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Louvain University

Bâtiment Maxwell, B-1348 Louvain-la-Neuve, Belgium
Abstract - Much of the recent work on robust control is based on assumptions about the uncertainties around the

are at odds with the type of information that is classically available about an identified model. Conversely, until

theory had not focused upon delivering accurate uncertainty bounds around the estimated model. In addition, in adaptiv

not much effort has been devoted to the effect of the controller on the quality of the identified model. In this

between identification and control design will be illustrated, and a number of recent results will be presented that

synergy between these two fields.

1 Introduction

The last ten years have seen the emergence
of robust control theory as a major research
activity. During the same period, research
in system identification has dwindled, and it
might be tempting to believe that most of
the theoretical questions in identification the-
ory have been resolved for some time. The
surprising fact is that much of robust con-
trol theory is based on prior descriptions of
model uncertainty or model errors which clas-

∗The results presented in this paper have been ob-
tained within the framework of Interuniversity At-
traction Poles initiated by the Belgian State, Prime
Minister’s Office, Science Policy Programming. The
Scientific responsibility rests with its author.

sical identification theory has been incapable
of delivering. Conversely, until recently iden-
tification theorists have not spent much effort
in trying to produce the accurate uncertainty
bounds around their estimated models that
their robust control design colleagues were
taking for granted. It is as if, until a few years
ago, the control design community and the
identification community had not been talk-
ing much to each other. The gap between the
surrealistic premises on which much of robust
control design theory is built and the failure
of identification theory to deliver accurate un-
certainty bounds in the face of unmodelled
dynamics has brought to light major deficien-
cies in both theories, and a sudden awareness
from around 1988 of the need to understand



better the interactions between both theories.
Surely, a natural place to search for an un-

derstanding of the interactions between iden-
tification and robust control design is in the
adaptive control community. Indeed, adap-
tive control combines the design of an on-line
identifier with that of a control law. After
the establishment of the first proofs of global
stability and convergence of adaptive con-
trollers in the case of exact knowledge of the
model structure in 1978 (see e.g. Goodwin,
Ramadge, Caines (1980)), the adaptive con-
trol community did indeed turn its attention
rapidly to the questions of robust adaptive
control, namely the establishment of stabil-
ity and performance results in cases where
the nominal model has a lower complexity
than the true system : see e.g. Anderson
et al. (1986). However, in their pursuit of
an adaptive controller possessing some de-
gree of robustness to unmodelled dynamics,
the adaptive control community split into two
camps. There were those who focused upon
the specification of more and more sophis-
ticated control law design procedures in the
hope that a super control law would be able
to overcome the vagaries of any identification
method. And there were those who, by ca-
joling and forcing the parameter estimates
to conform to certain boundedness conditions
whatever the control law, were aiming at de-
veloping a super identifier able to leap over
any reasonable controller in a single bound.
An essential feature of adaptive control, how-
ever, is that the identification is performed in
closed loop and that the controller therefore
impacts on the estimated model and on its
quality (i.e. its error with respect to the true

system). It is therefore to be expected that
the separate designs of the identifier and of
the controller without regard for the effect
of the control law on the identified model,
or of the identified model on the robustness
of the control law, may not lead to a maxi-
mization of the global robustness of the iden-
tifier/controller schema. While the theory of
the identifiability of closed loop systems dates
back to the late seventies and early eighties,
the effect of the controller on the convergence
points of the model parameter estimates in
an adaptive scheme was first analyzed in Lin,
Kumar, Seidman (1985), Polderman (1987)
and Gunnarson (1988). The first instance in
which a robust design procedure is proposed
that takes jointly into account the effect of
the control design criterion on the identified
model and the effect of the identification cri-
terion on the controller robustness is proba-
bly to be found in Bitmead, Gevers, Wertz
(1990). The central idea of this synergistic
design prodecure will be presented later.

In light of the above motivation, this paper
will focus on several points of interaction be-
tween identification and control design. The
first part of the paper will be tutorial; the sec-
ond part will present some recent results on
the estimation of uncertainty bounds around
nominal models, and on the interaction be-
tween control design and identification design
in closed loop identification.

In the course of our tutorial presentation,
our arguments will unfold along the following
thread.

• First we shall review some fundamentals
of classical (i.e. Ljungian) identification



theory (Ljung, 1987, Söderström, Sto-
ica, 1990). In the case where the model
structure is of lower complexity than the
true system (called restricted complexity
modelling), the error on the estimated
transfer function can be split into an er-
ror due to unmodelled dynamics (often
called bias error) and an error due to
noise and the finite amount of data (of-
ten called variance error). An implicit
expression is available for the character-
ization of the bias error, which allows for
qualitative design guidelines.

• We then show the effect of the input sig-
nal spectrum on the estimated model,
and hence on the model error. We illus-
trate how a feedback controller that sta-
bilizes an identified restricted complex-
ity model may destabilize an otherwise
stable system when the model has been
estimated with a poorly chosen input.

• In adaptive control, the input spectrum
is influenced by the reference signal and
the feedback controller. The poten-
tially destabilizing effect of a poorly cho-
sen input signal mentioned above clearly
points to a potential regulator induced
mechanism for instability in an adaptive
control loop.

• This instability of the closed loop finds
its roots in the application of a cer-
tainty equivalence control law without
due satisfaction of a robustness crite-
rion. In other words, the control law
is computed from the estimated model,
but is applied to the true plant, while the

plant/model error is larger than is autho-
rized by an appropriate robustness cri-
terion. To understand this mechanism,
some basic concepts of stability robust-
ness will be reviewed.

• There are various forms of stability ro-
bustness criteria, but in fine they all con-
strain some frequency domain expression
of the plant/model error to be smaller
than some frequency function of the de-
signed (i.e. nominal) closed loop system,
which is itself a function of the feedback
controller. In order to design this con-
troller it is therefore important to ob-
tain as precise a description as is possi-
ble of the error on the estimated model.
This leads to the important new subject
of the estimation of bounds on model un-
certainty (or model error).

• We shall first argue that, contrary to
some popularly held beliefs, the estima-
tion of such bounds is trivial in the case
where the process is noise-free. In fact,
in such case one can estimate not just
the error bound but the error itself by
first resorting to high order modelling
followed by model reduction techniques.
We therefore turn to the noisy case.

• Classical (Ljungian) identification the-
ory offers only a qualitative description
of the distribution of bias over frequency,
while the variance error description, al-
though of a more quantitative nature, is
based on a simplifying assumption that
is not always satisfied. For the class of
linearly parametrized models, we shall



present a new procedure, due to Good-
win, Gevers, Ninness (1990), that allows
one to compute explicit upper bounds on
the plant/model error.

• In the case of adaptive control, the adap-
tive controller, through its effect on the
shaping of the input signal spectrum, has
a direct effect on the plant model es-
timate, which itself influences the con-
troller at the next step, as explained
above. We shall end this paper by ex-
plaining how an understanding of the
role of the regulator on the identified
model can be exploited to design the
identification method (and in particu-
lar the identifier filters) and the con-
trol law in a synergistic way so that
the combined robustness is larger than
that which would result from the sep-
arate designs of these two components
of an adaptive controller. Such idea
was first developed in Bitmead, Gevers,
Wertz (1990).

2 A brief review of classi-

cal identification

In this section we introduce our model as-
sumptions and we briefly recall some classi-
cal results concerning the bias and variance
error of an identified model. For the sake of
simplicity, this tutorial presentation will be
entirely written for single input single output
systems. We shall assume throughout that
the true system is linear and is described by

yt = GT (q)ut + vt, (1)

where q is the shift operator, GT (q) is the
unknown “true” transfer function of the plant
and vt is additive noise.

We shall use a parametrized model set of
the form

yt = G(q, θ)ut + H(q)et. (2)

Here G(q, θ) is a proper rational trans-
fer function parametrized by some vector
θ ∈ Rd, et is a white noise sequence, while
H(q) is some fixed noise model chosen by
the user. We note that the noise model is
often also identified. Here we shall not do so
: our purpose is to keep the problem suffi-
ciently simple while getting some important
ideas across. We shall be interested in the
identification of G(q, θ) from input-output
data in the practically relevant situation of
undermodelling (or restricted complexity
modelling).

Undermodelling assumption
The model structure G(q, θ) is such that

there exists no value of the parameter vector
θ such that

G(z, θ) = GT (z) ∀z ∈ C.

This is of course a typical situation in prac-
tice, where the system is more complex than
the model set used for identification and con-
trol design. For any given value of θ, the true
transfer function can therefore be written as
the sum of a nominal model, G(q, θ), and an
error, denoted G∆(q) :

GT (q) = G(q, θ) + G∆(q). (3)

The error G∆(q) is not parametrized, but be-
ing the difference between the true transfer



function and the nominal model parametri-
zed by θ, it depends on the specific value of
θ given to the nominal model. To stress this
implicit dependence of G∆(q) on θ, we shall
sometimes denote it G∆,θ(q), defined as

G∆,θ(q) , GT (q) − G(q, θ). (4)

2.1 The prediction error
method

From the model set (??) it is easy to write
the one-step ahead prediction for yt:

ŷt|t−1(θ) = H−1(q)G(q, θ)ut + [1 − H−1(q)]yt.

(5)
The one-step ahead prediction error is

ǫt(θ) , yt − ŷt|t−1(θ)

= H−1(q)[(GT (q) − G(q, θ))ut + vt].(6)

In prediction error identification, the estima-
tion of the parameter vector θ on the basis
of N input-output data is obtained by mini-
mizing some function of the prediction errors
{ǫt(θ), t = 1, . . . , N}, typically a sum of the
squares of these errors. However, for reasons
that will become transparent later, it is often
desirable to minimize a frequency weighted
sum or, equivalently, to filter the errors by
some stable filter with transfer function D(q).
We denote by ǫ

f
t (θ) the filtered errors :

ǫ
f
t (θ) , D(q)ǫt(θ). (7)

Least-squares prediction error identification
amounts to estimating θ that minimizes

VN(θ) ,
1

N

N∑
t=1

[ǫf
t (θ)]

2. (8)

The parameter estimate is then defined as

θ̂N = arg min
θ∈Dθ

VN (θ) (9)

where Dθ is a predefined set of admissible val-
ues. Assuming that θ̂N has been obtained by
some minimization algorithm, it then defines
an estimated input-output model G(q, θ̂N).

2.2 Bias and variance error

With θ̂N having been obtained by mini-
mization of (??), we now analyze the error
between GT (ejω) and the estimated model
G(ejω, θ̂N ) obtained from N data. First we
recall (see Ljung (1987)) that under reason-
able conditions on the data, θ̂N converges as
N → ∞ to

θ∗ = arg min
θ∈Dθ

V̄ (θ), (10)

where
V̄ (θ) = lim

N→∞
EVN(θ). (11)

By Parseval’s identity :

θ∗ = arg min
θ∈Dθ

∫ π

−π

{|GT (ejω) − G(ejω, θ)|2Φu(ω) + Φv(ω)}

× |D(ejω)|2

|H(ejω)|2
dω (12)

The relationship (??) is very important,
because it gives an implicit characterization
of the model (or models) G(ejω, θ∗) to which
G(ejω, θ̂N ) will converge if the number of
data tends to infinity. The expression raises
observations that are so important that they
deserve specific comments.

Comment 2.1.



a) Notice that in this case of a fixed noise
model H(ejω), the convergence point (or
points) of the parameter estimate de-
pends only on the combined frequency

weighting Φu(ω)|D(ejω)|2

|H(ejω)|2
. It is indepen-

dent of the actual noise, but depends
on the assumed noise model H(ejω).
Observe also that the identifier filter
D(ejω) allows a complete manipulation
of the frequency fit between GT (ejω) and
G(ejω, θ). In particular it can counteract
whatever effect the assumed noise model
might have.

b) Whereas expression (??) is very useful
in terms of understanding the role of the
filters and spectra on the plant/model
error fit, and whereas it allows for a cer-
tain manipulation of this fit, it does not
offer much help in quantifying the ac-
tual asymptotic error between GT (ejω)
and G(ejω, θ∗). A quantification of this
error will force us to venture into post-
Ljungian1 identification theory.

With θ∗ defined by (??), the error between
GT (ejω) and G(ejω, θ∗) will be called Bias Er-
ror :

B(ejω) , GT (ejω) − G(ejω, θ∗). (13)

We now consider the total error G∆,θ̂N
(ejω)

between GT (ejω) and G(ejω, θ̂N) :

G∆,θ̂N
(ejω) = GT (ejω) − G(ejω, θ∗) + G(ejωθ∗)

−G(ejω, θ̂N)

, B(ejω) + N(ejω, θ̂N ) (14)

1This term refers of course to the theory developed
after publication of Ljung (1987); it should in no way
cause concern as to Lennart Ljung’s good health.

We have decomposed this total error into the
sum of a bias error, B(ejω), and a noise-
induced error, denoted N(ejω, θ̂N). This sec-
ond term is often called the variance error,
with some abuse of language.

Comment 2.2.

The bias error is independent of the num-
ber of data (since it is by definition an asymp-
totic error) and of the noise. The noise error
depends very clearly on the number of data
(it actually tends to zero, by definition of θ∗,
when N → ∞), and it is induced by the noise.
If there were no noise, there would be no noise
error N(ejω, θ̂N ).

It is almost as difficult to quantify the noise
term N(ejω, θ̂N) as it is quantify the bias er-
ror. In Ljung (1987), the following approx-
imation was obtained for systems of suffi-
ciently high order :

covN(ejω, θ̂N ) ∼ n

N

Φv(ω)

Φu(ω)
(15)

where ∼ indicates proportionality, n the or-
der of the model G(ejω, θ), N the number of
data, Φv(ω) the noise spectrum and Φu(ω)
the input spectrum. This expression was ob-
tained under the assumptions that the model
order n is large and that G(ejω, θ) can be de-
scribed as a piecewise constant function of
frequency, with the constants being indepen-
dent over different frequency intervals. This
assumption is not always realistic. A more
accurate, but more complicated expression,
was obtained in Goodwin, Gevers, Mayne
(1991).



3 Control/identification

interactions

The bias and variance formulae of Section
2 show, at least qualitatively, how the in-
put spectrum affects the identified model and
hence the model error. In this section we shall
illustrate these effects through an example,
at the same time highlighting some specific
modes of interaction between an identified
model and a controller in a closed loop situ-
ation, and the possibly noxious consequences
of such interactions. In particular, we shall
illustrate the following points :

• In the case of undermodelling, different
inputs used for identification may lead to
very different estimated model transfer
functions G(ejω, θ̂N). This is of course
well-known.

• A control design based on a nominal
model estimated with a poorly chosen
input signal may destabilize the actual
plant, even if the plant itself was stable
to start with.

• When the identification is performed in
closed loop with an external reference
input, the frequency distribution of the
actual input is determined by the spec-
trum of the reference input, the actual
plant and the controller. If the “identi-
fication” - “control design” is performed
in iterative steps, as is the case in adap-
tive control, the succession of controllers
may, via their effect on the input spec-
trum, produce models that in turn yield
a destabilizing controller.

Throughout this paper we shall consider
the following to be the true sustem :

GT (q) =
0.0364q−1(1 + 1.2q−1)

1 − 1.6q−1 + 0.68q−2
. (16)

This second-order “plant” has two stable
poles at z = 0.8 ± j0.2, and a non-minimum
phase zero at z = −1.2. It is a low pass sys-
tem with a steady-state gain GT (1) = 1. We
shall consider a class of first-order models of
the form

G(q, θ) =
bq−1

1 + aq−1
, (17)

where θ = (a b)T .

3.1 Influence of the input signal
on the estimated model

We consider noise-free identification to illus-
trate clearly the effect of the input on the
estimated model. Provided the input signal
is sufficiently rich (i.e. contains at least one
cosine function for this first order model), the
error between GT (ejω) and G(ejω, θ) will then
be entirely a bias error.

We first consider an input that contains a
single frequency : ut = cos(ωt). For three
different values of the frequency, ω1 = 0.1,
ω2 = 0.2, ω3 = 1 rad/sec, and using 1000 data
points with a sampling frequency of ωe = 2π
rad/sec, an ARX model is identified yielding
three different parameter vectors θ̂1, θ̂2 and
θ̂3: see Table 3.1.



Frequency

(radians/sec) â b̂

0.1 -0.8037 0.2197
0.2 -0.8667 0.2304
1 2.8550 -0.3300

Table 3.1.
Estimated parameters with single frequency

input

Figure 1 shows the Nyquist plots of the
true frequency function GT (ejω) (full line), as
well as those of the models G(ejω, θ̂1) (dots),
G(ejω, θ̂2) (plus) and G(ejω, θ̂3) (dash). The
figures clearly show the influence of the in-
put: in this noiseless case and with a single
frequency input, the fit between GT (ejω) and
G(ejω, θ̂) is exact at the frequency of the ap-
plied input.

Figure 1: Nyquist plot of true system and 3
estimated models

Next we apply an input that contains a
mixture of two frequencies applied earlier :
ut = cos(0.1t) + 0.2 cos(t). Now an exact fit
of the model to the plant at each of these

frequencies is impossible. An identification
under the same conditions as above yields
θ̂4 = (−0.8343 0.1852), and the correspond-
ing model G(ejω, θ̂4), which strikes a compro-
mise between a fit at ω1 = 0.1 and at ω2 = 1
rad/sec.

3.2 Effect of the estimated
model on closed loop stabil-

ity

To keep things simple we shall assume here
that, on the basis of the identified model,
we design a very simple pole-placement con-
troller. For our first order model this is
achieved by proportional output feedback. If
we want the nominal closed loop system to
have a pole at some z = d inside the unit
circle, we apply

ut = k(θ̂)(rt − yt)

= −(d + â)

b̂
(rt − yt), (18)

where rt is an external reference signal. With
this controller the actual closed loop system
becomes :

yt =
0.0364k(θ̂)q−1(1 + 1.2q−1)

1 − (1.6 − 0.0364k(θ̂))q−1 + (0.68 + 0.0436k(θ̂))q−2
r

(19)

, F (q, k(θ̂))rt (20)

Table 3.2. shows the closed loop poles for
some of the models identified above with a
deadbeat control strategy, i.e. d=0.



θ̂ Poles of F (q, k(θ̂))

θ̂1 0.7334 ± j0.5492

θ̂3 0.6425 ± j0.8027

θ̂4 0.7180 ± j0.6008
Table 3.2.

Closed loop poles obtained from models
identified with three different inputs

This table shows that a controller based on
an estimated nominal model may destabilize
an open loop stable plant: indeed F (q, k(θ̂3))
is unstable. This phenomenon may be due to
a poorly chosen control design criterion, or
to the fact that the model has been fitted to
the true system in a poorly chosen frequency
range, or to a combination of these two fac-
tors. It is precisely the interaction between
these two elements (plant/model error, con-
trol design) that is the theme of this paper.

3.3 Mechanism for instability
in adaptive control

We consider now a situation where the iden-
tification and control design are performed in
a succession of off-line steps using the same
system and model structure as above. With
a given input ut a first order model is identi-
fied first in open loop. Using this model and a
pole placement criterion, a controller is com-
puted and inserted in a feedback loop around
the system. With a reference signal rt iden-
tical to the initial input signal ut, a new first
order model is now identified and, from it,
a new controller is computed, which replaces
the first one in the feedback loop, etc... For
the reference signal we choose the mixture of

two frequencies used in Section 3.1 :

rt = cos(0.1t) + 0.2 cos(t). (21)

The first open loop identification yields θ̂4 :
see above. With the same pole placement cri-
terion as above, this yields k(θ̂4) = 4.5058.
Inserting the feedback controller (??) with
this value of k(θ̂4) into the loop and re-
identifying in closed loop with the same rt

now yields θ̂5 = (−0.9616 0.0374). This in
turn would produce k(θ̂5) = 25.7320, which
yields a new unstable closed loop system : the
poles of F (q, k(θ̂5)) are 0.3317 ± j1.3007.

To understand this instability mechanism,
we note that in closed loop the input signal ut

is determined by the reference signal rt, the
actual plan GT and the controller k. Indeed

ut = [1 + kGT (q)]−1krt. (22)

With rt as in (??), ut will be a combina-
tion of the same two frequencies, but the rel-
ative weights of these two frequencies will
have been altered by the transfer function
[1 + kGT (ejω)]−1. With k = k(θ̂4) in (??)
we get

ut = 0.8192 cos(0.1t+ϕ1)+1.5397 cos(t+ϕ2)
(23)

We note that the ratio of high-versus low-
frequency weighting has been increased by 9.4
between rt and ut, a significant shift towards
higher frequencies, induced by the controller.

This iterative control design/identification
scheme, though not truly adaptive since the
identification is performed off-line, is repre-
sentative of the instability mechanism that
may occur in an adaptive control loop, where



closed loop stability may be lost due to a fre-
quency shift of the model fit, induced by the
control law.

4 A quickie on robust sta-

bility

A controller K(z), designed to achieve closed
loop stability and some performance specifi-
cation for an assumed nominal plant model
Ĝ(z), might not achieve closed loop stabil-
ity and acceptable performance when applied
to the true plant GT (z) if the error between
GT (z) and Ĝ(z) is “too large” in some sense.
The example of the previous section has il-
lustrated this.

The idea of robust stability design is as fol-
lows. Assuming that some bound on the error
between GT (z) and Ĝ(z) is given a priori, can
we design a controller K(z) that will of course
produce closed loop stability and acceptable
performance with Ĝ(z), but also with all pos-
sible G(z) that lie within the a priori assumed
error bound around Ĝ(z). Conversely, one
could ask : is there a control design that will
allow for a large plant/model error in the
frequency bound where a large error is ex-
pected? These questions clearly indicate the
interplay between control design and model
uncertainty. We shall now formalize this in-
terplay by enunciating some very basic results
of stability robustness. As explained before,
we shall limit our analysis to the SISO case.
A much more thorough analysis can be found
in, e.g., Lunze (1989), Morari and Zafiriou
(1989) or Maciejowski (1989).

We consider the true plant GT (z) in a unity
feedback loop with a controller K(z) : see
Figure 2. 8025Fig.4.1.800

Figure 2.
Unity feedback system

In practice the controller has been computed
on the basis of a plant model Ĝ(z); e.g.
Ĝ(z) = G(z, θ̂) in an identification context.
There are various ways of characterizing the
error between GT (z) and Ĝ(z) : additive,
multiplicative, feedback descriptions. Here
we shall consider a multiplicative description
of the error :

GT (z) = Ĝ(z)(1 + L(z)) (24)

Simple block-diagram manipulations show
that, by replacing GT by (??), the unity feed-
back system of Figure 2 can be replaced by
the feedback configuration of Figure 3 with
the following definitions of L and M :

L(z) =
GT (z) − Ĝ(z)

Ĝ(z)
, M(z) =

K(z)Ĝ(z)

1 + K(z)Ĝ(z)
(25)

4820FIG.4.2.800

Figure 3.
Perturbation feedback system.

We note that the transfer function M(z)
is a computable quantity : it depends on the
nominal model Ĝ(z) and on the controller to
be designed. The error L(z), on the other
hand, is most often unknown. We shall now
make the following assumption about GT (z),
Ĝ(z) and K(z).

Assumption A



The plant GT (z) and the model Ĝ(z) have the
same number of unstable poles;

The designed closed loop (with K(z) and
Ĝ(z)) is stable.

We note that part 1 of Assumption A may
be hard to validate, while part 2 is trivial.
Under Assumption A, the closed loop will
remain stable provided the number of en-
circlements of −1 in the Nyquist diagram
of K(ejω)G(ejω) remains unchanged when
Ĝ(ejω) is replaced by GT (ejω). This will be
so if

1 + K(ejω)GT (ejω) 6= 0 ∀ω. (26)

Note that

1 + KGT = (1 + LM)(1 + KĜ) (27)

Since 1 + K(ejω)Ĝ(ejω) 6= 0 by Assumption
A, (??) is implied by :

|L(ejω)M(ejω)| < 1 ∀ω (28)

This is in turn implied by

|GT (ejω) − Ĝ(ejω)

Ĝ(ejω)
| < |1 + K(ejω)Ĝ(ejω)

K(ejω)Ĝ(ejω)
| ∀ω.

(29)
The left hand side is entirely dependent on
the model error : it is actually the relative
plant/model error. The right hand side is
computable and entirely determined by the
nominal model and the controller.

An alternative expression can be obtained
at the expense of an additional assumption.

Assumption B
The plant GT (z) and the model Ĝ(z) have the
same poles on the unit circle.

We note that 1 + LM can also be written

1 + LM = (
Ĝ − G

G
× 1

1 + KĜ
+ 1)

G

Ĝ
. (30)

By assumption B, G
Ĝ

is nonzero on the unit

circle. Therefore 1 + L(ejω)M(ejω) 6= 0 is
implied by

|GT (ejω) − Ĝ(ejω)

GT (ejω)
| < |1+K(ejω)Ĝ(ejω)| ∀ω.

(31)
Expressions (??) and (??) provide two alter-
native bounds on the relative error between
plant and model. Note that in (??) the abso-
lute error is divided by Ĝ, while in (??) it is

divided by GT . We shall call GT −Ĝ

Ĝ
the rela-

tive plant/model error and GT−Ĝ
GT

the relative
model/plant error. Various other forms of ro-
bust stability criteria can be formulated. The
important point to be made here is that they
all require that some function of the model
error (or relative model error) be bounded by
some function of the designed feedback con-
troller at each frequency. This clearly shows
the identification/control design interplay.

The robust control community has fo-
cused on developing design methods for K(z)
that would satisfy the stability robustness
criterion (??), which is often expressed as
‖LM‖∞ < 1. This is usually accomplished
on the basis that the model error is god-given
(i.e. a priori known), a rather unrealistic as-
sumption. This shows the need for a quan-
tification of uncertainty bounds in the case of
identified models. We now turn to this ques-
tion.



5 Uncertainty bounds on

estimated models

We first recall the expression of the error be-
tween the true system and a model estimated
from N data :

G∆,θ̂N
(ejω) = B(ejω) + N(ejω, θ̂N ) (32)

where B and N are the bias error and the
noise error, respectively :

B(ejω) , GT (ejω) − G(ejω, θ∗) (33)

N(ejω) , G(ejω, θ∗) − G(ejω, θ̂N ). (34)

We shall not, in this section, discuss the ques-
tions of how to shape the identification exper-
iment (e.g. the filter D(q)) in such a way as to
make the error G∆,θ̂N

small, or rather to ma-
nipulate this error into satisfying the stability
robustness criterion (??). This is a design is-
sue that will be addressed in the next section.
Rather, we shall focus here on ways of obtain-
ing reasonable bounds on |G∆,θ̂N

(ejω)|, given
that the availability of such error bounds have
been shown to be an essential but missing fea-
ture of robust control design.

Before we embark on an attempt to pro-
duce computable error bounds, and at the
risk of being somewhat controversial, we
should like to make clear a few points about
model error estimation that appear not to be
fully understood.

• Firstly, it should be clear that the com-
putation of uncertainty bounds around
an estimated model makes sense only in
the case of noisy data. When the data
are noiseless, the only error is of course

the bias error. Various suggestions have
been made about ways to estimate this
bias error in this case. However, in the
noiseless case, one can estimate a very
high order model with high accuracy, the
only limit being in the number of data
and their richness. It is therefore fair to
say that the true system can be approxi-
mated as accurately as desired by fitting
very high order models. If, for practical
or other reasons, a low order model is
desired for control design, this low order
model can be obtained by model reduc-
tion or by identification. In such case,
the exact model error is known, not just
an upper bound. Hence the computa-
tion of uncertainty bounds in the noise-
less case is not a critical issue.

• Secondly, if a choice of model structure
has been made for the restricted com-
plexity model, say a rational transfer
function model G(q, θ) of order n, then
the task is to obtain an upper bound on
the unmodelled dynamics G∆(q) without
actually estimating G∆(q). We believe
that methods that parametrize G∆(q)
as a new, say m − th order, model
parametrized by a new parameter vector,
say ξ, amount to “model the unmodelled
dynamics”, i.e. they amount to estimat-
ing a new nominal model of order n+m.
This is cheating in some sense.

• Thirdly, we want to raise the issue of
hard bounds versus soft bounds. Clearly
the robust stability criteria (??), (??) re-
quire that some form of the error be-



tween plant and model transfer func-
tion be strictly bounded above by some
other frequency function. These are hard
bounds. Such criteria have spurred some
members of the robust control commu-
nity to create or re-create an identifica-
tion theory that would yield hard bounds
on transfer function estimates. Such the-
ory is based on the premise that the
noises acting on the system are them-
selves “hard bounded noises”, and leads
to set membership descriptions for the
parameters or H∞ transfer function es-
timation. While certainly not denigrat-
ing the interesting theoretical effort that
is underway (see e.g. Helmicki, Nett,
Jacobson (1991)), we believe that the
great “hard-versus-soft bound debate”
will ultimately prove to be a non-issue.
Clearly there are situations where it is
known a priori that some noise is always
smaller than some finite bound, but in
most cases disturbances or measurement
errors may occasionnally be larger than
they are on average. To impose a priori
bounds on noise sources that will never
be exceeded will result in very large er-
ror bounds on plant models, and hence
exceedingly conservative control designs.
Traditional noise descriptions and pa-
rameter estimators will, through the cen-
tral limit theorem, lead to Gaussian pa-
rameter estimates and confidence ellip-
soids. A reasonable approach would then
be to replace the hard bounds on model
error in the robustness criteria by confi-
dence interval bounds corresponding to
a sufficiently high probability. Whereas

this approach does not offer a 100%
guarantee of robust stability, it will cer-
tainly lead to less conservative control
designs.

On the basis of the second remark above
it is important to realize the distinction be-
tween estimating the unmodelled dynamics
and estimating a bound on the unmodelled
dynamics. We believe that the former is just
like changing the order of the nominal model,
but we shall attempt to do the latter.

Various methods have been proposed for
quantifying the uncertainty around an esti-
mated model. One approach is to design
several identification experiments with input
sequences having different spectral distribu-
tions. This approach is typically suggested by
the H∞ identification community. We shall
instead consider the situation where a single
input-output data sequence is available, con-
taining N data points.

One not so crazy idea would be to filter
the available data with different data filters
Di(q), thereby emphasizing different input
signal frequency bands. However, one should
bear in mind that one does not create new
information by this filtering operation. Each
one of the identified models will have been
identified with a reduced amount of infor-
mation, since some information has been fil-
tered out. These models will therefore exhibit
different bias erors, but they will all have a
larger noise error.

It therefore seems unavoidable that, in or-
der to compute uncertainty bounds around
estimated models, some additional prior in-
formation needs to be injected. Various



strategies have been proposed, all of which
imply some prior quantified assumption on
the unmodelled dynamics G∆(ejω) or on the
noise vt. Examples of such assumed prior
knowledge are a prior bound on the noise,
a prior bound and/or Lipschitz constant
on the variation of G∆(ejω) over frequency,
or a known stochastic prior distribution on
G∆(ejω) : see e.g. Kosut, Lau, Boyd (1990),
or Goodwin, Salgado (1989).

Here we present some recent results of
Goodwin, Gevers, Ninness (1990), where a
smoothness prior assumption is made on
G∆(ejω) but without actually imposing the
parameters of the smoothness constraint. In-
stead, the prior model on the variation of
G∆(ejω) is itself parametrized, and these pa-
rameters are estimated from the data.

5.1 A stochastic model for the
uncertainty

In Goodwin, Gevers, Ninness (1990), GT (q) is
assumed to be a realization of a random vari-
able whose mean is the nominal model G(q, θ)
for some θ, and whose residual, G∆(q), has
zero mean :

GT (q) = G(q, θ) + G∆(q). (35)

A parametrized prior probability density
function (p.d.f.) is then assumed for G∆(q)
and it is shown that the parameters of
this p.d.f. can be estimated by maximum
likelihood. Hence, confidence intervals can
be estimated for the unmodelled dynamics.
For pedagogical reasons, and to keep things
simple, we shall not describe the procedure

here in its full generality, but we shall
assume a particular parametrized model for
the p.d.f. of G∆(q) which has been shown to
produce robust results in a large number of
simulations.

Assumption on the unmodelled dy-
namics

G∆(ejω) is a zero mean Gaussion process
with covariance function :

E{G∆(ejω1)G∆(ejω2)} =
αejω

ejω − λ
; ω , ω1−ω2.

(36)
We note that this stochastic assumption is
just one of several ways of imposing smooth-
ness on the variation of G∆(ejω) with ω.
From (??) we get :

E{|G∆(ejω1) − G∆(ejω2)|2} ≤ αλ(1 + λ)

(1 − λ)3
ω2

(37)
We could of course also have constrained the
square variation of G∆(ejω) to be bounded
by a quantity like the right hand side of (??),
thereby replacing a soft bound by a hard one.

Without loss of generality, G∆(q) can be
written as

G∆(q) =
∞∑
1

ηkq
−k. (38)

The model assumption (??) corresponds to
the time-domain assumption that the coeffi-
cients ηk are independent but non identically
distributed random variables drawn from the
following zero-mean Gaussian p.d.f. :

fηk(ξ) =
1√

2παλk
exp{−1

2

ξ2

αλk
}, α > 0, 0 < λ < 1.

(39)



Assumption on the nominal model
The nominal model is a finite linear com-

bination of known rational basis functions :

G(q, θ) = T (q)θ , θ ∈ R
d, (40)

with
T (q) = [T1(q), . . . , Td(q)]. (41)

Although our present theoretical develop-
ments are limited to these linear-in-the-
parameter models, we note that this class
does contain Finite Impulse Response (FIR)
models, Laguerre rational function models, or
first order Taylor series expansions of rational
transfer functions around an assumed prior θ̄.

Assumption on the noise vt

The additive noise vt in (??) is assumed
to be a zero mean independent identically dis-
tributed Gaussian process with unknown vari-
ance σ2; it is independent of G∆(ejω).

The adoption of a stochastic prior model
for G∆(ejω) and vt will lead to a quantifi-
cation of the uncertainty around the esti-
mated model G(ejω, θ̂) expressed in terms of
the variance of GT (ejω) − G(ejω, θ̂). This
variance will be a function of α, λ and σ2.
A main new contribution of Goodwin et
al. (1990) is to show how these parame-
ters can be estimated. Replacing α, λ, γ by
their estimates will then produce estimates of
E{|GT (ejω) − G(ejω, θ̂)|2}, which are the de-
sired uncertainty bounds.

We shall not go here into the details of the
estimation of θ (by Least Squares) and of α, λ

and σ2 (by Maximum Likelihood, after a pro-
jection to account for the estimation of θ̂).
We refer to Goodwin et al. (1990). We shall

instead focus on the expression of the mean
square error of GT (ejω)−G(ejω, θ̂) and on its
interpretation.

5.2 Computation of uncer-
tainty bounds around

G(ejω, θ̂N).

We assume that G∆(q) of (??) can be ap-
proximated sufficiently closely by a long FIR
model :

G∆(q) =

L∑
1

ηkq
−k = S(q)η (42)

with

S(q) , [q−1, . . . , q−L], η , [η1, . . . , ηL]T .

(43)
If θ̂N is the Least Squares estimate of θ ob-
tained from N data, then it can be shown
that

θ − θ̂N = Rη + MV, (44)

where R ∈ Rd×L and M ∈ Rd×N are known
functions of the input signals and V ,

(v1, . . . , vN)T is the unknown vector of noise
signals. The model error is then, using (??),
(??) and (??) :

G∆,θ̂(e
jω) , GT (ejω) − G(ejω, θ̂N)

= T (ejω)(θ − θ̂N) + S(ejω)η

= [T (ejω)R + S(ejω)]η + T (ejω)MV.(45)

In this expression, T and S are known func-
tions of ω, R and M are known functions of
the input ut, while η and V are independent
random vectors whose second order moments



are known functions of the unknown param-
eters α, λ and σ2. We can therefore com-
pute the total Mean Square Modelling Error
(MSME) as a function of α, λ and σ2 :

MSME(ω) , E{|GT (ejω) − G(ejω, θ̂N )|2}
= α[T (ejω)R + S(ejω)]Λ(λ)[T (ejω)R + S(ejω)]∗

+σ2T (ejω)MMT T ∗(ejω), (46)

where

Λ(λ) , diag(λ, λ2, . . . , λL), (47)

and where ∗ denotes conjugate transpose.
Expression (??) gives the total Mean

Square Modelling Error between the true sys-
tem and the nominal G(ejω, θ̂N) where θ̂N is
estimated by Least Squares. The first term
accounts for the actual bias error : αSΛS∗

is the a priori assumed bias error correspond-
ing to G∆,θ, while the term TR is a correction
term that accounts for the difference between
the a priori parameter vector θ and the a pos-
teriori estimate θ̂N . The input exerts its in-
fluence on the bias error through R and the
model structure through T (ejω). The second
term is the error due to the noise vt. It is
roughly proportional to the ratio of the noise
variance to the input energy (see Goodwin et
al. (1990)); in particular, MMT is inversely
proportional to N , the number of data. Here
again, the model structure exerts its influence
through T (ejω).

It is important to note that,even though η

appears in the expression (??) of the model
error, neither η nor G∆(q) are estimated or
used in the expression of the MSME. Only
the parameters α and λ of the statistics of
the unmodelled dynamics appear in (??).

By replacing α, λ and σ2 by their Maxi-
mum Likelihood estimates, (??) provides a
computable estimate of the total MSME on
G(ejω, θ̂) for each frequency. This then pro-
vides a tool for the estimation of the opti-
mal order with finite data: see Goodwin et
al. (1990). More importantly, as regards
model uncertainty, expression (??) allows one
to compute bounds on the amplitude of the
error in the model estimate. Alternatively,
from (??) one can compute the 2 × 2 covari-
ance matrix of

g̃(ejω) , 1ReG∆,θ̂(e
jω) (48)

ImG∆,θ̂(e
jω). (49)

One can then compute a confidence ellipse at
each ω around G(ejω, θ̂). A typical such plot
is shown in Figure 4.



Figure 4 : Nyquist plot of true and
estimated model with error bounds

6 Merging identification

and control design

We have seen in the previous section how to
compute uncertainty bounds around identi-
fied models for linearly parametrized mod-
els. Even though the method needs to be
extended to wider classes of models, at least
we have a preliminary grasp on the problem.
With this method for model uncertainty esti-
mation under our wings, we now turn to the
problem of organizing the identification and
control design in a way that the combined
robustness is larger than that which would
result from the separate designs of the iden-
tifier and the controller. The search for such
a synergistic design is still in its infancy, and
no complete algorithmic procedure is avail-
able today. Therefore we shall concentrate
on a presentation of ideas and suggestions.

We recall that, under the assumption that
the plant and the model have the same num-
ber of unstable poles, robust stability will be

guaranteed if the true plant GT (z), the plant
model G(z, θ) and the feedback controller
K(z) are such that |L(ejω)M(ejω)| < 1 ∀ω.
We have seen in Section 4 that this inequal-
ity is satisfied if either (??) or (??) holds. We
recall these two sufficient conditions here for
reader comfort :

|GT (ejω) − Ĝ(ejω)

Ĝ(ejω)
| < |1 + K(ejω)Ĝ(ejω)

K(ejω)Ĝ(ejω)
| ∀ω,

(50)
or :

|GT (ejω) − Ĝ(ejω)

GT (ejω)
| < |1+K(ejω)Ĝ(ejω)| ∀ω.

(51)
An important observation is that in control
design based on open loop identification, the
left hand side (LHS) of (??) and (??) is en-
tirely determined by the identification part of
the design, while the right hand side (RHS)
is a function of the controller and the nom-
inal (i.e. identified) model. However, in
closed loop identification (and hence in adap-
tive control), the controller influences both
sides of these inequalities through its effect
on the input signal spectrum. These obser-
vations are the key to understanding the iden-
tifier/controller interplay, which is the focus
of our present motherly attention.

Ideally, and assuming that a model set
G(z, θ) and a class of admissible controllers
K(z) have been chosen a priori, one would
like to globally minimize |L(ejω)M(ejω)|∞
w.r.t. θ and all admissible controllers K(z).
Such frontal attack on the problem does not
appear to be feasible given the present state
of H∞ technology. An alternative might
be to minimize the H∞ norm of either the



absolute or the relative plant/model error.
However, presently available H∞ identifica-
tion techniques rely on data in the form
of estimates of GT (ejω) at a finite number
of frequency points, together with hard er-
ror bounds around these estimates (see e.g.
Parker, Bitmead (1987), and Helmicki, Ja-
cobson, Nett (1991)). More importantly, a
straight H∞ minimization of the LHS of (??)
or (??) would yield a worst case identifier
which would not take account of the com-
bined effects of controller and identifier on
both sides of (??) and (??).

Even though a direct H∞ minimization of
|LM | does not appear to be presently feasi-
ble, it should serve as a useful guide for the
design of more classical H2 identification and
control design methods based on the mini-
mization of a Least Squares criterion involv-
ing input-output signals only. Indeed, by
carefully cajoling the identifier filter D(z),
one may encourage the relative plant/model

error GT −Ĝ

Ĝ
to be small at those frequencies

where the designed closed loop transfer func-

tion KĜ
1+KĜ

is large. Conversely, by selecting
the control design law properly, one may en-
courage the RHS of (??) or (??) to be large
where the left hand side is large. In this way,
one can expect to achieve a better perfor-
mance/stability robustness compromise than
by straight H∞ (i.e. worst case) design.

6.1 Identification in closed loop

We recall that, with Least Squares identifi-
cation, the identified model is asymptotically
determined by (??). Assume now that the

identification is performed in closed loop with
ut = K(z)(rt − yt), as shown in Figure 2.
Then (??) is replaced by

θ∗ = arg min
θ

∫ π

−π

{|(GT − G)
K

1 + GT K
|2

(Φr + Φv) + Φv}
|D|2
|H|2dω. (52)

= arg min
θ

∫ π

−π

{|LM |2| 1 + GK

1 + GT K
|2(Φr + Φv) + Φv}

×|D|2
|H|2dω. (53)

This expression shows how D(z) can be cho-
sen to keep |LM |2 small. Assuming that
Φr ≫ Φv in the frequency band of the ref-
erence signal, and that the fit between es-
timated model and true plant is such that
| 1+GK
1+GT K

| ≃ 1 in that same frequency band,
then D(z) should be chosen so as to flat-
ten the weighting on |LM |2 over the designed
closed loop bandwidth. It should fall off
thereafter, so as to eliminate the negative
effects of high-frequency noise. In particu-
lar D(z) should cancel the effect of the noise
model, i.e. contain H(z) as a factor.

Assume that Φr
|D|2

|H|2
is a flat spectrum over

the passband of the closed loop system, and
that Φv ≪ Φr in that passband. We notice
from (??) that an identification performed in
closed loop has a natural tendency to keep
|LM | small within this passband, a robust-
ness enhancement feature. To obtain the
same effect with an open loop identification
would require a shaping of the filtered input
spectrum so that

Φu|D|2
|H|2 ≃ | K

1 + KG
|2 (54)



This confirms a general rule in experiment de-
sign that the identification experimental con-
ditions should resemble as much as possible
the conditions in which the model will be
used. One can proceed further in the anal-
ysis by choosing a specific controller design
scheme.

6.2 Least Squares identification

with LQG/LTR controller

The first instance in which the con-
troller/identifier design was jointly analyzed
is probably in Bitmead, Gevers, Wertz
(1990). There a Linear Quadratic Gaus-
sian (LQG) controller with Loop Transfer Re-
covery (LTR), in combination with a Least
Squares (LS) identifier, is analyzed. Here we
briefly illustrate how the resulting controller,
called CRAP, is an example of a synergistic
controller/identifier design.

It is shown in Bitmead et al. (1990) that
with the CRAP controller design choices, the
characterization (??) of the model identified
in the closed (i.e. adaptive) loop is replaced
by:

θ∗ = arg min
θ

∫ π

−π

{|(GT − G)

GT
|2

(Φr + Φv) + Φv}
|D|2
|H|2dω. (55)

In the CRAP controller, a LQG/LTR con-
troller structure is chosen a priori, and it
so happens (but would you believe it’s just
a happy coincidence?) that it makes the
weighting K

1+GT K
in (??) look like 1

GT
. This

means that the identifier filter allows a direct

manipulation of the relative model/plant er-
ror. Assume now as before that Φv ≪ Φr in
the passband of the closed loop system. A
comparison between (??) and (??) then sug-
gests the following identifier filter :

|D| ≃ | H

1 + KĜ
|. (56)

This is the design choice suggested and ana-
lyzed in Bitmead et al. (1990).

6.3 An H2 iterative identifica-

tion and control design

In Bitmead and Zang (1991) the synergistic
design is pushed a step further by manipu-
lating both the control design and the iden-
tifier design through appropriate frequency
weighting filters. A succession of off-line con-
trol designs with fixed plant model and iden-
tifications designs with fixed controller are
performed. This iterative design therefore
becomes quasi-adaptive. Assume that the
global objective function is to minimize

J∗ = lim
N→∞

1

N

N∑
t=0

[(yt − rt)
2 + λu2

t ], (57)

where rt is the reference signal. J∗ depends
only on the controller K(z), but since the true
plant GT (z) from which K(z) should be com-
puted is unknown, the idea is to approach the
minimization of J∗ by iteratively minimizing
a succession of local H2 identification/control
criteria.

Consider now that, at some stage of these
iterations, a model G(z, θ̂) and a controller



K(z) are considered. Then the designed
closed loop control signal and output predic-
tions, assuming zero noise, are:

ûc
t =

K(z)

1 + G(z, θ̂)K(z)
rt, ŷc

t =
G(z, θ̂)K(z)

1 + G(z, θ̂)K(z)
rt.(58)

Correspondingly, the designed closed loop
model performance is

Ĵ , lim
N→∞

1

N

N∑
t=0

{(ŷc
t − rt)

2 + λ(ûc
t)

2} (59)

If K(z) is used in the feedback system, then
actual yt and ut signals are generated in the
loop. By replacing these in (??), the achieved
performance J∗ is obtained, with which Ĵ

must be compared.
Assuming that, at some iteration, a plant

model G(z, θ̂) is given, then Bitmead and
Zang minimize the following local control ob-
jective:

Jc = lim
N→∞

1

N

N∑
t=0

{[F (z)(ŷc
t (θ̂)−rt)]

2+λ[F (z)ûc
t ]

2}

(60)
where F (z) is a frequency weighting filter.
One can then choose the filter F (z) so that
the designed Jc resembles the actual J∗ as
much as possible. This leads to the following
design choice, assuming that Φv is small in
the support of Φr:

F (eiω) = 1 +
Φ

1/2
y−ŷ(ω)

Φ
1/2
r (ω)

(61)

Note that Φy−ŷ, which can be estimated from
the data, gives information on the modelling

error. This controller design scheme penal-
izes the control signal and the tracking error
more heavily in frequency bands where the
model fit is poor relative to the reference sig-
nal energy.

Now consider the identification design, i.e.
assume that K(z) is fixed and G(z, θ) is to
be optimized over θ. First note that in clas-
sical Least Squares identification, one would
minimize some frequency weighted function

of yt − ŷt, where ŷt = G(z,θ̂)K(z)
1+GT (z)K(z)

rt 6= ŷc
t .

It is important to reflect on this difference
between the actual closed loop prediction ŷt

and the designed closed loop prediction ŷc
t .

Bitmead and Zang advocate estimating θ by
minimizing the following local identification
criterion:

Jid =
1

N

N∑
t=0

{(yt − ŷc
t )

2 + λ(ut − ûc
t)

2}. (62)

They show that minimizing Jid over θ for
a fixed controller K(z) forces the designed
closed loop model performance Ĵ of (??) to
approach the actual performance J∗. We
stress again that this scenario is one in which
the identification is performed under a cri-
terion that, as much as possible, approaches
the global optimization criterion.

The interesting point is that minimizing Jid

is equivalent with minimizing the square of
the errors yt − ŷt filtered by

|D|2 ≃ | H

1 + KĜ
|2(1 + λ|K|2). (63)

A remarkable observation is that, for λ = 0,
this prescription coincides with that obtained
via different arguments in (??) for the same



case of singular optimal (or LQG/LTR) con-
trol.

We have thus given two design exam-
ples in which the controller structure and
the identifier filter are matched to encour-
age the satisfaction of the robustness crite-
rion |LM |∞ < 1, or one of its variants, by
a judicious combination of controller design
and identification design.

7 Conclusions

The emergence of a new theory of robust
control with its demands for quantified error
bounds on estimated models has produced a
revival of the development of identification
theory. The last two years have witnessed
a concerted effort by identification aficiona-
dos to produce an identification theory that is
more in tune with the requirements of robust
control design. In the process, the connec-
tions between identification and control are
beginning to be understood better.

In this paper we have first illustrated these
interactions between control design and
identification design. We have then focused
upon recent results in two directions. The
first aims at providing an explicit quantifi-
cation of the uncertainty around estimated
transfer functions. The second aims at
designing the controller and the identifier
in a way that they are mutually supportive
in terms of an overall stability robustness
criterion. In both cases, and particularly
the latter, much further work remains to
be done. There are exciting years ahead
for those who want to contribute to this

challenging new area of system identification.
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