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Abstract:
One of the most active areas of research in the nineties has been the study of
the interplay between system identification and robust control design. It has led
to the development of “control-oriented identification design”, the paradigm being
that, since the model is only a tool for the design of a controller, its accuracy (or
its error distribution) must be tuned towards the control design objective. This
observation has led to the concept of “iterative identification and control design”
and, subsequently, to model-free iterative controller design, in which the controller
parameters are iteratively tuned on the basis of successive experiments performed on
the real plant, leading to better and better closed loop behaviour. These iterative
methods have found immediate applications in industry; they have also been applied
to the optimal tuning of PID controllers. This paper presents the progress that
has been accomplished in iterative process control design over the last decade. It
is illustrated with applications in the chemical industry. Copyright c⃝ 2000 IFAC
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1. INTRODUCTION

Iterative process control is a control design method-
ology that has emerged in the nineties as a result
of intense research efforts aimed at bridging the
gap between system identification and robust con-
trol analysis and design. In order to give the reader
an idea about how wide this gap was, we quote
from a keynote lecture delivered at the 1991 IFAC
Symposium on Identification (Gevers, 1991) 1

The last ten years have seen the emergence of
robust control theory as a major research activity.
During the same period, research in system iden-
tification has dwindled, and it might be tempting
to believe that most of the theoretical questions in
identification theory have been resolved for some

1 Our extensive quote should of course not be construed
as approval of the ideas expressed in that paper.



time. The surprising fact is that much of robust
control theory is based on prior descriptions of
model uncertainty or model errors which classical
identification theory has been incapable of deliver-
ing. Conversely, until recently identification theo-
rists have not spent much effort in trying to pro-
duce the accurate uncertainty bounds around their
estimated models that their robust control design
colleagues were taking for granted. It is as if, until
a few years ago, the control design community and
the identification community had not been talking
much to each other. The gap between the surre-
alistic premises on which much of robust control
design theory is built and the failure of identifica-
tion theory to deliver accurate uncertainty bounds
in the face of unmodelled dynamics has brought
to light major deficiencies in both theories, and a
sudden awareness from around 1988 of the need
to understand better the interactions between both
theories.

Surely, a natural place to search for an under-
standing of the interactions between identification
and robust control design is in the adaptive con-
trol community. Indeed, adaptive control combines
the design of an on-line identifier with that of a
control law. . . . . . .However, in their pursuit of
an adaptive controller possessing some degree of
robustness to unmodelled dynamics, the adaptive
control community split into two camps. There
were those who focused upon the specification of
more and more sophisticated control law design
procedures in the hope that a super control law
would be able to overcome the vagaries of any
identification method. And there were those who,
by cajoling and forcing the parameter estimates to
conform to certain boundedness conditions what-
ever the control law, were aiming at developing
a super identifier able to leap over any reason-
able controller in a single bound. An essential
feature of adaptive control, however, is that the
identification is performed in closed loop and that
the controller therefore impacts on the estimated
model and on its quality (i.e. its error with respect
to the true system). It is therefore to be expected
that the separate designs of the identifier and
of the controller without regard for the effect of
the control law on the identified model, or of the
identified model on the robustness of the control
law, may not lead to a maximization of the global
robustness of the identifier/controller schema.

This last sentence was to become the program for
much of the research activity in the nineties: going
from separate designs to a synergistic design. In
1990, any observer of the scene was aware of the
many different technical inconsistencies between
the newly emerged robust control theory and the
more classical prediction error identification the-
ory. For example, prediction error identification
theory had very little to offer in terms of quan-

tification of the model error, and whatever tools
that were available were totally incompatible with
the frequency domain uncertainty descriptions re-
quired for robust control analysis and design.

However, the most crucial manifestation of the
“identification/control gap” was not so much
these technical incompatibilities, but rather the
total absence of synergy between the two parts of
the design: identification design and model-based
control design. The prevailing philosophy at the
time was: “First identify a model with a method
that also allows the estimation of error bounds on
this model; then design a controller based on this
model and its error bounds.” The problem is that
an identification method whose sole merit is to
deliver error bounds on a restricted complexity
model may well produce a nominal model and
an uncertainty set that are ill-suited for robust
control design.

Due to a lack of understanding of the interplay
between identification and robust control, most
of the earlier work focused on producing suitable
estimates of model quality (or uncertainty), and
on bridging the gap between identification and
robust control. The most obvious manifestation of
this gap, and the one that triggered most of the
research activity in the early nineties, was the real-
ization that robust control theory requires a priori
hard bounds on the model error, whereas classical
identification theory delivers at best soft bounds,
i.e. confidence ellipsoids in a probabilistic sense.
This led to the development of new identification
theories that were called “control-oriented” only
because they delivered model uncertainty descrip-
tions that were compatible with those required by
robust control theory. The question of whether
the identified models and their uncertainty de-
scriptions were likely to deliver high performance
controllers was not addressed, at least initially.

It later became clear that the great ‘hard-versus-
soft’ debate was not the real issue. To quote from
another plenary lecture (Gevers, 1993): An iden-
tification and control design method that leads to
a closed loop system that is stable with probability
99% is of course just as acceptable as an H∞-
based design that leads to a ‘guaranteed stable’
closed loop, but that is based on prior error bounds
that cannot be verified. However, even though the
‘hard-versus-soft’ question proved to be a non-
issue, numerous other technical stumbling blocks
had to be conquered before robust control analysis
and design could be applied to models identified
from data, rather than just to models and model
uncertainty sets obtained from prior assumptions.

To summarize, the intense research effort of the
nineties on identification for control has pursued
two major objectives:



• Obtaining better estimation procedures for
the quantification of the model uncertainty
for identified models; in particular, produce
uncertainty descriptions that are compatible
with robust control theory.
• Understanding the interaction between iden-
tification and model-based control in order
to produce control-oriented identification de-
sign guidelines.

In this paper, we shall mainly focus on the
progress accomplished in identification for control
design, i.e. the second issue. This line of research
has led to such important new concepts as it-
erative model-based controller redesign, cautious
model and controller updates, and eventually it-
erative model-free controller redesign. But before
we venture in this direction, let us first briefly
elaborate on the question of model uncertainty,
if only to clearly distinguish it from the question
of identification for control.

The quantification of the model error is of course
a very important objective, whatever the goal
of the identification step that has produced this
model. A reputable engineer should never deliver
a product to his client without some statement
about the quality of that product, whether it be
a machine tool, a measurement device, or a dy-
namical model. When the product is a model, and
when the client is a robust control designer, then
this client expects a model quality statement that
is compatible with his/her robust control design
tools. There is no sense telling the robust control
engineer that the bias error on the delivered model
is characterized by some complicated minimiza-
tion formula, and that the noise-induced error is
characterized by ellipsoidal confidence regions on
a meaningless parameter vector, if all the control
engineer can handle for his robust control design
is a frequency domain error bound. When that
happens - and this is exactly what did happen
ten years ago - then the robust control engineer
leaves the room in disgust and starts developing a
new identification theory which he calls ‘control-
oriented’, only because it can deliver model error
bounds that are compatible with existing robust
control theory.

All through the nineties, we have witnessed a
tremendous activity, on the part of both com-
munities, in the area of model quality estimation
and model uncertainty description, with a view of
bridging the technical incompatibilities between
the two theories. We cannot possibly hope to
reference the hundreds of relevant papers. One of
the better surveys of this line of research, up to
the middle of the decade, can be found in (Ninness
and Goodwin, 1995).

The results on model quality are necessary for
the construction of a synergistic design of iden-

tification and robust control, but they do not
constitute this synergy. They are the technical
building blocks. Indeed, identification for control
is a “design” problem, as its name indicates. We
now explain how to give meaning to this problem,
and why the solution leads to iterative controller
design.

2. FROM IDENTIFICATION FOR CONTROL
TO ITERATIVE IDENTIFICATION AND

CONTROL

2.1 The setup

All through this paper we consider the situation
where there is a “true system” which, for the
sake of analysis, we assume to be linear time-
invariant. For the sake of simplicity, we also con-
sider a single-input single-output system only in
this paper. Thus, the true system is represented
by

S : yt = G0(z)ut + vt, (1)

where G0(z) is a linear time-invariant causal op-
erator, y is the measured output, u is the control
input, and v is noise, assumed to be quasistation-
ary.

We now consider the situation where we can
perform experiments on this system with the
purpose of designing a feedback controller. We
also consider that, most often, the system is
already under feedback control, and that the task
is to replace the present controller by one that
achieves better performance. This situation is
representative of very many practical industrial
situations.

It is also typical of many industrial applications
that the system to be controlled is very complex,
and that it would therefore require a very high
order dynamical model to represent the system
with high fidelity. Any model-based control design
procedure would therefore lead to a very high
order controller, since the complexity of a model-
based controller is of the same order as that of
the system. The practical situation, considered in
this paper, is where we want the to-be-designed
controller to have low complexity.

2.2 In search of a low complexity controller

There are many ways of obtaining a low-complexity
controller for a high order system. These include
identification, model reduction, or controller re-
duction, in open or in closed loop, etc. A compar-
ison between identification methods and reduction
methods, on an industrial example, can be found
in (Bendotti et al., 1998).



Here we consider the rather obvious idea which
consists of identifying a low order model from data
collected on the real system, from which a model-
based controller is then computed. Given that the
low order model cannot possibly represent the
true system over the whole frequency range, it
will have a systematic error called the bias error,
in addition to the inevitable noise-induced error
called the variance error. This bias error - and
indeed the total error - must be taken into account
in the control design; hence the importance of
producing methods for the estimation of model
errors. But what is even much more important
than estimating the model error a posteriori is
to design the identification in such a way that
the bias error does not harm the performance
of the controller that will be designed on the
basis of this approximate model. This is based on
the observation that one can design a high per-
formance controller with a model that has large
error with respect to the real system (i.e. a very
wrong model), as long as this model represents
with high accuracy the dynamical features of the
true system that are essential for control design.
For example, it is essential that the model be very
accurate around the crossover frequency of the to-
be-designed closed loop system, but the error in
its steady state gain can be huge.

The idea of tuning the bias error for control design
is at the core of “identification for control”. It is
an identification design problem, whose objective
is to produce, within a specified class of restricted
complexity models, a nominal model whose bias
error distribution is tuned towards the control de-
sign objective. As we shall see later in this paper,
this can only be achieved through a succession of
model and controller iterations; hence the itera-
tive schemes that have emerged in identification
for control.

The tuning of the bias error has led to iterative
schemes for the estimation of a ‘control-oriented’
nominal model. However, to fully take advantage
of robust control theory, one must develop an
‘identification for control’ theory not just for the
nominal model, but also for the uncertainty re-
gions around this nominal model. Indeed, robust
control is a model-based design methodology in
which the controller is designed on the basis of
a nominal model together with an uncertainty
region around the nominal model: see e.g. (Zhou
et al., 1995). It is the task of model validation to
construct an uncertainty region around a nominal
model. When the model and its uncertainty region
are to be used for robust control design, then this
validation step must also be tuned towards the
control objective. This is a much harder problem
for which few results are presently available. In the
prediction error framework, recent results have
been obtained in (Gevers et al., 1999) and (Gevers

et al., 2000). We shall not elaborate on them in
this paper, where we focus on iterative designs.

2.3 Matching identification and control objectives

We have described the context in which we op-
erate, and we have introduced the motivation for
identification for control. We now show that the
matching of identification and control objectives
leads to iterative identification and control design.
To illustrate the need for iterative design, we
take the simplest possible control design objective:
model reference control. Thus, consider the true
system (1) and suppose we have identified a model

Ĝ(z)
△
= G(z, θ̂) of G0, from some parametrized set

of low order models {G(z, θ) | θ ∈ Dθ}. Consider
a control law

ut = C(z)[rt − yt], (2)

and assume that our control design objective is
to design C(z) such that the closed loop transfer
function from vt to yt is some prespecified S(z).
Then, given a model Ĝ(z), the controller C(z) is
computed from

1

1 + Ĝ(z)C(z)
= S(z), (3)

We compare the real closed loop system of Fig-
ure 1 with the designed closed loop system of
Figure 2, with both loops driven by the same
reference signal rt.

G0C
rt ut

vt

yt+
-

Fig. 1. Actual closed loop system

ĜC
rt ût ŷt+

-

Fig. 2. Designed (or nominal) closed loop system

Now, staring at Figures 1 and 2, and remembering
that there are no disturbances, one observes that:

yt =
G0C

1 +G0C
rt +

1

1 +G0C
vt

ut =
C

1 +G0C
rt −

C

1 +G0C
vt,

ŷt =
ĜC

1 + ĜC
rt. (4)



The ‘control performance error’ 2 , defined as the
error between the actual and the designed out-
puts, is given by:

yt − ŷt =

[
G0C

1 +G0C
−
ĜC

1 + ĜC

]
rt

+
1

1 +G0C
vt (5)

After some straightforward manipulations, this
can be rewritten as

yt − ŷt = S(z)[yt −G(z, θ̂)ut]. (6)

Equation (6) can be seen as an equality between
a control performance error on the left hand side
(LHS) and a filtered identification error on the
right hand side (RHS). Indeed, the RHS is a
filtered (by S(z)) version of the output error yt −
G(z, θ̂)ut, where ut and yt are collected on the
actual closed loop system of Figure 1. Thus, it
appears that if θ is obtained by minimizing the
Mean Square of the RHS of (6), i.e. by closed
loop identification with a filter S(z), then this will
minimize the Mean Square control performance
error. In other words, apparently (6) shows that
we get a perfect match between control error and
identification error. However, life is more subtle
and complicated. Indeed, the controller C(z) is
also a function of the model parameter vector θ via
(3). Since the data collected on the real closed loop
system of Figure 1 are a function of C(z), they are
also dependent on θ. Hence, a more suggestive and
correct way to write (6) is as follows:

yt − ŷt = S(z)[yt(θ) −G(z, θ)ut(θ)]. (7)

Even though the RHS of (7) looks like a closed
loop prediction error, it cannot be minimized
by standard identification techniques, because θ
appears everywhere and not just in G(z, θ). We
have illustrated the fact that with the simplest
possible control design mechanism, namely Model
Reference Control, one can apparently equate a
‘control performance error’ to an ‘identification
error’, but that this identification error cannot be
minimized by standard identification techniques
because the parameter vector appears in more
than just the model. In other words, we know
that, to make the control error small, we should
minimize the RHS of (7) with respect to θ, but we
don’t know how to do this.

For optimization-based control design criteria, the
control performance criterion also defines an iden-
tification criterion that one would want to mini-
mize with respect to the model parameters: see

2 It was called that way in (Åström, 1993), (Åström and
Nilsson, 1994) because, if the closed loop transfer function
of the actual system was equal to the reference model S(z),
this error would contain only the noise contribution.

(Zang et al., 1995), (Van den Hof and Schrama,
1995). This identification error is typically a norm
of the following error:

yt − ŷt = S(z, θ)[yt(θ) −G(z, θ)ut(θ)], (8)

where the data filter S(z, θ) is proportional to the
sensitivity function of the design loop (compare
with (3)) and is now also θ-dependent.

As a consequence, the approach suggested in all
known ‘identification for control’ schemes is to
perform identification and control design steps in
an iterative way, whereby the i-th identification
step is performed on filtered closed loop data
collected on the actual closed loop system with
the (i−1)-th controller operating in the loop. This
corresponds to an i-th identification step in which
the following filtered prediction error is minimized
with respect to θ, for fixed θ̂i−1:

yt − ŷt = S(z, θ̂i−1)

×[yt(θ̂i−1)−G(z, θ)ut(θ̂i−1)]. (9)

We refer the reader to (Gevers, 1993), (Bitmead,
1993) and (Van den Hof and Schrama, 1995) for
details and for a survey on such iterative schemes.

An interesting question is whether these iterative
identification and control schemes converge to the

minimum of the achieved cost over the set C
△
=

{C(G(z, θ)) ∀θ ∈ Dθ} of all certainty equivalence
controllers. This corresponds to asking whether by
successively minimizing over θ the mean square
of the prediction errors defined by (9) one will
converge to the minimum of

J(θ)
△
= E{S(z, θ)[yt(θ)−G(z, θ)ut(θ)]}2. (10)

This question was analyzed in (Hjalmarsson et
al., 1995b) for model reference control; it was
shown there that the iterative identification and
control schemes do not generically converge to the
minimum of the achieved control cost.

This does not mean that iterative identification
and control schemes have failed. In fact, the idea
of using available data, collected on the actual
closed loop system, to obtain a model that is
better suited for the design of a new controller,
has found immediate and widespread applications
because it is easy and intuitively reasonable. In
typical applications large numbers of closed loop
data are flowing into the control computer, and it
makes a lot of sense to use these data to replace
the existing controller by one that achieves better
performance. In addition, the theoretical work on
iterative model and controller adjustments has
shown that, in order to compute a new controller
with better performance, the optimal experiment
is to perform closed loop identification. Thus, no



special experiments are required, and there is no
need to “open the loop” in order to design the new
model and the corresponding new controller.

Thus, this is one area where the transfer of
technology from theoretical research to applica-
tions has been extremely fast. The first applica-
tions of control-oriented identification and itera-
tive model-based controller tuning were reported
within months after the theoretical results had
been produced. Representative examples can be
found in (Partanen and Bitmead, 1995), (Schrama
and Bosgra, 1993), (de Callafon et al., 1993),
(de Callafon, 1998). The practical impact of it-
erative closed loop identification and controller
redesign has been assessed in (Landau, 1999a),
where some interesting observations are made on
the distinction between this batch-like mode of op-
eration and the more classical theory and methods
of adaptive control.

The guidelines that emerged during the nineties
for the application of iterative identification and
control schemes were supported by intense re-
search that brought to light two essential features.

• The benefits of closed loop identification
when the model is identified with a view of
designing a new controller: see e.g. (Liu and
Skelton, 1990), (Schrama, 1992a), (Hakvoort
et al., 1994), (Lee et al., 1995), (Hjalmarsson
et al., 1996), (Landau, 1999b). This pro-
duced a revival of interest in the design of
closed loop identification methods: see e.g.
(Hansen et al., 1989), (Van den Hof and
Schrama, 1993), (Van den Hof et al., 1995).
• The need for cautious adjustments between
successive model and controller updates, in
order to guarantee closed loop stability or
performance improvement with the new con-
troller: see e.g. (Schrama, 1992b), (Bitmead
et al., 1997), (Anderson et al., 1998) and
(Anderson and Gevers, 1998).

Despite its practical successes, the failure of all at-
tempts to establish convergence of iterative iden-
tification and control schemes was a major worry,
more from a theoretical than from a practical
point of view. Indeed, in practice it was observed
that major improvements in performance of the
closed loop systems were obtained within the first
few iterations, after which the improvements were
very minor. Divergence typically occurred only if
one continued to iterate beyond these initial steps.

It is the analysis of (Hjalmarsson et al., 1995b)
that revealed the reason for the possible diver-
gence. This analysis led the authors to reformu-
late the iterative identification and control de-
sign scheme as a parameter optimization prob-
lem, in which the optimization is carried directly
on the controller parameters, thereby abandoning

the identification step altogether. This idea led
to a gradient-based algorithm for the iterative
optimization of the parameters of any restricted
complexity controller (Hjalmarsson et al., 1994),
which was later called IFT, for Iterative Feedback
Tuning. In the next section we describe the IFT
algorithm and some of its more recent develop-
ments.

3. IFT: A MODEL-FREE ITERATIVE
CONTROLLER RETUNING METHOD

3.1 Introduction to the IFT algorithm

The key feature of the IFT algorithm is that an
unbiased estimate of the gradient of a control
performance criterion is computed from signals
obtained from closed loop experiments with the
present controller operating on the actual sys-
tem. For a controller of given (typically low-order)
structure, the minimization of the criterion is then
performed iteratively by a Gauss-Newton based
scheme. For a two-degree-of-freedom controller,
three batch experiments are performed at each
step of the iterative design. The first and third
simply consist of collecting data under normal
operating conditions; the only real experiment is
the second batch which requires feeding back, at
the reference input, the output measured during
normal operation. Hence the acronym Iterative
Feedback Tuning (IFT) given to this scheme. For
a one-degree-of-freedom controller, only the first
and third experiments are required. No identifica-
tion procedure is involved.

The optimal IFT scheme was initially derived in
(Hjalmarsson et al., 1994). Given its simplicity,
it became clear that this new scheme had wide-
ranging potential, from the optimal tuning of sim-
ple PID controllers to the systematic design of
controllers of increasing complexity that have to
meet some prespecified specifications. In particu-
lar, the IFT method is appealing to process con-
trol engineers because the controller parameters
can be successively improved without ever open-
ing the loop. In addition, in many process control
applications the objective of the controller design
is to achieve disturbance rejection. With the IFT
scheme the tuning of the controller parameters for
disturbance rejection is driven by the disturbances
themselves; there is no need for the injection of a
persistently exciting reference signal.

Since 1994, much experience has been gained with
the IFT scheme:

• It has been shown to compare favourably
with identification-based schemes in simu-
lation examples: see (Hjalmarsson et al.,
1994), and its accuracy has been analyzed in
(Hjalmarsson and Gevers, 1997).



• It has been successfully applied to the flexible
transmission benchmark problem posed by
I.D. Landau for ECC95, where it achieved
the performance specifications with the sim-
plest controller structure (Hjalmarsson et
al., 1995a).
• It has been tested on the flexible arm of
the Laboratoire d’Automatique de Grenoble
(Ceysens and Codrons, 1995), on a ball-
on-beam system (De Bruyne and Carrette,
1997), for the temperature control of a water
tube and for the control of a suspended plate
(Molenaar, 1995).
• It has been adapted to linear time-invariant
MIMO systems (Hjalmarsson and Birke-
land, 1998) and to time varying, and in
particular periodically time-varying, systems
(Hjalmarsson, 1995).
• It has been applied by the chemical multi-
national Solvay S.A. to the tuning of PID
controllers for a number of critical control
loops for which opening the loop or creating
limit cycles for PID tuning was not allowed.

Here we present the fundamentals of the IFT
algorithm, and we then review the performance
achieved by the scheme at S.A. Solvay.

3.2 The basic control design criterion

We present here a basic version of the IFT al-
gorithm; we refer to (Hjalmarsson et al., 1998)
for a more complete derivation and discussion.
We consider the unknown true system (1), to be
controlled by a two degrees of freedom controller:

ut = Cr(ρ)rt − Cy(ρ)yt (11)

where Cr(ρ) and Cy(ρ) are linear time-invariant
transfer functions parametrized by some param-
eter vector ρ ∈ Rnρ , and {rt} is an external
reference signal, independent of {vt}: see Figure 3.

r

Cy

G0C
-

yr u

v

Fig. 3. Block diagram of the closed loop system

To ease the notation we will from now on omit the
time argument of the signals; however, we shall
use the notation y(ρ), u(ρ) for the output and
the control input of the system (1) in feedback
with the controller (11), in order to make explicit
the dependence of these signals on the controller
parameter vector ρ.

Let yd be a desired output response to a reference
signal r for the closed loop system. This response

may be defined as the output of a reference
model Td, i.e. yd = Tdr, but for the IFT method
knowledge of the signal yd is sufficient. The error
between the achieved and the desired response is

ỹ(ρ)
△
= y(ρ)− yd (12)

=

(
Cr(ρ)G0
1 + Cy(ρ)G0

r − yd
)
+

1

1 + Cy(ρ)G0
v.

If a reference model is used this error can also be
written as

ỹ(ρ) =

(
Cr(ρ)G0
1 + Cy(ρ)G0

− Td

)
r +

1

1 + Cy(ρ)G0
v.(13)

This error consists of a contribution due to incor-
rect tracking of the reference signal r and an error
due to the disturbance. With IFT the following
quadratic control performance criterion is used:

J(ρ) =
1

2N
E

[
N∑

t=1

(ỹt(ρ))
2 + λ

N∑

t=1

(ut(ρ))
2

]
(14)

but any other differentiable signal-based criterion
can be used. In (14) E[·] denotes expectation w.r.t.
the weakly stationary disturbance v. The optimal
controller parameter ρ is defined by

ρ∗ = argmin
ρ
J(ρ), (15)

The errors ỹt(ρ) and ut(ρ) appearing in the crite-
rion can be filtered by frequency weighting filters
Ly and Lu to give added flexibility to the design:
see (Hjalmarsson et al., 1998).

Let T0(ρ) and S0(ρ) denote the achieved closed
loop response and sensitivity function with the
controller {Cr(ρ), Cy(ρ)}, i.e.

T0(ρ) =
Cr(ρ)G0
1 + Cy(ρ)G0

, S0(ρ)
1

1 + Cy(ρ)G0
.(16)

Given the independence of r and v, J(ρ) can be
written as

J(ρ) =
1

2N

N∑

t=1

{
(ydt − T0(ρ)rt)

}2
(17)

+
1

2
E
[
{S0(ρ)v}

2
]
+ λ

1

2N
E

[
N∑

t=1

(ut(ρ))
2

]
.

The first term is the tracking error, the second
term is the disturbance contribution, and the last
term is the penalty on the control effort.

3.3 Criterion minimization

We now address the minimization of J(ρ) given
by (14) with respect to the controller parameter



vector ρ for a controller of specified structure. It
is evident from (12) that J(ρ) depends in a fairly
complicated way on ρ, on the unknown system G0
and on the unknown spectrum of {v}. To obtain
the minimum of J(ρ) we would like to find a
solution for ρ to the equation

0 =
∂J

∂ρ
(ρ) (18)

=
1

N
E

[
N∑

t=1

ỹt(ρ)
∂ỹt
∂ρ
(ρ) + λ

N∑

t=1

ut(ρ)
∂ut
∂ρ
(ρ)

]
.

If the gradient ∂J∂ρ could be computed, then the
solution of (19) would be obtained by the following
iterative algorithm:

ρi+1 = ρi − γiR
−1
i

∂J

∂ρ
(ρi). (19)

Here Ri is some appropriate positive definite ma-
trix, typically a Gauss-Newton approximation of
the Hessian of J , while the sequence γi must obey
some constraints for the algorithm to converge to
a local minimum of the cost function J(ρ): see
(Hjalmarsson et al., 1994).

Such problem can be solved by using a stochastic
approximation algorithm of the form (19) such as
suggested in (Robbins and Monro, 1951), provided
the gradient ∂J∂ρ (ρi) evaluated at the current con-
troller can be replaced by an unbiased estimate.
In order to solve this problem, one thus needs to
generate the following quantities:

(1) the signals ỹ(ρi) and u(ρi);
(2) the gradients ∂ỹ∂ρ (ρi) and

∂u
∂ρ (ρi);

(3) unbiased estimates of the products ỹ(ρi)
∂ỹ
∂ρ (ρi)

and u(ρi)
∂u
∂ρ (ρi).

The computation of the last two quantities has
always been the key stumbling block in solving
this direct optimal controller parameter tuning
problem. The main contribution of (Hjalmarsson
et al., 1994) was to show that these quantities
can indeed be obtained by performing experi-
ments on the closed loop system formed by the
actual system in feedback with the controller
{Cr(ρi), Cy(ρi)}. This is done as follows.

3.4 The IFT algorithm

At iteration i of the controller tuning algorithm,

the controller C(ρi)
△
= {Cr(ρi), Cy(ρi)} operates

on the actual plant. We then perform three ex-
periments, each of which consists of collecting a
sequence of N data. Two of these experiments
(the first and third) just consist of collecting data
under normal operating conditions; the second is a
real (i.e. special) experiment. We denote N -length

reference signals by {rji }, j = 1, 2, 3, and the cor-
responding output signals by {yj(ρi)}, j = 1, 2, 3.
Thus we have

r1i = r, yielding (20)

y1(ρi) = T0(ρi)r + S0(ρi)v
1
i ;

r2i = r − y
1(ρi), yielding (21)

y2(ρi) = T0(ρi)(r − y1(ρi)) + S0(ρi)v2i ;

r3i = r , yielding (22)

y3(ρi) = T0(ρi)r + S0(ρi)v
3
i .

Here vji denotes the disturbance acting on the
system during experiment j at iteration i. These
experiments yield an exact realization of ỹ(ρi):

ỹ(ρi) = y
1(ρi)− yd, (23)

while it is shown in (Hjalmarsson et al., 1998) that

∂̂y

∂ρ
(ρi)

△
=

1

Cr(ρi)

[(
∂Cr
∂ρ
(ρi)−

∂Cy
∂ρ
(ρi

)
y3(ρi)

+
∂Cy
∂ρ
(ρi)y

2(ρi)

]
(24)

is an unbiased estimate of ∂y∂ρ(ρi).

The three experiments described above generate
corresponding control signals:

u1(ρi) = S0(ρi)
[
Cr(ρi)r − Cy(ρi)v1i

]
,

u2(ρi) = S0(ρi)
[
Cr(ρi)(r − y1(ρi))− Cy(ρi)v2i

]
,

u3(ρi) = S0(ρi)
[
Cr(ρi)r − Cy(ρi)v3i

]
.

These signals can similarly be used to generate the
estimates of the input related signals required for
the estimation of the gradient (19). Indeed, u1(ρi)
is a perfect realization of u(ρi),

u(ρi) = u
1(ρi), (25)

while

∂̂u

∂ρ
(ρi)

△
=

1

Cr(ρi)

[(
∂Cr
∂ρ
(ρi)−

∂Cy
∂ρ
(ρi)

)
u3(ρi)

+
∂Cy
∂ρ
(ρi)u

2(ρi)

]
(26)

is an unbiased estimate of ∂u∂ρ (ρi).

An experimentally based estimate of the gradient
of J can be formed by taking

∂̂J

∂ρ
(ρi) = (27)

1

N

N∑

t=1

(
ỹt(ρi)

∂̂yt
∂ρ
(ρi) + λut(ρi)

∂̂ut
∂ρ
(ρi)

)
.



The next controller parameters are then computed
by replacing, in the iteration (19), the gradient of
the cost criterion by this estimate:

ρi+1 = ρi − γiR
−1
i

∂̂J

∂ρ
(ρi) (28)

where {γi} is a sequence of positive real numbers
that determines the step size, and where {Ri} is
a sequence of positive definite matrices. The key

feature of our construction of ∂̂J∂ρ (ρi), and also the
motivation for the third experiment, is that this
estimate is unbiased:

E

[
∂̂J

∂ρ
(ρi)

]
=
∂J

∂ρ
(ρi), (29)

As a result, the controller parameters converge un-
der reasonable conditions to a stationary point of
the performance criterion, provided the sequence
of controllers along the way are all stabilizing: see
(Hjalmarsson et al., 1998).

A number of implementation issues as well as de-
sign choices are addressed in detail in (Hjalmarsson
et al., 1998). They concern the choice of the step
size γi and of the matrix Ri in (28), the choice
of frequency weighting filters, the elimination of
possibly unstable controllers in the filtering opera-
tions (24) and (26), the enforcement of integral ac-
tion, the attenuation of the effect of disturbances,
as well as the simplification that occurs in the case
of a one-degree-of-freedom controller, where the
third experiment is not necessary. One interesting
design parameter is the step size, which deter-
mines how much the controller changes from one
iteration to the next one. Before implementing
a new controller one can compare its Bode plot
with that of the previous one, and possibly reduce
the step size if one feels that the change is too
large. Similarly, one can predict the effect of a
new controller on the closed loop response and on
the achieved cost using a Taylor series expansion:
see (Hjalmarsson et al., 1998).

4. APPLICATIONS OF IFT IN CHEMICAL
PROCESS CONTROL

The IFT scheme has been applied by the chemical
multinational Solvay S.A. for the optimal tuning
of industrial PID controllers operating on a range
of different control loops. In each of these loops,
PID controllers were already operating. Important
performance improvements were achieved using
the IFT method, both in tracking and in reg-
ulation applications. The reductions in variance
achieved after a few (typically 2 to 6) iterations
of the algorithm ranged from 25 % in a flow
regulation problem in an evaporator, to 87 % in

a temperature control problem for the tray of a
distillation column. Here we present the results
obtained with a temperature regulation problem
for a tray of a distillation column. An application
to a flow control problem in an evaporator is
presented in (Hjalmarsson et al., 1998).

The controller used was an industrial 2-degree-
of-freedom PID controller where the derivative
action is applied to y only, and where a first order
filter is applied to y in order to limit the gain of the
controller at high frequencies when the derivative
action is used. The time constant of this filter
is chosen as Td/8, Td being the derivative time
constant. The PID regulator parameters were
iteratively tuned using the IFT scheme, with the
following design choices: Gauss-Newton direction,
step-size γi = 1 ∀i, control weighting λ = 0,
sampling period of 15 seconds, rd = yd = 0 during
5 hours. The deadtime and the time constants of
the process were unknown.

Figure 4 presents temperature deviations with re-
spect to setpoint in a tray of a distillation column,
over a 24-hour period, first with the original PID
parameters, then with the PID controller obtained
after 6 iterations of the new scheme. Figure 5
shows the corresponding histograms of these devi-
ations over 2-week periods. The control error has
been reduced by 70 %.
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Fig. 4. Control error over a 24-hour period before
tuning and after 6 iterations of IFT
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Fig. 5. Histogram of control error over 2-week
period before tuning and after 6 iterations of
IFT

Figure 6 shows the Bode plots of the two-degree of
freedom controller (Cr , Cy) before optimal tuning
(full line), after 3 iterations of the IFT algorithm
(dashed line) and after 6 iterations (dotted line).
The gain was too low and the derivative action
underused.
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Fig. 6. Bode diagram of the two-degree-of-freedom
controller before tuning (full), after 3 itera-
tions (dashed) and after 6 iterations of the
algorithm (dotted).

Table 1 shows the measured cost J with the 6
successive controllers, as well as the predicted
value of the cost, calculated at each iteration
with the new controller parameters, as explained
above. The prediction was good except for the 2nd
iteration which was perturbed by an abnormal
disturbance.

Iteration Cost Next cost
(measured) (predicted)

1 0.80 0.36
2 1.00 0.59
3 0.57 0.35
4 0.37 0.18
5 0.22 0.15
6 0.14 0.11

Table 1 : Calculated and predicted cost

5. MINIMIZING THE SETTLING TIME
WITH IFT

The criterion (14) is well suited when the objective
is to follow a specific reference trajectory, but is
not so appropriate if the objective is to change the
output from one setpoint to another one. Indeed,
in such case the goal is typically to reach the new
setpoint with a minimum settling time, and one
does not care about the transient trajectory, pro-
vided it does not produce too much overshoot. By
constraining the output to follow some particular
reference trajectory yd during the transient, one
puts too much emphasis on the transient phase of
the response at the expense of the settling time at
the new setpoint value.

To cope with this situation Lequin observed in
(Lequin, 1997) that one can add nonnegative
weighting factors to each element of ỹt and ut
in the criterion (14). A simple way to obtain
a satisfactory closed loop response to a desired
setpoint change is then to set the weighting factors
on ỹt to zero during the transient period and to
one afterwards, while the weights on the control
are put to one everywhere:

Jm(ρ) =
1

2N
E

[
N∑

t=t0

(ỹt(ρ))
2 + λ

N∑

t=1

(ut(ρ))
2

]
.

We say in such case that a mask of length t0 is put
on the transient response of the tracking error.
Often it is not known a priori how much time
is required to achieve a setpoint change without
overshoot. In such case, one can perform the IFT
iterations by initially applying a long mask, and
then gradually reducing the length of this length
of this mask until oscillations start occuring.

We illustrate this idea with an example presented
in (Lequin et al., 1999). Consider the plant

G(s) =
1

s2 + 0.1s+ 1

One wishes to tune a PID controller in order
to achieve a settling time of 20 seconds for the
closed loop system. The initial PID parameter
values were taken as K = 0.025, Ti = 2 and
Td = 1, yielding the very sluggish response shown
in Figure 7.

Fig. 7. Closed loop step response with initial PID
parameters

The classical IFT criterion was then applied with
a desired response shown in dotted line in Fig-
ure 8, with the achieved response shown in full
line on that same figure. This response is very
unsatisfactory, in large part due to an unfortunate
choice of initial parameters.

Fig. 8. Optimal closed loop step response (full)
obtained with the classical IFT criterion and
using the desired response (dashed)

The IFT criterion was then applied with a mask
of decreasing length, with an initial length of 80
seconds, and with the same initial parameters. At
every iteration of the IFT scheme, the length of



the mask was decreased by 20 seconds, until a
mask of length 20 was reached. This led to the
closed loop response shown in Figure 9.

Fig. 9. Optimal closed loop step response obtained
with the IFT criterion using masks of de-
creasing length

Observe the dramatic improvement of the closed
loop response.

6. CONCLUSIONS

Iterative redesign of controllers using data col-
lected on the operating closed loop system has
emerged as a new, powerful and successful con-
trol design methodology, as a result of signifi-
cant progress accomplished in the nineties on the
understanding of the interplay between identifi-
cation and control design. Most of the schemes
are based on model and controller updates; they
require safeguards such as cautious changes be-
tween successive controllers. The study of these
‘identification for control’ schemes has somewhat
surprisingly also led to iterative schemes that are
entirely model-free.

In this paper we have focused on the design of
the nominal model and/or controller via these
iterative schemes, since these have given rise to
the more practical design methods, well suited
for process control applications. We have barely
touched upon the vast amount of progress accom-
plished on model uncertainty estimation, and have
completely left aside our very recent theoretical
work on model and robust controller validation.
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itérative de controleurs sans identification.
Technical report. Masters Thesis. Université
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