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Abstract 
This paper examines an ongoing research and development 

project concerned with identification, control and diagnosis in air- 
craft engines. Within these topics, this paper will focus on physical 
diagnosis, where one of the main motivations of the project is to 
introduce innovation and update techniques currently used in indus- 
try. Several fault diagnosis methods are considered and com ared 
in terms of their possible application to the project. Further %etails 
are provided for the parametric statistical approach which, accord- 
ing to this initial study, is one approach flexible enough and with 
good foundations in order to achieve the desired objectives. 

1. INTRODUCTION 

researcl and development project with joint participation o!boti 
industrial and academic institutions. This project deals with mat- 
ters such as identification, control and diagnosis applied to turbine 
engines. The focus in this paper will be on the topic of diagnosis. 

The field of fault diagnosis has expanded continuously over the 
last years, with a variety of techniques, new results and innovations 
being reported. Proof of this is the list of survey and tutorial papers 
available (see, e.g. , [26], [17], [l], [16], [lo], [lS]) and also an ever 
growing list of a plications. The motivation is clear, the increas- 
ing complexity o!today systems and processes and also increasing 
interest and demand for safety and reliability. 

The aerospace industry is no stranger to these developments. In 
fact, many of the industries involved in the project have their meth- 
ods for condition monitoring and diagnosis. There is, however, 
consensual agreement that practical results have not been altogether 
good, but also that significant potential for improvement still exists. 

Current techniques rely on sim lified models, often linearized, 
which already impose limitations &e to the physical complexity of 
a turbine engine and its inherent non-linear characteristics. These 
limitations may be avoided if more so histicated models are used. 
The knowledge needed to describe anfcharacterize these more so- 
phisticated models is in the hands of today’s main engine manufac- 
turers and aircraft companies, which have accumulated a great deal 
of experience over the years. It is thus believed that this experience 
and knowledge, and derived models, can be a cornerstone in new 
developments. 

The importance of modelling considerations is evident, because 
the fundamental concept behind many fault diagnosis methodolo- 
ies is that of Analytical Redundancy. Analytical redundancy al- 

light of a model that relates them. This analysis then enables one 
to check for incompatibilities in the data and, eventually, to take a 
decision about the cause of such an incompatibility. 

We thus see that key elements for potential benefits are present. 
Industry has the knowledge to develop models that predict, with 
what appears as sufficient accuracy, the operation and behaviour of 
an engine. They also have the experience to pin-point elements of 
the model whose monitoring could guide subsequent diagnosis and 
maintenance. In parallel, a number of methods exist to exploit ana- 
lytical redundanc for diagnosis urposes. Thus, the current project 
searches to bene& from the comknation of all these elements. 

The discussion in this a r will start by describing the general 
problem. A description of t g  engine model is also included to the 
extent needed for the subsequent discussion. Then we will describe 
what has been our contribution to the project so far. This starts by a 
brief summary of the basic elements of various approaches to fault 
diagnosis, describing also how each one of these methodologies 
could be applied to the diagnosis problem in the project. Among 
these methods, we will then provide further discussion and some 
simulation results for the parametric statistical approach, which ap- 
pears as an interestin candidate thus far. This aper intends also to 
illustrate how part ofthe available theory can !e considered in the 

The resentation in this paper is directly related to an on oin 

P ows one to use measured process variables and analyze them in the 

fuel 
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Fig. 1.  General schema of an aircraft engine. 

2. THE PROBLEM 
The system under study is a ‘standard’ civil aircraft engine, and 

the general objective is to use a physical model of the engine for 
diagnosis purposes (i.e. physical diagnosis). The diagnosis is ex- 
pected to provide information about ‘undesired‘ changes that affect 
the engine during its life cycle. These changes can be either sudden 
faults or changes due to engine deterioration. 

A clear challenge of the current application comes from the lim- 
ited number of available measurements currently used in civil avia- 
tion (limited in comparison to the lar e number of variables present 
in a turbine engine). The benefits from the use of analytical re- 
dundancy don’t come as an easy reward when the number of faulty 
situations considered in a dia nosis model rows, but the available 
measurements remain limiteif One might k tempted, for the ob- 
vious reasons, to suggest increasing the number of measured vari- 
ables. However, this would entail not only costs, but also risks since 
some of these variables may require devices placed in sensitive lo- 
cations that could also compromise safety in engine operation, thus 
defeating the purpose of applying fault diagnosis techniques. The 
partners involved in the project do not envisa e significant chan es 
in current measurement sets, so the study has kcused on approacies 
that consider a ‘reasonably standard‘ set of measured variables. 

With current methods the diagnosis is usually erformed on- 
ground, so one of the potential innovations is precisefy the possibil- 
ity to change this. Dia nosis should be done on-board by process- 
ing the data collected kr ing  flights. Another important element is, 
as already mentioned, to develop the new diagnosis methods in the 
light of more sophisticated nonlinear models of the engine. 

Since modeling is an essential element, we will first describe the 
generalities of an aircraft engine and the corresponding model. 

3. THE ENGINE MODEL 
Figure 1 shows the three main stages of a typical aircraft engine. 

In the model considered, the air is compressed with the aid of com- 
pressors. The compressed air then enters a combustion chamber 
where, in combination with fuel, it undergoes an exothermic reac- 
tion (combustion). The subsequent decompression takes place in 
turbines, where part of the ‘thermodynamic’ energy of the gas (air 
plus fuel) is transfered through the engine shafts back to other me- 
chanical parts (like compressors). An important energy balance is 
that the energy needed for air compression comes from the energy 
transfered to the shafts in the turbines. If the engine is in steady- 
state (i.e. there is no shaft acceleration), then the energy needed in 
the compressors is equal to the energy ‘produced‘ in the turbines. 

As a result of its passing through the engine, the gas changes its 
speed, pressure, tern rature, energy, etc. Some of these changes are 
related to the pro uEon purpose of an aircraft engine. The thrust 
produced is, roug&y explained, a result of the change of momentum 
of the air (aidfuel) entering and leaving the engine. 

It is difficult to quantitatively describe the operation of an en- 
gine and all the variables involved. Nonetheless, a reasonably good 
model exists for the steady-state operation of the engine ’. It is with 
this steady-state model that our first studies have been conducted. 

light of an interesting industry application. 
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‘A dynamic model is also available. but less accurate. 
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The details of the model are not relevant for the current discus- 
sion. From a systemic point of view it is sufficient to indicate that 
this model involves equations of the form 

x, = G(x,,u,~), F(X,,U,O) = 0, (1) 
where the map G describes the operation of the various engine com- 
ponents and stages, while F is an expression of balance equations 
including energy and mass conservahon that constrain the interac- 
tion between the various components. The variables Xu represent 
model ‘unknowns’ that need to be solved in order to characterize 
a steady-state operating condition. The variables X ,  are other pro- 
cess variables including temperatures, pressures, etc. The parameter 
vector 0 characterizes the various equations and relationships. 

Again, we won’t give details about the solution of the equations 
involved. What is relevant for the current discussion is that the so- 
lution of such equations can be represented by a non-linear map of 
the form X = [ X z ,  XF]’ = @=(U, e). We explicitly indicate the 
dependence on 0 because it clearly affects the solution of the model 
equations. We recall also that, in addition to the in ut conditions U, 
only some of the variables in X are measured. I twe  denote by Y 
the measured variables, then they can be described by 

Y = qu, e). (2) 
Information about the effects of those faults which we are inter- 

ested in monitoring has been described by the industry partners. The 
ted can be described by changes in certain key param- 

zE%?gengine model. Because of this, one may be tem ted 
to directly link this ty of diagnosis problem to system identikca- 
tion. Although the h iEr to  proposed answer is not unrelated to this 
idea, the first steps undertaken were to survey general fault diag- 
nosis methods. We will first briefly summarize the ideas captured 
in this survey, discussing also the possible a plication of the sur- 
veyed methods in our diagnosis problem. d e n  we will focus on 
that method which, so far, appears as the best suited to our problem. 

By candidate methods we don’t mean each and every one of 
the methods described in the literature, where the list is enormous. 
Rather, we mean the basic ideas upon which are based a great part 
of the existing methods. 

Naturally, the fundamental concept is that of redundancy. ’ b o  
related conce ts are used in applications, physical redundancy and 
analytical re8undancy. Physical redundancy consists in exploiting 
the availability of numerous measurements to check, for instance, 
the existence of contradictions between sensors measuring the same 
variable. Analytical redundancy, on the other hand, makes use of a 
model that characterizes the system (or data), checking the compat- 
ibility of measured quantities with the system (or data) model. 

For practical situations one can consider that a combination of 
both analytical and physical redundancy is used. The point is that 
the incorporation of additional measurements can provide more in- 
formation about a articular system if the relationship (in other 
words, a model) of tlese signals with the others is understood. Thus, 
we see that a key issue is how models are used for diagnosis pur- 
poses. This is what differentiates the general methods considered 
here. Althou h there are connections, the available signals are pro- 
cessed in digrent ways to extract information that Gan indicate the 
existence of an abnormal situation. This is normally expressed in 
the form of so called ‘residuals’, which are signals that are ideally 
zero when no faults are present. 
4.1. Parity equations 

The use of parity equations is among the earliest ideas in fault 
diagnosis. In general terms, a set of parity equations describes an 
implicit mathematical relationship between the different variables 
of a system. Therefore, parit equations are an altemative way to 
model a particular system in tie following way: 

4. THE CANDIDATE METHODS 

H ( Y ,  U) = 0, (3) 
where Y and U are, for instance, the inputs and outputs of the sys- 
tem. Of course, such an implicit relation can be either linear or 
nonlinear, dynamical or static. Early methods were mostly focused 
on linear relationships for dynamical systems. 

A good discussion about the formalism and use of parity equa- 
tions for residual generation is contained in [6], where connections 

with methods based on state-estimators are also exposed. Other in- 
teresting ideas are included in [15], where some ideas that would 
also enable fault isolation are also discussed (see also [12], [14]). 

Perhaps the most obvious wa to generate residuals by means of 
parity equations is by defining $e residual r as 

T = H ( Y ,  U). (4) 
Other more sophisticated approaches could include the use of fil- 
tered versions of U, Y and/or T ,  which could be seen as an attempt 
to enhance the properties of the new residual in terms of noise re- 
jection and/or isolation pro erties. At least for linear systems, some 
connections with the use ogstate-estimators can thus be envisaged, 
since filtering U and Y ‘appropriately’ is closely related to the use 
of observers. Some more insight into these ideas can be found in 
[ 111, where a parametrization of all (linearly generated) residuals is 
presented (see also [ 121). 

In terms of applying this approach to our engine diagnosis prob- 
lem, one of the limitations comes from the fact that the number of 
variables in X, and Xu is very large, but only few of them are mea- 
sured. This limits the way in which the model described in (1) could 
be used for residual generation. Bein a static problem, almost the 
only residual that could be produced following the idea in equation 
(4) would be r = Y - U, e). In other words, the residual r would 

for detection problems. However, this residual is not very inter- 
esting for isolation purposes and there are some observations from 
the statistical approach, which will be considered later, that indicate 
that such a residual is indeed insufficient for isolation, especially for 
parametric changes in nonlinear systems [4]. An altemative would 
then be to consider a filtered, or transformed, residual based on T .  
The roblem is that it is not straightforward to see what kind of 
transformation would be needed. An answer to this can be found in 
connection to the statistical approach discussed later. 
4.2. observers 

Another methodology that supports numerous techniques for 
fault diagnosis is the use of observers (state-estimators). The early 
contributions were also focused on linear systems, but its use has 
motivated the ap lication of similar ideas for nonlinear systems. 

Residuals in t&s approach are generally based on innovation er- 
rors, and the motivation for doing so can be explained as follows. 
Consider the following linear system 

be the prediction error. L uch residual would be interesting at least 

z ( k  + 1) = Az(k)  + Bu(k), y(k) = Cz(k ) ,  (5) 
where y, U and z are, respectively, the system’s output, input and 
state. The state z is estimated by an observer which, in a noisy 
environment, is usually implemented as a Kalman filter yielding an 
state-estimate f. The innovation 77 = y - CL converges, under 
the no-fault hypothesis, to a zero mean uncorrelated sequence. This 
property can then be used for p u y  of diagnosis. 

We won’t discuss further detai s of this approach since its ap li 
cation to our problem, with a static model, is limited. A possih: 
ity would still exist by considering parameter estimation as a state 
estimation problem. This usually involves a uadratic cost func- 
tion used for optimization. Since this would in%ed be an approach 
based on parameter estimation, we will discuss it with some more 
detail when we consider the corresponding approach. 
4.3. Principal Component Analysis (PCA) 

This is a tool that, though widely recognized in chemical engi- 
neering, had been somehow overlooked by the ‘traditional’ control 
literature on diagnosis problems. More recently, however, it has 
been taking a positive spin within the control community and re- 
lated literature (see e.g. [271,[211, [221,[81,[91, [281). 

PCA is mainly a data analysis tool within a statistical framework. 
For diagnosis purposes, it is usually used first to generate a model 
for the data (the so called Principal Component Model-PCM) under 
normal o rating conditions. Such a model can be generated with 
the aid o!&gdar  value decom sition (SVD), which reveals that 
the use of PCA is based on searcKng linear relationships among the 
available measurements (outputs and/or inputs). 

The PCM can be described in terms of subs aces, the Principal 
Component Subspace (PCS) and the Residual gubspace (RS). The 
PCS describes a linear subspace wherein measured variables lie, 
while the RS is orthogonal to the PCS and is such that the orthog- 
onal projection of data onto the RS is negligible (zero in an ideal 
situahon with a perfect linear underlying system and no noise). 
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This subspace representation of PCA is useful to appreciate some 
straightforward connections between PCA and arity equations that, 
until recently, seemed to have been overlooke~[13]. Let the avail- 
able data (measurements) be represented by column vectors x k ,  
where each entry in x represents a measured variable (input or out- 
put) and k is a time index. Let C be the linear map (matrix) that 
projects the data onto the PCS and let & be the resultin projection. 
Then we can see that, under an ideal situation of perfect inear model 
and no noise, the data should satisfy g k  = c x k  = Xk. Additionally, 
the corresponding projection to the RS would be (I - C ) Z k  = 0. 
It is then straightforward to show that the generation of the PCA 
model is an identification procedure for linear relationships between 
the data. Since this model can be obtained via SVD, we note that the 
identification of the PCA model is related to a quadratic cost func- 
tion. Clearly, the underlying identified model has the form M x  = 0, 
where the rows of M are linearly independent rows of (I - C) (or 
combinations of them). They are, therefore, linear parity equations. 

Trying to use a PCA-based method in our diagnosis problem 
faces two complications. One is that PCA is a linear techni ue. 
This, however, could be surmounted by trying to use new, PCAsike 
techniques that extend some of the basic ideas of PCA to nonlin- 
ear cases (projections, principal curves, principal surfaces, etc [7], 
[20]). A second, perhaps more fundamental roblem is related to 
the number of available measurements, whicE is limited. All to- 
gether, we are left in a very similar position as we were with the use 
of parity uations and, in addition, it is not clear how faults could 
then be iAated and/or how the available physical model could be 
used to assist in this function. 
4.4. Parameter estimation 

A parameter estimation algorithm is a filter of input and output 
variables to produce estimates of model parameters for a given de- 
scription of a system. If the result of the estimation is compared 
to what is known, or expected, of the system and a significant dif- 
ference is encountered, then there are good grounds to argue that a 
change has occurred. This observation reveals why parameter esti- 
mation methodologies are of relevance for diagnosis roblems, and 
why they seem particularly suited for faults connectecfto parametric 
changes. 

The choice of the model structure is one of the ke issues for di- 
agnosis p u y ,  because it affects the definition orthe model pa- 
rameters. I the model is based on physical knowledge and is struc- 
tured accordingly, then we can expect the corresponding parameters 
to have physical meaning. Thus, detecting changes in these param- 
eters provides a meaningful tool to detect relevant changes (fault 
detection) and to indicate where they occurred (fault isolation). 

A difficulty arises when the physical parameters are, due to the 
model structure, difficult to identify. A way to overcome this in s s 
tem identification is by means of altemative model structures ti, 
could approximate the input-out ut behaviour of the system (poly- 
nomials, artificial neural networfs, fuzzy systems, etc). The prob- 
lem with this, however, is that the parameters of the newly struc- 
tured model may not be meaningful for physical diagnosis and, ad- 
ditionally, their relationshi with the physical parameters is usually 
unknown and hard to use k r  diagnosis purposes. For more related 
discussion we refer the reader to, for instance [19], [25], [29], [4]. 

The use of parameter estimation approaches is very im rtant for 
our problem, especially as a mean to determine nominaPOvalues of 
model parameters under a normal (non-faulty) condition. For moni- 
toring purposes, however, a slight change in focus has motivated us 
to consider the Parametric Statistical Approach. The point is that 
while most methods based on parameter estimation imply repeated 
estimation of model parameters, the statistical approach relies on 
testing hypothetical changes. This has the advantage of allowing 
one to concentrate on model structures which are suitable for phys- 
ical diagnosis rather than for system identification. Drawing a line 
that would separate these ap roaches is indeed a tricky affair, since 
they are without doubt close& connected. 
4.5. Parametric statistical approach - asymptotic local approach 

This approach is quite general and can reveal connections be- 
tween the various approaches discussed so far. The core of the 
methodology is the reduction of problems to simpler cases, where 
change detection and isolation can be treated in a unified way. Using 
the adequate information, together with insight from the Asymptotic 
Local Approach, most problems can be reduced to that of detecting 
changes in the mean of a Gaussian variable. This variable is used as 
a residual and is built with the aid of a model whose the parameters 

reflect the monitoring ob’ectives’. The mean value of this residual 
depends on the monitored parameters and, therefore, faults affecting 
these parameters can be monitored. The resultin Gaussian distri- 
bution of the residual is a cons uence of ‘laws of large numbers’ 

One of the key issues highlated in this approach is the use of 
residuals that are relevant from an information point of view. In sta- 
tistical terms, residuals should be sufficient statistics [4]. In the case 
of additive faults in linear systems (actuator and sensor faults), the 
use of the innovations of a Kalman filter makes sense because it pro- 
vides such a sufficient statistic. However, this is in general not the 
case when faults correspond to components faults. The statistical 
approach could also shed some light in the use of non-linear state 
estimators for FDI purposes, raisin the question about the feasibil- 
ity of using the innovations as resifual. 

Another important idea, as we have recently indicated, is the 
slight difference in focus compared to parameter estimation ap- 
proaches. Here, the fdcus is on monitoring rather than on repeated 
identification [4]. Although a system, and a particular model struc- 
ture, may be difficult to identify, it may be less difficult to monitor. 
This is important because, for monitoring purposes, one can then 
concentrate on models with a physically motivated structure. 

So far, it is this approach that we have deemed better suited to our 
goblem. We will discuss with more detail how this approach can 

used in the project, and will also show some simulation results. 
More references and general discussion about this methodology can 
be found in [5], [l], [2], [29], [4]. Some connections with parity 
equations and with the use of observers can be found in [32], [30] . 

5. AN INTERESTING CANDIDATE - THE PARAMETRIC 
STATISTICAL APPROACH 

As already indicated, a key feature of this approach is the pos- 
sibility to deal with various types of diagnosis problems. This is, 
to some extent, a result of the way in which residuals are gener- 
ated. The statistical approach distinguishes between two residuals: 
primary residuals and improved residuals. This distinction is func- 
tional in the sense that the key feature of a primary residual is that it 
contains sufficient information for diagnosis purposes. On the other 
hand, improved residuals built from primary residuals have statisti- 
cal properties that facilitate problem reduction and, thus, open the 
door to the solution of diagnosis problems in a unified way. 

We will illustrate this approach by dealing directly with our diag- 
nosis problem and the static model of the engine. 

A possibility for a primary residual is to use the gradient of the 
least-squares prediction error. This residual, which we will denote 
by K, can be expressed as follows: 

where Y k  is the vector of measurements at a time instant k ,  and 
Y k ( e )  is the predicted value according to the map @ in (2) for input 
values 9. Note that this residual is given by 

which we can interpret as a filtered (transformed) version of a resid- 
ual obtained according to the parity y t i o n  Y - O(U,O) = 0. 
This is the connection we had indicat before when we discussed 
the possibilities of using parity equations as an approach for our di- 
agnosis problem. The parametric statistical approach thus provides 
a way to find a ‘useful filter’. 

The corresponding improved residual built from K is: 

where N is the size of the sample. For applications where one needs 
to constantly monitor for changes, it is possible to use schemes 
based on moving windows that include the last N samples avail- 
able for diagnosis. Note that due to the static nature of our problem, 
there are no major restrictions on the interval between samples. 

is the key to subsequent steps of 
change (fault) detection andvisolation. The essential feature that 

The improved residual T 

2 ~ s c  parameters may comspond to physical parameten or parameters thatchamterim thc effect 
of additive faults (sensors and/or actuators’ faults) 
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facilitates these steps is the probability distribution function (pdf) 
of r N .  Under ap ro riate assumptions and for sample's sizes large 
enough, rN has g e  Following pdf: 

when there is no parameter change 
r N  + { ; [ 2 8 ,  E) when 8 = eo + A 8 / a  

(9) 
where 80 is the known nominal (or identified) value of the pa- 
rameter vector 8. The matrix M can be evaluated based on 
the available data and, in general, it involves a time average of 
&@(Vk, 8)'$T(Uk, e). Due to the number of monitored param- 
eters and the linuted number of available measurements, the only 
way for M not to be singular is to use data from changing operating 
conditions (this is directly related to problems of persistent excita- 
tion in parameter estimation). The covariance matrix C can also be 
estimated from the data, though this depends on certain assumptions 
regarding, for instance, the absence of time correlation in the noise. 
Details are not really relevant for this resentation. Interesting in- 
formation on this last issue is containd for instance, in [31]. 

Remark I :  A clarification is due in relation to the sense of eq. 
(9). The parameter 8 used in the residual rN is a arameter of the 
model of the system and not of the real system. derefore, the ex- 
pression 'when 8 = 80 + A O / m  must be understood as a refer- 
ence to the change needed in the model to explain the deviations of 
the residual r N ,  whenever changes have affected the real system. 

Then, it should be clear that the residual rN is evaluated at the 
nominal (or identified) value 8 = 80. 
5.1. Residual evaluation - detection and isolation 

The residual rN is the key for subsequent detection and isolation 
of changes. The basic idea behind the methodology is, in both cases, 
to test hypothesis about the mean of r (more insight and discussion 
can be found in, for instance, [3], [4]f: 
5.1.1. Fault detection 

For fault detection, the idea is to check if the mean value of the 
residual is zero or not, which can be put as testing the (null) hy- 
pothesis HO ( p  = M 8  = 0) against the alternative hypothesis 
H1 ( p  = MO # 0 The decision in this case can be taken based 
on the Generalized Likelihood Ratio (GLR) 

PHo ( T ~  . 
wherepHi ( r N )  denotes the pdf of the residual rN under Hypothesis 
Hi. For the normal pdf's shown in (9) it follows that 

where F = MTE-'M is the Fisher Informatio Matrix. When M 
is an invertible matrix the test t reduces to t = T ~ E - ~ T - ~ .  

Under both hypotheses (Ho and H I ) ,  t has a X2 pdf. It is a 
central distribution for HO and a non-central one for H I ,  with non- 
centrality arameter AO'FA8 (the number of degrees of freedom 
is the numLr of monitored parameters). This information is useful 
to define detection thresholds according to false alarm probabilities. 
5.Z.2. Fault isolation 

The problem of isolation is more delicate than that of detection. 
In the light of basic ideas from decision theory, the greater complex- 
ity in this game between 'nature' and the 'statistician' is associated 
to the increased number of actions (decisions) that are at stake. It is 
not obvious how to see the problem of isolation as simple hypothe- 
sis tests, but some methods such as multiple comparison procedures 
are certainly related to this [23], [24]. 

In spite of the difficulty, there are two basic tools that can assist in 
the task of isolation. These tools are the Sensitivity test and the Min- 
mar test, which consider a partition of the parameter 8' = r:, O r ] .  
Sensitivity test The basic idea behind this test is to attri Ute any 
chan es to a portion of the parameters such as, for exam le the 
part 8,. In this case, one tests between hypothesis Ha0 (Ai ,  0, 
A86 = 0) and (A& # 0, A&, = 0). This can be solved with 
the following test statistic: 

t = T~C-'MF-'M'C- 'T,  , (1 1) 

where the matrix M is partitioned as M = [Ma Mb], according 
to the parameter partition. The test statistic i?, is subsequently used 
in tests that compare its value either to a threshold or to similar 
test statistics (for example, sensitivity test statistics for a different 
portion of the parameters). 
Min-max test The basic idea is similar to that of the Sensitivity 
test, but the (key) difference is that the remaining portion of the pa- 
rameter (e.g. &) is considered as an unknown nuisance parameter. 
A common approach for this is to replace the nuisance parameter 
for the value that minimizes (for an hypothetical change in 8,) the 

wer of the (detection) test (i.e. the value that minimizes the proba- g. ility of correctly detecting a fault). The corresponding test statistic 
is numerically equivalent to the following GLR [4] 

Thus, the min-max test statistic can be evaluated as t: = 
r:*(F;)-'r,,, where ra* = [I, -FabF;']M'C-'TN, F; = 

As for the Sensitivity test, the min-max test statistic t: is subse- 
quently used in comparison tests. 

Based on these two different tests, one can conceive various ap- 
proaches for isolation. For cases when the number of faults (number 
of changed parameters) is known (let q be this number), the deci- 
sion about the faulty group of arameters can be made by choosing 
the group of q parameters wit[ the biggest sensitivity test statistic. 
This choice is related to a Bayes' approach of choosing the grou 
that yields the maximum U posteriori probability of the residuaf 
According to simulations that we have carried out with the engine 
model, this ap roach works well (for the considered case of a known 
number of faufts). 

The situation is more difficult when the number of changed pa- 
rameters is, as expected in practice, unknown. A possibility is to 
use the ideas of multiple comparisons [23], [U]  and the min-max 
test. The decision about changes in each parameter is based on the 
min-max test statistic of each individual parameter. A problem with 
this approach is that min-max tests for individual parameters can be 
very conservative and, therefore, not detect many ractical cases. 
This was apparent in the simulations with our mode? 

A third alternative is a combined a proach that would try to take 
advanta e of the good properties of L t h  tests. The sensitivit a 
proach !as good isolation performance when the number of &U& 
is known, while the min-max approach can enhance robustness to 
changes in other parameters. The incremental diagnosis algorithm 

resented here is along the lines of the one presented in [23] and is E ased on the following three steps: 
Step 1. Assume that there are i changed parameters (the initial 
value for i is 1) and calculate the corresponding sensitivity test 
statistics for all possible combinations of i parameters. 
Step2. Choose as faulty parameters the combination with the 
biggest sensitivity test statistic. Do a partition of the vector param- 
eter as 8 = [e,, o b ] ,  where 8, contains the hitherto isolated param- 
eters and 8b the remaining ones. Evaluate the rejection test statistic 
corresponding to o b .  
Step 3. If the rejection test statistic for 8b breaches a predefined 
threshold then it is decided that a change exists in o b ,  i is incre- 
mented in one unit and the algorithm returns to Step 1. Otherwise, 
the algorithm stops and the result of the isolation procedure is 8,. 
To illustrate these ideas, we summarize some results obtained 

with the proposed incremental algorithm. Several cases were simu- 
lated wherein parameter changes were introduced to the model used 
to generate data (recall that the diagnosis is performed based on the 
nominal model). The simulated experiment for each case consisted 
in adding random noise (uniformly distributed with a range of ap- 
proximately 1% of maximum readings) to the generated data from 
the faulty model, and then carry on with the incremental diagnosis. 
For each case, the corresponding experiment was repeated several 
times. The model considers 9 measurements and 11 monitored pa- 
rameters 81 to 811 representing various parameters involved in 
thermodynamical equations along the engine. 
case 1 

83 was decreased in 1% from its nominal value. 
Number of repeated experiments : IOOO. 
Fault detection (based on global test) : In all experiments the fault 

is detected. 

Fa, - FubFilFba. 
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Number of exact isolations : 968 (out of 968 cases with precisely 
1 isolated parameter). 

Parameter I33 in isolated parameters : 1OOO. 
Individually, the following table summarizes how many times 

each parameter is part of the isolated parameters. 
o1 1 o2 I 4 I 0, I o5 I 66 I o7 I os I srg I ol0 I ol1 
0 1 8 1 1 u o O 1 7 1 5 1 2 1 8 1 1 1 1 0 1  7 I 1  

Case 2. 
Parameters &,I32 and 011 were decreased in 1% from their nom- 

inal values. 
Number of repeated experiments : 500. 
Fault detection (based on global test) : In all experiments the fault 

is detected. 
Number of exact isolations : 446 (out of 447 cases with precisely 

3 isolated parameters). 
Parameters 81,& and 011 in the isolated parameters : 446. 
Individually, the following table summarizes how many times 

each Darameter is Dart of the isolated Darameters. 

Case 3. 
Parameters 133, 0 5 ,  I37 and 810 were decreased in 1% from their 

nominal values. 
Number of repeated experiments : 928. 
Fault detection (based on global test): In all experiments the fault 

is detected. 
Number of exact isolations : 51 1 (out of 512 cases with precisely 

4 isolated parameters) . 
Parameters I33,I35, I37 and 010 in the isolated parameters : 852. 
Individually, the following table summarizes how many times 

each parameter is part of the isolated parameters. 

The following table is similar to the previous one, but only for 
those cases where 01. Ox. 0, and 0ln are in the isolated oarameters. 

Case 4. 
All the first 10 parameters were reduced in 1% from their nominal 

value. 
Number of repeated experiments : 500. 
Fault detection (based on global tests): In all experiments the fault 

is detected. 
Number of exact isolations : 0. 
Parameters 1 to 8 (and only these ones) were isolated in 260 ex- 

periments. 
Parameters 1 to 8 in the isolated parameters : 261 times (260 

times with parameters 1 to 8, plus 1 time parameters 1 to 9). 
Individually, the following table summarizes how many times 

each Darameter is oart of the isolated oarameters. 

It can be observed in Cases 1. 2 and 3 that correct isolation can 
achieve an extremely successful rate for cases where the number of 
changed arameters is known. Overall, cases 1 and 2 show very 
good isoition rates (over 89%), while case 3 is around 55% for 
exact isolations. Besides, the ratio of cases where the isolated pa- 
rameters contain the faulty ones is still high. Case 4 is much less 
successful, but it should be noted that it is a much more extreme 
case for the isolation algorithm. 

int we wish to bring out, although not shown in the 
above simuEion results, is that the isolation results are in general 
better with this ap roach than with a ‘blind’ parameter estimation 
approach, where c!etection/isolation is based on the simultaneous 
re-estimation of all parameters. 

6. CONCLUSION 
We have described an industry motivated problem of fault di- 

agnosis, which is intended to introduce innovations in the current 
practice for aircraft engines and, eventually, for similar applica- 
tions. The necessary modelling information was presented and, sub- 
sequently, various approaches to fault diagnosis were briefly sum- 

Another 

marized and considered in the light of our engine diagnosis prob- 
lem. The discussion then was focused on a method that has been 
considered well suited for our particular application, the parametric 
statistical approach. The results obtained so far are encouraging, but 
it still remans to study what the possibilities are if similar ideas are 
applied together with a dynamical model of the engine. 
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