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(1) Dept. of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands 
F a x : + 3 1 - 1 5 - 2 7 8 4 2 6 3 

E m a i l : X . J . A . B o m b o i s @ t n w . t u d e l f t . n l 
(2) RSISE, Australian National University, Australia 
CESAME, Université Catholique de Louvain, Belgium 

Keywords: Identification for control 

Abstract 

This paper considers linearly parametrized plants whose pa-
rameters are normally distributed and addresses the problem 
of analyzing the image in the Nyquist plane of a set of these 
plants defined by a confidence eUipsoid in the parameter space. 
The image in the Nyquist plane of such a set of plants is made 
up of ellipses at each frequency. However, these two types of 
representation do not contain the same information. We show 
indeed that the probability level for the frequency domain set 
is generally larger than the probability for the parametric set. 
This phenomenon is due to the fact that the mapping between 
parametric and frequency domain spaces is not bijective. 

1 Introduction 

In many recent works [4, 7, 5, 9, 1], robustness analysis and 
robust control design have been achieved on frequency domain 
uncertainty regions containing the true system at a prescribed 
probability level. This frequency domain uncertainty region 
represents the frequency responses of parametrized transfer 
functions [8, 6]. The parameters of these transfer functions 
have a Gaussian probability density function that is the result 
o f a prediction error identification experiment. It is therefore 
important to understand the properties of the mapping f rom 
parameter space to Nyquist plane. In this paper, we analyze 
the particular case of linearly parametrized model structures, 
which is the case treated e.g. in [7, 5, 6, 9, 1]. For that 
particular case, we deduce the l ink between the frequency 
domain and parametric representations, their differences and 
the consequences of these differences on the probability level. 

For model structures that are linear in the parameter vector 6, 
we show that the image in the Nyquist plane of a parametric 
confidence region defined by an ellipsoid t/e in the parameter 
space is a frequency domain confidence region C made up of 
ellipses U{(JJ) at each frequency in the Nyquist plane. The 
properties of the inverse image of this frequency domain 
confidence region in parameter space are also analyzed. The 
inverse image in the parameter space of a region defined in the 

tThis paper is a modified version of the paper [3] that has been pubtislied 
as a surprise gift for B.D.O. Anderson. 

Nyquist plane is the set of parameters that have their frequency 
response in this region. We establish that the inverse image 
Ce{U{uj)) of each ellipse U{u)) in the parameter space is a 
much larger volume than the initial ellipsoid Ue, since the 
mapping between the parametric and frequency domains is not 
bijective. We also show that this inverse image Cg{U{uj)) is 
different at each frequency. Consequently, the inverse image 
of the whole frequency domain confidence region C is the in-
tersection of these different volumes Cg{U{uj)) over the whole 
frequency range. We show by an example that this intersection 
may be a strict superset of the initial ellipsoid Ug in parameter 
space. The confidence region £ in the Nyquist plane is thus 
generally the image of more parameter vectors 6 than those 
in Ue- From these different observations, we can deduce a 
number of conclusions. First, since the inverse image of the 
ellipses U{oj) is different at each frequency, the probabiHty 
level linked to each ellipse U{ui) is not relevant for the whole 
set C and is much larger than the actual probability level of C 
Second, the probability level linked to the confidence region £. 
can be larger than the probability level linked to the confidence 
region Ug in parameter space. 

Paper outline. In Section 2, we define the set V that contains 
the linearly parametrized systems whose parameter vector is 
constrained to He in an ellipsoid. In Section 3, we present two 
theorems that describe the image of an ellipsoid by a nonbi-
jective mapping, as well as the inverse image defined by such 
mapping. In Section 4, we present the frequency domain set 
£ , image of the set V in the Nyquist plane. In Section 5, we 
analyze the inverse image of the set £ . In Section 6, we define 
the probability level linked to £ and give the value of this prob-
ability level. In Sections 7 and 8, we finish by an illustration 
and some conclusions. 

2 Problem statement 

As stated in the introduction, we consider lineaily parametrized 
transfer functions. Let us thus consider the following system 
description: 

G{z,e)=G{z)+Aiz)e (1) 

with 9 e R''^^ tht parameter vector, G{z) a known transfer 
funcdon and A{z) a known row vector of transfer functions. 
Let us further assume that 0 has a Gaussian probability density 
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(2) 

function with zcfo mean' and covariance Pg e R'''^^ i.e 

ö ~ A A ( 0 , P f l ) 

o^Pg-'e - xHk) 
where x'^ik) is the chi-square probability density function 
with fc degrees of freedom. 

Let us now write the frequency response g{e^",0) of G{z,9) 
at the frequency OJ in the following form: 

Re{G(e''^ ,6)) 
Im{G{e''^ ,9)) 

Re{G{en) 
Im{G{e^'^)) 

iïe(A(e^'")) 
(3) 

The frequency response vector g{e^'^,6) has thus a Gaussian 
probability density function with mean g{e^") and covariance 
P , H = cov{{g{eJ-,9) - fl(eJ"))(3(e^-,Ö) - fl(e^"))^) = 
T{e^^)PgT{e^^f S R ' ^ ^ We have thus 

(4) 

The results presented in (4) are very common and can e.g. be 
found in [6]. However, these results do not give a response 
to some important questions. I f we design a confidence el-
Upsoid in the parameter space using (2), is the image of such 
confidence ellipsoid in the Nyquist plane a confidence region 
with the same probability level? How can we relate this image 
with the known probability density function of the frequency 
response (4)? I f we design a confidence elUpse at each fre-
quency using (4) and define a set by connecting all these el-
lipses, what is the inverse image of that set in parameter space? 
In order to answer these questions, we w i l l consider through-
out this paper the fol lowing confidence eUipsoid in parameter 
space and the coiTesponding region in transfer function space. 
We w i l l choose a probability level of 0.95 for these confidence 
regions. 

Deflnition 2.1 Let us consider tiie parametrized model struc-
ture given in (1) and tlie probability densit}' fimction ofthe pa-
rameter vector 9 given in (2). The ellipsoid Ug of size X' 

Ug = {9\ 9''P,-'9 < xh (5) 

with X such that Pr{x^ (fc) < x) = 0.95, is a confidence ellip-
soid of probability 0.95 in the parameter space. We define the 
setV of transfer functions tliat correspond to the parameters 
9 e Ug: 

V = {G{z,9)\9eUg} (6) 

The probabilit}' level a^D) linked to V is thus given bya{'D) = 
Pr{G{z,9) g p ) = 0.95. • 

' i n the case where $ ~ Af{0, Pg), one can always write G{z, 9) = G -\-
Aê + Aè= Gus + AÖ with Ö = Ö - ê ~ Pe) 

In the next sections, we describe the image in the Nyquist plane 
of the uncertainty region V and we analyze the properties of 
such image, as well as its inverse image, with respect to the 
probabiUty level. 

3 Linear algebra preliminaries 

We first present two theorems that describe properties of 
ellipsoids in two linear spaces of size n and fc, (n < fc), linked 
by a Unear transformation T. This mapping has the following 
expression x = Ty, where y e R ^ ' ^ \ .x- e R " ^ ^ (n < fc) 
are real vectors, and T e R " ^ ^ is a real matrix of rank n. 
Our interest lies thus in the situation where x and/or y are 
constrained to lie in an ellipsoid. 

Theorem 3.1 Let us consider the mapping x — Ty as defined 
above aud the ellipsoid Uy of size x the y-space: 

Uy = {y\ i / p - ' y < x}, (7) 

with Py e R^" a positive definite matrix. The image Ux of 

Uy by the mapping T i.e. U^ = {x \ x = Ty with y G Uy} is 
an ellipsoid in the x-space given by 

UX={XWP-'X<X}, (8) 

with Px = TPyT"^ G R " 

Proof. See [2, 3]. 

Theorem 3.2 Let us consider tlie same mapping x ~ Ty and 
the ellipsoids Uy and U^ defined in (7) and (8), respectively 
Define the inverse image Cy of U^ using tlie mapping T as 

Cy = {y\x^TyeUx}.TIienCy is a volume given by 

Cy = {y I y'^^Rcy < x}, (9) 

with Rc = T'^'P~^T, a singular matrix G R^^*^ . Moreover, 
the volume Cy is such that the ellipsoid Uy is included in Cy! 
and such that the matrix Rc defining Cy has rank n i.e. it has 
k — n zero eigenvalues. The volume Cy has therefore k — n 
infinite main axes. The directions j / , ; (i — l...k - n) of these 
infinite main axes are tlie eigenvectors corresponding to tlie 
null eigenvalues of Rc- Moreover, these eigenvectors y i belong 
to tlie null space ofT i.e. Tyi = 0. 

Proof. See [2, 3]. u 

4 Image of T> in the Nyquist plane 

Theorem 3.1 teUs us that the image of an ellipsoid under a l in -
ear mapping into a smaller dimensional space is also an ellip-
soid. This theorem wiU now be used in order to find the fre-
quency domain region (or dynamic region) that is the image of 
V i n the Nyquist plane. This frequency domain region is de-
fined via a constraint on the frequency response of the plants 
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in this region at every frequency. The general expression of a 
frequency domain region can e.g. be written as follows: 

C = {G{z)\g{eneU{Lü)'iu], (10) 

where g{e'^) = ( Re[G{e^")) Im{G{e^^)) f and U{uj) 
is the particular domain where the frequency response vector 
of the plants G{z) G £ is constrained to lie at the frequency w. 

We are thus looking for the frequency domain region £ that 
corresponds to the image of the set V in the Nyquist plane. Let 
us first define this notion properly. 

Definition 4.1 Consider tlie set V of transfer functions defined 
in (6) and the general expression ofa frequency domain region 
C given in (10). The image ofV in the Nyquist plane is the 
frequency domain region C defined by (10) with U{bj) defined 
as follows, at each frequency OJ: 

U(oo) = {g(e'^) I ff(e^") = g{e''',6) for some 9 e Ue} (11) 

with 5 ( e J " , ö ) defined in (3). U 

Important comments. Definition 4.1 tells us that the image 
£ of I? in the Nyquist plane is a set containing the image 
of all plants in V; and that all "points g{e^") e U{oj)" at a 
frequency OJ are the image of some plant in V. 

Using the mapping (3) between the space of parametrized 
transfer functions G{z,9) (or parameter space) and the fre-
quency domain space, and the results of Theorem 3.1, we can 
construct an explicit expression of the image £ of P in the 
Nyquist plane. 

Theorem 4.1 Consider the set V of transfer functions 
Giz, 9) = G{z) + A{z)9 presented in Definition 2.1, and the 
mapping (3) between parameter space and frequency domain 
space. The image ofV in the Nyquist plane (see Definition 4.1) 
is a frequency domain region £ having the following expres-
sion. 

£ = {G(z) I g{en e Uiu) Vw} (12) 

Uioj) = {g e R ^ ^ i I { g - g { e n f P i u ) - \ g - g { e n ) < x} 
(13) 

where P (w) = T{e^")PeT{e^'')'^, and gie^"") and gie^"") are 
defined in (10) and (3), respectively. The image £ ofV in the 
Nyquist plane is thus made up of ellipses U{OJ) at each fre-
quency around the frequency response of the known transfer 
function G{z). The ellipse U(oj) at a particular frequency can 
therefore be considered as the image ofV in the Nyquist plane 
at this frequency. 

Proof. In order to establish the proof of Theorem 4.1, we 
need to prove that the expression (13) of U{oj) is equiva-
lent with (11). The result follows directly f rom Theorem 3.1 
by considering the mapping (3) (i.e. g{e^'^,9) - g{,ei'^) = 
T{e^^)9) at a particular frequency OJ. U 

5 Inverse image of C 
In the previous section, we have determined the frequency do-
main region £ , image of the set V of parametrized transfer 
functions G{z,9). This set £ , made up of ellipses U(OJ) at 
each frequency, is defined by the property (11). In particu-
lar, £ contains all plants in V. The set £ is nevertheless not 
equivalent to T>. Indeed, we prove that there are more plants 
in £ than those in V. These additional plants obviously in-
clude plants having a structure different f rom G{z, 9) (i.e. they 
cannot be described as G{z, 9) for any 9 (see (1))), but surpris-
ingly, also include plants having the structure G{z, 9) but for 
9 ^Ue-ln this paper, we w i l l focus on the additional plants in 
£ having the structure G{z, 9) given in (1) but for 9 ^Ue- The 
fact that such additional plants exist in £ is a consequence of 
the fact that the mapping (3) is not bijective^ since (3) maps a 
fc-dimensional space into the 2-dimensional frequency domain 
space. In order to estabhsh that additional plants G{z, 9) lie in 
£ , the inverse image of £ in the space of parametrized transfer 
functions G{z,9) has to be determined. For this purpose, it is 
useful to first analyze the inverse image V(U{OJ)), via the map-
ping (3), of one eUipse U{oj) of £ in the space of parametrized 
transfer funcdons G'(z, 9). 

Proposition 5.1 Consider a particular frequency OJ and the el-
lipse U{LJ) defined in (13) which is the image ofthe set Vin the 
Nyquist plane at the frequency OJ. Using the mapping (3) from 9 
to g{e^",9), define the inverse image ofU{oj) in the parameter 
space as 

Ce{U{oj))^{9\g{e^",9)eUioj)}. (14) 

Correspondingly, define the inverse image ofU{oj) in the space 
of parametrized transfer functions G{z, 9) as 

V{U{oj)) = {G{z,9) I g{ei",9) e U{oo)}. (15) 

Then the set Ce{U(oj)) is a volume in the 9-space with k - 2 
infinite axes defined as: 

Ce{U(oj)) = {9e R ^ ^ i I 9'^T{é^fP{oj)-^T{e^")9 < x}-
(16) 

Moreover, Ue C Ce{U{oj)) andV C V(U(oj)). 

Proof. The expression (16) of Ce{U{oj)) follows directly 
f rom Theorem 3.2 by substituting U{oj) for U^, Ug for Uy 
and Ce{U{oj)) for Cy. It then follows f rom the last part of 
Theorem 3.2 that Ue is a subset of Ce(C/(w)). Now observe 
f rom (14) and (15) that V{U{oj)) can equivalently be described 
as 

V{U{oj)) = {G{z,9)\9eCe{U(oj))} (17) 

I t then follows from Ug C Ce{U{oj)) and the definidons (6) 
and(17) tha tP C P ( i7 (w) ) . • 

Proposition 5.1 tells us that the ellipse U{oj) is the image of 
more plants G{z, 9) than those in V. These additional plants 

^Ttie mapping T(eJ") is onty bijective i f tlie size k of the vector $ is equal 
to two. 
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G{z, Bout) with Oout e Ce{U(w)) \ Ug, have the property that 
3 9in e Ug such that, at frequency LO, 

since U(LÜ) is defined by (11). It is also important to note 
that the inverse image ^ ( { / ( w ) ) of U{LU) in the space of 
parametrized transfer functions G{z,9) is different at each 
frequency, because the inverse image Ce(C/(w)) in parameter 
space is different at each frequency. In other words, U{LJ) is 
the image of a set V{U{u>)) of plants G{z, 9) that are different 
at each frequency. 

In Proposition 5.1, we have computed the inverse image 
Cg{U{bj)) in parameter space of one ellipse U{uj), via the in-
verse of the mapping (3). We now determine the inverse image 
Ug{C) in parameter space of the whole set C defined by (12) 
and (13). 

Theorem 5.1 Consider tlie frequency domain set C defined 
by (12) and (13). Define the inverse image Ug(C) of C in pa-
rameter space, via the mapping (3), as: 

Ug{£) = {9\G{z,9)eC}. (18) 

Then 
Ug{C)= fl Cg{U(u)), (19) 

W6[0 jr] 

where Cg(U(u))) is defined in (14) and (16). Moreover, 

Ug C UeiC), (20) 

and the inclusion may be strict. 

Proof. First observe that, by the definition of C in (12), the set 
Ug{C) defined in (18) is equivalent with 

Ug(C) = {9\g{e^^,9)€U{uj)'iuj}. 

The result (19) then follows immediately f rom (14). The inclu-
sion (20) then follows from the main result of Proposition 5.1, 
namely Ug C Cg{U{uj)) \/u>. The possible strictness of the 
inclusion in (20) w i l l be demonstrated by an example in Sec-
tion 7. • 

Corollary 5.2 With definitions as above, we have Ug C 
UgiQ C Cg{U{üo))WLü and V C V(£) C Ü ( f / ( w ) ) V w . • 

Theorem 5.1 tells that the elhpsoid Ug which defines V is a 
possibly strict subset of Ug(£.) = f]^^^^ Cg(U{uj)). As a 
consequence, V may be a strict subset of D(C), and the fre-
quency domain region C is therefore the image in the Nyquist 
plane of a set V{C) containing more plants G{z, 9) than those 
in V. It is to be noted that, according to the definition of C 
(Definition 4.1), these additional plants G{z, 9out) with 9out S 
Ue{C) \ Ug, must have the property that, at each frequency 
w, there exists 0;,» in Ug such that G(eJ", ö^^j) = G(e^'^,9in). 
Note that it is not possible to have a single value of 6in which 
applies at all frequencies. 

6 Probability level linked to the confidence re-
gion C 

In the previous sections, we have shown that the image of a set 
V in the Nyquist plane is a frequency domain region C made 
up of ellipses U (to) at each frequency. We have also shown 
that the sets U{bj) and the whole region C are (or may be) the 
image of more plants G{z, 9) than those in V. Let us now con-
sider both sets (i.e. U(uj) and £,) as confidence regions. The 
ellipse U(w) is a confidence region for the frequency response 
vector s(e^'", Ö) of the plants G{z, 9) and the set £ is a confi-
dence region for the plants G(z, 9). Since the parameter vector 
9 has a probability density function (see (2)), we can relate a 
probability level to both confidence regions. 

Deünition 6.1 Consider the parametrized transfer functions 
G{z,9) given in (1), whose parameter vector 9 has the prob-
ability density function (2). Consider also the sets U{uj) and 
L defined in (12)-(13). The probabilit}' levei a{U{uj)) linlced 
to U{w) is defined as : a{Uiuj)) = Pr(</(e^",6l) G U(uj)), 
where 5 ( e ^ " , ö ) is defined in (3). The probability level a(C) 
linked to C is defined as: a{C) = Pr{G(z, 9) e C). • 

These probabiUty levels a{U(w)) and Q ( £ ) w i l l be larger than 
the probabiUty level a(V) linked to V (i.e. a{V) = 0.95) 
since V C V{C) C V{U{u})) 'iuj. Theorem 6.1 gives an exact 
computation of a{U(oj)), as well as upper and lower bounds 
ioTa{£.). 

Corollary 5.1 Consider the frequency domain set C defined 
by (12) and (13). Define the inverse image V{C) of C in the 
space of parametrized transfer functions G{z, 9), via the map-
ping (3), as 

V(C)^{G(z,9)\G{z,9)^C}. (21) 

Then V C V(C). 

Proof. By (21) and (18), it follows that P ( £ ) = {G{z,9)\9e 
Ug(C)}. The result then follows from the result (20) of Theo-
rem 5.1, and the definition (6) of D . • 

Theorem 6.1 Consider tlie parametrized transfer functions 
G(z, 9) given in (1), whose parameter vector 9 has the proba-
bilit}' densit}' fimction (2). Consider also the sets U{LÜ) and £ 
defined in (12)-(13). Then the probabilit}' level a{U{uj)) linked 
to U(u)) (see Definition 6.1) is given by: 

a{Uiu)) = Pr{G{z,9)eV{U{oj))) (22) 

= Pr{x'{2)<x)^oj, (23) 

where V{U(w)) is defined in (15). The probabilit}' level a{C) 
linked to £ (see Definition 6.1) is bounded by: 

a{V) < a ( £ ) < a{U{oj)) (24) 
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where a(V) is the probability level linlced to the set V pre-
sented in Definition 2.1 and of which tlie set C is the image in 
the Nyquist plane (a{V) = 0.95j. 

Proof. That a{U[oj)) is equal to Pr{G{z, 9) e V{U{UJ))) f o l -
lows f rom Proposition 5.1. That a{U{u)) is also equal to (23) 
is a direct consequence of the probability density function of 
g{e^^,9) given in (4) since the covariance matrix Pg{oj) of 
(/(e^", 9) is equal to the matrix P (w) defining the ellipse U{cj). 
Since the inverse image of C in the space of parametrized trans-
fer functions G{z, 9) is V{C), we have: a{C) = Pr{G{z, 9) e 
V{C)). The upper bound in (24) proceeds then from the fact 
that V[C) C V{U{uj)) Vw and the lower bound from the fact 
that V C 2?(£) (see Theorem 5.1). • 

Important comments. Theorem 6.1 shows that the prob-
ability level Q ( £ ) linked to the image of V in the Nyquist 
plane is larger than the probability level linked to T> (i.e. 
a(V) = 0 .95) . This is a consequence of the fact that £ 
is the image of more plants than those in V because of the 
singularity of the mapping (3). It is also interesting to note 
that i f we consider the ellipses U{OJ) frequency by frequency, 
these ellipses are the image in the Nyquist plane of a set 
V{U{uj)), different at each frequency, and having a probability 
level a{U{uj)) which follows from the probability density 
function (4) of g{e^",9). However, since the sets V{U{UJ)) 
are different at each frequency, when we collect together 
all ellipses U{ui) to make up £ , the probability level a { £ ) 
is smaller than a{U{ijj)). This last remark shows that the 
probablility density funcdon of g{e^'^,9) given in (4) is only 
relevant for one particular frequency. Theorem 6.1 shows 
therefore that, in order to design a confidence region £ with a 
probability level a ( £ ) larger than 95%, one has to first design 
a confidence region V having the desired probability level 
(i.e. aCD) - 0.95) and then take its image £ in the Nyquist 
plane. As a consequence, in the paper [6], the probability 
density function of the frequency response can be used in 
order to design a confidence ellipse of 95% at a particular 

frequency. However, these 95%-ellipses can not be connected 
in order to make up a frequency domain confidence region at 
95% for the parametrized transfer functions, as proposed in 
[ 1 , 9] . For this purpose, as said above, one has to first design a 
confidence region V having the desired probability level (i.e. 
Q ( I ) ) = 0.95) and then take its image £ in the Nyquist plane, 
as proposed in [5]. 

Remark. The plants having another structure than G{z,6) and 
that lie in £ do not modify the probabiUty level a ( £ ) since only 
the parameter vector 9 has a probability density function. 

7 Simulation example 

In order to illustrate the results of this paper, we present the 
following example. Let us consider the system description (1) 
with G{z) = (0 .08^-1 + 0.1009^-2 -|- 0.0359z-=') /( l -
1.5578^-1 + 0.5769Z-2) and \ { z ) = (1 - 1 . 5 5 7 8 2 " ! ^ 

0.5769^:"^) ^ X [ z ^ z ^ z ^ ) and where the parame-
ter vector ö e R^ ̂  Ms assumed to have a Gaussian probability 
density function with zero mean and nonsingular covariance Pe 
given by: 

/ 1.0031 0.0263 -0 .0111 \ 
Pg = 10"^ X 0.0263 1.0039 0.0268 

\ -0 .0111 0.0268 1.0039 / 

We consider the 95 % confidence ellipsoid Ug in the parameter 
space that defines a corresponding region V in the space of 
transfer function: 

Ue = {9\ 9'^Pg-^9 < 7.81}, 
V^{G{z,9)\9eUe} 

Using Theorem 4.1, we can determine the image £ of P in the 
Nyquist plane. This image £ is made up of ellipses U(w) at 
each frequency around the frequency response of G{z) and is 
represented in Figure 1. 

90 
10 

270 

Figure 1: Frequency domain representation of D in the Nyquist 
plane with ellipses U{UJ) at some frequencies, frequency re-
sponse of G{z) (dashdot), frequency response of G{z,9out) 
(dashed) and frequency response of G{z, 9iis) (soUd) 

A l l plants in V lie in £ , and £ has the property (11). However, 
the mappings between V and £ and between V and U{uj) are 
not bijective as shown in Theorem 5.1 and Proposition 5.1, re-
spectively. In order to illustrate the results presented in these 
theorems, we w i l l show two things: 

1. there exist plants G{z,9out) outside V whose frequency 
response vector g{e^'^,9out) lies in some ellipses U{OJ) 
but not in all of them; 

2. there exist plants G{z, 9iis) outside V that lie in the whole 
region £ . 
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Since the size of Ö is 3, we know that the vectors 0 that are 
projected into U(w) at the frequency to are those lying in the 
cylinder Cg (U(tj)) whose axis direction is given by the normed 
eigenvector 9nuiii<^) corresponding to the null eigenvalue of 
the mapping T(e-''") (see Theorem 3.2 and Proposition 5.1). 
Using this property, we can find a plant G{z,Oout) such that 
dout ^ Ug, but such that its frequency response g{e^'^°,Oout) 
at Wo lies in U{ÜJO) for a particular frequency LÜQ, say WQ = 
0.25. Indeed, let us choose as vector dout a vector in the same 
direction as 6l„u,/(0.25) but outside the ellipsoid Ug: Oout = 
( 1.8084 -3.5043 1.8084 ) ^ . This vector is well outside 
the ellipsoid Ug since we have that: d^^^Pg^Oout - 19525 > 
7.81, but we also have that: 

=0 

and therefore gie^^-"^^,Oout) lies in C/(0.25). However, this 
plant does not he in all ellipses as can be seen in Figure 1. 

There also exist plants G{z,6i,is) whose parameter vectors 
Obis ^ Ug, but that lie completely in C. According to Theo-
rem 5.1 and Corollary 5.1, these are the plants whose param-
eter vectors Otis lie in Ug{£) = f j ^ g j o Cg{U{Lo)). In order 
to find one of those particular vectors di,is, we proceed like we 
did to find Oout- We choose a particular frequency LOQ and we 
choose a vector in the direction ^ „ „ / / ( w o ) of the axis of the 
cylinder Cg{U{uJo)). But, here, we choose this frequency WQ 
in the middle of the frequency range: WQ =TT/2 and we choose 
the vector just outside the ellipsoid Ug: 

/ 0.0684 \ 
Obis = 0 , el^Pg-^OMs = 9.4501 > 7.81 . 

V 0.0684 / 

In Figure 1, we see that the frequency response of the plant 
G{z,9i,is) lies in [ / ( w ) for each of the plotted ellipses. Since 
we only plot the ellipses at a certain number of frequencies, 
we have also verified [2, 3] that G{z,ebis) lies in U{io) at 
the other frequencies. Since it is the case, we can conclude 
that G{z,Obis) has its frequency response in C even though 
G{z, Obis) does not he in V. 

8 Conclusions 

In this paper, we have considered linearly parametrized plants 
G{z, 9) whose parameters are normally distributed and we have 
presented results about the image C in the Nyquist plane of a 
confidence region V in the space of parametrized transfer func-
tions. We have shown that this image is made of ellipses at 
each frequency. However, since the mapping between these 
two spaces is not bijective, the image C in the Nyquist plane 
contains more plants G{z, 9) than the initial confidence region 
v . The image in the Nyquist plane is thus also a confidence re-
gion for the parametrized plants G{z, 0) but with a probability 
level larger than that of the initial confidence region V. 
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