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Abstract: Iterative Feedback Tuning (IFT) is a widely used procedure for controller
tuning. It is a sequence of iteratively performed special experiments on the plant interlaced
with periods of data collection under normal operating conditions. In this paper we derive
the asymptotic convergence rate of IFT for disturbance rejection, which is one of the main
fields of application. Further we present a method to improvethe convergence of IFT by
prefiltering the input data for the special experiment. At each iteration step the optimal
prefilter is computed from data collected under normal operating conditions of the plant.
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1. INTRODUCTION

Iterative Feedback Tuning (IFT) is a data based
method for the tuning of restricted complexity con-
trollers. It has proved to be very effective in practice
and is now widely used in process control, often for
disturbance rejection. Following the original formula-
tion of the method in (Hjalmarssonet al., 1998) many
improvements and modifications of IFT have been
suggested. The reader is referred to (Hjalmarsson,
2002) for a recent overview.
The objective of IFT is to minimize a quadratic perfor-
mance criterion. IFT is a stochastic gradient descent
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scheme in a finitely parameterized controller space.
The gradient of the cost function at each step is es-
timated from data. These data are collected with the
actual controller in the loop. Under suitable assump-
tions the algorithm converges to a local minimum of
the performance criterion. One of the advantages of
IFT is that most data are collected while the process
runs under normal operating conditions. These data
are then used to design a special experiment, which
yields a noisy, but unbiased, estimate of the cost func-
tion gradient. This gradient estimate is used to perform
the next descent step in controller space. For more
details of the procedure see (Hjalmarssonet al., 1998).
In this and in the companion paper (Hildebrandet
al., 2002) we focus on IFT for disturbance rejection.
We provide an analytic expression for the asymptotic
convergence rate of the algorithm, as the number of
data collected in each experiment tends to infinity.



Fig. 1.The control system under normal operating conditions.

The convergence rate depends on the covariance of the
gradient estimates. Therefore, the calculation of this
covariance is a part of our analysis.
In (Hjalmarssonet al., 1998) it was proposed to reduce
the error in the gradient estimate by prefiltering the
reference input data for the special experiment. Our
second contribution is to optimize the corresponding
prefilter with respect to both the convergence speed
of the procedure and the accuracy of the finally ob-
tained value. An analytical expression for the optimal
prefilter is given. It depends on certain characteristics
of the unknown process. However, in the spirit of
IFT, these characteristics can be estimated from data
collected under normal operating conditions. Thus the
computation of the optimal prefilter does not necessi-
tate any special experiment on the process and hence
does not impose any additional cost.
The remainder of the paper is structured as follows. In
the next section we summarize the details of the IFT
algorithm for disturbance rejection. In Section 3 we
derive an expression for the asymptotic convergence
rate dependent on the covariance of the gradient esti-
mates. In Section 4 the asymptotic expression of this
covariance is calculated. This enables us in Section
5 to establish a design criterion for the optimization
of the algorithm. We compute the optimal prefilter
which minimizes the design criterion. In Section 6
we demonstrate the gains in convergence speed and
accuracy in a simulation example. Finally, we draw
some conclusions in the last section.

2. IFT FOR DISTURBANCE REJECTION

In this section we review the IFT method for the
disturbance rejection problem with a classical LQ
criterion. For a more general and detailed presentation
of IFT the reader is referred to (Hjalmarssonet al.,
1998).
Consider a SISO discrete time system described by

y(t) = G(q)u(t) + v(t) , (1)

wherey(t) is the output,u(t) is the input,G(q) is a
linear time-invariant transfer function, withq being
the shift operator, andv(t) = H(q)e(t) is the pro-
cess disturbance. HereH(q) is a monic, stable and
inversely stable transfer function ande(t) is zero mean
white noise with varianceσ2. The transfer functions
G(q) andH(q) are unknown.
Consider the feedback loop aroundG(q) depicted in

Figure 1, whereC(q, ρ) is a one-degree-of-freedom
controller belonging to a parameterized set of con-
trollers with parameterρ ∈ R

n. The transfer function
from v(t) to y(t, ρ) is named sensitivity function and
is denoted byS(q, ρ). We assume that in the control
system of Figure 1 the reference signalr(t) is set at
zero under normal operating conditions. Our goal is to
tune the controllerC(q, ρ) so that the variance of the
noise-driven closed loop output is as small as possible
subject to a penalty on the control effort. Thus we want
to find a minimizer for the cost function

J(ρ) =
1

2
E

[

y(t, ρ)2 + λu(t, ρ)2
]

, (2)

whereλ ≥ 0 is chosen by the user.
The IFT method yields an approximate solution to
the above problem. IFT is based on the possibility of
obtaining an unbiased estimate of the gradient∂J

∂ρ
(ρ)

of the cost function atρ = ρn from data collected
from the closed-loop system with the controllerC(ρn)
operating on the loop. The cost functionJ(ρ) can
then be minimized with an iterative stochastic gradient
descent scheme of Robbins-Monro type (Blum, 1954).
In the scheme a sequence of controllersC(q, ρn) is
computed and applied to the plant. In then-th iteration
step, data obtained from the system with the controller
C(ρn) operating on the loop are used to construct the
next parameter vectorρn+1.
The data based iterative procedure is as follows.

IFT procedure

1. Collect a sequence{u1(t, ρn), y1(t, ρn)} with
t = 1, . . . , N of input-output data under normal
operating conditions, i.e. without reference signal.

2. Collect a sequence{u2(t, ρn), y2(t, ρn) with
t = 1, . . . , N of input-output data by performing
a special experiment with reference signal

r2
n(t) = −Kn(q)y1(t, ρn)

where Kn(q) is any stable minimum-phase pre-
filter.

3. Construct the estimates of the gradients of
u1(t, ρn) andy1(t, ρn) as

est

[

∂u1

∂ρ
(t, ρn)

]

=
1

Kn(q)

∂C

∂ρ
(q, ρn)u2(t, ρn) ,

est

[

∂y1

∂ρ
(t, ρn)

]

=
1

Kn(q)

∂C

∂ρ
(q, ρn) y2(t, ρn) .

4. Form the estimate of the gradient ofJ(ρ) at ρn

as

estN

[

∂J

∂ρ
(ρn)

]

=
1

N

N
∑

t=1

[

y1(t, ρn)

×est

[

∂y1

∂ρ
(t, ρn)

]

+ λu1(t, ρn)est

[

∂u1

∂ρ
(t, ρn)

]]



5. Calculate the new parameter vectorρn+1 accord-
ing to

ρn+1 = ρn − γnR−1
n estN

[

∂J

∂ρ
(ρn)

]

whereγn is a positive step size andRn is a positive
definite matrix.

In the above procedure we assume negligible measure-
ment noise and independence between the disturbance
realizationsv1

n(t), in the first experiment, andv2
n(t),

in the second experiment. Under these assumptions
the estimate of the gradient turns out to be unbiased
(Hjalmarssonet al., 1998). The sequencesγn andRn

are basically left to the choice of the user. The ma-
trix Rn should be an approximation of the Hessian
of the cost function inρn. A biased estimate of the
Hessian, obtained from data, has been proposed in
(Hjalmarssonet al., 1998).

3. ANALYSIS OF CONVERGENCE RATE IN IFT

In this section we quantify the effect of the variability
of the gradient estimate on the asymptotic conver-
gence rate of the algorithm.
The proposition below describes the asymptotic be-
havior of the sequenceρn. It follows from a general
proposition on the convergence rate of for Robbins-
Monro processes as can be found in (Nevelson and
Khasminskii, 1976).

Proposition 1.Assume that the sequenceρn con-
verges to a local isolated minimum̄ρ of J(ρ) (the
reader is referred to (Hildebrandet al., 2002) for the
conditions of convergence). LetH be the Hessian of
J(ρ) at ρ = ρ̄. Suppose further that the following
conditions hold.

1. The sequenceγn of step sizes is given byγn =
a
n

, wherea is a positive constant. There exists an
indexn̄ and a matrixR such thatRn = R for all
n > n̄.

2. The matrixA = 1

2
I − aR−1H is stable, i.e. the

real parts of its eigenvalues are negative.

3. The covariance matrixCov

[

estN

[

∂J
∂ρ

(ρ)
]]

at

ρ = ρ̄ is positive definite.

Then the sequence of random variablessn =
√

n(ρn−
ρ̄) converges in distribution to a normally distributed
zero mean random variable with covariance matrix

Σ =

∞
∫

0

eAtR−1
Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

×R−1eAT tdt,

i.e.
√

n(ρn − ρ̄)
D→ N (0,Σ). 2

Proposition 1 shows that the asymptotic accuracy of
the estimate crucially depends on the distribution of
the error on the gradient. This distribution in turn
can be influenced by the prefiltersKn(q). Before
turning to the question of designing the filtersKn(q)
for optimal accuracy, we analyze in detail how the
covariance of the gradient estimate depends onKn(q).
This will be done in the next section.

4. THE COVARIANCE OF THE GRADIENT
ESTIMATE

This section is devoted to finding an explicit expres-

sion for the covariance ofestN
[

∂J
∂ρ

(ρn)
]

. We will

show that this covariance can be written as the sum
of two terms. These two contributions originate in the
variability of the noise realizations in the first and
second experiment of iterationn, respectively. Con-
sequently, the first term is independent of the prefilter
Kn(q), because the filter is applied only to the refer-
ence signal for the second experiment. However, the
second term can be influenced by the choice of this
prefilter.
It can be shown that the estimates of the gradients of
u1(t, ρn) andy1(t, ρn) obtained in Step 3 of the IFT
procedure are corrupted by the realizationv2

n(t) of the
noise in the second experiment as follows

est

[

∂u1

∂ρ
(t, ρn)

]

=
∂u1

∂ρ
(t, ρn) − S(q, ρn)

Kn(q)
C(q, ρn)

∂C

∂ρ
(q, ρn) v2

n(t) ,

est

[

∂y1

∂ρ
(t, ρn)

]

=
∂y1

∂ρ
(t, ρn) +

S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t) .

Therefore we can separateestN

[

∂J
∂ρ

(ρn)
]

as

estN

[

∂J

∂ρ
(ρn)

]

= SN (ρn) + EN (ρn) ,

SN (ρn) =
1

N

N
∑

t=1

[

y1(t, ρn)
∂y1

∂ρ
(t, ρn)

+ λu1(t, ρn)
∂u1

∂ρ
(t, ρn)

]

EN (ρn) =
1

N

N
∑

t=1

[

y1(t, ρn)

[

S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t)

]

+ λu1(t, ρn)

×
[

−C(q, ρn)S(q, ρn)

Kn(q)

∂C

∂ρ
(q, ρn) v2

n(t)

]]

.

The termSN (ρn) corresponds to the sampled esti-
mate of the gradient ofJ(ρ). This term is entirely
dependent on the realizationv1

n(t) of the noise in the



first experiment. The second termEN (ρn) is an error
due to the corruption of the estimates of the gradi-
ents ofu1(t, ρn) andy1(t, ρn) by v2

n(t). The estimate

estN

[

∂J
∂ρ

(ρn)
]

turns out to be unbiased under the

assumption that the two experiments in the algorithm
are sufficiently separated in time. In fact, under this
assumption, the realizationv2

n(t) can be considered as
being independent of the signals coming form the first
experiment and therefore the mean ofEN (ρn) is zero.

The dispersion ofestN
[

∂J
∂ρ

(ρn)
]

is described in the

following proposition.

Proposition 2.
1. The following relation holds

Cov

[

estN

[

∂J

∂ρ
(ρn)

]]

= Cov [SN (ρn)]

+ Cov [EN (ρn)] .

2. The following asymptotic frequency-domain ex-
pression ofCov [EN (ρn)] holds

lim
N→∞

NCov [EN (ρn)] =

σ4

2π

π
∫

−π

1

|Kn(ejω)|2 |S(ejω, ρn)H(ejω)|4 [1

+ λ|C(ejω, ρn)|2
]2 × ∂C

∂ρ
(ejω, ρn)

∂C∗

∂ρ
(ejω, ρn) dω .

3. Under the additional assumption that the 4th or-
der cumulants of the noisev are zero (e.g the noise
is normally distributed), the following asymptotic
frequency-domain expression ofCov [SN (ρn)] holds

lim
N→∞

NCov [SN (ρn)] =

2 · σ4

2π

π
∫

−π

|S(ejω, ρn)H(ejω)|4 ×Re

{

[

G(ejω)

− λC̄(ejω, ρn)
]

S(ejω, ρn)
∂C

∂ρ
(ejω, ρn)

}

×Re

{

[

G(ejω) − λC̄(ejω, ρn)
]

S(ejω, ρn)

× ∂C

∂ρ
(ejω, ρn)

}T

dω .

Proof See (Hildebrandet al., 2002). 2

In Proposition 2 it has been shown that the co-
variance of the gradient estimate can be represented
as the sum of the covariances of the separate con-
tributions SN (ρn) and EN (ρn) (i.e. SN (ρn) and
EN (ρn) are uncorrelated). BothCov [SN (ρn)] and
Cov [EN (ρn)] decay asymptotically proportionally to
1/N as the number of data tends to infinity. Their
asymptotic frequency domain expressions asN → ∞
have been given.

By Proposition 1,Cov

[

estN

[

∂J
∂ρ

(ρn)
]]

enters lin-

early into the asymptotic covarianceΣ of the es-
timated controller parameter value. Hence this co-
variance can as well be expressed as a sum of two
terms, dependent on the covariances ofSN (ρn) and
EN (ρn), respectively. SinceSN (ρn) does not depend
on Kn(q), the corresponding term inΣ can be re-
garded as constant for the purpose of designing the
prefilter Kn(q). This observation leads us to the de-
sign of an optimal prefilter.

5. DESIGN OF THE OPTIMAL PREFILTER

We are now ready to specify the criterion for the de-
sign of the prefilterKn(q). In this section we state
this criterion and deliver the expressions of the corre-
sponding optimal prefilter. We assume that the current
controller is near the optimal one. Then the conver-
gence rate of the procedure is measured by the accu-
racy of the estimate. Therefore, in order to construct
a design criterion for the prefilter, one can employ the
asymptotic results on the accuracy given in Section 3.

5.1 The design criterion

Let the sequenceγn of step lengths in the IFT pro-
cedure be proportional to1/n, i.e. γn = a

n
. Define

∆ρ̄n = ρn − ρ̄, whereρ̄ is the optimal parameter. Let
us takeE[J(ρn)]−J(ρ̄) as a measure of quality of the
controllerC(ρn). ExpandingJ(ρ) into a Taylor series
aroundρ̄ and retaining only terms up to the second
order, we obtainE

[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

as an approxi-
mation ofE[J(ρn)] − J(ρ̄). HereH(ρ) denotes the
Hessian ofJ(ρ).
Following Proposition 1,

√
n∆ρ̄n is asymptotically

normally distributed with zero mean and covariance

Σ = a2

∞
∫

0

eAtR−1
Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

× [R−1
]T

eAT tdt,

whereR = limn→∞ Rn andA = 1

2
I − aR−1

H(ρ̄).
Let us now assumeR = H(ρ̄), i.e. we consider
a Gauss-Newton scheme. Then we obtainA =
(

1

2
− a

)

I and

Σ =
a2

2a − 1
R−1

Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

[

R−1
]

T (3)

This yields

lim
n→∞

nE
[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

=
a2

2a − 1

×Trace

[

Cov

[

estN

[

∂J

∂ρ
(ρ̄)

]]

[

R−1
]

T

]

.



We shall take this expression as the criterion to be
minimized for the design of the optimal prefilter.
There are different methods to satisfy the condition
R = H(ρ̄). A classical method to obtain a sequence of
estimated matricesRn which converges to the Hessian
is to fit a regression model using the gradient estimates
obtained in the previous iterations. The reader is re-
ferred to (Wei, 1985; Yin, 1988).
In practice, in order to use (4) as a criterion for the
design of the optimal filter, at the iterationn one has to
replace the optimal parameterρ̄ on the right-hand side
by the current parameterρn, since (as it will be shown
in Subsection 5.2) the prefilter is estimated from data
obtained under the current operating conditions. In
the same way,R has to be replaced by the current
estimate of the HessianRn. This estimate could be the
(biased) data-based estimate of the Hessian proposed
in (Hjalmarssonet al., 1998) which is constructed,
at each step, with the data of the first and second
experiment. However, in order to not violate a certain
condition for the convergence ofρn (see (Hildebrand
et al., 2002)), the estimatedRn has to be uncorrelated
with the noise realizationsv1

n(t) andv2
n(t). Therefore

it has to be calculated by using the data of iterationn−
1. These approximations are reasonable, because we
assume that the current controller is near the optimal
controller.

5.2 The optimal prefilter

The quantity that has to be optimized in the design
of the prefilter is thus (4) with̄ρ replaced byρn. The
optimal prefilter minimizes the weighted trace of the
covariance of the gradient estimate. In order to obtain
a bounded solution we have to restrict the gain of the
prefilter. A straightforward constraint is a bound on the
energy of the reference signalr2

n(t), i.e. on the input of
the second experiment. This bound represents the level
of acceptable perturbation to the normal operating
conditions during the second experiment at each step.
We thus arrive at the following optimization problem:

Kopt
n = arg min

K
Trace

[

R−1
n Cov

[

estN

[

∂J

∂ρ
(ρn)

]]]

subject to Var
[

r2
n(t)

]

≤ α,

whereα is selected by the user. By Proposition 2, and
recalling thatCov [SN (ρn)] does not depend on the
prefilter, we can rewrite the problem as follows:

Kopt
n = arg min

K
Trace

[

R−1
n Cov [EN (ρn)]

]

(4)

subject to Var
[

r2
n(t)

]

≤ α.

The explicit solution of this problem is characterized
by the following proposition.

Proposition 3.The optimal prefilter solving (4) satis-
fies the following relation:

|Kopt
n (ejω)|4 = const · |S(ejω, ρn)H(ejω)|2[1

+ λ|C(ejω, ρn)|2
]2

Trace

{

R−1
n

∂C

∂ρ
(ejω, ρn)

×∂C∗

∂ρ
(ejω, ρn)

}

, (5)

where the constant is determined by the design restric-
tion.

Proof.See (Hildebrandet al., 2002). 2

In order to compute the optimal prefilter in practice,
one needs an estimate of the unknown spectral density
|S(ejω, ρn)H(ejω)|2 of the signaly(t, ρn) which is
the output of the plant under normal operating condi-
tions, i.e. with zero reference signal. The estimate can
be obtained with standard techniques in the time or
in the frequency domain (Ljung, 1999; Pintelon and
Schoukens, 2001). Note that since the data needed
to estimate this quantity do not stem from a special
experiment they are available in large amounts. In fact
periods of normal operating conditions can be inter-
laced with the IFT special experiments. By assum-
ing these periods to be much longer than the length
of the special experiment from which the gradient is
estimated, the contribution of the variability in the
estimate of|S(ejω, ρn)H(ejω)|2 to the variability of
the gradient estimate can be considered as being neg-
ligible.
Having an estimate of|S(ejω, ρn)H(ejω)|2 one can
construct the magnitude of the optimal prefilter by
calculating the 4-th root of the right-hand side of (5).
Then, there exist standard tools to approximate a given
magnitude function by a stable minimum phase filter.

6. SIMULATION EXAMPLE

Consider the system described by

G(q) =
q−1 − 0.5q−2

1 − 0.3q−1 − 0.28q−2
,

H(q) =
1

1 + 0.9q−1

with σ2 = 1. Let the class of controllers beC(q, ρ) =
ρ1 + ρ2q−1 and setλ = 0.6 in (2). The (local)
minimizer ρ̄ = [−0.69058 0.33105] has been found
numerically. Let us assume that the constraint on the
reference signalr2

n(t) during the IFT procedure is
that this signal has to have one half the energy of the
output of the first experiment. In the following we will
quantify the performance improvement between the
trivial constant filter satisfying the energy constraint
and the optimal filter given by (5) when the criterion
E

[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

is used. We run the IFT procedure
with experiment lengthN = 512, step sizesγn = a/n
with a = 1 andRn = H(ρ̄).
Using the asymptotic approximations of the covari-
ance of the gradient estimate given in Section 3 we can
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Fig. 2. The parameter̄ρ (•), the 1024 parametersρ8 obtained
using the constant filter (×) and the contour lines ofJ(ρ).
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Fig. 3. The parameter̄ρ (•), the 1024 parametersρ8 obtained
using the optimal filter (×) and the contour lines ofJ(ρ).

find the asymptotic covariance of
√

n∆ρ̄n according
to (3). Then, for the constant prefilter we obtain that
the asymptotic value ofnE

[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

is 8.39 ·
10−2. For the optimal prefilter the asymptotic value of
nE

[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

is 5.79 ·10−2. The improvement
in the value ofE

[

∆ρ̄T
nH(ρ̄)∆ρ̄n

]

between the two
cases is31%.
The above theoretical values can be illustrated by a
Monte-Carlo simulation. The parameter vectorρ8 has
been extracted 1024 times. The extractions have been
performed by starting the IFT procedure atρ0 = ρ̄,
in order to eliminate the transient effect of the initial
condition, and then running 8 steps up to the parameter
vectorρ8. The 1024 parameter vectors obtained this
way are shown in Figure 2 for the case of the constant
prefilter. The corresponding sampled estimate of8 ·
E

[

∆ρ̄T
8 H(ρ̄)∆ρ̄8

]

was 8.00 · 10−2. The parameter
vectors obtained for the case of the optimal prefilter
are shown in Figure 3. In this case, the correspond-
ing sampled estimate of8 · E

[

∆ρ̄T
8 H(ρ̄)∆ρ̄8

]

was
5.48 · 10−2. The estimated improvement between the
two cases hence equals31.5%, as predicted by the
theoretical calculations made above.

7. CONCLUSIONS

In this contribution we have investigated the conver-
gence properties of the IFT algorithm for disturbance
rejection and shown how its performance can be im-
proved by prefiltering the reference input for the spe-
cial experiment.
The asymptotic convergence rate of the algorithm for a
step size sequence proportional to1/n was quantified
as a function of the covariance of the gradient estimate
at the optimum (Proposition 1). An expression for this
covariance with an arbitrary controller in the loop was
given (Proposition 2).
We investigated how to optimize the accuracy of the
gradient estimate and the asymptotic convergence rate
of the algorithm by a prefilter in the special exper-
iment. An expression for the optimal prefilter was
derived for constrained reference input energy (Propo-
sition 3). It was shown how to construct the optimal
prefilter from data collected during normal operating
conditions of the process.
The effect of the prefilter amounts to decreasing the
contribution of the process noise in the special ex-
periment to the error in the gradient estimate at each
step. Hence the prefilter will be the more effective the
bigger the contribution of the process noisev2

n(t) is.
This is the case if a low energy level of the reference
signal for the special experiment is required.
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