2, c(s) Ω-stabilizes p(s) if and only if
np(s)nc(s) + dp(s)dc(s) ∈ U(Ω). This last condition is satisfied if and only
if np(s)nc(s) + dp(s)dc(s) ∈ S(Ω) has no zeros in Ω or, alternatively, if and
only if −c(s)−1 avoids p(s) in Ω. �

As a trivial consequence, notice that the plants which are Ω-stabilizable by
a real constant feedback gain are precisely those that avoid a real value on Ω.
With Theorem 3.8. we can formulate the general simultaneous stabilization
problem of k plants in the form of an avoidance problem.

Corollary 3.9. Let pi ∈ R(s), i = 1, ..., k. The plants pi are simultane-
ously Ω-stabilizable if and only if there exists a q(s) ∈ R(s) such that q(s)
avoids pi(s) in Ω, i = 1, ..., k, in which case c(s) = −q−1(s) is a Ω-stabilizing
controller.

The problem of the simultaneous Ω-stabilization of k plants thus has an
easily understandable geometric interpretation. We are given a set of ratio-
nal functions defined on a region Ω of the extended complex plane and we
ask whether it is possible to find a rational function which avoids them all
on Ω. If this is possible then the plants are simultaneously Ω-stabilizable.
Now, as we pointed out above, if it is possible to find a rational function
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that avoids k rational functions on Ω then the same function avoids them
all on ω = R∞ ∩ Ω. The existence of an ω-avoiding rational function is thus
a necessary condition for simultaneous Ω-stabilization. It is this necessary
ω-stabilizability condition that we analyse in the next section.

When dealing with general stability regions Ω the terminology, as well
as the notations, get somewhat heavy. For our purpose a large class of such
stability regions are in fact equivalent: all the results contained in this paper
are valid for general closed simply connected stability regions. In what follows
we concentrate on ’canonical’ simply connected stability regions, in Section
4 we deal with C+∞ and in Section 5 we analyse counterexamples in D.

4 Stabilization on the real axis: the search

for necessary conditions.

The problem is simple. We examine k real rational functions on the interval
R+∞ = [0,∞] where they are real valued. They may have poles as well as
zeros on R+∞. Their behaviour can easily be represented on a two dimen-
sional graph as functions from R+∞ to R∞. Now we ask the question: ’Is
it possible to find a real rational function, with perhaps poles and zeros in
R+∞, which avoids this set of functions on the interval R+∞?’. In view of
Corollary 3.9 this question is equivalent to the following: ’Given a set of
plants pi(s) ∈ R(s), i = 1, ..., k, when is it possible to find a single controller
c(s) ∈ R(s) such that pic(1 +pic)

−1, pi(1 +pic)
−1, c(1 +pic)

−1 and (1 +pic)
−1

have no real unstable poles?’. Obviously, this is a weaker requirement than
simultaneous stabilization where poles in the whole C+∞ are to be avoided.
We argued in the introduction of this paper the interest of this question.

4.1 Stabilization of two plants and strong stabilization

In this section we will need the following well-known definitions:

Definition 4.1. Let p(s) ∈ R(s). p(s) has the parity interlacing property
if p(s) has an even number (counting multiplicities) of poles between each
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pair of zeros in R+∞. p(s) has the even interlacing property if both p(s) and
p−1(s) have the parity interlacing property.

An alternative way of defining this is by means of a graph. Let zi, pj ∈
R+∞ (i = 1, ..., l) (j = 1, ...,m) be the l zeros and m poles of a plant p(s) ∈
R(s) in R+∞. The plant p(s) has the parity interlacing property if and only
if the succession of its poles and zeros on R+∞, as s increases from zero to
infinity, corresponds to a possible path in Graph 1.1. In the same vein, p(s)
has the even interlacing property if and only if the succession of its poles and
zeros on R+∞ corresponds to a possible path in Graph 1.2. For example,
the succession of poles and zeros on R+∞ of p(s) = s−1

(s−3)(s−2)s follows the
following pattern: PZPPZ and hence it has the parity interlacing property
but not the even interlacing property since the succession PZPPZ corresponds
to a possible path in Graph 1.1 but not in Graph 1.2. The same kind of figure
will be used in Theorem 4.13 to describe a R+∞-stabilizability condition for
three plants, but first we analyse the two-plant case.

Theorem 4.2. Let p(s) ∈ R(s). If there exists a stable controller that
R+∞-stabilizes p(s), then p(s) has the parity interlacing property.

Proof. Let c(s) be a stable R+∞-stabilizing controller of p(s). Then by
Theorem 3.8, c(s) avoids −p−1(s) on R+∞. Since c(s) is stable it also avoids
∞ on R+∞. Suppose, to get a contradiction, that p(s) has an odd number
of poles between two zeros on R+∞. Then −p−1(s) has an odd number of
zeros between two poles on R+∞. But then c(s) has to avoid both a rational
function −p−1(s) which has an odd number of zeros between two of its poles
on R+∞ and ∞ on R+∞. This is impossible and hence p(s) has an even
number of poles between two zeros on R+∞. �

A stronger version of Theorem 4.2 can easily be obtained. Indeed, it can
be shown that the parity interlacing property is in fact sufficient for R+∞-
stabilizability by a stable controller. This last result in turn is contained
under a stronger form in the next theorem.

Theorem 4.3. Let p(s) ∈ R(s). There exists a stable controller that stabi-
lizes p(s) if and only if p(s) has the parity interlacing property.

The proof of this fundamental fact was first given in [39]. The reader may
find both an elementary and an advanced proof in [31].
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Corollary 4.4. A plant is stabilizable by a stable controller if and only if it
is R+∞-stabilizable by a stable controller.

Proof. Use the two previous theorems together with the fact that a sta-
bilizing controller is also R+∞-stabilizing. �

Using this last Corollary, we stress in the next theorem a fundamental
property of simultaneous stabilization of two plants: if there exist a controller
such that the closed loop transfer functions associated to each plant have no
real unstable poles then there exist a controller that simultaneously stabilize
the two plants. More formally:

Theorem 4.5. Two plants are simultaneously stabilizable if and only if they
are simultaneously R+∞-stabilizable.

Proof. Let p1 and p2 ∈ R(s) and let pi = ni
di

be any coprime decomposi-
tions, i = 1, 2. By Theorem 3.2, pi are simultaneously stabilizable if and only
if there exist nc, dc ∈ S such that ncni+dcdi ∈ U , i = 1, 2. Since n1, d1 are co-
prime, there exists x, y ∈ S such that n1x+d1y = 1. Any controller c = x+rd1

y−rn1

where r ∈ S is a stabilizing controller of p1. In fact, it can easily be proved
(see [31] or [13]) that any stabilizing controller of p1 can be written in the
form c = x+rd1

y−rn1
for some r ∈ S. Therefore p1 and p2 are simultaneously stabi-

lizable if and only if (x+rd1)n2+(y−rn1)d2 = xn2+yd2+r(d1n2−d2n1) ∈ U
for some r ∈ S. If xn2 + yd2 = 0 then p1 and p2 are both simultaneously sta-
bilizable and simultaneously R+∞-stabilizable and so we rule out this case.
Assume that xn2 + yd2 6= 0. By Definition 3.4 the equation above has a
solution if and only if the plant q = d1n2−d2n1

xn2+yd2
is strongly stabilizable. We

could have derived exactly the same computations for R+∞-stabilizability
by replacing S by S(R+∞) and U by U(R+∞) in our derivations. We have
thus also that p1 and p2 are simultaneously R+∞-stabilizable if and only if
q = d1n2−d2n1

xn2+yd2
is strongly R+∞-stabilizable. But now, by applying Corollary

4.4 the theorem is proved. �

In the proof we show that p1 and p2 are simultaneously stabilizable if and
only if q = d1n2−d2n1

xn2+yd2
is strongly stabilizable. This intermediate plant q is

constructed with the coprime decompositions pi = ni
di

, i = 1, 2 together with
the solutions x, y ∈ S of n1x+d1y = 1. It does not have an ’intuitively clear’
interpretation. With a weak additional condition on the poles of p1, and
p2, it is possible to put this equivalence between simultaneous stabilization
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of two plants and strong stabilization of a single plant in a new and more
obvious form. Roughly speaking, two plants are simultaneously stabilizable
if and only if their difference is strongly stabilizable.

Theorem 4.6. Let pi(s) ∈ R(s), i = 1, 2 and suppose that p1(s) and p2(s)
have no common poles on R+∞. Then p1(s) and p2(s) are simultaneously
stabilizable if and only if p1(s)− p2(s) is strongly stabilizable.

Proof. With p1 and p2 ∈ R(s), let pi = ni
di

be any coprime decomposition
in S(R+∞), i = 1, 2 and let x, y ∈ S(R+∞) be such that n1x + d1y = 1.
Then by Corollary 3.6 and Theorem 4.5, pi are simultaneously stabiliz-
able if and only if there exist nc, dc ∈ S(R+∞) such that ncni + dcdi ∈
U(R+∞), i = 1, 2. By using the same argument as in the proof of Theo-
rem 4.5, these two equations can be simultaneously fulfilled if and only if
(n1d2−n2d1)r+ (n2x+ d2y) ∈ U(R+∞) has a solution for some r ∈ S(R+∞).
Such an equation has a solution if and only if (n2x + d2y) is non zero and
always has the same sign at the zeros of (n1d2−n2d1) on R+∞ (this result is
crucial and far reaching, a proof of it can be found in [31], p.38). Under the
assumption that d1 and d2 do not have any common zeros on R+∞ and with
some additional algebra this last condition can be shown to be equivalent to
imposing that d1d2 always has the same sign at the zeros of (n1d2 − n2d1).
This in turn is equivalent to imposing p1 − p2 to be stabilizable by a stable
controller. �

Theorem 4.6 is a stronger form of the results contained in [31] and in
[37] which state respectively ’if p1 is stable, then p1, p2 are simultaneously
stabilizable if and only if p1 − p2 is stabilizable by a stable controller’ and
’if p1 and p2 have no common poles in C+∞, then they are simultaneously
stabilizable if and only if p1 − p2 is stabilizable by a stable controller’. Both
these results are contained in Theorem 4.6 since if p1 is stable then p1 and p2
have no common poles on C+∞, and if they have no common poles on C+∞
then they have no common poles on R+∞.

4.2 Stabilization of three plants and unit stabilization

We now investigate the case of three plants and its link with unit stabilization.
In this subsection we consider only the case of plants that do not all intersect
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at the same point. This assumption is not generic (for example strictly proper
plants all intersect at infinity) and will be dropped in Subsection 4.4. We
start with a crucial theorem.

Theorem 4.7. Let pi(s) ∈ R(s) i = 1, 2, 3. Suppose that p1(s), p2(s), p3(s)
have no common point of intersection in C+∞ (i.e. there is no s0 ∈ C+∞
for which p1(s0) = p2(s0) = p3(s0)). Let pi = ni

di
, i = 1, 2, 3 be any coprime

decompositions and define aij = nidj − njdi, (i, j = 1, 2, 3). Then pi(s),
i = 1, 2, 3 are simultaneously stabilizable if and only if there exist ui ∈ U ,
i = 1, 2, 3 such that a12u3 + a23u1 + a31u2 = 0.

Proof. Let x, y ∈ S be solutions of n1x+d1y = 1 and define bi = nix+diy,
i = 2, 3. It is easy to check that b2a13 − b3a12 = a23. If ninc + didc = ui
for some nc, dc ∈ S, i = 1, 2, 3, then for these ui it is easy to check that
a12u3 + a23u1 + a31u2 = 0 and hence the necessity is proved. For sufficiency,
suppose that there exists ui ∈ U , i = 1, 2, 3 such that a12u3+a23u1+a31u2 = 0.
Using b2a13 − b3a12 = a23, we have a12u3 + (b2a13 − b3a12)u1 + a31u2 =
a12(u3 − b3u1) + a31(u2 − b2u1) = 0. Since there is no s0 ∈ C+∞ for which
p1(s0) = p2(s0) = p3(s0), this implies in algebraic terms that a12 and a31
are coprime. Hence there exists some r ∈ S for which a31r = u3 − b3u1 and
a12r = −u2 + b2u1. Defining r′ = r

u1
we have that a31r

′ + b3 = u3
u1
∈ U and

a21r
′ + b2 = u2

u1
∈ U . But now, defining nc = x+ r′d1 and dc = y − r′n1, the

theorem is proved since for these dc, nc we have ninc+didc ∈ U , i = 1, 2, 3. �

It is known (see [36] or [16]) that, modulo an additional condition, the
three plant problem can be reduced to one of finding a single controller which
is stable, inverse stable (from here on we will refer to such controllers as unit
controllers), and which stabilizes a single plant. Let us make this connection
more obvious by using Theorem 4.7.

Theorem 4.8. Let pi ∈ R(s), i = 1, 2, 3 and let pi = ni
di

, i = 1, 2, 3 be
arbitrary coprime decompositions in S. Suppose that p1 avoids p2 in C+∞.
Then pi, i = 1, 2, 3 are simultaneously stabilizable if and only if n3d1−n1d3

n2d3−d2n3
is

unit stabilizable i.e. stabilizable by a unit controller.

Proof. Since p1 avoids p2 in C+∞ we have n1d2−n2d1 = u ∈ U . Trivially
p1, p2 and p3 have no common point of intersection in C+∞ since p1 and p2
do not intersect in C+∞. We may thus apply Theorem 4.7. Therefore, pi,
i = 1, 2, 3 are simultaneously stabilizable if and only if there exist ui ∈ U ,
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i = 1, 2, 3 such that uu3+a23u1+a31u2 = 0. This last equation has a solution
if and only if there exists some u1 and u2 in U for which a23u1 + a31u2 ∈ U
or, equivalently, if and only if n3d1−n1d3

n2d3−d2n3
is unit stabilizable. �

Contrary to the similar result for strong stabilization of Theorem 4.6 we
have no interpretation to propose for n3d1−n1d3

n2d3−d2n3
in terms of the plants p1, p2

and p3.

As an illustration of the theorem, consider the plants p1(s) = 1, p2(s) =
−1
s

and p3(s) = − s−1
s

. We can take for coprime decompositions n1 = 1, d1 =
1, n2 = − 1

s+1
, d2 = s

s+1
and n3 = − s−1

s+1
, d3 = s

s+1
. p1 and p2 have no in-

tersections in C+∞ since n1d2 − n2d1 = 1 ∈ U . We can apply Theorem
4.8. Therefore pi, i = 1, 2, 3 are simultaneously stabilizable if and only if
(2s−1)(s+1)
s(s−2) is unit stabilizable.

An important special case of the problem of the stabilizability of three
plants is therefore equivalent to the stabilizability of a single plant by a
unit controller. This can in fact be proven rigorously in the sense that for
any plant p(s) it is possible to construct three plants p1(s), p2(s) and p3(s)
such that p(s) is stabilizable by a unit controller if and only if pi(s), i =
1, 2, 3 are simultaneously stabilizable. This equivalence is one of the reasons
for investigating conditions under which a plant is stabilizable by a unit
controller. For the same reason as before, we first examine the condition
under which a single plant is R+∞-stabilizable by a unit controller. This
condition is rather simple.

Theorem 4.9. Let p(s) ∈ R(s). There exists a unit controller that R+∞-
stabilizes p(s) if and only if p(s) has the even interlacing property.

Proof. Necessity is trivial: apply Theorem 4.2 to p(s) and p−1(s). Suffi-
ciency can be shown by modifying slightly the proof of Theorem 3.2 in [36] in
which the author proves that a stable controller with no real unstable zeros
exist for any plant that satisfy the even interlacing condition. �

Obviously, the even interlacing property is a necessary condition for sta-
bilization of a plant by a unit controller, since stabilization requires in partic-
ular R+∞-stabilization. By similarity with the strong stabilization condition
and with Corollary 4.4, this necessary condition for stabilizability by a unit
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controller was conjectured to be also sufficient. The conjecture is false, how-
ever, and we give a counterexample in Section 5. Before proceeding to this,
we investigate additional conditions under which three plants are simultane-
ously R+∞-stabilizable.

4.3 Alternative conditions for stabilization of three plants

In section 4.2 we have shown the connection between simultaneous stabi-
lizability of three plants and stabilizability of a related plant with a unit
controller. Here we provide new conditions for simultaneous stabilizability
and R+∞-stabilizability of three plants. We start with a theorem which is of
independent interest. Roughly speaking, it says that three plants are simul-
taneously stabilizable if and only if there exist three stable plants that have
pairwise the same intersections in C+∞ as the original three plants.

Theorem 4.10. Let pi(s) ∈ R(s), i = 1, 2, 3. Suppose that p1(s), p2(s), p3(s)
have no common point of intersection in C+∞ (i.e. there is no s0 ∈ C+∞ for
which p1(s0) = p2(s0) = p3(s0)). Then pi(s), i = 1, 2, 3 are simultaneously
stabilizable if and only if there exist p′i(s) ∈ S, i = 1, 2, 3 such that pi(s) and
pj(s) have pairwise the same intersections in C+∞ as p′i(s) and p′j(s) when
i, j = 1, 2, 3.

Proof. Let pi = ni
di

, i = 1, 2, 3 be arbitrary coprime decompositions
and define aij = nidj − njdi (i, j = 1, 2, 3). Suppose first that there exists
p′i(s) ∈ S, i = 1, 2, 3 such that pi(s) and pj(s) have pairwise the same inter-
sections in C+∞ as p′i(s) and p′j(s) when i, j = 1, 2, 3. In algebraic terms this
means that p′i−p′j = uijaij (i, j = 1, 2, 3) for some units uij ∈ U (i, j = 1, 2, 3).
Putting u1 = u23, u2 = u31 and u3 = u12 in Theorem 4.7 we get that pi(s),
i = 1, 2, 3 are simultaneously stabilizable. To prove necessity, suppose that
pi(s), i = 1, 2, 3 are simultaneously stabilizable and have no common inter-
section in C+∞. Again, by Theorem 4.7 there exist ui ∈ U , i = 1, 2, 3 such
that a12u3+a23u1+a31u2 = 0. Take any r2 ∈ S and define r1 = r2+u3a12 ∈ S
and r3 = r2−u1a23 ∈ S. Then we have that r1− r2 = a12u3, r2− r3 = a23u1,
but also r3 − r1 = a31u2. And thus ri ∈ S, i = 1, 2, 3 are such that ri
and rj have pairwise the same intersections in C+∞ as pi(s) and pj(s) for
i, j = 1, 2, 3. This ends the proof. �
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As we argued in Section 3.2, the results that we obtain in this section are
still valid for general regions Ω that satify the assumptions stated in Section
2. In particular, we may derive the counterpart of Theorem 4.10 for the
region Ω = R+∞.

Theorem 4.11. Let pi(s) ∈ R(s), i = 1, 2, 3. Suppose that p1(s), p2(s), p3(s)
have no common point of intersection on R+∞ (i.e. there is no s0 ∈ R+∞ for
which p1(s0) = p2(s0) = p3(s0)). Then pi(s), i = 1, 2, 3 are simultaneously
R+∞-stabilizable if and only if there exist p′i(s) ∈ S(R+∞), i = 1, 2, 3 such
that pi(s) and pj(s) have pairwise the same intersections on R+∞ as p′i(s)
and p′j(s) when i, j = 1, 2, 3.

The interest of this last result is that, while we do not know a tractable
test to check the condition in Theorem 4.10, we have one for the condition
in Theorem 4.11. The existence of three rational functions with no poles on
R+∞ that ’mimic’ the pairwise intersections of three plants on R+∞ relies on
an interlacing property that we state hereafter.

Definition 4.12. Let pi(s) ∈ R(s), i = 1, 2, 3. Suppose that p1(s), p2(s), p3(s)
have no common point of intersection on R+∞. Then pi(s), i = 1, 2, 3 have
the 3-interlacing property if and only if the succession of their intersections
on R+∞, as s increases from zero to infinity, corresponds to a possible path
in Graph 1.3.

We can now prove our theorem.

Theorem 4.13. Let pi(s) ∈ R(s), i = 1, 2, 3. Suppose that p1(s), p2(s), p3(s)
have no common point of intersection on R+∞. Then pi(s), i = 1, 2, 3 are
simultaneously R+∞-stabilizable if and only if they have the 3-interlacing
property.

Proof. Suppose that p1(s), p2(s), p3(s) have no common point of inter-
section on R+∞. By Theorem 4.11, pi(s), i = 1, 2, 3 are simultaneously
R+∞-stabilizable if and only if there exist p′i(s) ∈ S(R+∞), i = 1, 2, 3 such
that pi(s) and pj(s) have pairwise the same intersections on R+∞ as p′i(s)
and p′j(s) for i, j = 1, 2, 3. The fact that p′i(s) have no poles on R+∞ implies
that not all successions of pairwise intersections are possible, i.e. the suc-
cession of intersections between three continous functions from R+∞ to R is
not arbitrary. We claim that the successions that are possible are precisely
those that represent a possible path in Graph 1.3. To prove this, at each
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point s0 ∈ R+∞ where the p′i do not pairwise intersect (i.e. p′i(s0) 6= p′j(s0),
i, j = 1, 2, 3) we have p′i(s0) > p′j(s0) > p′k(s0) for some i, j, k = 1, 2, 3. In
this way we can associate, to each point s0 ∈ R+∞ where the plants p′i do
not pairwise intersect, one of the six orderings p′1 < p′2 < p′3, p

′
1 < p′3 <

p′2, p
′
2 < p′1 < p′3, p

′
2 < p′3 < p′1, p

′
3 < p′1 < p′2 or p′3 < p′2 < p′1. If s0 and

s1 are two points on R+∞ such that p′i(s) have no pairwise intersections on
[s0, s1], then, because the p′i(s) are continuous, the ordering at s0 and s1 are
the same. Hence, the ordering changes precisely at the pairwise intersections
of the p′i(s). For example, the ordering p′1 < p′2 < p′3 changes to p′1 < p′3 < p′2
after an intersection between p′2 and p′3. Notice also that not all changes are
admitted, for example p′1 < p′2 < p′3 can not be changed to p′3 < p′2 < p′1
after a single intersection. Representing the six possible orderings above in a
graph together with all possible changes at the intersections yields the Graph
1.3. Necessity is proved. To prove sufficiency, it suffices to show that given
a succession of pairwise intersections on R+∞ that follows a path in Graph
1.3, it is always possible to construct three functions in S(R+∞) that do not
intersect simultaneously on R+∞ and whose pairwise intersections are the
given points. We do not give a technical, and tedious, proof of this here.
Instead we outline the sketch of a constructive procedure. First translate the
problem onto I by using the usual conformal equivalence. Then construct
three continuous functions that satisfy the desired property. By careful use
of the fact that polynomials are dense in the set of continuous functions on I,
construct three polynomials that also satisfy this property. Notice then that
polynomials are members of S(I), so that by using the conformal equivalence
again the theorem is proved. �

The case where the plants do intersect on R+∞ is analysed in Section 4.4
below.

Theorem 4.13 and the 3-interlacing property are equivalent under a dif-
ferent form to an algebraic condition recently given in [37]. It was obtained
independently by the authors. Again, it is a necessary condition for simul-
taneous stabilizability of three plants since it is necessary and sufficient for
R+∞-stabilizability. In the conclusion of [37] it is conjectured that this con-
dition is also sufficient for stabilizability, but we will prove in Section 5 that
this is not true.
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To illustrate the use of Theorem 4.13 we analyse an example given in
the literature [16]. A natural question when analysing the simultaneous sta-
bilizability of three plants is: ’Given three plants that are simultaneously
stabilizable, they are of course pairwise simultaneously stabilizable. Is the
converse also true?’. Unfortunately the answer is no. Ghosh provided a
counterexample to this: p1(s) = s−7

s−4.6 , p2(s) = s−2
2s−2.6 and p3(s) = s−6

4.8s−24.6 are
pairwise simultaneously stabilizable but it is shown in [16] that they are not
simultaneously stabilizable. Application of our Theorem 4.13 easily shows
that they are not even R+∞-simultaneously stabilizable. The intersections
between p1 and p2 are σ12 = 1 and σ12 = 9. For the other two pairwise
intersections we get: σ23 = 3 and σ23 = 4, σ31 = 7.34 and σ31 = 5.17. Notice
that for these three plants all the intersections happen to be on R+∞, which
is by no means generic. Ordering the succesion of pairwise R+∞-intersections
we get: σ12, σ23, σ23, σ31, σ31, σ12. This does not correspond to a possible path
in Graph 1.3. Hence pi(s), i = 1, 2, 3, do not have the 3-interlacing property
and, by Theorem 4.13, the three plants are not simultaneously stabilizable.

As a final remark on Theorem 4.13, it is worth noting that our 3-interlacing
property can be extended to more than 3 plants. If k plants are simultane-
ously stabilizable, then the same sequence of pairwise intersections on R+∞
is achievable by the pairwise intersections of k R+∞-stable plants. This pro-
vides a necessary condition for simultaneous stabilization of k plants. We do
not develop this further here because we believe that the results contained
in the next section overshadow the interest of stabilization conditions of k
plants when the plants do not intersect. We end this Section 4 by analysing
the case where there exists some s0 ∈ R+∞ such that pi(s0) = w0, i = 1, ..., k.

4.4 Simultaneous R+∞ stabilization for intersecting plants

All the conditions in Section 4.2 and 4.3 are for the case where the three plants
have no common point of intersection on either C+∞ or R+∞. There exists
an important special case for which this condition is not satisfied. When the
plants are all strictly proper, they all take the value 0 at infinity so that they
have a common point of intersection at infinity. It is this special structure
which partly motivates the next result, which is the central result of this
section. It shows that, for simultaneous R+∞-stabilizability, the condition
are much simpler when the plants have a common point of intersection on
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R+∞. Note that the theorem applies not just to the three plant case but to
the general k plants case.

Theorem 4.14. Let pi(s) ∈ R(s), i = 1, ..., k and suppose that there exists
a value s0 ∈ R+∞ such that the plants intersect at s0 (i.e. there exists some
s0 ∈ R+∞ and some w ∈ R∞ such that pi(s0) = w, i = 1, ..., k). Then the
plants are simultaneously R+∞-stabilizable if and only if they are pairwise
simultaneously R+∞-stabilizable.

Proof. Necessity is obvious. We prove sufficiency by showing that, under
the assumptions that the k plants pi(s), i = 1, ..., k intersect at s0 ∈ R+∞
and that they are pairwise simultaneously R+∞-stabilizable, it is possible to
find a rational function q(s) that avoids them all on R+∞. The result will
then follow by Corollary 3.9.

For simplicity we assume that s0 = 0 and we define w0 = pi(s0) = pi(0);
the proof for an arbitrary s0 goes along the same line. We assume also that
w0 6= ∞. If not, we can redefine p′i = 1

pi
and w′0 = 0. First use the bilinear

transformation that maps C+∞ onto D. Under this transformation, we get
p′i(z) = pi(

(1+z)
(1−z)). Since pi(0) = w0 we have p′i(−1) = w0 for i = 1, ..., k. In

view of this, define p′′i (z) = p′i(z)−w0. It is clear that p′′i (z) all have a zero at
z0 = −1. Also from our assumptions p′′i (z), i = 1, ..., k are real rational and
pairwise simultaneously I-stabilizable. To end the proof it remains to show
that p′′i (z) are simultaneously I-stabilizable, i.e. that there exists a rational
function that avoids p′′i (z) on I.

To see this we define k continuous functions vi(z) from I to R by vi(z) =
arctan p′′i (z), z ∈ I. Here the inverse tangent function has to be taken with
’unwrapped argument’, i.e. the function is continuous from R∞ to R as z
increases from −1 to 1 by choosing an appropriate branch of the inverse
tangent function at the real poles of p(z). Since p′′i (−1) = 0, we may chose
vi(−1) = 0. Some manipulations show that a rational function r(z) avoids
p′′i (z) on I, i = 1, ..., k, if and only if vi(z)−nπ < arctan r(z) < vi(z)−(n−1)π
∀z ∈ I, i = 1, ..., k and for some n ∈ N. In the sequel our objective is to
construct such a r(z). We therefore need an intermediate result.

We show that, because p′′i (z) are pairwise simultaneously I-stabilizable,
we have | vi(z) − vj(z) |< π, ∀z ∈ I, i, j = 1, ..., k. Suppose, by contra-
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diction, that for some i, j and some z0 ∈ I we have | vi(z0) − vj(z0) |≥ π.
Then, since | vi(−1) − vj(−1) |= 0, and since vi(z) are continuous, there
must exist z1 ∈ [−1, z0] such that | vi(z1)− vj(z1) |= π. But then, given any
rational function r(z) and the continuous function v(z) = arctan r(z) from
I to R, there exists some z2 ∈ [−1, z1] such that either vi(z2) − v(z2) = nπ
or vj(z2) − v(z2) = nπ for some n ∈ N. Say vi(z2) − v(z2) = nπ. Then
vi(z2) = v(z2) + nπ and, taking the tangent of both sides, p′′i (z2) = r(z2).
This shows that every rational function intersects either p′′i (z) or p′′j (z) at
some z ∈ I. This last statement contradicts the fact that p′′i (z) and p′′j (z) are
simultaneously I-stabilizable and so we have proved that | vi(z)−vj(z) |< π,
∀z ∈ I, i, j = 1, ..., k. We now construct a stabilizing controller.

Define w(z) : z → mini=1,...,kvi(z). w(z) is a continuous function from I
to R. By the above argument, | vi(z) − vj(z) |< π, ∀z ∈ I, i, j = 1, ..., k
and hence vi(z) − π < w(z) ≤ vi(z), ∀z ∈ I, i = 1, ..., k. We define
w′(z) = w(z)− ε with ε sufficiently small so that vi(z)− π < w′(z) < vi(z),
∀z ∈ I, i = 1, ..., k. Some algebraic manipulations, together with the fact
that polynomials are uniformly dense in the set of continuous functions from
I to R, shows that given w′(z) and ε > 0 it is possible to find a rational
function q(z) such that | w′(z)− arctan q(z) |< ε, ∀z ∈ I. But then, for suf-
ficiently small ε, we have vi(z)− π < arctan q(z) < vi(z), ∀z ∈ I, i = 1, ..., k.
Taking the tangent of both sides, this last statement clearly shows that q(z)
avoids p′′i (z) for i = 1, ..., k and z ∈ I. This in turn implies by Corollary 3.9
that p′′i (z), and hence p′i(z), are simultaneously I-stabilizable. The equiva-
lence between the simultaneous I-stabilizability of the p′i(z) and that of the
R+∞-stabilizability of the pi(s) ends the proof. �

Using this theorem, the next results are straightforward and their proofs
are left to the reader.

Corollary 4.15. Let pi(s) ∈ R(s), i = 1, ..., k and suppose that there exists
a value s0 ∈ R+∞ such that the plants intersect at s0. Then the plants are si-
multaneously R+∞-stabilizable if and only if they are pairwise simultaneously
stabilizable.

Corollary 4.16. Let pi(s) ∈ R(s), i = 1, ..., k and suppose that pi(s) have
a common pole or a common zero on R+∞. Then the plants are simul-
taneously R+∞-stabilizable if and only if they are pairwise simultaneously
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R+∞-stabilizable.

Corollary 4.17. Let pi(s) ∈ R(s), i = 1, ..., k be strictly proper (they all
have a zero at infinity). The plants are simultaneously R+∞-stabilizable if
and only if they are pairwise simultaneously R+∞-stabilizable.

Notice that in the above example of Ghosh the plants are not strictly
proper.

These are only some of the possible corollaries of Theorem 4.14. Their
main common interest is that, contrary to most of the results on simultaneous
stabilisation, they provide tractable tests to decide whether k plants are
simultaneously R+∞-stabilizable. Most of the known results on simultaneous
stabilization of more than two plants are only restatements of untractable
conditions into other untractable conditions. Here we have provided tractable
tests since the simultaneous stabilizability of two plants can be tested by
using only a finite number of rational operations (see [1]). On the other
hand, the drawback of our conditions is that, even though they are necessary
and sufficient for R+∞-stabilizability, they are only necessary conditions for
C+∞-stabilizability. We show in Section 5 that the conditions that we have
obtained are in general not sufficient and, as soon as k is greater than two,
it is necessary to look at the behaviour of the plants in the whole extended
right half complex plane and not just on the extended positive real axis.

5 Stabilization in the complex plane

In the previous section we have found necessary and sufficient conditions for
R+∞-stabilizability of a single plant by a stable controller (parity interlacing
property) and by a unit controller (even interlacing property). We have also
treated the case of simultaneous R+∞-stabilization of three or more plants
(3-interlacing condition in the case of 3 plants which do not intersect, and
pairwise stabilizability in the case of k plants that intersect on R+∞). All
these conditions are, as we have shown, necessary conditions for stabilizabil-
ity in the usual sense i.e. C+∞-stabilizability. One of these conditions has
also been shown to be sufficient for C+∞-stabilizability, namely two plants
are simultaneously stabilizable if and only if they are simultaneously R+∞-
stabilizable. It was hoped that this property would flow on to the case k ≥ 3.
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The implicit conjecture ’k plants are simultaneously stabilizable if and only if
they are R+∞-stabilizable’ has obviously been a driving motivation for many
of the partial results on simultaneous stabilization. In this section we will
give counterexamples showing that R+∞-stabilizability does not, in general,
imply C+∞-stabilizability.

For convenience (mainly because D is a bounded set), we will give the
counterexamples of this section in D rather than in C+∞ i.e. in a ’discrete
time’ set-up. The discrete-time counterpart of R+∞ is then I = D ∩ R∞. It
must be clear, however, that all our counterexamples have a counterpart in
continuous time. The equivalence can be shown by using the bilinear trans-
formation and we illustrate it for the first theorem.

We start with the easiest counterexample.

Theorem 5.1. Let p1(z) = 0, p2(z) = z
z+2

, p3(z) = 2z
z+2

and p4(z) = 2z
(z+2)(2−kz)

be four dicrete time systems. If k > e26 then pi(z), i = 1, ..., 4 are simulta-
neously I-stabilizable but not simultaneously D-stabilizable.

Proof. Recall that I = [−1, 1]. The plants have a common point of in-
tersection at z = 0 since pi(0) = 0, i = 1, ..., 4. It is easy to check that for
any k they are pairwise stabilizable and hence, applying Theorem 4.14, they
are simultaneously I-stabilizable. It remains to be shown that for k > e26

they are not simultaneously D-stabilizable. Suppose, by contradiction, that
for some k > e26 the plants are simultaneously D-stabilizable. Then for this
k, and by using the natural coprime decomposition of pi(z), there must exist
nc, dc ∈ S(D) such that dc ∈ U(D), znc+(z+2)dc ∈ U(D), 2znc+(z+2)dc ∈
U(D) and 2znc+(2−kz)(z+2)dc ∈ U(D). We define f = 2znc

dc(z+2)
+2 ∈ S(D).

By the above equations it is then clear that f ∈ U(D), f − 1 ∈ U(D) and
f − kz ∈ U(D). The first two equations imply that f(z) 6= 0 and f(z) 6= 1
for every z ∈ D. In addition f(z) is analytic in D and f(0) = 2. By applying
Picard-Schottky’s theorem ([2], p.19) we have that | f(z) |≤ e24 for every
| z |≤ 1

2
. But then | f(z) |< k | z | for | z |= 1

2
. This last inequality implies

by Rouché’s theorem [29] that f − kz has a zero in {z :| z |≤ 1
2
}. This leads

to a contradiction since f − kz ∈ U(D), and thus the theorem is proved. �

We provide the counterpart for continuous time stability by using the
conformal mapping.
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Corollary 5.2. Let p1(s) = 0, p2(s) = s−1
s+1

, p3(s) = 2(s−1)
(s+1)

, p4(s) = 2(s−1)
(2−k)s+(2+k)

be four continuous time systems. If k > e26 then pi(s), i = 1, ..., 4 are simulta-
neously R+∞-stabilizable but they are not simultaneously C+∞-stabilizable.

Proof. The four plants are simultaneously C+∞-stabilizable if and only
if p1(z) = 0, p2(z) = z, p3(z) = 2z and p4(z) = 2z

2−kz are simultaneously

D-stabilizable. This, in turn, implies that the four plants are simultane-
ously C+∞-stabilizable if and only if p1(z) = 0, p2(z) = z

z+2
, p3(z) = 2z

z+2
and

p4(z) = 2z
(z+2)(2−kz) are simultaneously D-stabilizable. The impossibility of

this is proved in Theorem 5.1. �

The next counterexample is slightly stronger. It applies to the case of
three plants. This result also answers negatively the question addressed in
the conclusion of [37].

Theorem 5.3. Let n be a positive integer and let p1,n(z) = 0, p2,n(z) = nz
z+2

and p3,n(z) = − 1
nz(z+2)

be three discrete time plants. For every n, pi,n(z),
i = 1, 2, 3 are simultaneously I-stabilizable. There exists, however, a n such
that pi,n(z), i = 1, 2, 3 are not simultaneously D-stabilizable.

Proof. It can be checked that for any positive integer n these three plants
are simultaneously I-stabilizable; this part is left to the reader (the result fol-
lows trivially from Theorem 4.13). The fact that they are not simultaneously
D-stabilizable for all n is more difficult to prove. We suppose in the sequel
that for every n they are simultaneously D-stabilizable and we produce a
contradiction.

Notice first, since (z + 2) ∈ U(D) that pi,n(z) are simultaneously D-
stabilizable for every integer n if and only if p′1,n(z) = 0, p′2,n(z) = nz and

p′3,n(z) = − 1
nz

are simultaneously D-stabilizable for every n. This in turn is

possible if and only if for each n there exist nc,n(z), dc,n(z) ∈ S(D) such that
dc,n(z) ∈ U(D), nc,n(z)nz + dc,n(z) ∈ U(D) and nc,n(z)− dc,n(z)nz ∈ U(D).

Since dc,n(z) ∈ U(D), we may define hn(z) , nc,n(z)
dc,n(z)

∈ S(D) to be the

solution associated to n. We then have that hn(z)nz + 1 ∈ U(D) and
hn(z) − nz ∈ U(D) for every n. In the next part we show that the exis-
tence, for every n, of a simultaneous solution hn(z) to these two equations is
impossible.
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Since hn(z)nz + 1 ∈ U(D) we can define gn(z) = hn(z)nz−n2z2

hn(z)nz+1
∈ S(D).

These functions are analytic in D, they have no zeros in D\{0} and they
take the value 1 only twice in D, namely at z = j

n
and z = − j

n
. By the

generalised form of Montel’s normal family criterion ([19], p.70) this implies
that the sequence (gn(z)) is a normal family in D\{0}. Hence, going to a
subsequence, we can assume that gn(z) converges uniformly on compact sub-
sets of D\{0}. There are only two possible cases: either gn(z) tends locally
uniformly to infinity, or gn(z) tends locally uniformly to an analytic function
in D\{0}. We show in what follows that both these cases lead to a contra-
diction.

Case 1. gn(z) tends locally uniformly to infinity, i.e. the functions 1
gn(z)

tend locally to zero on every compact set of D\{0}. Consider the com-
pact set {z :| z |= 1

2
}. Given ε > 0, we have | 1

gn(z)
|≤ ε

2
= ε | z |

for every n ≥ n0(ε) and | z |= 1
2
. By definition of gn(z) we know that

nzhn(z)(1 − 1
gn(z)

) = −(1 + n2z2

gn(z)
). Using this equality together with the

bounds obtained above we get | hn(z)
n
|≤

ε
8

1
2
(1− 1

4
)

for n ≥ n0(ε) + n0(
1
2
) and

{z :| z |= 1
2
}. For some large integer n we thus have | hn(z)

n
|< 1

2
when

| z |= 1
2
, i.e. | hn(z)

n
|<| z | when | z |= 1

2
. The functions hn(z)

n
are an-

alytic in {z :| z |≤ 1
2
} and hence, by Rouché’s theorem, hn(z)

n
− z has a

zero in {z :| z |≤ 1
2
} for some integer n. But this contradicts the fact that

hn(z)− nz ∈ U(D) and thus case 1 can not occur.

Case 2. gn(z) tends locally uniformly to an analytic function in D\{0}.
Then gn(z) are uniformly bounded on compact subsets of D\{0}. Say |
gn(z) |≤ M for | z |= 1

2
. We have defined gn(z) = hn(z)nz−n2z2

hn(z)nz+1
and thus also

gn(z) = 1− 1+n2z2

hn(z)nz+1
. This last equation, together with the bound on gn(z),

implies that | 1+n2z2

hn(z)nz+1
|≤ M + 1 for | z |= 1

2
. This in turn implies that

| n2

hn(z)nz+1
|≤ M+1

1
4
− 1
n2

for | z |= 1
2

and n > 3. The function n2

hn(z)nz+1
is analytic

in D and hence, by the Maximum Modulus Theorem, the bound obtained
above holds throughout the disc of radius 1

2
. In particular it holds at z = 0

so that we must have n2 ≤ M+1
1
4
− 1
n2

for n > 3. But this inequality is obviously

violated when n > 2
√
M + 2. A contradiction is obtained and thus Case 2
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can not occur. �

By using Theorem 5.3, we end this paper by providing an example of a
plant which has the even interlacing property but which is not D-stabilizable
by a unit controller. Recall that in Section 4.2 we established that a plant
p(z) is I-stabilizable by a unit controller if and only if p(z) has the even
interlacing property on I.

Theorem 5.4. Let pn(z) = z
1+n2z2

. pn(z) has the even interlacing property
for every positive integer n. There exists, however, a n such that pn(z) is not
unit D-stabilizable.

Proof. Suppose, by contradiction, that for every integer n there exists a
unit D-stabilizer of pn(z) = z

1+n2z2
. Then, for every positive integer n, there

exist nc,n, dc,n ∈ U(D) such that znc,n + (1 + n2z2)dc,n = un ∈ U(D). Since
nc,n, dc,n ∈ U(D) this implies that un

dc,n
= z nc,n

dc,n
+(1+n2z2) = nz( nc,n

ndc,n
+nz)+

1 ∈ U(D). Define hn = nc,n
ndc,n

+nz; then, for every n, hn defined above is such

that hnnz + 1 ∈ U(D) and hn − nz ∈ U(D). This has been proved to be
impossible in the proof of Theorem 5.3 and thus the theorem is proved. �

6 Conclusion

In this paper we have analysed some aspects of the simultaneous stabilization
question.

Our first contribution was to show that the problem of internal stabi-
lization of k plants pi, i = 1, ..., k is equivalent to what we have called an
avoidance problem: ’under what condition on pi(s), i = 1, ..., k is it possible
to find q(s) such that pi(s) 6= q(s), ∀s ∈ C+∞, i = 1, ..., k’. Our first message
is clear: stabilization = avoidance. This is only a restatement of the problem;
it does not answer any question, but it provides new insights and new proof
techniques for the establishement of other results.

The second part dealt with a subproblem of the simultaneous stabiliza-
tion problem. Given two plants p1 and p2, we showed that there exists a
controller c such that the closed loop transfer functions associated to p1 and
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p2 are stable if and only if there exist a controller c such that the closed
loop transfer functions associated to p1 and p2 have no real unstable poles.
The same property is proved for the strong stabilization problem. Motivated
by these results we have developed in that part a complete answer to the
question: ’given k plants pi, i = 1, ..., k when is it possible to find a single
controller c such that all the transfer functions have no real unstable poles?’.
Although such a question may sound of limited practical interest, we have
given some motivations for it.

The third part gave answers to some of the questions raised in part two
and elsewhere. In particular, we showed that, unlike the case of two plants,
the existence of a simultaneous stabilizing controller for more than two plants
cannot be guaranteed by the existence of a controller such that the closed
loop transfer functions have no real unstable poles.

To conclude, let us stress the fact that our results provide a much better
understanding of the original simultaneous stabilization problem for more
than two plants but that the problem is... still unanswered.
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