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Abstract 

This paper presents a robustness analysis for an un- 
certainty set deduced from stochastic embedding tech- 
niques and made up of ellipsoids at each frequency in 
the Nyquist plane. Our robustness analysis focuses 
on the validation of a controller both for robust sta- 
bility and for robust performance, over all systems in 
such frequency domain uncertainty region. Our valida- 
tion procedure for stability ensures that the controller 
stabilizes all systems in this nonstandard uncertainty 
set. Our validation procedure for performance com- 
putes the worst case performance over all closed loop 
systems made up of the controller and all plants in the 
frequency domain uncertainty region. 

1 Introduction 

This paper is part of our continuing effort to connect 
time-domain prediction error identification and robust- 
ness theory [3, 21. In our previous papers, we have 
analysed the robustness properties of an uncertainty set 
D delivered by classical prediction error identification 
methods and to which the true system GO was known 
to belong with some prescribed probability. This un- 
certainty set 2) was defined as a set of parametrized 
rational transfer functions whose parameter vector lies 
in an ellipsoidal confidence region. Such uncertainty 
region results naturally from a prediction error identi- 
fication experiment when the system is assumed to be 
in the model set. The uncertainty set is thus entirely 
defined by covariance errors on the parameters. This 
restriction can be relaxed using the stochastic embed- 
ding approach of [5] to construct uncertainty regions 
that then take into account both bias and variance er- 

t The authors acknowledge the Belgian Programme on Inter- 
university Poles of Attraction, initiated by the Belgian State, 
Prime Minister's Office for Science, Technology and Culture. The 
scientific responsibility rests with its authors. 

rors in the estimated transfer functions. In the present 
paper, we develop robust analysis tools for such uncer- 
tainty regions obtained using a stochastic embedding 
technique. 

Uncertainty region C. Stochastic embedding tech- 
niques developed in e.g. [5] allow one to design a fre- 
quency domain uncertainty region around a possibly 
biased identified model with k e d  denominator (such 
as FIR or Laguerre models). This uncertainty region 
t contains the stable unknown true system Go at a 
certain probability level and is made up of ellipsoids 
at each frequency in the Nyquist plane around the fre- 
quency response of the identified model. These uncer- 
tainty ellipsoids are designed using the assumption that 
the unmodelled dynamics of the true system can be 
considered as a stochastic process and that the param- 
eters that describe the second-order properties of this 
stochastic process can be estimated from the data. This 
parameter estimation step is achieved using a maxi- 
mum likelihood technique. One of the contributions of 
the present paper is to extend the stochastic embedding 
technique to closed-loop identification. 

Controller validation for stability. Our validation 
procedure for stability ensures that a given controller 
C stabilizes all systems in an uncertainty region C o b  
tained by stochastic embedding. Robust stability the- 
ory developed in e.g. [9, 7, 61 provides some necessary 
and sufficient conditions for the stabilization, by some 
given controller C, of all plants in an uncertainty re- 
gion that is defined in a general LFT (linear fractional 
transformation) framework. Our contribution with the 
proposed stability validation procedure is to show that 
one can rewrite the closed-loop connection of the con- 
troller C and all plants in such uncertainty region C 
as a particular LFT where the uncertainty part is a 
transfer vector whose frequency response is real. In 
that particular LFT, the (real) stability radius can be 
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computed exactly, using the result presented in [6, 71. 
In [8], the authors present an LFT description of the 
closed-loop connection of the controller C and all plants 
in an uncertainty region C, where the ellipsoids at each 
frequency are approximated by a mixed perturbation 
set. The main advantage of our LFT description is that 
it exactly represents the closed-loop connection of the 
controller C and all plants in the uncertainty region L 
without any approximation. 

Controller validation for performance. Our vali- 
dation procedure for performance computes the worst 
case performance over all closed loop systems made up 
of a given controller C-and all plants in L. We provide 
an exact computation, using a LMI based optimization 
problem, of the worst case performance of a closed-loop 
made up of the controller C and a system in the uncer- 
tainty region L. The performance of a particular loop 
made up of the controller C and a plant in C is here de- 

further assume that Go is stable'. We also define the 
following vector. 

Definition 1 (The RI vector S(z)) Let A(z) be a 
stable transfer function. W e  define the R I  vector 6(z)  
as follows: 

where R e  and I m  denote the real and imaginary part, 
respectively. Note that the frequency response 6(ej") of 
6(z) is, at each frequency, real: 6(ej") E RZx' Vn. 
2.1 Classical stochastic embedding in open-loop 
We first recall the general assumptions used in stochas- 
tic embedding techniques. 

Assumption 1 ( [ 5 ] )  The key assumption in stochas- 
tic embedding is that the true system y = GOU + v can 
be decomposed in the following expression : 

(2) 
fined =-the largest singular value of a weighted version 
of the matrix containing the four closed-loop tr-fer y = G(z, Oo)u + GA(Z)U + H ( z ) e  

functions of this loop. Our definition of the worst case 
performance is thus very general and, by an appropri- 
ate choice of the weights, allows one to derive most of 
the commonly used worst case performance measures 
such as e.g. the largest modulus of the sensitivity func- 
tion. In [l], the authors compute the largest modulus of 
the sensitivity functions for plants in L, using the fact 
that the sensitivity function is the inverse of the dis- 
tance between the Nyquist curve of the so-called open- 
loop transfer GC and the point -1. Besides the fact 
that our performance criterion is more general than the 
one used in [l], the advantage of our approach is that 
we propose a convex optimization problem to compute 
the worst case performance as opposed to the graphical 
test of [l]. 

Paper outline. In Section 2, we show how to design 
an uncertainty region L from a stochastic embedding 
procedure in open loop and in closed loop. We then 
give the general expression of the uncertainty region 
L. In Section 3, we give the procedure of validation 
for stability. In Section 4, the concept of worst case 
performance level is introduced, and the LMI-based 
optimization problem developed for its computation is 
given. The procedures for validation for stability and 
for performance are illustrated by an example in Sec- 
tion 5 .  Finally, some conclusions are given in the last 
section. 

2 Stochastic embedding and uncertainty 
region L 

In the sequel, we assume that the true open-loop sys- 
tem is linear and timeinvariant, with a rational input- 
output transfer function Go: y = GO(Z)U + U ,  where 
v = H ( z ) e  is additive noise and e is white noise. We 

where G(z, 0 0 )  E H ,  is a transfer function with f i e d  
denominator, parametrized by a vector 80 E Rkxl, 
GA(z)  E H ,  represents the (possibly infinite) unmod- 
elled dynamics that is assumed to be a stochastic pro- . 

cess with zero mean, independent of the additive noise 
v = H ( z ) e .  It is f irther assumed that the impulse m- 
sponse coeficients q k  of GA(z) = qkz-k have a 
variance that dies at an exponential rate : &($) = aAk 
(&(r)k) = 0), but cr and A need not to be known. As a 
consequence, GA(z) can be approximated by GA(z)  = 
x & 0 7 ) k Z - k  for a given L .  L 

The design of a frequency domain uncertainty region 
LOL is divided in two steps. The first step consists of 
identifying a model G ( z , d ~ )  of the true input-output 
dynamic Go = G(t ,  60) + GA(z) using N timedomain 
data [y U] collected on the true system Go. In a sec- 
ond step, the total error at each frequenqy between the 
true Go and the identified model G ( z , 6 ~ )  is embed- 
ded at a certain probability level in an ellipsoid in the 
Nyquist plane. This embedding is made possible us 
ing the stochastic assumptions on the unmodelled dy- 
namics GA(z) and on the additive noise v = H ( z ) e .  
The ellipsoid that embeds the total error at a certain 
frequency is thus a function of the frequency, of the 
stochastic parameters describing Ga(z) (i.e. cr and A) 
and of the stochastic parameters y describing U .  These 
parameters can be estimated from the data [y  U]  using 
a maximum likelihood technique. This is summarized 
in the following proposition. 

Proposition 1 ( [ 5 ] )  Using the stochastic embedding 
procedure of (51 based on N input-output data, and un- 

'It is possible to get rid of this assumption in our stochastic 
embedding approach for closed loop systems, but we choose also 
there to assume Go stable in order to shorten this paper. 
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der Assumption 1, the stable true system Go is  con- 
tained at a chosen probability level +(xz l )  in a fre- 
quency domain uncertainty region Lot made up of el- 
lipsoids UOL (0) at each frequency in the Nyquist plane: 

(3) 

(4) 

1  gin(^) I Gin(z) = G ( z , ~ N )  + A(z) { with A(z) E H ,  and S(ej" )  E U~L(R) COL = 

uOL(n) = (6 E R~~~ I 6 T ~ ( ~ , h N , i N , q N ) 6  < x:,} 

G(z, 8,) E H ,  is the identified model with f i e d  de- 
nominator based on the N data. 6(z)  is  defined in (1). 
P ( R , ~ ~ N , ~ N , ~ N )  E R2x2 is a function of the fre- 
quency, of the estimated stochastic parameters of the 
unmodelled dynamics (i.e. &N and AN), and of the 
estimated stochastic parameters of the additive noise 
(i.e. qN) .  The value x:, is chosen such that +(x:,) = 
P r ( x 2 ( k  + L )  I x:,) with x 2 ( k  + L )  the chi-square 
probability distribution with k + L degrees of freedom. 
2.2 Stochastic embedding in closed loop 
Let us now consider a controller K which forms a sta- 
ble closed loop with the stable true system Go. We 
consider here the closed-loop transfer function TO be- 
tween the reference r and the output y.  We then have 
to assume that K and K-' are stable [4]. Similar pro- 
cedures exist for the other three closed-loop transfer 
functions. Let us thus collect N experimental data [r y] 
on the closed loop composed of the true system Go and 
this stabilizing controller K :  

. 

e = Tor+8 ( 5 )  
GOK H 

y =  I + G ~ K ' +  ~ + G ~ K  

As the loop [K Go] is stable, it is possible to use 
the stochastic embedding technique presented in Sec- 
tion 2.1 to design a frequency domain uncertainty re- 
gion CT containing To. For this purpose, (5) is rewrit- 
ten in a way similar to (2): 

= T ( z ,  co)T + TA(Z)r + (6 )  

where TO is decomposed into a model T(z,Eo) with 
fixed denominator and the unmodelled dynamics 
TA(z) .  Using Proposition 1, we may deduce the un- 
certainty region CT containing TO at a probability level 
N X 3 :  

uC~(Q) = ( 6  E R~~~ 1 ~ * P ( R , & N , ~ N , ~ N ) ~  < x:,} 
(8) 

where 6(z) is defined in (l), T ( z )  T ( z , i N )  E H,  
is the identified model with fixed denominator, &N 

and AN are here the stochastic parameters linked to 
TA(z), and qN the stochastic parameters linked to 8. 
The set CT is a set of closed-loop transfer functions. 
The corresponding set of open-loop transfer functions 

is now constructed. As GO = To/(K(l-To)), the open- 
loop transfer function Gin(z) corresponding to T',(z) 
is given by: 

(9) 

In particular, the nominal open-loop model G(z, iN) 
corresponding to T = T ( z ,  i N )  is given by: G(z, iN) = 
T(z,iN)/(K(l - T(z,iN))). AS we assume that the 
true system Go is_stable, we also assume that this open- 
loop model G(z,EN) is stable. The set CCL of open- 
loop plants Gin corresponding to the set CT of closed- 
loop transfer functions Ti, is: 

(10) 
Properties of CCL. According to Proposition 1, the 
true closed-loop transfer function TO lies in CT with 
probability + ( x : ~ ) .  As a consequence, the true system 
Go = To/(K( l -  TO)) lies in the frequency domain un- 
certainty region CCL with the same probability. 

2.3 General structure of the uncertainty regions 
obtained from stochastic embedding techniques 
In the following proposition, we show that COL and 
CCL can be described using the same generic expression 
C. The form of this generic expression has been chosen 
to ease the subsequent robustness analysis. 

Proposition 2 Consider the true open-loop dynamics 
Go. The uncertainty regions COL and LCL given in (3) 
and (lo), respectively, and containing Go at a certain 
probability level have the general form of a frequency 
domain uncertainty region L where the uncertainty part 
is the RI vector S(z) (see Definition 1). 

U(R) = {S(ej") E R~~~ 1 6(ejS2)TR(R)6(ej") < 1) 

where R(R) are symmetric positive definite matrices 
E R2x2. These matrices are different at each frequency 
R; ZN(Z)  and ZD(Z)  (ZN(Z)  and ZD(Z)  E H,) are row 
Yectors of length 2 containing known transfer functions; 
G(z) E H, is a known transfer function that can be 
considered as the center of C .  

(12) 

3 Controller validation for stability for C 

Consider an uncertainty region C whose generic struc- 
ture is given in (11). We now say that a controller 
C ,  designed from any model Gmod of the true system 
Go, is validated f o r  stability if it stabilizes all models in 
this uncertainty region C (and therefore also the true 
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system Go). The model Gmd may e.g. be the center 
G(z )  of the uncertainty region C, or it may be given 
a-priori. Our contribution in this section is to show 
that the uncertainty region C is amenable to classical 
robust stability analysis. Indeed, we present a way to 
describe the set of closed-loop connections of all plants 
in C with the "to be validated controller" C as a set 
of loops [ M L ( z )  6(z)] where the uncertainty part 6(z)  
is the RI vector of (11) and for which we can deduce a 
necessary and sufficient robust stabilization condition, 
since the stability radius of such set of loops is exactly 
and explicitly computable [7]. 

Theorem 3 Consider an uncertainty set C of the form 
(11) and a controller C ( z )  y X ( Z > / Y ( Z ) ~  that stabi- 
lizes the center of that set, G(z ) .  Then all models in 
C are stabilized by C(z)  i f  and only if, at each fre- 
quency R, 

ML(z )  is  defined as 
p(ML(ej")T-'(R)) I 1. (13) 

T(R) is a square root of the matrix R(R) defining 
U(R): R(R) = TT(R)T(Q) whereby S(ej") E U(R) H 
IT(R)S(ej")l2 < 1. p ( M )  is called the (real) stability 
mdius and is equal to lMl2 if I m ( M )  = 0 and to 

Proof. A similar scheme as for the proof of Theo- 
rem 4 in [3] shows that [ML:(z) 6(z)] is equivalent to the 
closed-loop connection of the controller C and one plant 
G(z, 6 (z ) )  in C. Our problem of testing if the controller 
C stabilizes all the plants in the uncertainty region 
C is therefore equivalent to testing if the set of loops 
[ML(z )  6(z)] are stable for all 6(z)  such that S(ej") lies 
in the uncertainty domain IT(R>S(ej")l2 < 1. Since 
ML(z )  lies in H,, the set of loops [ML(z)  6(z)] are 
stable for all S(z) such that 6(ej") E R2x1 lies in the 
uncertainty domain IT(S2)S(ejn)l2 < 1 if and only if, at 
each frequency S2, 

1 - ML(ej")s(ej") # o (16) 

for all 6(ej") such that IT(R)6(ej")l2 < 1. A final 
normalisation shows that expression (16) is equivalent 
with the statement (13). Indeed if, at each frequency R, 
we define a real vector d(ej") A T(R)6(ej") ,  then (16) 
is equivalent with: 

1 - ML:(ej")T-l(Q)d(ej") # 0 

for all d(ej") such that Id(ej")lz < 1. Using the result 
in e.g. [7], this last expression is equivalent with (13). 0 

2 X ( z )  and Y ( z )  are the polynomials of the numerator and the 
denominator of C ( z )  

4 Controller validation for performance 

In this section, we show that we can evaluate the worst 
case performance in the uncertainty region C, i.e. the 
worst level of performance of a closed loop made up 
of the connection of the considered controller and any 
plant in C. The worst case performance in C is of course 
a lower bound for the closed-loop performance achieved 
with the true system. We then say that a controller 
is validated for performance if this worst case perfor- 
mance in C remains below some threshold. There is no 
unique way of defining the performance of a closed-loop 
system. However, most commonly used performance 
criteria can be derived from some norm of a frequency 
weighted version of the stability matrix H(G, C) of the 
closed-loop system [G C] made up of G in feedback 
with the controller C. 

Definition 2 Given a plant G and a stabilizing con- 
troller C ,  the stability matrix H ( G , C )  of the closed 
loop [G C] is  given by: 

GC 
H ( G , C ) =  ( ) .  (18) -- 

1+GC 1+GG 

4.1 The general criterion 
The worst case performance criterion over all plants 
in an uncertainty region C will be similarly defined 
as the worst possible norm, over all plants in C, of 
a frequency weighted version of the stability matrix 
H(G(z,  6(z)) ,  C), where G(z, 6(z)) is any plant in C 
and C is the "to-be+validated" controller C. 

General Criterion. Consider an uncertainty region 
C given by (11). Consider also a controller C ( z )  
that is validated for stability. The general criterion 
Jwc(C, C, Wz, W,, R) measuring the worst case perfor- 
mance level is defined at a frequency R as follows: 

(19) 
where Wl(z)  = diag(Wl1,Wlz) and W,(z) = 
diag(W,1, W,2) are diagonal weights that allow one to 
define specific worst case performance levels and where 
o ~ ( A )  denotes the largest singular value of A. Note 
that JWC is a frequency function : it defines a tem- 
plate. 

4.2 Computation of the general criterion 
We now present a procedure for the computation of 
the general criterion Jwc(C, C, Wr, W.,  0) at a given 
frequency 0. 

Theorem 4 Consider an  uncertainty region L: defined 
in (11) and a controller C(z)  = X ( z ) / Y ( z ) .  The gen- 
em1 criterion JWC defined in (19) is  equal to  G, 
where yo,* is  the optimal value of y for the following 
standard convex optimization problem involving LMI 
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5 Example 

Let us consider the same true system Go as in [5]: 
y = GOU + e with Go = ( 0 . 0 3 5 5 ~ '  + 0 . 0 2 4 7 ~ - ~ ) / ( 1 -  
1 .2727~- '+0 .3329~-~) ,  and e a white noise with a vari- 
ance equal to 0.005. The sampling time is 1 second. We 
simulate this system collecting 50 data. As in [5], we 
choose a second order Laguerre model G(z, (01 
as model structure: 

0.91 e12-l eZ~-'(o.73 - 0.89~-l) 
G(z' ( :: )) = 1 - 0.822-1 (1 - 0 . 8 2 ~ - ~ ) ~  ' 

Using the 50 data, the identified parameters are: 81 = 
0.1129 and 02, =_-0.0689. The second order Laguerre 
model G(z, (01, is chosen as model G m d  for the 
control design. From this model Gmod, we have d e  
signed a controller with a phase advance : C(z)  = 
(5.2314-3.86672-')/( 1 - 0 . 6 ~ ' ) .  With this controller, 
the designed closed-loop [Gmod c] has a stability mar- 
gin of 85 degrees. The cut-off frequency 52, is equal to 
0.5. Before applying this controller C ( z )  to the true 
system, we verify whether it achieves satisfactory be- 
haviour with all plants in an uncertainty region COL 
(and therefore also with the true system GO). The un- 
certainty region COL is constructed using the classical 
stochastic embedding assumptions and the procedure 
described in Section 2.1. The maximum likelihood es- 
timation of a, X and a2 delivers: & = 19.96, = 0.002 
and &2 = 0.006. These values allow us to design a 
frequency domain uncertainty region Lor, made up of 
ellipsoids at each frequency in the Nyquist plane. The 
desired probability for the presence of Go in ,COL is 
here chosen equal to 0.9. This uncertainty region is 
represented in Figure 1. It is to be noted that there 
are a few frequencies where Go(e3") lies slightly out- 
side this region. This phenomenon can be explained by 
the nonlinear optimization that delivers the estimate of 
the stochastic parameters, by the very few data used to 
desi& the uncertainty regions, but also by the chosen 
probabilistic framework. 

Figure 1: Ellipsoids of COL at each frequency, G,,,,d(eJ"l) 
(dashed) and Go(ej*) (dashdot) in the Nyquist 
plane 

Validation of C for stability. The uncertainty re- 
gion COL having been constructed, we can use the p r e  
cedure presented in Section 3 to check whether C sta- 
bilizes all plants in COL. For this purpose, we con- 
struct the row vector McOL(z)  defined in Theorem 3 
and we compute the corresponding stability radius 
~ ( M L , ,  (ej")T-l(Q)) at all frequencies. The maxi- 
mum over all frequencies in [0 7r] is 0.4577 < 1; thus, 
we conclude that C ( z )  stabilies all plants in COL. 

Validation of C for performance. In order to 
verify that C gives satisfactory performance with all 
plants in ,COL, we compute, at each frequency, the 
largest modulus tLoL (0, S) for the sensitivity function 
"S" This can be done by 
computing Jwc(Lo~, C, Wl, W,., Q) using Theorem 4 
with the particular weights Wl = W,. = diag(0,l). 
The worst case modulus of all sensitivity functions 
over COL is represented in Figure 2. It is compared 
with the sensitivity function of the designed closed 
loop [Gmod C] and that of the achieved closed loop 
[GO c] .  From tLoL(R,S), we can find that the worst 
case static error (=t~,,(O,S)) resulting from a con- 
stant disturbance of unit amplitude is equal to 0.2889, 
whereas this static error is 0.2438 in the designed 
closed-loop and 0.2267 in the achieved closed loop. Us- 
ing tLoL(Q,  S), we can also see that the bandwidth of 
0, = 0.5 in the designed closed-loop is almost pre- 
served for all closed loops with a plant in COL since 
t t , , (0,  S) is equal to 1 at 0, N 0.33. The difference 
between the resonance peak of the designed sensitiv- 
ity function (i.e. maxn I] S(G,,d,C) I \=  1.1626) and 
the worst case resonance peak achieved by a plant in 
COL (i.e. maxn t t oL  (Q, S) = 2.45) also remains small. 
Note that the actually achieved resonance peak (i.e. 
maxn )I S(G0,C) 1 1 )  is equal to 1.3930. A last r e  
mark is that the actually achieved sensitivity function 

over all plants in COL. 
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Figure 2: worst case tcoL (a, S) (solid) and modulus of 
the designed sensitivity function S(Gmod, C) 
(dashed) and actually achieved sensitivity func- 
tion S(Go, C) (dashdot) 

is slightly above the template tcoL (52, S) at a few fre- 
quencies. This is due to the fact that Go(ej") lies 
slightly outside COL at those frequencies. We may 
therefore conclude that the controller C is validated for 
performance since the difference between the nominal 
and worst case performance level remains very small at 
every frequency. With such stability and performance 
analysis results, one would confidently apply the con- 
troller to the real system, assuming that the nominal 
performance is judged to be satisfactory. 

6 Conclusions 

In this paper, we have developed a robustness analy- 
sis for the frequency domain uncertainty regions C de- 
livered by classical stochastic embedding in open loop 
and by a stochastic embedding procedure in closed loop 
that we have introduced. We have shown that the 
stochastic embedding procedure for the estimation of 
the total Mean Square Error leads, in the open-loop 
and in the closed-loop case, to an uncertainty region C 
that has a general structure, in which the uncertainty 
part is modelled by a vector of length 2 representing the 
real and imaginary parts of the dynamic uncertainty. 
This specific form allows one to deduce necessary and 
sufficient conditions for both stability and performance 
robustness. We have proposed a procedure that verifies 
the stabiliation of all plants in L by a given controller. 
This procedure uses the general LFT framework of the 
loops made up of a plant in C and the controller C. 
We have also proposed a procedure that computes the 
worst case performance achieved by the controller C 
and all plants in L. This computation boils down to 
an optimization problem involving LMI constraints. 
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