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A Measure of Robust Stability for an Identified Set of
Parametrized Transfer Functions

X. Bombois, M. Gevers, and G. Scorletti

Abstract—In this paper, we define a measure of robustness for a set of
parameterized transfer functions as delivered by classical prediction error
identification and that contains the true system at a prescribed probability
level. This measure of robustness is the worst case Vinnicombe distance be-
tween the model and the plants in the uncertainty region. We show how
it can be computed exactly using LMI-based optimization. In addition, we
show that this measure is directly connected to the size of the set of con-
trollers that are guaranteed to stabilize all plants in the uncertainty region,
i.e., the smaller the worst case Vinnicombe distance for an uncertainty re-
gion, the larger the set of model-based controllers that are guaranteed to
stabilize all systems in this uncertainty region.

Index Terms—Control systems, identification, robustness, stability, un-
certainty.

I. INTRODUCTION

This paper is part of our continuing investigation in order to recon-
cile time-domain prediction error identification and robustness theory
[1]–[3]. Our approach is based on the ellipsoidal uncertainty region
delivered by prediction error identification [9], [1], [3] and that con-
tains the so-called true system at a certain probability level. In [3], we
have shown how to validate a controller with respect to all plants con-
tained in such uncertainty set . The controller validation procedure
developed in [3] consists of a necessary and sufficient condition that
guarantees the stabilization of all plants in by the “to-be-validated”
controller and in the exact computation of the worst case performance
achieved by this controller over all systems in .
The results of [3] pertain to the validation of a specific controller

with respect to a specific uncertainty region. In this paper, we address
the question of selecting an uncertainty region among a set of possible
regions. Indeed, different identification experiments lead to different
uncertainty regions . Some of those may be better tuned toward
robust controller design than others. Roughly speakingwe shall say that
an uncertainty region is better tuned for robust control design than

if the controller set that is guaranteed to robustly stabilize
is a subset of the controller set that is guaranteed to robustly

stabilize .1 This paper therefore treats the problem of choosing
one particular uncertainty region among all the available ones and
this according to robust stability criteria.
Uncertainty Region: Prediction error identification delivers an es-

timated model for the true plant and provides us with tools for
the estimation of an uncertainty region (see, e.g., [9]). If the parametric
structure is sufficiently complex to represent the true system, then
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1We shall say that a controller set is guaranteed to robustly stabilize an uncer-
tainty region if all controllers in that set are guaranteed to stabilize all plants
in .

is asymptotically unbiased, and the covariance matrix of the param-
eter estimates allows one to construct a parametric uncertainty region
containing the parameters of the true system at a certain prob-

ability level that we can fix at, say, 95%. The uncertainty region in
the parameter space defines an equivalent uncertainty region in the
space of transfer functions with as its center. This uncertainty re-
gion can be obtained for both open-loop identification and indirect
closed-loop identification. It is clear that different identification exper-
iments lead to different uncertainty regions .
In our approach, we directly deduce from the measured data a set of

parameterized transfer functions. Our approach therefore differs sig-
nificantly from other methods presented in the literature that consist of
validating [6], [4], [11], [8] or designing [10], [7] uncertainty regions
containing the true system. In [6], [4], [11], and [8] and references
therein, a method is proposed to decide whether a postulated region
with bounded uncertainties is consistent with measured input–output
data (the so-called model invalidation concept): [6] and [4] deal with
frequency domain data while [11] and [8] tackle the same problemwith
time-domain data. This model invalidation concept has been extended
to the concept of controller invalidation in [12]. Our approach here is
different in that we do not have to choose an a priori structure for the
uncertainty region; rather our uncertainty region is derived from the
data collected on the true system and is consistent with these data if the
model structure is unbiased and if the residuals between the predicted
and actual output are a white noise process (see [9] for more details).
Our approach also differs significantly from the approach used in

traditional set membership identification ([10] and references therein),
where a hard bound assumption ismade on the noise and a known upper
bound is required on the impulse response of the true system, leading to
the identification of an uncertainty set around a nominal model. In [7],
a method to identify an additive uncertainty region with a stochastic
noise assumption is presented, but a known prior bound on the true
system impulse response is again required. Furthermore, the approach
presented in [7] is restricted to linearly parameterized models, such as
FIR models. In our approach, rational transfer functions with denom-
inator uncertainty can be used. In addition, no prior assumptions are
required on the magnitude of the noise and of the impulse response.
The only important restriction in this paper is that we assume that the
system is in the model set and that the uncertainty sets are therefore
entirely defined by covariance errors on the parameters.
Choice of a Particular Uncertainty Region : The choice of one

particular uncertainty region among several possible ones is based
on the computation, for each , of the worst case (i.e., the largest)
Vinnicombe distance [13], [14] between a model and the plants
in . Here is the model that will be used for control design.
It need not be any of the full-order identified models that lie at
the center of the uncertainty regions . It is typically a low-order
model that lies within all uncertainty regions. Our first contribution
is to show that this worst case Vinnicombe distance can be exactly
computed using an optimization problem involving linear matrix in-
equality (LMI) constraints [5]. Our second contribution is to show that
the smaller the worst case Vinnicombe distance between the model

and all plants in some , the larger is the controller set that is
guaranteed to robustly stabilize and .
The choice of the Vinnicombe metric to characterize the amount of

uncertainty (i.e., the distance) between the model and the plants in
is motivated by the fact that this metric generally leads to the least
conservative robust stability results.
Paper Outline: In Section II, the general expression of the para-

metric uncertainty regions delivered by classical prediction error iden-
tification is presented. In Section III, we define the worst case Vinni-
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combe distance between a given model and all systems in an uncer-
tainty region . In the same section, we explain how we can compute
this distance using a convex optimization problem involving LMI con-
straints. In Section IV, we present a procedure, based on the worst case
Vinnicombe distance, that allows one to choose the uncertainty region
that is best tuned for robust control design with respect to the model.
This procedure is illustrated by an example in Section V. Finally, some
conclusions are given in Section VI.

II. UNCERTAINTY REGION DELIVERED BY PREDICTION
ERROR IDENTIFICATION

In this section, we give the general expression of the uncertainty re-
gions delivered by classical prediction error identification, assuming
that unbiased model structures are used [9]. This general expression,
valid for both open-loop and indirect closed-loop identification, is sum-
marized in the following proposition, where we assume that the true
open-loop system is linear and time-invariant, with a rational input-
output transfer function such that , where is addi-
tive noise; see [1] and [3] for more details.
Proposition 1: Consider , the real parameter vector

of the parameterized transfer function set, , the true
open-loop system, and , the full order identified model obtained
either “directly” by open-loop identification or “indirectly” by indirect
closed-loop identification. The uncertainty region containing
at a certain probability level has the following general form:

and

(1)

where is the inverse of the covariance matrix of , is
determined by the desired probability level, and and are
known row vectors of size .
In the sequel, when we say that the true system lies in the uncertainty

region , it means that the true system lies in the uncertainty region
at a certain probability level, which is a function of .

III. A ROBUST STABILITY MEASURE FOR

In the previous section, we have given the general expression of
the uncertainty regions obtained with open-loop and closed-loop
identification. It is clear that different identification experiments (i.e.,
open-loop or closed-loop identification, different measured data,
lead to different identified parameter vectors, different covariance ma-
trices, and therefore also different sets of systems . Let us thus
consider that experiments have delivered different uncertainty sets

, , which all have the general structure given in (1). Let
us also consider that we have a (possibly low-order) model from
which we design a control law for the true system . The problem we
tackle in this paper is to find the uncertainty set , among the pos-
sible ones, that is best tuned for robust control design based on ,
i.e., the uncertainty set for which the -based set of robustly sta-
bilizing controllers is largest. Once this “best” uncertainty set is
chosen, a controller can be designed from , and we can then use

the results of [3] to test if the designed controller does indeed stabi-
lize all plants in the chosen set . The robust stability measure for
is the worst case Vinnicombe distance. It is based on the Vinnicombe
metric (or -gap metric) that defines a distance between two transfer
functions. This metric will therefore be defined and its nice properties
with respect to robust stability are first presented.

A. The Vinnicombe Metric
The distance between two systems and has

been defined by Vinnicombe [13] who calls it the -gap between
and , as shown in (2) at the bottom of the page, where

. Here
[respectively, ] denotes the number of poles of outside
(respectively, outside and on) the unit circle, and denotes the
winding number about the origin of as follows the standard
Nyquist D-contour. If , is, according to
(2), the supremum of over all frequencies. This
quantity is the chordal distance between the
projections of and onto the Riemann sphere of unit
diameter [13].
As said in Section I, this -gap has nice properties with respect to

robustness analysis. Indeed, the size of the set of controllers that are
guaranteed to stabilize both and is related to [13]
as shown in the following proposition.
Proposition 2 [13]: Let us consider a nominal plant and a per-

turbed plant and denote the -gap between these two
plants. Then, a controller stabilizing also stabilizes if this
controller lies in the controller set where

is the generalized stability
margin of the stable loop .
This proposition shows that the smaller the -gap between the nom-

inal plant and the perturbed plant , the larger is the set of con-
trollers stabilizing that also stabilize .

B. The Worst Case Vinnicombe Distance
The nice stability property presented in the previous section shows

that the -based controller set that is guaranteed to robustly stabi-
lize will be large, if the largest Vinnicombe distance between
and any plant in remains small. We call this “largest Vinnicombe dis-
tance” the worst case Vinnicombe distance between

and the set .
Definition 1: Consider an uncertainty region having the structure

given in (1) and a model . The worst case Vinnicombe distance
is given by

(3)

Another important quantity is now defined: the worst case chordal
distance. This quantity, whose computation is the result of a convex
optimization problem involving LMI constraints as will be shown
in Section III-C, will allow us to give an alternative expression for

.
Definition 2: At a particular frequency , we define

as the maximum chordal distance between

if

otherwise
(2)
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and the frequency responses of all plants in at this
frequency

(4)
This last quantity can now be used to give an alternative expression
of the worst case Vinnicombe distance. This is done in the following
lemma, which is an extension of a property presented in [14, p. 66].
Lemma 1: If for one plant , then

the worst case Vinnicombe distance defined in (3) can
also be expressed in the following way using the worst case chordal
distance:

(5)

where is defined in (4).
Proof: The winding number condition may be omitted in (5). In-

deed, assume there exists one for which ,
i.e., . Since is a connected set, then there always
exists a piecewize continuous application of to plants in
such that and . As
and , there exists a such
that and therefore such that

for some frequency . So,

Remark: If , we always have and
therefore (5) is always valid.

C. Computation of the Worst Case Chordal Distance
In the previous subsection, we have defined the worst case Vinni-

combe distance between the model and all plants in an uncer-
tainty region having the general structure (1). Now we give a proce-
dure to compute this worst case Vinnicombe distance .
According to Lemma 1, this is equivalent to finding a procedure to com-
pute the worst case chordal distance defined in
(4), since is the maximum over all frequencies of the
worst case chordal distance. In the following theorem, we show that the
computation of the worst case chordal distance
at a particular frequency can be formulated as a convex optimization
problem involving LMI constraints [5].
Theorem 1: Consider the model and an uncertainty region

having the general structure given in (1). The worst case chordal dis-
tance at frequency is equal to where

is the optimal value of in the following standard convex opti-
mization problem involving LMI constraints:

minimize
over
subject to

and Re Re
Re Re

(6)

with

and

Proof: If we denote the frequency response at of any plant in
by , then a convenient way to state the problem of computing

the worst case chordal distance at the frequency is as follows [see
(4)]:

minimize such that

for all

Using the procedure [5], this is equivalent with (6). See full version
of [1] for details.

IV. ROBUSTNESS-ORIENTED CHOICE OF AMONG A SET OF

In the previous section, the notion of worst case Vinnicombe dis-
tance between a model and an uncertainty region has been
introduced and a procedure has been given to compute this distance.
This worst case Vinnicombe distance can be considered as a robust-
ness measure of with respect to robustly stable controller de-
sign based on the model . Indeed, we show now that the smaller

, the larger is the -based controller set that is
guaranteed to robustly stabilize . We first establish a link between

and the size of the “ -based controller set that
is guaranteed to robustly stabilize ” and then we use this property
to compare two different uncertainty regions.
Proposition 3: Consider an uncertainty region having the

structure given by (1) and a model . All controllers that
stabilize and that lie in the set

are guaranteed to stabilize all plants in the uncertainty region .
Proof: This proposition is a direct consequence of Proposition 2

and of Definition 1.
Theorem 2: Consider two uncertainty regions and . If

, then
.

Theorem 2, which directly results from Proposition 3, gives us guide-
lines to choose the uncertainty region that is best tuned to robust con-
troller design. These guidelines are summarized in the following propo-
sition.
Proposition 4: Consider uncertainty regions obtained from
different identification experiments and a model . Then the

uncertainty region that generates the largest set
( ) of robustly stabilizing controllers is the uncertainty re-
gion

(7)

Remarks:
1) The choice of for the control design is an important fea-
ture. Indeed, we analyze the robustness properties of the un-
certainty regions with respect to controllers designed from

(and stabilizing it). If the smallest worst case Vinnicombe
distance between and the different remains “large,”
then the chosen model is not appropriate for a control de-
sign procedure for because the actual may be
too large. A better model must then be chosen: for ex-
ample, the center of one of the uncertainty regions .

2) The set contains all controllers that stabilize the
uncertainty set that
embeds . Thus, there may be additional controllers outside
the set that stabilize all models in ; in that
sense, our analysis is conservative. However, since we typically
choose within all , we essentially introduce the same
conservatism for each and therefore our procedure remains
valid for the selection of the best .
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Fig. 1. (dashed), (solid) and (dashdot) at each frequency.

V. A SIMULATION EXAMPLE

Let us consider the following true system and the following
model of this true system

and

where is a white noise of variance 0.1. The actual -gap between
and is .We perform one identification
of in open loop and one identification in closed loop (with the
controller in the loop) leading
to two different uncertainty regions, each of which contains with
probability 0.95. We call these two uncertainty regions and ,
respectively. In order to decide which of these uncertainty regions
is best tuned for control design with respect to the model , we
compute the measure of robustness of these two uncertainty regions
with respect to , i.e., and .
For this purpose, we first compute the worst case chordal distances
at each frequency for and using the LMI tools developed
in Section III-C. The worst case chordal distances at each frequency

and are repre-
sented inFig. 1where theyare comparedwith the actual chordal distance

between and .According to Lemma
1 and since ( and
are the centers of and , respectively), we can derive the worst
caseVinnicombedistances from theworst chordal distances as follows:

Therefore, by Proposition 4, the set of controllers sta-
bilizing that robustly stabilizes is much larger than the set

that robustly stabilizes . To illustrate this state-
ment, let us design two controllers from the model . These two
controllers are given as follows with the achieved generalized stability
margins:

We directly see that the controller is guaranteed to stabilize
the plants in the two uncertainty regions since it belongs to both
guaranteed sets of stabilizing controllers and

defined in Proposition 3. Indeed,
. However, the controller

belongs to only: therefore stabilizes all the
plants in . As , it is not guaranteed, by
Proposition 3, to stabilize all plants in . Proposition 3 only gives a
sufficient condition. To check whether actually stabilizes all plants
in , we use the “necessary and sufficient” test developed in [3].
This test fails, and therefore does not stabilize all plants in
whereas it does stabilize all plants in by Proposition 3.

VI. CONCLUSIONS

We have proposed a measure of robust stability for a set of param-
eterized transfer functions as delivered by prediction error identifica-
tion. This measure is the largest Vinnicombe distance between the nom-
inal model and all plants in the uncertainty region. We have shown that
this measure is exactly computable using LMI-based optimization. We
have also shown that the smaller the worst case Vinnicombe distance
between the model and an uncertainty region, the larger is the set of
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model-based controllers that robustly stabilize all plants in the uncer-
tainty region. This measure therefore gives us guidelines to select the
uncertainty region that is best tuned for robust stability analysis among
all available ones. To illustrate the impact of our results in terms of the
connection between identification and robust control, we return to the
example above. With our robust stability measure for uncertainty sets,
we were able to conclude that the -based controller set that is
guaranteed to robustly stabilize is much larger than the set that is
guaranteed to robustly stabilize . Hence, in terms of identification
for control, the closed-loop identification design that led to the uncer-
tainty set is a much better experiment design than the open-loop
design that led to . The results of this paper have thus allowed us
to establish a connection between identification design and stability ro-
bustness of the controllers resulting from such design.
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Random Spherical Uncertainty in Estimation
and Robustness

B. T. Polyak and P. S. Shcherbakov

Abstract—A theorem is formulated that gives an exact probability dis-
tribution for a linear function of a random vector uniformly distributed
over a ball in -dimensional space. This mathematical result is illustrated
via applications to a number of important problems of estimation and ro-
bustness under spherical uncertainty. These include parameter estimation,
characterization of attainability sets of dynamical systems, and robust sta-
bility of affine polynomial families.

Index Terms—Estimation, random noise, robust stability, uncertain sys-
tems.

I. INTRODUCTION

Traditionally, different fields of control theory exploit various
models for the uncertainty. For instance, in parameter and state
estimation, the standard approach deals with random (specifically,
Gaussian) perturbations, and least squares and Kalman filtering are the
most popular tools for estimation under such assumptions. Later, the
model of unknown-but-bounded perturbations was developed, which
led to ellipsoidal techniques for estimation [14], [8], [10].
On the other hand, the models of parametric uncertainty in control

theory are basically deterministic, e.g., see [1], [2], and [5] devoted to
robust stability and performance of uncertain linear systems. One of
the drawbacks of such models is that the admissible ranges for the un-
certainty that satisfy performance specifications are calculated against
the worst case uncertainty, which may happen very rarely in practice.
Also, the computational complexity of the methods often grows expo-
nentially in the dimension of the uncertainty vector.
In practical applications, it is quite often the case that hard bounds

on the uncertainty are not known. Instead, certain probabilistic charac-
teristics for the uncertain parameters are available, the conclusions are
obtained in the form of confidence estimates, and the solution often in-
volves Monte Carlo simulations; see [13], [9], [4], and [7]. Along with
low computational complexity, the main benefit is a considerable en-
hancement of admissible uncertainty domains in exchange of a small
probability risk that the deterministic specifications are violated. The
results obtained so far relate to independent random variables.
Following the probabilistic approach, in this paper we work with an

important class of dependent random parametric uncertainty, namely,
with the uniform distribution on a ball in -norm. There are several
reasons for such an uncertainty model. First, if the uncertainty is sup-
posed to be of a stochastic nature, the -constraint is associated with a
bound on the total energy of random noise; in that case, the random
uncertainty can be thought of as a bridge between probabilistic models
and unknown-but-bounded models (with ellipsoidal models of uncer-
tainty as conventional tools), e.g., see Section IV, where the determin-
istic result is enhanced via its probabilistic counterpart. On the other
hand, for the parametric uncertainty, the model is quite natural, since
often, the information about the uncertain parameters is derived from
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