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Abstract

This paper focuses on the validation (for stability and for performance) of a con-
troller that has been designed from an unbiased model of the true system, identified
either in open-loop or in closed-loop using a prediction error framework. A controller
is said to be validated for stability if it stabilizes all models defined by an ellipsoidal
parametric uncertainty set containing the true system with some prescribed probabil-
ity. Such uncertainty set is computed from the covariance matrix of the parameters of
the identified model. Our first contribution is to design the general LFT framework for
robustness stability analysis linking the controller to be validated with such parametric
uncertainty region resulting from prediction error identification (open-loop and indi-
rect closed-loop identification). This leads us to a necessary and sufficient condition
for the robust stabilization of all plants in this nonstandard uncertainty region. Our
second contribution is to show that we can compute the worst case performance of a
given controller over all systems in such uncertainty set described by ellipsoidal regions
in parameter space, by recasting the problem as an LMI-based optimization problem,
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initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The last author
acknowledges support of Office of Naval Research, Washington and U.S. Army Research Office Far East,
Tokyo. The scientific responsibility rests with its authors.
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for which the exact solution can be computed. A controller is then said to be validated
for performance if the worst case performance is better than some threshold value.

1 Introduction

This paper is part of our continuing investigation of identification for control, as well as
controller design and controller validation based on identified models and their uncertainty
regions [13, 14, 15, 3]. Here we consider the case where a nominal model Gmod has been iden-
tified, together with an uncertainty set D to which the true system G0 is known to belong
with some prescribed probability. This uncertainty set D is defined as a set of parametrized
rational transfer functions whose parameter vector lies in an ellipsoidal confidence region.
This is clearly a nonstandard uncertainty set in robust control analysis and design. We
then focus on the validation of a controller C, designed from Gmod, both for robust stability
and for robust performance. We present a validation procedure for stability which ensures
that the controller C stabilizes all systems in this nonstandard uncertainty set D. We also
present a validation procedure for performance in which we compute the worst case perfor-
mance over all closed loop systems made up of the controller C and all plants in D. Our two
procedures (stability and performance validation) are based on the particular structure of
the ellipsoidal parametric confidence regions delivered by prediction error identification (see
e.g. [21]). Our major contribution is to show that this particular uncertainty description,
which results directly from classical prediction error identification, allows one to use classical
robust stability results (see e.g. [7, 10, 30, 18]) for the validation for stability, and to develop
an LMI-based optimization problem that computes the worst case performance level. In
addition, we also show that, for this particular uncertainty description, exact values of the
stability radius and of the worst case performance can be computed leading to necessary and
sufficient condition statements, both for the robust stability and for the robust performance
problem.

Uncertainty region. Prediction error identification theory (see e.g. [21]) delivers an es-
timated model Gmod for the true plant G0 and provides us with tools for the estimation of
an uncertainty region. If the parametric structure is sufficiently complex to represent the
true system, then Gmod is asymptotically unbiased and the uncertainty is described by the
covariance matrix of the identified model Gmod. This covariance matrix allows one to con-
struct a parametric uncertainty region U containing the parameters of the true system G0
at a certain probability level that we can fix at, say, 95 %. The uncertainty region U in the
parameter space defines an equivalent uncertainty region D in the space of transfer functions.
We show that this uncertainty region D can be obtained for both open-loop identification
and indirect closed-loop identification.

Controller validation for stability. Robust stability theory developed in e.g. [10, 7,
30, 24, 18] provides necessary and sufficient conditions for the stabilization, by some given
controller C, of all plants in an uncertainty region, provided this uncertainty region is de-
fined in the general LFT (linear fractional transformation) framework for robust stability
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analysis. Our contribution in the proposed stability validation procedure is to show that one
can rewrite the closed-loop connection of the controller C and all plants in the uncertainty
region D obtained from both types of identification (open-loop and indirect closed-loop iden-
tification) into a particular LFT that takes into account the parametric description of D (i.e.
the uncertainty part of the obtained LFT is a real vector) and whose (real) stability radius
is exactly computable, using the result presented in [18, 26]. The proposed approach has the
complementary advantage of being easily extensible to robust control design using the result
in [27]. Indeed, [27] gives a convex parametrization of all controllers stabilizing the plants
defined by rank one LFT’s (that is the type of LFT’s we here obtain). The main advantage
of the convex parametrization of [27] is that several robust synthesis problems can then be
stated in terms of convex or quasi-convex optimization.

In an earlier paper [3], the problem of the robust stability of all plants in the D domain
of parametrized transfer functions has already been addressed. The solution presented in
[3] was to embed the uncertainty region D into a larger coprime factor uncertainty region,
leading therefore only to a sufficient robust stability condition. The advantage in the present
approach is that the obtained robust stability condition is necessary and sufficient. This is
a consequence of the fact that our new stability results apply directly to the parametrized
set D resulting from the identification step, thereby avoiding the conservativeness resulting
from the overbounding of D by a coprime factor uncertainty set.

In the case of open-loop identification of an ARMA structure, the structure of D has
a simpler expression. In [26], it is shown that this simpler structure can be expressed as
an LFT. In this paper, we give a general formulation of this LFT for all model sets and
for both open-loop and indirect closed-loop identification using a general expression of the
uncertainty region D obtained with both types of prediction error identifications. In the
case of open-loop identification and ARX structure, a similar approach to ours and to that
presented in [26] can also be found in [20].

Other authors have tackled the robust stability problem in the presence of parametric
uncertainties from another point of view (see e.g. [2, 1] and references therein). In this
literature, the stability of an uncertain polynomial is analyzed. For control purposes, the
analyzed polynomial is the denominator of the closed-loop transfer function. In [2], the au-
thors present a procedure that gives, for a given controller, the largest ellipsoid in the space
of the system parameters for which the stabilization of the closed-loop transfer function
denominator is guaranteed. Their approach uses Euclidean space geometry to project the
parameters of the open-loop system into those of the common denominator of the closed-
loop transfer functions and conversely. The main advantage of our procedure is to use the
general framework of the robustness theory which allows one to use all standard robust the-
ory tools: e.g., as said earlier, the results of [27] allows robust control design using convex
or quasi-convex optimization. This is not possible with the approach proposed in [2] where
only a local minimum of the proposed controller design criterion can be found.

Our approach also differs significantly from the approach used in traditional set mem-
bership identification ([23] and references therein). In the set membership literature, a hard
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bound assumption is made on the noise and a known upper bound is required on the im-
pulse response of the true system, leading to the identification of an uncertainty set around a
nominal model. In [17], a method to identify an additive uncertainty region with a stochas-
tic noise assumption is presented, but a known prior bound on the true system impulse
response is again required. Furthermore, the approach presented in [17] is restricted to lin-
early parametrized models, such as FIR models. In our approach, rational transfer functions
with denominator uncertainty can be used. In addition, no prior assumptions are required on
the magnitude of the noise and of the impulse response. Our uncertainty regions are derived
from the data using classical prediction error identification. The only important restriction
in this paper is that we assume that the system is in the model set and that the uncertainty
sets are therefore entirely defined by covariance errors on the parameters. This restriction
can be relaxed using the stochastic embedding approach of [16] to construct uncertainty
regions that then take into account both bias and variance errors in the estimated transfer
functions. This will be the subject of a future paper.

Controller validation for performance. Our procedure for controller validation for per-
formance is based on the computation of the worst case performance of a closed-loop made
up of the to-be-validated controller and a system in the uncertainty region D. The perfor-
mance for a closed loop (see [30, 9, 29]) is often defined via the modulus of the frequency
response of the four different closed-loop transfer functions. The worst case performance,
for each of these four transfer functions, will be defined by the maximum of their modulus
computed over all plants in the uncertainty region D. These maxima over all plants in D,
for a given controller C, define four templates, which are used as performance indicators. A
number of standard performance indicators (such as perturbation rejection rate, resonance
peak, ...) can be derived from these four indicators. Our contribution is to show that the
computation of the worst case performance can be formulated as an LMI-based optimization
problem. In fact, we give a general LMI-based optimization problem which allows compu-
tation of the worst case performance for the four different closed-loop transfer functions by
an appropriate choice of the weights in the general LMI problem. The LMI formulation of
the problem uses the fact that the parametric uncertainty appears linearly in the expression
of both the numerator and the denominator of the systems in the uncertainty region D and,
as a consequence, also appears linearly in the expression of the different closed-loop transfer
functions.

Our approach to compute the worst case performance differs significantly from the usual
approach proposed in e.g. [9, 11]. In these papers, the computation of the worst case perfor-
mance in an uncertainty region described by an LFT involves the computation of a quantity
ν. The quantity ν is an extension of the structured singular value µ. Only upper and lower
bounds of ν (and µ) are computable in polynomial time. [9] and [11] only give a way to com-
pute the upper bound for the standard structured uncertainties. The case of an uncertainty
given by a real vector (such as in the uncertainty region D) is not tackled. Our approach
therefore presents two advantages with respect to that in [9, 11]. First, the worst case perfor-
mance can be computed for all types of uncertainties (and not only the standard ones) that
appear linearly both in the numerator and the denominator of the systems in the uncertainty
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region. Second, it avoids the conservatism that results from using upper (and lower) bounds.

In [22], the worst case performance is also computed for a parametric uncertainty region,
but in that paper the criterion that measures the performance is an LQ time criterion and
not the modulus of the frequency responses of the closed-loop transfer functions.

Paper outline. In Section 2, we briefly review how open-loop and indirect closed-loop
identification lead to ellipsoidal parametric uncertainty regions U , which define equivalent
uncertainty regions D in the space of transfer functions. In Section 3, we show how the
closed-loop connections of the systems in the uncertainty region D and the “to-be-validated
controller” can be expressed in the general LFT framework for robust stability analysis. A
necessary and sufficient condition for the robust stabilization of all plants in D is then derived
from classical robust stability theory. In Section 4, the concept of worst case performance
level is introduced and the LMI-based optimization problem developed for its computation
is given. The procedures for validation for stability and for performance are illustrated by
an example in Section 5. Finally, some conclusions are given in the last section.

2 Identification and parametric uncertainty region

In this section, we briefly recall the uncertainty regions delivered by classical prediction error
identification, assuming that unbiased model structures are used [21]. We here consider both
open-loop and indirect closed-loop identification. We assume that the open-loop true system
is linear and time-invariant, with a rational input-output transfer function G0:

y = G0u+ v

where v is additive noise.

2.1 Open-loop identification

In the case of open-loop identification, we consider a uniformly stable1 model setMOL with
the following structure:

MOL =

{
G(θ) | G(θ) =

b1z
−1 + ...+ bmz

−m

1 + a1z−1 + ... + anz−n
=

Z2θ

1 + Z1θ

}
(1)

with

• θT = [a1 ... an b1 ... bm] ∈ R
q×1, q

∆
= n+m

• Z1(z) = [z−1 z−2 ... z−n 0 ... 0] ∈ C1×q

• Z2(z) = [0 ... 0 z−1 z−2 ... z−m] ∈ C1×q

1A model set is said to be uniformly stable if the one-step ahead predictors linked to the systems in the
model set, their gradients and the gradients of their gradients are all stable [21].
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The noise model is assumed to be independently parametrized.

We make the important assumption that G0 ∈MOL, and hence

G0 = G(θ0) ∈MOL for some θ0 ∈ R
q×1 (2)

A model Gmod = G(θ̂) ∈MOL is then identified from experimental data [uid yid], as well
as an estimate Pθ of the covariance matrix of θ̂. It is well known that θ̂ is an asymptotically
unbiased estimate of θ0 (since G0 ∈MOL) and that it is normally distributed [21]. The true
parameter vector θ0 lies with probability α(q, χ2ol) in the ellipsoidal uncertainty region

UOL = {θ | (θ − θ̂)TP−1θ (θ − θ̂) < χ2ol} (3)

where α(q, χ2ol) = Pr(χ2(q) ≤ χ2ol) with χ2(q) the chi-square probability distribution with q

parameters2. This parametric uncertainty region UOL defines a corresponding uncertainty
region in the space of transfer functions which we denote DOL:

DOL =

{
G(θ) | G(θ) =

Z2θ

1 + Z1θ
and θ ∈ UOL

}
(4)

Properties of DOL.

G0 ∈ DOL with probability α(q, χ2ol)

We have thus defined an uncertainty region DOL which contains both the model Gmod

and the true sytem G0 with probability α(q, χ2ol) (e.g. α = 0.95).

2.2 Indirect closed-loop identification

Let us now consider a controller K which stabilizes the true system G0. In indirect closed-
loop identification, we collect experimental data on the closed loop composed of the true
system G0 and the stabilizing controller K in order to identify a model of one of the four
closed-loop transfer functions describing the loop [K G0]. These four “true” closed-loop
transfer functions are:

T 10 =
G0K
1+G0K

T 20 =
G0

1+G0K
T 30 =

K
1+G0K

T 40 =
1

1+G0K
(5)

The model Gmod for G0 is then computed from the estimate of any one of these four
transfer functions by inversion of the mapping (5), using knowledge of the controller K.
The selection of one of those transfer functions for identification is linked to the available
signals and the structure of the controller K. Indeed, it is proved in [5] that the presence
of unstable (or unit-circle) poles or zeros in K imposes restrictions on the subset of these

2The use of the chi-square probability distribution with q parameters to define the probability density
linked to UOL is in fact an appoximation. Indeed, since Pθ is only an estimate of the true parameter
covariance matrix obtained with e.g. N experimental data, the probability of the presence of θ0 in UOL
defined in (3) is Pr(F (q,N − q) < χ2ol/q), where F (q,N − q) is the F-distribution [20]. Nevertheless, since
N will generally be large, we have that Pr(F (q,N − q) < χ2ol/q) ≈ Pr(χ

2(q) ≤ χ2ol). The same remark holds
for indirect closed-loop identification.
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transfer functions that can be identified.

In the sequel, we show how we can construct an uncertainty region DCL containing the
true system in the case where the third closed-loop transfer function T 30 is estimated. An
uncertainty region DCL can be derived similarly for the other cases (see e.g. [15, 3] for the
identification of T 10 ).

If the true system G0 is assumed to have the same generic form as defined in (1)-(2) and
the controller K is assumed to have the following generic expression K = (kn,0 + kn,1z

−1 +
... + kn,nnz

−nn)/(1 + kd,1z
−1 + ... + kd,ndz

−nd), it is easy to prove that the first term of the
numerator of T 30 is the first term of the numerator of the controller K, i.e. kn,0, and that the
denominator of T 30 is monic. For the identification of the closed-loop transfer function T 30 ,
we therefore consider a uniformly stable model setMCL having a monic denominator and a
numerator whose first term is known.

MCL =

{
T (ξ) | T (ξ) =

kn,0 + c1z
−1 + ... + clz

−l

1 + d1z−1 + ...+ dpz−p
=

kn,0 + Z3ξ

1 + Z4ξ

}
(6)

with

• kn,0 is the first term of the numerator of K

• ξT = [d1 ... dp c1 ... cl] ∈ R
f×1, f

∆
= l + p

• Z4(z) = [z−1 z−2 ... z−p 0 ... 0] ∈ C1×f

• Z3(z) = [0 ... 0 z−1 z−2 ... z−l] ∈ C1×f

Just for open-loop identification, we again make the important assumption that T 30 ∈
MCL. Therefore

T 30 = T (ξ0) ∈MCL for some ξ0 ∈ R
f×1 (7)

A model Tmod = T (ξ̂) ∈MCL of the closed-loop transfer function T
3
0 can now be identified

using experimental data [rid uid] collected on the closed loop [K G0], together with an
estimate Pξ of the covariance matrix of ξ̂. Just as in the open-loop case, we can define an
ellipsoidal parametric uncertainty region UCL:

UCL = {ξ | (ξ − ξ̂)TP−1ξ (ξ − ξ̂) < χ2cl} (8)

From this set UCL, we can deduce the set of corresponding open loop plants G(ξ) defined
as:

DCL =

{
G(ξ) | G(ξ) =

1

T (ξ)
−

1

K
and ξ ∈ UCL

}
(9)

The notation G(ξ) used in (9) denotes the rational transfer function model whose coefficients
are uniquely determined from ξ by the mapping

G(ξ) =
1

T (ξ)
−

1

K
. (10)
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The nominal open-loop model derived from T (ξ̂) is Gmod = G(ξ̂). It is important to note
that, using the expression of T (ξ) in (6), the uncertainty region DCL can also be rewritten
as follows:

DCL =

{
G(ξ) | G(ξ) =

e(z) + Z5(z)ξ

1 + Z6(z)ξ
and ξ ∈ UCL

}
(11)

with e(z) = (1/kn,0)−(1/K), a known transfer function with one delay and Z5 = (Z4/kn,0)−
(Z3/(kn,0K)) and Z6 = Z3/kn,0.

Properties of UCL and DCL. The probability level linked to the uncertainty regions UCL

and DCL depends on the way the noise model of the closed-loop has been modelled [21,
Chapter 9]. If the closed-loop noise model has been independently parametrized, then the
following statements hold:

ξ0 ∈ UCL with probability α(f, χ2cl)

G0 = G(ξ0) ∈ DCL with probability α(f, χ2cl)

If the closed-loop noise model and T (ξ) have common parameters and if the noise model set
also contains the true noise model, then, denoting r (r > f) the size of the total parame-
ter vector (T (ξ) + noise model), the uncertainty regions UCL and DCL have the following
properties:

ξ0 ∈ UCL with probability α(r, χ2cl)

G0 = G(ξ0) ∈ DCL with probability α(r, χ2cl)

We have thus defined an uncertainty region DCL which contains both the model Gmod

and the true system G0 with probability α(f, χ2cl) or α(r, χ
2
cl) (e.g. α = 0.95).

Similar uncertainty regions DCL can be deduced from the indirect closed-loop identifica-
tion of T 10 , T

2
0 and T 40 (see e.g. [15, 3] for the identification of T 10 ). It is to be noted that

e(z) = 0 in the other three cases.

2.3 General structure of the uncertainty regions obtained from

identification tools

In the previous subsections, uncertainty regions DOL and DCL containing the true system
have been obtained as a result of open-loop identification or indirect closed-loop identi-
fication, respectively. In both cases, these uncertainty regions take the form of a set of
parametrized open-loop transfer functions where the parameter vector lies in an ellipsoid
UOL and UCL, respectively. This fact can be summarized in the following proposition.
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Proposition 1 Consider δ ∈ Rk×1, the real parameter vector; G(δ0), the true open-loop
system and G(δ̂), the open-loop model obtained either “directly” by open-loop identification
or “indirectly” by indirect closed-loop identification. The uncertainty region D containing
G(δ0) at a certain probability level has the following general form.

D =

{
G(δ) | G(δ) =

e+ ZNδ

1 + ZDδ
and δ ∈ U = {δ | (δ − δ̂)TR(δ − δ̂) < 1}

}
(12)

with

• R is a symmetric positive definite matrix ∈ Rk×k. It is proportional to the inverse of
the covariance matrix of δ̂ and has been scaled so as to obtain 1 on the right hand side.

• ZN(z) and ZD(z) are known row vectors of size k.

• e(z) is either a known transfer function with delay one or is equal to 0.

Proof. This proposition is a direct consequence of expressions (4), (11). 2

3 Controller validation for stability or robust stability

condition for the uncertainty region D

In the previous section, it has been shown that an uncertainty region D whose generic struc-
ture is given in (12) can be constructed in the space of transfer function models both with
open-loop (DOL) and with indirect closed-loop identification (DCL). This uncertainty re-
gion D contains both the true system G0 and the model Gmod = G(δ̂). We now say that a
controller C, designed from Gmod, is validated for stability if it stabilizes all models in this
uncertainty region D (and therefore also the true system G0).

Robust stability theory provides a necessary and sufficient condition for the stabilization
of all plants in an uncertainty region by some given controller [10, 7, 30, 24, 18]. But for the
application of robust stability results, it is required that the closed loop connections of this
controller to all plants in the uncertainty region be rewritten as a set of loops that connect
a known fixed dynamic matrix M(z) to an uncertainty part ∆(z) of known structure that
belongs to a prescribed uncertainty domain.

Our contribution in this section is to show that the uncertainty region D is amenable to
classical robust stability analysis. Indeed, we present a way to describe the set of closed-
loop connections of all plants in D with the “to be validated controller” C as a set of loops
[MD(z) φ] where the uncertainty part φ is a real vector. We also also show that the (real)
stability radius linked with the set of loops [MD(z) φ] can be computed exactly and effi-
ciently, using the result presented in [18, 26]. This elegant result is only available for the
identification of SISO systems. In the case of MIMO systems, the necessity of the deduced
robust stability condition can no more be assured as will be shown in a future paper.

Before we proceed to this, we recall an important result of robust stability analysis [26, 18]
in the case when the uncertainty is assumed to be a real vector.
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3.1 Robust stability for a real vector uncertainty

We consider here a set of loops [M(z) β] that obey the following system of equations (see
Figure 1). {

p = βq
q = M(z)p

(13)

In this set of loops, it is assumed that M(z) ∈ H∞ is a known fixed row vector of size b and
that the uncertainty part β is a real vector ∈ Rb×1 that varies in the following uncertainty

domain: |β|2 < 1. |β|2 represents the 2-norm of the vector β i.e. |β|2 =
√
βTβ.

M

qp

β

Figure 1: set of loops [M(z) β]

The robust stability theorem linked to the set of loops [M(z) β] is now summarized in
the following proposition.

Proposition 2 If M(z) ∈ H∞ and β ∈ R
b×1, then the loops [M(z) β] given in (13) are

internally stable for all β ∈ Rb×1 such that |β|2 < 1 if and only if

max
Ω

µβ(M(ejΩ)) ≤ 1 (14)

The value µβ(M(ejΩ)) is called the stability radius of the loop [M(z) β] at the frequency
Ω and is defined below.

Definition 1 (stability radius [26, 18]) For M(ejΩ) a known complex matrix ∈ C1×b

and β ∈ Rb×1, the stability radius µβ(M(ejΩ)) is defined as follows if Im(M(ejΩ)) �= 0:

µβ(M(ejΩ)) =

√√√√|Re(M)|22 −
(Re(M)Im(M)T )2

|Im(M)|22
(15)

and µβ(M(ejΩ)) = |M |2, if Im(M) = 0.
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Remarks. The stability radius is in fact the structured singular value linked to the loop
[M(z) β]. Therefore, µβ(M(ejΩ)) is the inverse of the smallest value of |β|2 such that
1 − M(ejΩ)β = 0. In [26], the stability radius at a given frequency is defined for a real
uncertainty that is a row vector. The case of a column vector is similar and yields Definition 1.
Note also that the stability radius is discontinuous only at the frequencies where M is real
[25].

3.2 LFT framework for the uncertainty region D and a controller C

In order to apply Proposition 2 to check the stabilization of all plants in the uncertainty
region D described in Proposition 1 by some model-based controller C, the first step is to
find the particular set of loops [M(z) β] that correspond to the closed-loop connections of
all plants in D with C. This first step can be achieved using the following theorem.

Theorem 1 (LFT framework for D) Consider an uncertainty region D of plant transfer
functions given by (12) and a controller C(z) whose numerator and denominator are de-
noted X(z) and Y (z), respectively (C(z) = X(z)/Y (z)). The set of closed-loop connections
[G(δ) C] for all G(δ) ∈ D are equivalent to the set of loops [MD φ] which obey the following
system of equations {

p = φq

q =MD(z)p

where the uncertainty part φ is a real column vector of size k that varies in the uncertainty
domain: |φ|2 < 1, and where the part MD(z) is a row vector of size k defined as :

MD(z) =
−(ZD + X(ZN−eZD)

Y+eX
)T−1

1 + (ZD + X(ZN−eZD)
Y+eX

)δ̂
, (16)

with T a square root of the matrix R defining U in (12) : R = T TT.

Proof. The closed-loop connection of C and a particular plant G(δ) = (e+ZNδ)/(1+ZDδ)
in D (see (12)) is given by {

y = e+ZNδ
1+ZDδ

u

u = −Cy
(17)

Let us rewrite (17) in a convenient way for the LFT formulation:

{
y = (e+ (ZN−eZD)δ

1+ZDδ
)u

u = −Cy
(18)

By introducing two new signals q and p1, we can restate (18) as




(
q

y

)
=

H(z)︷ ︸︸ ︷(
−ZD 1

ZN − eZD e

)(
p1
u

)
p1 = δq

u = −Cy

(19)
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By doing so, we have isolated the uncertainty vector δ from the known transfer matrix H(z)
and the controller C(z), as is shown in Figure 2.

δ

H(z)

-C(z)
u y

p1 q

Figure 2: Equivalent loop for [G(δ) C]

The variables y and u are now eliminated from (19), yielding the following system of
equations representing a loop which is of the type (13) required by Proposition 2.




p1 = δq

q =

M1(z)︷ ︸︸ ︷
(−ZD −

C(ZN − eZD)

1 + eC
) p1

(20)

The system (20) is equivalent to the closed-loop connection of a particular G(δ) in D
with the controller C. In order to consider the closed-loop connections for all plants in D,
we have to consider all δ ∈ Rk×1 lying in the ellipsoid U given by:

U = {δ | (δ − δ̂)TR(δ − δ̂) < 1}. (21)

This last expression is the uncertainty domain of the real uncertainty vector δ. This
uncertainty domain is not quite standard. Therefore, the set of loops [M1(z) δ] with δ ∈ U

can not be immediatly used in this form in Proposition 2. A last step is then to normalize
the uncertainty domain using a method presented e.g. in [26, 20] . Using R = T TT , we now
define the real vector φ ∈ Rk×1 as follows:

φ
∆
= T (δ − δ̂). (22)

Using now (21) and (22), we have

δ ∈ U ⇔ φTφ < 1⇐⇒ |φ|2 < 1 (23)

12



φ is therefore an uncertainty vector with same structure as δ (i.e. φ ∈ Rk×1) but with
an uncertainty domain as required by Proposition 2. The uncertainty vector δ is therefore

replaced by φ in (20). For this purpose, we first denote p
∆
= φq. Since δ = δ̂+T−1φ, we have

{
p1 = δq

q =M1(z)p1
⇔




p = φq

q =
M1T

−1

1−M1δ̂
p =

MD(z)︷ ︸︸ ︷
−(ZD + X(ZN−eZD)

Y+eX
)T−1

1 + (ZD + X(ZN−eZD)
Y+eX

)δ̂
p

(24)

The set of loops [MD(z) φ] for φ ∈ R
k×1 and |φ|2 < 1 is therefore equivalent to the set of

closed-loop connections [G(δ) C] for all plants G(δ) in D. This completes the proof. 2

3.3 Robust stability condition for the uncertainty region D

Theorem 1 allows us to “transform” our problem of testing if the controller C stabilizes all
the plants in the uncertainty region D into the equivalent problem of testing if the set of
loops [MD φ] are stable for all real vector φ ∈ Rk×1 such that |φ|2 < 1. This equivalent
problem is the one which is treated by Proposition 2. Therefore, using Proposition 2 and
Theorem 1, we can now formulate our main stability theorem.

Theorem 2 (robust stability condition) Consider an uncertainty region D of plant trans-
fer functions having the general form given in (12) and let C be a controller that stabilizes
the nominal model G(δ̂). All the plants in the uncertainty region D are stabilized by the
controller C if and only if

max
Ω

µφ(MD(e
jΩ)) ≤ 1 (25)

where the stability radius µ and MD(z) are defined in Definition 1 and in (16), respectively.

Proof. MD(z) lies in H∞ since its denominator is the denominator of the sensitivity func-
tion of the closed loop [G(δ̂) C] which is stable by assumption. Therefore, this theorem is
a direct consequence of Proposition 2 and Theorem 1. 2

This theorem gives a necessary and sufficient condition for the stabilization of all plants
in D by a controller that has been designed from the nominal model and that stabilizes it.
This necessary and sufficient condition involves the computation at each frequency of the
stability radius µφ(MD(e

jΩ)). This computation is achieved using Definition 1.

4 Controller validation for performance or performance

robustness analysis

In Section 3, we have presented a procedure to check whether a controller C designed from
the model also stabilizes all plants in the uncertainty region D which contains the true system
at a certain probability level. Modulo this probability level, we have thus given a condition
that ensures that the considered controller stabilizes the true system. However, stabilization
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does not imply good performance with all plants in D (including the true system). In this
section, we show that we can evaluate the worst case performance in the uncertainty region
D, i.e. the worst level of performance of a closed loop made up of the connection of the con-
sidered controller and a particular plant in D. It is obvious that the worst case performance
in D is a lower bound for the closed-loop performance achieved with the true system. We
then say that a controller is validated for performance if the difference between the nominal
performance obtained with the model and the worst case performance in D remains below
some threshold.

There is no unique way of defining the performance of a closed-loop system. However
most commonly used performance criteria can be derived from some norm of a frequency
weighted version of the stability matrix H(G,C) of the closed-loop system [C G] made up
of G in feedback with the controller C.

Definition 2 (stability matrix) Given a plant G and a stabilizing controller C, the sta-
bility matrix H(G,C) of the closed loop [C G] is given by:

H(G,C) =

(
H11(G,C) H12(G,C)
H21(G,C) H22(G,C)

)
=




GC

1 +GC

G

1 +GC
C

1 +GC

1

1 +GC


 . (26)

4.1 The general criterion measuring the worst case performance

The worst case performance criterion over all plants in an uncertainty region D will be
similarly defined as the worst possible norm, over all plants in D, of a frequency weighted
version of the stability matrix H(G(δ), C), where G(δ) is any plant in D and C is the
“to-be-validated” controller C.

General Criterion. Consider an uncertainty region D given by (12) and containing all
systems G(δ) = G(z, δ) with δ ∈ U . Consider also a controller C(z) validated for stability.
The general criterion measuring the worst case performance level is defined at a frequency
Ω as follows:

JWC(D, C,Wl,Wr,Ω) = max
G(z,δ)∈D

σ1




Wl︷ ︸︸ ︷(
Wl1 0
0 Wl2

)
H(G(ejΩ, δ), C(ejΩ))

Wr︷ ︸︸ ︷(
Wr1 0
0 Wr2

) 
 .

(27)
where Wl(z) and Wr(z) are diagonal weights3 that allow one to define specific worst case
performance levels and where σ1(A) denotes the largest singular value of A. Note that JWC

is a frequency function : it defines a template.

3Assuming a diagonal structure for Wl and Wr is not a loss of generality since the four transfer functions
in H(G,C) can all be weighted differently.
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4.2 More specific worst case performance levels derived from the

general criterion

In [6], the performance of a loop [C G] is defined as ‖ WlH(G,C)Wr ‖∞. In this framework,
the nominal performance of the designed loop is therefore ‖ WlH(Gmod, C)Wr ‖∞ and the
worst case performance for an uncertainty region D is the maximum over all frequencies of
the general criterion JWC(D, C,Wl,Wr,Ω). In order to validate a controller in this frame-
work, this maximum must be compared with the nominal performance.

A more fundamental way of defining the performance of a closed loop [C G] is that
proposed in [29]. The performance can be “measured” by the shape of the modulus of the
frequency response of the different closed-loop transfer functions (i.e. H11(G,C), H12(G,C),
H21(G,C) and H22(G,C) defined in (26)). Let us take the example of the sensitivity function
H22(G,C) to motivate this choice. The modulus of the frequency response of H22(G,C) at
a particular frequency Ω gives the rejection rate of an output perturbation at frequency Ω.
Furthermore, the bandwidth of this frequency response gives an idea of the rejection time for
constant disturbance rejection. The importance of the resonance peak is also an indication
of the overshoot in constant disturbance rejection.

If the performance is defined as the modulus of the frequency response of one of the
transfer functions Hij (i, j=1,2), the worst case performance in the uncertainty region D is
defined as the largest modulus, over all G(δ) ∈ D, of the corresponding closed-loop transfer
function Hij. Let us now define this worst case performance related to Hij (i, j=1,2) more
formally.

Definition 3 (The worst case performance for Hij) Consider an uncertainty region D
given by (12) and containing all systems G(δ) = G(z, δ) with δ ∈ U . Consider also a
controller C(z) validated for stability and the closed-loop transfer function Hij (i, j=1,2)
defined in (26). The worst case performance for Hij is the following frequency function :

tD(Ω, Hij) = max
G(z,δ)∈D

‖ Hij(e
jΩ, δ) ‖, (28)

where Hij(z, δ) = Hij(G(z, δ), C(z)) and ‖ Hij(e
jΩ, δ) ‖ denotes the modulus of Hij(e

jΩ, δ).

For instance, if we choose the sensitivity function H22, tD(Ω, H22) provides the lowest re-
jection rate of a perodic output disturbance at Ω, the minimal bandwidth and the maximal
resonance peak over the set of closed-loop systems composed of the controller C and all plants
in D. These worst case values must be compared with the static error, the bandwidth and
the resonance peak of the sensitivity function of the designed closed loop [Gmod C] = [G(δ̂) C].

The worst case performance for Hij can be derived from the computation of the general
criterion defined in (27). This property is summarized in the following proposition whose
proof is trivial.

Proposition 3 The worst case performance for the closed-loop transfer function Hij i.e.
tD(Ω, Hij) is equal to the general criterion JWC(D, C,Wl,Wr,Ω) when the following weights
are used.
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Wl =

(
f(i) 0
0 1− f(i)

)
Wr =

(
f(j) 0
0 1− f(j)

)
(29)

where f(x) = 1 if x = 1 and f(x) = 0 if x = 2.

4.3 Computation of the general criterion

The general criterion measuring the worst case performance level has been defined in Sec-
tion 4.1. In Section 4.2, more specific worst case performance levels have been shown to
be derivable from this general criterion by appropriately choosing the diagonal weights
Wr and Wl. We now present a procedure for the computation of the general criterion
JWC(D, C,Wl,Wr,Ω) at a given frequency Ω.

This computation boils down to an optimization problem involving Linear Matrix In-

equality (LMI) constraints [4]. An LMI is a matrix inequality of the form F (ζ)
∆
= F0 +∑q

i=1 ζiFi ≤ 0, where ζ ∈ R
q is the variable, and Fi = F T

i ∈ R
t×t, i = 0, . . . , q are given.

Several algorithms have been devised for solving these problems, see [28]. The LMI problems
can be solved using the freeware code SP [28] and its Matlab/Scilab interface LMITOOL [8]
or the available commercial Matlab LMI Control Toolbox [12].

For ease of formulating the LMI problem, we rewrite the weighted matrix Hw(z, δ)
∆
=

WlH(G(z, δ), C(z))Wr for a plant G(z, δ) = (e + ZNδ)/(1 + ZDδ) in the uncertainty region
D and a controller C(z), whose polynomial numerator and denominator are denoted X(z)
and Y (z), respectively (C(z) = X(z)/Y (z)). Using (26) and the expression of G(z, δ), the
weighted matrix Hw(z, δ) can be rewritten as follows:

Hw(z, δ) =
1

Y + eX + (XZN + Y ZD)δ

(
Wl1X(e+ ZNδ)Wr1 Wl1Y (e+ ZNδ)Wr2

Wl2X(1 + ZDδ)Wr1 Wl2Y (1 + ZDδ)Wr2

)
(30)

It is important to note that Hw(z, δ) is of rank one and (30) can therefore be written as
follows:

Hw(z, δ) =




Wl1(e+ ZNδ)

Y + eX + Z1δ
Wl2(1 + ZDδ)

Y + eX + Z1δ



(
XWr1 Y Wr2

)
(31)

with Z1 = XZN + Y ZD.

The following theorem now gives a procedure for the computation of the criterion
JWC(D, C,Wl,Wr,Ω) at the frequency Ω.

Theorem 3 Consider an uncertainty region D defined in (12) and the weighted version of
the stability matrix Hw(z, δ) defined in (30) or (31). The general criterion JWC(D, C,Wl,Wr,Ω)
defined in (27) is equal to

√
γopt, where γopt is the optimal value of γ for the following standard

convex optimization problem involving LMI constraints evaluated at the frequency Ω:
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minimize γ
over γ, τ
subject to τ ≥ 0 and

(
Re(a11) Re(a12)
Re(a∗12) Re(a22)

)
− τ

(
R −Rδ̂

(−Rδ̂)T δ̂TRδ̂ − 1

)
< 0 (32)

where

• a11 = (Z∗NW
∗
l1Wl1ZN + Z∗DW

∗
l2Wl2ZD)− γ(QZ∗1Z1)

• a12 = Z∗NW
∗
l1Wl1e+W ∗

l2Wl2Z
∗
D − γ(QZ∗1 (Y + eX))

• a22 = e∗W ∗
l1Wl1e+W ∗

l2Wl2 − γ(Q(Y + eX)∗(Y + eX))

• Q = 1/(X∗W ∗
r1Wr1X + Y ∗W ∗

r2Wr2Y )

Proof. Proving this theorem is equivalent to proving that the solution γopt of the LMI
problem (32), evaluated at Ω, is such that:

√
γopt = max

δ∈U
σ1(Hw(e

jΩ, δ))⇐⇒ γopt = max
δ∈U

λ1(Hw(e
jΩ, δ)∗Hw(e

jΩ, δ))

where U = {δ | (δ − δ̂)TR(δ − δ̂) < 1} and σ1(A) and λ1(A) denotes the largest singular
value and the largest eigenvalue of A, respectively 4.

An equivalent and convenient way of restating the problem of computing
maxδ∈U λ1(Hw(e

jΩ, δ)∗Hw(e
jΩ, δ)) is as follows:

minimize γ such that λ1(Hw(e
jΩ, δ)∗Hw(e

jΩ, δ))− γ ≤ 0 ∀δ ∈ U.

Since Hw(e
jΩ, δ) has rank one, we have:

λ1(Hw(e
jΩ, δ)∗Hw(e

jΩ, δ))− γ ≤ 0⇐⇒




Wl1(e+ ZNδ)

Y + eX + Z1δ
Wl2(1 + ZDδ)

Y + eX + Z1δ



∗

Wl1(e+ ZNδ)

Y + eX + Z1δ
Wl2(1 + ZDδ)

Y + eX + Z1δ


 (X∗W ∗

r1Wr1X + Y ∗W ∗
r2Wr2Y )− γ ≤ 0⇐⇒




Wl1(e+ ZNδ)

Y + eX + Z1δ
Wl2(1 + ZDδ)

Y + eX + Z1δ
1




∗

(
I2 0
0 −γQ

)



Wl1(e+ ZNδ)

Y + eX + Z1δ
Wl2(1 + ZDδ)

Y + eX + Z1δ
1


 ≤ 0 (33)

4Note that, since A is Hermitian here, its eigenvalues are all nonnegative.
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where Q = 1/(X∗W ∗
r1Wr1X + Y ∗W ∗

r2Wr2Y ).

By pre-multiplying (33) by (Y + eX + Z1δ)
∗ and post-multiplying the same expression

by (Y + eX + Z1δ), we obtain:
 Wl1(e+ ZNδ)

Wl2(1 + ZDδ)
Y + eX + Z1δ



∗ (

I2 0
0 −γQ

) Wl1(e+ ZNδ)
Wl2(1 + ZDδ)
Y + eX + Z1δ


 ≤ 0 (34)

which is equivalent to the following constraint on δ with variable γ

(
δ

1

)∗ (
a11 a12
a∗12 a22

)(
δ

1

)
≤ 0 (35)

where

a11 = (Z∗NW
∗
l1Wl1ZN + Z∗DW

∗
l2Wl2ZD)− γ(QZ∗1Z1)

a12 = Z∗NW
∗
l1Wl1e+W ∗

l2Wl2Z
∗
D − γ(QZ∗1(Y + eX))

a22 = e∗W ∗
l1Wl1e+W ∗

l2Wl2 − γ(Q(Y + eX)∗(Y + eX))

Since δ is real, it can be shown that (35) is equivalent with

α(δ)︷ ︸︸ ︷(
δ

1

)T (
Re(a11) Re(a12)
Re(a∗12) Re(a22)

)(
δ

1

)
≤ 0 (36)

This last expression is equivalent to stating that λ1(Hw(e
jΩ, δ)∗Hw(e

jΩ, δ))− γ ≤ 0 for a
particular δ in U . However, this must be true for all δ ∈ U . Therefore (36) must be true for
all δ such that

ρ(δ)︷ ︸︸ ︷(
δ

1

)T (
R −Rδ̂

(−Rδ̂)T δ̂TRδ̂ − 1

)(
δ

1

)
< 0 (37)

which is equivalent to the statement “δ ∈ U”.

Let us now recapitulate. Computing maxδ∈U λ1(Hw(e
jΩ, δ)∗Hw(e

jΩ, δ)) is equivalent to
finding the smallest γ such that α(δ) ≤ 0 for all δ for which ρ(δ) ≤ 0. By the S procedure
[19, 4], this problem is equivalent to finding the smallest γ and a positive scalar τ such that
α(δ)− τρ(δ) ≤ 0, for all δ ∈ Rk×1, which is precisely (32).

To complete this proof, note that since λ1(Hw(e
jΩ, δ)∗Hw(e

jΩ, δ)) = σ21(Hw(e
jΩ, δ)), the

value maxδ∈U σ1(Hw(e
jΩ, δ)) at Ω is equal to

√
γopt, where γopt is the optimal value of γ. 2

5 Example

To illustrate our results, we present an example of controller validation for a model identified
in closed-loop. We identify an unbiased model T (ξ̂) of the true closed-loop transfer function
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T 10 defined in (5). The corresponding open-loop modelG(ξ̂) is then used to design a controller
C. This controller is then validated for stability using the procedure of Section 3, and for
performance using the procedure of Section 4.

Identification step. Let us consider the following true system G0 with an Output Error
structure:

y =

G0︷ ︸︸ ︷
0.1047z−1 + 0.0872z−2

1− 1.5578z−1 + 0.5769z−2
u+ e

where e is a unit-variance white noise. The sampling time is 0.05 second.

We perform a closed-loop identification of an unbiased T (ξ̂) by collecting 1000 reference
and output data on the true system in closed loop with an output-feedback controller u =
3(r−y). This controller stabilizes G0. We choose an ARMAX model structure for the closed
loop model since it is the structure of the actual closed loop [K G0]. This identification yields:

y(ξ̂) =

T (ξ̂)︷ ︸︸ ︷
0.3179z−1 + 0.2783z−2

1− 1.2129z−1 + 0.8251z−2
r +

1− 1.4695z−1 + 0.4986z−2

1− 1.2129z−1 + 0.8251z−2
e

The estimated covariance matrix of ξ̂ = [−1.2129 0.8251 0.3179 0.2783]T is

Pξ = 10−3




0.2353 −0.1250 0.0205 0.0947
−0.1250 0.1639 −0.0723 0.1053
0.0205 −0.0723 0.8458 −0.8815
0.0947 0.1053 −0.8815 1.0917




Although ξ̂ has only four parameters, our ARMAX model has a total of 6 independent
parameters. Therefore, the size χ2cl of the uncertainty region UCL (see (8)) containing the
parameters of the true closed-loop transfer function with probability 95 % is equal to 12.6,
because Pr(χ2(6) ≤ 12.6) = 0.95.

The model G(ξ̂) corresponding to T (ξ̂) is equal to

Gmod = G(ξ̂) =
1

K
×

T (ξ̂)

1− T (ξ̂)
=

0.1060z−1 + 0.0928z−2

1− 1.5308z−1 + 0.5467z−2

Control design. From the model Gmod, we have designed a controller with a phase ad-
vance :

C(z) =
1.8464− 1.3647z−1

1− 0.4545z−1
.

With this controller, the designed closed-loop [Gmod C] has a stability margin of 57 degrees
and a gain margin of 10dB. The cut-off frequency Ωc is equal to 0.5 which corresponds to a
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real frequency ωc = 11 rad/s.

Before applying this controller C(z) to the true system, we verify whether it achieves
satisfactory behaviour with all plants in the uncertainty region DCL (and therefore also with
the true system G0). The uncertainty region DCL is here defined as follows.

DCL =

{
G(ξ) | G(ξ) =

1

K
×

T (ξ)

1− T (ξ)
and ξ ∈ UCL = {ξ | (ξ − ξ̂)TP−1ξ (ξ − ξ̂) < 12.6}

}

Validation of C for stability. Using the procedure presented in Section 3, we check
whether C stabilizes all plants inDCL. For this purpose, we construct the row vectorMDCL(z)
defined in Theorem 1 and we compute the corresponding stability radius µφ(MDCL(e

jΩ)) at
all frequencies. According to Definition 1, we know that µφ(MDCL(e

jΩ)) has a different
expression at the frequencies where MDCL(e

jΩ) is real. It occurs here at Ω = 0 and Ω = π.
The stability radii at these two frequencies are:

µφ(MDCL(e
j0)) = 0.0962 and µφ(MDCL(e

jπ)) = 0.0340

The stability radii at the other frequencies (i.e. in (0 π)) are plotted in Figure 3.
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Figure 3: µφ(MDCL(e
jΩ)) in (0 π)

The maximum over all frequencies in [0 π] is 0.1313. Since this maximum is smaller than
1, we conclude that C(z) stabilizes all plants in DCL and therefore also the true system G0.
In other words, the controller C(z) is validated for stability.

Validation of C for performance. In order to verify that C gives satisfactory perfor-
mance with all plants in DCL, we compute the worst case performance level tDCL(Ω, H22) for
the sensitivity function H22 at each frequency. This can be done by computing
JWC(DCL, C,Wl,Wr,Ω) using Theorem 3 with the particular weights Wl = Wr = diag(0, 1).
The worst case modulus of all sensitivity functions over DCL is represented in Figure 4.
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In this figure, the worst case performance level tDCL(Ω, H22) is compared with the sen-
sitivity functions of the designed closed loop [Gmod C] and of the achieved closed loop
[G0 C]. From tDCL(Ω, H22), we can find that the worst case static error (=tDCL(0, H22))
resulting from a constant disturbance of unit amplitude is equal to 0.1692, whereas this
static error is 0.0834 in the designed closed-loop. The achieved static error is 0.1017. Using
tDCL(Ω, H22), we can also see that the bandwidth of Ωc = 0.5 in the designed closed-loop
is preserved for all closed loops with a plant in DCL since tDCL(Ω, H22) is equal to 1 at
Ωc � 0.5. The difference between the resonance peak of the designed sensitivity function
( i.e. maxΩ ‖ H22(Gmod, C) ‖= 1.6184) and the worst case reasonance peak achieved by a
plant in DCL ( i.e. maxΩ tDCL(Ω, H22) = 1.7075) also remains small. Note that the actually
achieved resonance peak ( i.e. maxΩ ‖ H22(G0, C) ‖) is equal to 1.6229.

10
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10
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10
0

10
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10
0

Omega

Figure 4: tDCL(Ω, H22) (solid) and modulus of the designed sensitivity function H22(Gmod, C)
(dashed) and actually achieved sensitivity function H22(G0, C) (dashdot)

We may therefore conclude that the controller C is validated for performance since the
difference between the nominal and worst case performance level remains very small at every
frequency. With such stability and performance analysis results, one would confidently apply
the controller to the real system, assuming that the nominal performance is judged to be
satisfactory.

6 Conclusions

We have developed the tools for the robust stability and robust performance analysis of a
controller designed from a nominal model, when the uncertainty set D containing the true
system is described via ellipsoidal perturbations around the parameter vector of the nominal
model. Such ellipsoidal parameter perturbations arise when the nominal model is the result
of a prediction error identification procedure using an unbiased model structure. The more
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difficult case where biased model structures are used will be treated in a subsequent paper,
using a stochastic embedding approach.

Our solution to the validation for stability problem is in the form of a necessary and
sufficient condition for the stabilization of all models in this parametric uncertainty set D
by a given controller C. Our solution to the validation for performance problem takes the
form of the exact computation of the worst case performance of the controller C in closed
loop with all models in the uncertainty set D.

The main technical novelties of our paper are threefold:

• to show that the robust stability analysis for the uncertainty set D, which is clearly
nonstandard in mainstream robust control analysis, can be recast in an LFT framework
with special structure for both open-loop and indirect closed-loop identification;

• to show that the worst case performance analysis for this nonstandard uncertainty set
D can be recast as an LMI optimization problem with special structure using the fact
that the uncertainty appears linearly in both the numerator and the denominator of
the systems in the uncertainty region D;

• to show that the special structures of these two nonstandard problems allow one to
compute an exact solution to these two problems, thus leading us to necessary and
sufficient conditions for robust stability and robust performance, respectively.

Our procedures for validation for stability and for performance have been illustrated by
an example.
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