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Abstract:
This paper presents a coherent framework for model validation for control and
for controller validation (for stability and for performance) in the context where
the validated model uncertainty sets are obtained by prediction error identification
methods. Thus, these uncertainty sets are parametrized transfer function sets, with
parameters lying in ellipsoidal regions in parameter space. Our results cover two
distinct aspects: (1) Control-oriented model validation results, where we show that
a measure of size of the validated model set is connected to the size of the model-
based controller set that robustly stabilizes the model set, leading to validation design
guidelines. (2) Controller validation results, where we present necessary and sufficient
conditions for a controller to stabilize all models, or to achieve a given level of
performance for all models, in such uncertainty set. Copyright c© 2000 IFAC
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1. INTRODUCTION

This paper presents in summary form the key
ideas and results that we have developed over
the last few years on model validation for con-
trol and controller validation, in the prediction
error identification framework. The full presenta-
tion of these results, as well as the proofs, can
be found in the comprehensive paper (Gevers et
al., 2000), and in the more technical support-
ing papers (Gevers et al., 1999a), (Bombois et

1 The authors acknowledge the Belgian Programme on
Inter-university Poles of Attraction, initiated by the Bel-
gian State, Prime Minister’s Office for Science, Technology
and Culture. The scientific responsibility rests with its
authors.

al., 1999b), (Bombois et al., 1999c), (Gevers et
al., 1999b), (Bombois et al., 1999a), (Bombois et
al., 2000b), (Bombois et al., 2000a). Our results on
validation establish a robust stability and robust
performance theory for model uncertainty sets
produced by prediction error identification and
validation, which we call PE uncertainty sets for
ease of reference. In the case of full order models,
these validated PE model uncertainty sets are de-
fined by parametrized transfer function sets whose
parameter vectors lie in ellipsoids in parameter
space. In the case of restricted complexity models,
they are obtained by a stochastic embedding tech-
nique (see (Goodwin et al., 1992)) and are made
up of ellipsoids at every frequency in the space of
transfer functions (Bombois et al., 2000a). These



PE uncertainty sets are not the classical uncer-
tainty sets used in robust control analysis and
design, such as additive, multiplicative, coprime
factor uncertainty sets, etc. Our robust stability
and robust performance results take the form of
necessary and sufficient conditions for a controller
to stabilize all models in such PE sets, or to
achieve some given level of performance with all
models in such PE sets, without the need to first
approximate or overbound these sets by one of the
more standard uncertainty sets of robust control
theory.

In addition to these controller validation results,
we also present results on model validation for
control that impact on validation design. To put
it simply, we define a ‘control-oriented measure of
size’ for the validated PE uncertainty sets men-
tioned above, that is directly connected, via a
robust stability result, to the size of the sets of
model-based controllers that stabilize all models
in the validated PE model sets. This measure of
size is called the worst case ν-gap between the
validated model and the validated model set. We
show how this worst case gap is affected by the
design of the validation experiment that deliv-
ers the validated PE set. Thus, we now have a
complete connection all the way from the vali-
dation experiment that defines a PE uncertainty
set to the set of controllers that are guaranteed
to stabilize all models in this PE uncertainty set.
This allows one to formulate ‘validation for control
design guidelines’.

Because of the space limitations imposed by the
format of a Conference paper, we shall not at-
tempt here to describe the state of the art in
model validation, model validation for control,
and controller validation. 1 We shall also not re-
view the abundant literature that already exists
on these very broad and important questions.
In the full paper (Gevers et al., 2000) we have
attempted to perform this review of the literature
and we have also put our results in perspective
with respect to the existing literature.

This paper is organized as follows. In Section 2
we introduce the prediction error framework for
validation, and we present our results on model
set validation for robust control, while Section 3
covers controller validation in this prediction error
framework, both for stability and for performance.
For reasons of space, our results are presented here
without proof; we refer the reader to the appro-
priate references for the proofs and for further
details.

1 We just want to repeat, as we have done in our previous
work, that these are three different issues, each requiring
a different formulation and hence different solutions.

2. MODEL SET VALIDATION FOR
CONTROL

We consider that input-output data y and u are
generated from a Linear Time Invariant “true
system”:

S : y(t) = G0(z)u(t) + v(t), (1)

where G0(z) is a linear time-invariant causal op-
erator, u is a measured input signal, and v is zero
mean stationary noise.

We consider the situation where one is allowed
to perform experiments on the true system in
order to contruct a model set to which the true
system is guaranteed to belong, at some a priori
fixed probability level α, say 95%. The experi-
ment delivers a data record of N input-output
data: ZN = {y(1), u(1), . . . , y(N), u(N)}. The
construction of the model set is achieved, in our
framework, by a Prediction Error (PE) identifi-
cation experiment. For the sake of simplicity and
brevity, we shall consider here that this PE iden-
tification is performed using a model set of the
same structure as that of the true system, leading
to an unbiased estimate G(z, δ̂) of G0(z). This
may appear like a severe restriction. However, as
shown in (Gevers et al., 2000), the results that
follow apply without any modification to the case
where a low order model is used, and where the
set validation is performed by a prediction error
identification step applied to an unbiased model of
the Model Error Model (see e.g. (Ljung, 1997)).
One can even entirely remove the need for the
identification of an unbiased model (of the true
system or of the Model Error Model) by the use
of stochastic embedding techniques à la Goodwin
et al. (Goodwin et al., 1992), as we have recently
shown in (Bombois et al., 2000a). In such case,
the parametrization of the validated PE uncer-
tainty set is somewhat different from the one we
present below, but the methodology presented
here remains unchanged and all the results and
conclusions of this paper apply.

Thus, using N input-output data, collected in
open or in closed loop, and a model set M
containing S, we estimate a model G(z, δ̂) and

a covariance matrix Pδ of δ̂ using classical PE
identification (Ljung, 1999). We have shown in
(Bombois et al., 1999d) and (Bombois et al.,
2000b) that, whether the validation is performed
in open loop or in closed loop, by identification
of a full order model for G0 or by identification
of an unbiased estimate of a Model Error Model,
the validated model sets can all be described in
the following generic structure that we call the
generic PE model uncertainty set.



Proposition 2.1. The model sets resulting from
prediction error validation, which contain the true
system G0 = G(z, δ0) at a prescribed probability
level, can all be described in the following generic
form called the generic PE model uncertainty set:

D =

{
G(z, δ) | G(z, δ) =

e+ ZNδ

1 + ZDδ

and δ ∈ U = {δ | (δ − δ̂)TR(δ − δ̂) < 1}
}
(2)

where
• δ ∈ Rk×1 is a real parameter vector, and δ̂ is
the parameter estimate resulting from the identi-
fication/validation step.
• R ∈ Rk×k is a symmetric positive definite ma-
trix, proportional to the inverse of the covariance
matrix Pδ of δ̂.
• ZN (z) and ZD(z) are row vectors of size k of
known transfer functions.
• e(z) is a known transfer function with a delay
equal to the delay of G0.

In the special case where the validation is per-
formed in open loop, or in closed loop using a
direct identification method, the PE uncertainty
set D reduces to the more familiar set:

{G(z, δ) | G(z, δ) =
b1z
−1 + ...+ bmz

−m

1 + a1z−1 + ...+ anz−n

=
Z2δ

1 + Z1δ
and δ ∈ U

}
(3)

with

• δT = [a1 ... an b1 ... bm] ∈ R
k×1, k

∆
= n+m

• Z1(z) = [z−1 z−2 ... z−n 0 ... 0] ∈ C1×k

• Z2(z) = [0 ... 0 z−1 z−2 ... z−m] ∈ C1×k

Comments

• Observe that the PE model uncertainty sets
are very different from the classical uncer-
tainty sets that are used in mainstream ro-
bust control design procedures, such as addi-
tive, multiplicative, feedback, coprime factor
uncertainty sets, etc.
• The validated model set D depends very
much on the experimental conditions under
which the validation has been performed.
This is perhaps not so apparent in the def-
inition (2) of D via the parameter covari-
ance matrix Pδ which defines R. However,
let us recall that the covariance of the trans-
fer function estimate G(z, δ̂) is a function
of the input spectrum and, in a closed loop
experiment, of the controller and the refer-
ence spectrum; see e.g. (Ljung, 1999). Thus,
two different validation data sets will yield
two different validated regions D(1) and D(2),
both of which contain the true G0 with prob-
ability α.

In the study of model validation for control it is
therefore important to examine whether one PE
validated region, D(1), is better tuned for robust
control design than another one, D(2).

We shall from now on assume that the control
design is based on some nominal model Gmod, and
that this nominal model is any validated model,
i.e. any model in D. An obvious option would be
to use the center of the validated set, i.e. G(z, δ̂),
as the model used for control design. However,
one may often prefer to use a low order model
for control design, since this results in a lower
order controller. For the theory that follows, any
validated model can be used for control design. 2

In order to address the question of whether a PE
uncertainty set is tuned for robust control design,
we have defined a ‘measure of size’ of a validated
PE set D that can be connected, via a robust
stability theorem, to the size of the model-based
controller set that robustly stabilizes all models
in D. This measure is called the worst-case ν-gap
(and its frequency by frequency version, the worst-
case chordal distance) between some model Gmod
and all models in a validated PE model set D. In
order to define these worst-case measures, we first
recall the definitions of chordal distance and of ν-
gap between two transfer functions, introduced by
Vinnicombe (Vinnicombe, 1993). To keep things
simple we consider scalar transfer functions only.

Definition 2.1. (Vinnicombe, 1993) The ν-gap
metric between two transfer functions G1 and G2
is defined as

δν(G1, G2) = max
ω

κ
(
G1(e

jω), G2(e
jω)
)

(4)

if W (G1, G2) = 0, and 1 otherwise, where
κ
(
G1(e

jω), G2(e
jω)
)

�
=

|G1(ejω)−G2(ejω)|√
1 + |G1(ejω)|2

√
1 + |G2(ejω)|2

(5)

and whereW (G1, G2) = wno(1+G∗1G2)+η(G2)−
η̃(G1).

Here η(G) (resp. η̃(G)) denotes the number of
poles of G in the complement of the closed (resp.
open) unit disc, while wno(G) denotes the wind-
ing number about the origin of G(z) as z fol-
lows the unit circle indented into the exterior
of the unit disc around any unit circle pole and
zero of G(z). The function κ(G1(e

jω), G2(e
jω)) is

the chordal distance between the projections of
G1(e

jω) and G2(e
jω) onto the Riemann sphere of

unit diameter with South Pole at the origin of the
complex plane.

2 In fact, our theory applies even to the case when the
model used for control design lies outside the PE validated
region D.



Consider now a closed loop system with transfer
function matrix

T (G,C) =


 T11 T12

T21 T22


 =




GC

1 +GC

G

1 +GC

C

1 +GC

1

1 +GC


(6)

Definition 2.2. (Vinnicombe, 1993) The gener-
alized stability margin of this closed loop sys-
tem is defined as

bGC = ‖T (G,C)‖−1∞ = min
ω

κ(G(ejω),−
1

C(ejω)
)(7)

if (G,C) is stable, and 0 otherwise.

Thus, the generalized stability margin of a closed
loop system [G C] is measured by the least chordal
distance between the projections on the Riemann
sphere of G and of the inverse of −C.

The main interest of the ν-gap metric and the
chordal distance is their use in robust stability.
Here we recall a result that is most useful for our
‘validation for control’ analysis.

Proposition 2.2. (Vinnicombe, 1993) Let C sta-
bilize a model Gmod. Then C stabilizes all G such
that δν(Gmod, G) < 1 and such that ∀ω

κ
(
Gmod(e

jω), G(ejω)
)
< κ(Gmod(e

jω),−
1

C(ejω)
).

In particular, C stabilizes all models in the set :

G = {G : δν(G,Gmod) < bGmodC} (8)

We now build on these robust stability results
to connect validated PE uncertainty sets to sets
of robustly stabilizing controllers. To do this, we
have introduced two new notions that extend
definitions of distance between two models to
definitions of worst case distance between a
model and all models in a PE model set.

Definition 2.3. Consider a PE uncertainty setD
of the form (2) and a model Gmod. The ‘worst case
chordal distance’ at frequency ω between Gmod
and D is defined as

κWC(Gmod(e
jω),D) = sup

GD∈D
κ(Gmod(e

jω), GD(e
jω))

The ‘worst case ν-gap’ between Gmod and D is
defined as

δWC(Gmod,D) = sup
GD∈D.

δν(Gmod, GD) (9)

An alternative characterization of the worst case
ν-gap is as follows: see (Bombois et al., 1999c).

Lemma 2.1. If W (Gmod, GD) = 0 for one plant
GD ∈ D, then δWC(Gmod,D) can also be ex-
pressed as

δWC(Gmod,D) = sup
ω

κWC (Gmod(e
jω),D)).2

We have shown in (Bombois et al., 1999a) that
the worst-case chordal distance can be computed
as the optimal value of a convex optimization
problem involving Linear Matrix Inequality (LMI)
constraints.

Having extended the concepts of chordal distance
and of ν-gap between plants to those of worst-case
chordal distance and worst-case ν-gap between a
model and a validated PE set, we can now also
extend the stability results of Proposition 2.2 to
the context of our validated PE sets.

Theorem 2.1. Consider a PE uncertainty set D
containing the trueG0 with probability α, a model
Gmod with δWC(Gmod,D) < 1, and let C be a
controller that stabilizes Gmod. Then C stabilizes
all models in D if ∀ω

κWC(Gmod(e
jω),D) < κ(Gmod(e

jω),−
1

C(ejω)
)

and, a fortiori, if δWC(Gmod,D) < bGmodC . 2

Observe that the left hand side depends on the
validated set, while the right hand side depends on
the controller; both quantities are known. Both of
these stability conditions are sufficient conditions
only, and that the latter is a conservative (Min-
Max) version of the former. Necessary and suffi-
cient conditions for the stabilization of all models
in a validated PE model set by a controller C
will be given in Section 3. The main use of Theo-
rem 2.1 is therefore not so much for checking the
stability of a particular controller, but rather it al-
lows us to link the validation experiment (through
the measure of size κWC(Gmod(e

jω),D) of the
validated set) with the set of robustly stabilizing
controllers for D. Indeed, for each validated PE
uncertainty set D we can now define, by the use
of Theorem 2.1, the corresponding set of Gmod-
based controllers that robustly stabilize all models
in the set D as 3 :

C(Gmod,D) =
{
C | κWC(Gmod(e

jω),D) (10)

< κ

(
Gmod(e

jω),−
1

C(ejω)

)
∀ω

}

We then have the following result (Gevers et
al., 2000).

Theorem 2.2. Consider two different validated
PE sets D(1) and D(2), obtained from two differ-
ent validation experiments, both containing the
model Gmod. If for all ω

κWC(Gmod(e
jω),D(1)) < κWC(Gmod(e

jω),D(2)),

then C(Gmod,D(2)) ⊂ C(Gmod,D(1)). 2

3 Observe that there may be other controllers, outside the
set C(Gmod,D), that stabilize all models in D, because the
stability condition used to define this set is only a sufficient
condition.



Theorem 2.2 establishes a clear link between a
measure of size defined on validated PE model sets
and the sets of stabilizing controllers for all models
in these validated model sets. A more compact
measure of size is δWC(Gmod,D) (i.e. just one
number to characterize the size of D) for which
a corresponding but more conservative link can
be established with a set of stabilizing controllers:
see (Bombois et al., 1999c), (Gevers et al., 2000).
Thus, κWC(Gmod(e

jω),D) and δWC(Gmod,D) are
two measures of the ability of a validated PE
model set to be robustly stabilized by a large
set of controllers. It makes sense therefore, in
identification for robust control, to choose those
experimental conditions for validation that lead to
a validated set with the smallest possible worst-
case chordal distance, or the smallest possible
worst-case ν-gap. Thus, our results give the de-
signer a handle on what to aim for in terms of
“control-oriented validated sets”. In a Prediction
Error context, we believe that these results are the
first that give substance to the concept of control-
oriented model validation.

3. CONTROLLER VALIDATION FOR
STABILITY AND PERFORMANCE

In this section, we present necessary and suffi-
cient conditions for some given controller C(z)
to stabilize all models in a PE uncertainty set,
as well as necessary and sufficient conditions for
this controller to achieve a specified level of per-
formance with all models in such PE uncertainty
set. In other words, we develop a robust stability
analysis (for both stability and performance) for
uncertainty sets of the generic PE form described
in (2).

Robust stability
For our PE uncertainty sets, necessary and suf-
ficient conditions for robust stability have been
obtained by showing that the set of feedback
connections of C with all models in D can be
reformulated, using an LFT framework, as a set
of feedback connections [MD(z) φ], where MD(z)
is fixed and where the uncertainty part φ is a real
vector, linearly related to the parameter vector δ
that defines D: see (2). We have then shown that
the (real) stability radius linked with the set of
loops [MD(z) φ] can be computed exactly. The
main robust stability result is as follows (Bombois
et al., 2000b).

Theorem 3.1. Consider a generic PE uncer-
tainty set of the form (2) and a controller C(z) =

X(z)/Y (z) that stabilizes G(δ̂). Then all mod-
els in D are stabilized by C(z) if and only if
maxΩ µφ(MD(e

jω)) ≤ 1, where

• MD(z) =
−(ZD+

X(ZN−eZD)
Y+eX

)T−1

1+(ZD+
X(ZN−eZD)

Y+eX
)δ̂

• T is defined as D : R = TTT.
• φ = T (δ − δ̂), whereby δ ∈ U ⇔ |φ|2 < 1
• µφ(MD(e

jω)) is the stability radius of the loop
[MD(z) φ]. For a real vector φ, µφ is computed as:√

|Re(M)|22 −
(Re(M)Im(M)T )2

|Im(M)|22
if Im(M) 	= 0

|M |2 if Im(M) = 0.

The necessary and sufficient conditions for con-
troller validation depend critically on the uncer-
tainty set D, hence the importance of the vali-
dation design. Of course, this observation applies
to all robust control methodologies. What distin-
guishes our approach from most others is that, in
mainstream robust control theory, the uncertainty
sets are assumed a priori, while here they are the
result of experiments, and our analysis of the pre-
vious sections has given us at least some handle on
how we can shape these uncertainty sets towards
robust control design.

Robust performance
Most commonly used performance criteria are
derived from some norm of a frequency weighted
version of the transfer matrix T (G,C) of the
closed-loop system [G C] defined in (6). Thus we
shall start from the following definition.

Definition 3.1. The performance of a closed
loop system (G,C) is defined by the following
frequency function:

J(G,C,Wl,Wr, ω)

= σmax
(
WlT (G(ejω), C(ejω))Wr

)
, (11)

where Wl(z) and Wr(z) are diagonal frequency
weights that allow one to define specific perfor-
mance levels, and where σmax(A) denotes the
largest singular value of A. 2

The frequency function J defines a template.
Most commonly used performance functions are
functions of J , or special cases of J . The worst
case performance over a validated PE set is then
defined as follows.

Definition 3.2. The worst case performance
achieved by a controller C(z) at a frequency ω
over all models in a validated PE uncertainty set
D is defined as

JWC(D, C,Wl,Wr, ω) (12)

= max
G(z,δ)∈D

σmax
(
WlT (G(ejω, δ), C(ejω))Wr

)
.

The following theorem, established in (Bombois
et al., 2000b), gives a procedure for the computa-
tion of the criterion JWC(D, C,Wl,Wr, ω) at the



frequency ω. A crucial feature that makes this
computation possible is the rank one property of
the matrix T (G,C).

Theorem 3.2. Consider a PE uncertainty region
D defined by (2) and a robustly stabilizing con-
troller C = X

Y
. Then, at frequency ω, the criterion

function JWC(D, C,Wl,Wr, ω) is obtained as

JWC(D, C,Wl,Wr, ω) =
√
γopt, (13)

where γopt is the optimal value of γ for the
following standard convex optimization problem
involving LMI constraints:

minimize γ

over γ, τ

subject to τ ≥ 0 and

(
Re(a11) Re(a12)
Re(a∗12) Re(a22)

)
− τ

(
R −Rδ̂

(−Rδ̂)T δ̂TRδ̂ − 1

)
< 0

where

a11 = (Z∗NW
∗
l1
Wl1ZN + Z

∗
DW

∗
l2
Wl2ZD) − γ(QZ

∗
1Z1);

a12 = Z∗NW
∗
l1
Wl1e+W

∗
l2
Wl2Z

∗
D − γ(QZ

∗
1 (Y + eX));

a22 = e∗W ∗l1Wl1e+W
∗
l2
Wl2 − γ(Q(Y + eX)

∗(Y + eX));

Q = 1/(X∗W ∗r1Wr1X + Y
∗W ∗r2Wr2Y );

Z1 = XZN + Y ZD.

4. CONCLUSIONS

Using Prediction Error identification methods, we
have developed a coherent framework for model
validation for robust control and for controller val-
idation. Our model validation procedure is noth-
ing but an identification experiment with a full
order model, 4 which leads to a validated PE
model set made up of parametrized transfer func-
tions, whose parameters lie in ellipsoidal regions.
The true system belongs to this set with some
probability, say α. The sets resulting from such
PE validation method are non-standard in main-
stream robust control theory. We have therefore
developed robust analysis tools, that have led to
necessary and sufficient conditions for controller
validation with PE uncertainty sets, both for sta-
bility and for worst-case performance. This is one
major contribution of our work.

Another major focus has been to highlight the
design aspects of our model set validation proce-
dure, and how they impact on the set of robustly
stabilizing controllers. In order to establish a con-
nection all the way from the design of the valida-
tion step to the specification of a set of robustly
stabilizing controllers, we have defined a measure
of the size of the PE validated sets, and shown
that it is connected to the size of the controller
sets that are guaranteed to robustly stabilize all

4 We have recently shown in (Bombois et al., 2000a) that
biased models can also be handled.

models in these PE validated sets. Even though
these results are based on sufficient conditions for
stability only, they provide us with guidelines for
model validation for robust control.

In the full paper (Gevers et al., 2000), our results
and techniques are illustrated on two real-life
applications: a flexible transmission system that
has been used as benchmark for control design,
and a ferrosilicon production process.
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