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Abstract: We study the effect of undermodeling on the parameter variance for prediction
error time-domain identification with linear model structures. We restrict our considera-
tion to linear time-invariant discrete time single input single output systems. We examine
the asymptotic expression for the variance as the number of data tends to infinity. This
quantity is known to depend in general on the fourth order statistical properties of the
applied input. However, we establish a sufficient condition under which the asymptotic
variance is a function of the input power spectrum only. For this case we deliver exact
expressions. We show that for a stochastic input the undermodeling contributes to the
parameter variance due to the correlation between the prediction errors and its gradients.
As an additional contribution we investigate the parameter variance under the assumptions
of the stochastic embedding procedure. We show by means of a counterexample that in the
framework of stochastic embedding the parameter variance is not necessarily monotonous
with respect to the input power spectrum.
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1. INTRODUCTION

Identification experiments should deliver along with
an identified model also an uncertainty region, which
specifies the quality of the model. Without this addi-
tional information the model is virtually useless for
practical purposes. Within the framework of paramet-
ric model structures the uncertainty is usually ex-
pressed in terms of the covariance of the identified
parameter vector. Often it is sufficient to consider the
asymptotic variance as the number of data tends to
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infinity, since for common data record lengths these
expressions are of satisfying accuracy.

In this contribution we consider asymptotic variance
expressions for discrete time, linear and time-invariant
systems. Under mild restrictions on input and noise
and under the assumption that the true system dynam-
ics can be exactly reproduced within the model struc-
ture, the asymptotic variance expressions are tractable
functions of the input power spectrum (Ljung, 1999).

In the presence of undermodeling, however, the sit-
uation is considerably more complicated. Although
closed-form expressions for the asymptotic variance
are well-known (Ljung, 1999), they are in general in-
tractable. Moreover, they depend on higher order sta-



tistical properties of the noise and the input (Pintelon
and Schoukens, 2001). Basically both the time domain
and the frequency domain approach face the same
difficulties when computing exact expressions. How-
ever, in the past decade much advance was made to
overcome these problems.

Several results on the asymptotic variance for para-
metric frequency domain identification were obtained.
In (Goodwin et al., 1991) the contribution of the noise
to the parameter variance was computed, while that
of the undermodeling was neglected. In (de Vries and
van den Hof, 1998) linear model structures and a de-
terministic input were assumed. In this case the ex-
pressions for the asymptotic parameter variance some-
what simplify. In (Pintelon et al., 2002) the prediction
errors were assumed to be uncorrelated with their gra-
dients, which also facilitates computations.

For time-domain identification estimators of the asymp-
totic variance based on input-output data of the ex-
periment were proposed. In (Hjalmarsson and Ljung,
1992),(Tjarnstrom and Ljung, 2002) different tech-
niques were presented to obtain a sample estimate of
the parameter variance from data gathered during the
experiment. One method consisted in introducing an
exponential forgetting factor in the expression for the
parameter estimate. This led to a windowing effect,
which in turn yielded certain ergodicity properties
of the so-obtained sequence of parameter estimates.
For long data records the sample covariance of this
sequence was a good approximation of the true pa-
rameter covariance. Another method consisted in es-
timating the undermodeling with a high-order ARX
model and using bootstrap techniques to obtain artifi-
cial noise realizations for a Monte-Carlo simulation.

These techniques thus assume the availability of input-
output data. However, sometimes it is necessary to
estimate the parameter variance prior to the experi-
ment, e.g. for purposes of optimal input design. In this
framework one is going to perform an identification
experiment and wishes to choose the input sequence
for this experiment in order to let the parameter vari-
ance have some desired properties. Therefore one has
to know how the parameter variance depends on the
input that is going to be applied. In most cases it is
sufficient to describe the asymptotic parameter vari-
ance as a function of the input power spectrum.

We address the question of computing asymptotic
variance expressions in the presence of undermodel-
ing for prediction error time domain identification. We
focus on the dependence of the variance on the input
power spectrum. For ease of treatment we restrict our
considerations to linear model structures with known
noise properties and to the SISO case.

If a stochastic input is used, the asymptotic variance
depends in general on the undermodeling as well as on
higher order properties of the input. It is known that
for parametric frequency domain identification these

dependencies do not hold, if a deterministic input is
applied (Pintelon and Schoukens, 2001). We establish
a similar result for time domain identification.

For the case of a stochastic input we formulate a
condition under which the asymptotic parameter vari-
ance does not depend on higher order properties of
the input. This condition covers a wide class of input
sequences and is satisfied e.g. for filtered Gaussian
white noise. Under this condition we establish explicit
expressions for the asymptotic parameter variance as
a function of the input power spectrum. We show that
the contribution of the undermodeling to the parameter
covariance has its origin in the correlation between the
prediction errors and its gradients. While this correla-
tion vanishes at lag zero by the nature of the prediction
error identification procedure, it is in general non-zero
at the other lags if undermodeling is present.

In (Goodwin et al., 1992) a method called stochastic
embedding was introduced. Within this framework the
undermodeling is treated as being stochastic with zero
mean. Hence the undermodeling error can be treated
as a variance error along with the error introduced by
the noise. Frequency domain identification by means
of frequency response function measurements within
the stochastic embedding framework was investigated
in (Schoukens and Pintelon, 1994).

In this contribution we also consider the parameter
variance in the framework of stochastic embedding.
We derive asymptotic expressions for the total vari-
ance and show by an example that the total parameter
variance does not necessarily decrease when the input
power is increased and can even increase. Thus the
usual property of monotonicity of the variance with
respect to the input power spectrum is not satisfied.

The remainder of the contribution is structured as
follows. In Section 2 we give formal definitions and
remind the expressions for the asymptotic variance as
given in (Ljung, 1999). We prove that the undermodel-
ing has no effect on the asymptotic parameter variance
if a zero mean periodic input is used. In Section 3 we
consider the case of a stochastic input. We establish
a condition under which the parameter variance is
independent of the higher order properties of the input.
Assuming this condition, we deduce expressions for
the variance as a function of the input power spec-
trum. Section 4 is devoted to the investigation of the
variance expressions in the framework of stochastic
embedding. In Section 5 we give an example, which
shows that under adoption of the stochastic embed-
ding paradigms the information matrix need not be
monotonic with respect to the input power spectrum.
Finally, we give some conclusions in Section 6.

2. GENERAL VARIANCE EXPRESSIONS

For simplicity we assume a linear model structure
G(θ) = θTΛ. Here θ ∈ R

n is the parameter vector, Λ



is an n-dimensional vector of stable transfer functions.
Let the true system be given by

y = G0u+He.

Here u is the scalar input, y the scalar output, G0

is the transfer function of the system, and e is white
noise with variance λ0, which is filtered through the
monic stable and inversely stable noise filter H . We
assume H to be known. The input u is assumed to be
a quasistationary sequence with zero time average and
with power spectrum Φu.

Identification of θ is performed by minimizing the
squared deviation of the output y from the 1-step
ahead predictor ŷ(θ) = (1 − H−1)y + θTH−1Λu.
The prediction error is given by ε(θ) = y −
ŷ(θ) = H−1y − θTψ, where ψ = − ∂ε

∂θ
= H−1Λu

is the predictor gradient. The identified parameter
vector θ̂N minimizes the cost function VN (θ) =
1

2N

∑N
t=1

ε2t (θ), where t indexes the time instants

and N is the number of data samples: θ̂N =
arg minθ VN (θ).

Under mild assumptions (see (Ljung, 1999) for de-
tails) the time average V̄ (θ) = limN→∞ VN (θ) is
defined and θ̂N tends to the minimizer θ∗ of V̄ (θ) as
the number of data N tends to ∞:

θ∗ = arg min
θ
V̄ (θ), lim

N→∞
θ̂N = θ∗ with prob. 1.

It is well-known that the vector θ∗ is not com-
pletely determined by the properties of the system,
but depends on the input u, specifically on its power
spectrum Φu (Ljung, 1999),(Pintelon and Schoukens,
2001).

The vector θ∗ minimizes the variance of ε(θ) − e =
H−1G0u− θTψ. Thus we have

θ∗ = (Ē(ψψT ))−1Ē((H−1G0u) · ψ) (1)

=





1

2π

π
∫

−π

Φu
|H|2 ΛΛ∗ dω





−1

1

2π

π
∫

−π

Φu
|H|2 ΛG∗0 dω.

The vector θ∗ admits the following frequency domain
interpretation. Define a pseudoscalar product on the
space H∞ of stable transfer functions by

〈A,B〉 =
1

2π

π
∫

−π

Φu(ω)

|H(ejω)|2A(ejω)B∗(ejω) dω. (2)

Then θ∗ corresponds to the particular transfer function
(θ∗)TΛ within the model structure that realizes the
minimal distance to the true transfer function G0

with respect to the pseudoscalar product (2). In other
words, the mismatchG0−(θ∗)TΛ is orthogonal to the
model structure with respect to (2).

Moreover, the quantity
√
N(θ̂N − θ∗) is asymptoti-

cally normally distributed and its asymptotic covari-
ance is given by (Ljung, 1999)

Pθ = (V̄ ′′)−1( lim
N→∞

NE(V ′N (θ∗)V ′N
T
(θ∗))(V̄ ′′)−1(3)

with V̄ ′′ = Ē(ψψT ). The central term on the right-
hand side of (3) is given by

lim
N→∞

N−1E

N
∑

t=1

N
∑

s=1

εt(θ
∗)εs(θ

∗)ψtψ
T
s

= λ0Ē(ψψT ) + lim
N→∞

N−1

N
∑

t,s=1

E
{

ε̃tε̃sψtψ
T
s

}

,

where ε̃ = ε(θ∗) − e and t, s index time instants. Let
us denote the second term in the last expression by Ξ.
Then (3) can be written as

Pθ = λ0(Ē(ψψT ))−1+(Ē(ψψT ))−1Ξ(Ē(ψψT ))−1.(4)

Thus the asymptotic covariance of the parameter
estimate is the sum of two terms. While the first
term in (4) is induced by the noise e, the second
term is due to the undermodeling. A similar situa-
tion holds for parametric frequency domain identifi-
cation. It is known (Goodwin et al., 1991),(Pintelon
et al., 2002),(Pintelon and Schoukens, 2001, Section
7.11.4) that in this case the second contribution in fact
is due to the variability of the input u. Hence for a
stochastic input the variance of the parameter estimate
in general does not vanish even in the absence of noise.

The term Ξ can be written as

Ξ = lim
N→∞

N−1E







(

N
∑

t=1

ε̃tψt

)2






. (5)

Note that by (1) we have

Ē(ε̃ψ) = Ē(H−1G0u · ψ)− Ē(ψψT )θ∗ = 0. (6)

Proposition 1. If the input signal u is a multisine, then
Ξ = 0 and Pθ = λ0(Ē(ψψT ))−1.

We hereby assume that the period of the multisine
remains constant when the number of data tends to
infinity, i.e. the number of periods tends to infinity.
Observe that this proposition also covers the case
where u is a square wave signal.

Proof. Suppose u is a multisine. Then the signals ε̃ and
ψ and their product ε̃ · ψ are also multisines. Thus the
signal ε̃ ·ψ is periodic and by (6) it has zero mean. But
then its cumulative sum is also periodic, specifically
bounded. The proposition now follows from (5). 2

Proposition 1 states that in the case of a deterministic
input the undermodeling has an impact only on the
value of the asymptotic estimate θ∗, but not on the
variance of θ̂N − θ∗. The latter is entirely due to the
noise.



In the next section we quantify the impact of under-
modeling on the parameter variance if a stochastic
input signal is used.

3. THE PARAMETER VARIANCE IN THE CASE
OF A STOCHASTIC INPUT

In this section we examine the asymptotic covari-
ance matrix (4) for zero mean quasistationary stochas-
tic inputs. We establish a condition under which the
asymptotic covariance depends only on the second
order properties of the involved signals. Assuming
this condition, we derive an explicit frequency domain
expression for the asymptotic parameter variance as a
function of the input power spectrum Φu.

If u is filtered white noise, then the signal ε̃ · ψ has
by (6) zero mean, but the standard deviation of its
cumulative sum grows proportionally to the square
root of the number of summands. Therefore the term
Ξ in (4) might be nonzero. By (5) the matrix Ξ is
positive semidefinite and, as expected, undermodeling
can only increase the asymptotic parameter variance.

It is known that in the presence of undermodeling
the asymptotic covariance depends on the 4th order
properties of the input and the noise (Pintelon and
Schoukens, 2001, p.198). Indeed, the definition of Ξ
involves 4th order products and powers of the input.
Therefore the asymptotic variance cannot be described
as a function of the second order properties of u alone.
In general it will depend also on the 4th order cumu-
lant spectrum (Rosenblatt, 1985). This poses serious
difficulties e.g. for input design. However, if we re-
strict the 4th order cumulants of u to be zero, then the
asymptotic variance is a function of the input power
spectrum Φu only. Denote the autocorrelation function
Ē(utut−τ ) of u by Ru(τ). Then the vanishing of the
4th order cumulants of u can be equivalently rewritten
as the condition

Ē(up+tuq+tur+tus+t) = Ru(p− r)Ru(q − s) (7)

+Ru(p− s)Ru(q − r) +Ru(p− q)Ru(r − s)

for all p, q, r, s. Here the time average is taken with
respect to t and the numbers p, q, r, s are assumed to
be fixed. Condition (7) is in fact not very restrictive. It
is satisfied for instance for filtered zero mean white
noise, where the probability density function of the
white noise has zero kurtosis “peakedness”, see e.g.
(Rosenblatt, 1985). This is equivalent to the condition
that the 2nd and 4th moments m2, m4 of the proba-
bility density function satisfy the relation m4 = 3m2

2.
This relation holds e.g. for a Gaussian distribution.

We now proceed to compute an expression of Ξ in
terms of signal spectra for the case where condition
(7) holds. Straightforward calculation yields

Ξ =

∞
∑

τ=1

(Rψε̃(τ)+Rε̃ψ(τ))(Rψε̃(τ)+Rε̃ψ(τ))T, (8)

where Rgh(τ) denotes the cross-correlation of signals
g, h at lag τ . Thus we have represented Ξ as a sum of
squares for the case where the input satisfies condition
(7). Representation (8) yields the following frequency
domain expression for Ξ.

Ξ =
1

π

π
∫

−π

ReΦψε̃ ·ReΦTψε̃ dω (9)

Here Φψε̃ is the cross-spectrum between the signals ψ
and ε̃. We obtain the following result.

Proposition 2. Let the input u be a quasistationary
stochastic zero mean process satisfying condition (7).
Then undermodeling does not have an impact on the
asymptotic parameter covariance if and only if the
cross-spectrum between the signals ψ = H−1Λu and
ε̃ = H−1G0u− (θ∗)Tψ = H−1(G0 − (θ∗)TΛ)u is a
purely imaginary function of the frequency. Otherwise
the undermodeling increases the asymptotic parameter
covariance. 2

Thus the condition Ξ = 0 admits the following
interpretation. Suppose for some frequency ω we
have Φu(ω) 6= 0. Then ReΦψε̃(ω) = 0 implies
Re[(G0(e

jω)− (θ∗)TΛ(ejω))Λ∗(ejω)] = 0, or equiv-
alently, arg(G0(e

jω)−(θ∗)TΛ(ejω))−arg Λk(e
jω) =

±π
2

for all k = 1, . . . , n. This means that the bias
G0 − (θ∗)TΛ is orthogonal to the model structure
not only in the sense of the pseudoscalar product (2),
but frequency-wise in the Nyquist plane at the excited
frequency ranges.

In this section we considered the case of a stochastic
input and derived expressions for the asymptotic pa-
rameter covariance as a function of the input power
spectrum under assumption (7). As (8) shows, the
contribution of the undermodeling to the parameter
covariance is caused by the correlation between the
prediction errors ε̃t + et and its negative gradients ψt
at time lags other than zero.

4. COVARIANCE IN THE FRAMEWORK OF
STOCHASTIC EMBEDDING

In this section we compute the asymptotic parameter
variance in the framework of stochastic embedding.
In this framework the parameter error is entirely de-
scribed as a variance error. It is then interesting to
compute that part of this variance error that is due to
the undermodeling.

Let us assume G0 = θT0 Λ + ηTZ, where θ0 is a fixed
parameter vector, η ∈ R

L and Z = (Z1, . . . , ZL)T

is a vector of L stable transfer functions. Within the
stochastic embedding framework, η is assumed to be
a random variable with zero mean and covariance
matrix Cη . For any given identification experiment
the vector η assumes a fixed value, which is drawn
according to its probability distribution. For details



and a justification of the procedure see (Goodwin et
al., 1992). Hence under the assumptions of stochastic
embedding the vector θ0 reflects intrinsic properties
of the system and can be considered as the “true”
parameter vector.

Thus the asymptotic value θ∗ of the parameter esti-
mate as well as its asymptotic covariance Pθ become
a function of η, θ∗ = θ∗(η), Pθ = Pθ(η). We obtain
from (1)

θ∗ − θ0 =
(

Ē(ψψT )
)−1





1

2π

π
∫

−π

Φu
|H|2 ΛZ∗ dω



 η,

ε̃= (θ0 − θ∗)Tψ + ηTH−1Zu. (10)

Note that both ε̃ and θ∗ − θ0 are linear in η. Observe
that by E η = 0 we have E θ∗ = θ0, where the
expectation is taken over η. Similarly E ε̃ = 0. Fur-
ther, Ξ becomes a matrix-valued positive semidefinite
quadratic form in η. Let us write this as ε̃ =

∑

i ηiε̃
i,

θ∗ − θ0 =
∑

i ηi∆θ
i and Ξ =

∑

i,j ηiηjΞ
ij . Here

ε̃i =









1

2π

π
∫

−π

Φu
|H|2ZiΛ

∗ dω









1

2π

π
∫

−π

Φu
|H|2 ΛΛ∗ dω





−1

H−1Λ +H−1Zi






u,

∆θi =





1

2π

π
∫

−π

Φu
|H|2 ΛΛ∗ dω





−1

1

2π

π
∫

−π

Φu
|H|2 ΛZ∗i dω,

and Ξij are matrices, which under condition (7) are
given by

Ξij =
1

π

π
∫

−π

ReΦψε̃i ·ReΦTψε̃j dω. (11)

Let us now compute the variance of the parameter
estimate θ̂N after averaging over η. Since η has zero
mean, the expectation of θ̂N is equal to θ0. Assuming
a normal distribution for η, we obtain after some
transformations for the asymptotic covariance PN of
θ̂N

E(θ̂N − θ0)(θ̂N − θ0)
T =

= λ0(NĒ(ψψT ))−1 +
∑

i,j

(Cη)ij · (12)

[

N−1(Ē(ψψT ))−1Ξij(Ē(ψψT ))−1+∆θi(∆θj)T
]

.

Here by (Cη)ij we denote the entries of the covari-
ance matrix Cη . Besides the familiar variance term
λ0(NĒ(ψψT ))−1 caused by the noise we have two
different contributions from the undermodeling to the
total variance. The term

∑

i,j(Cη)ij∆θ
i(∆θj)T is

due to the bias, i.e. the shift away from θ0 of the

asymptotic value θ∗. It is included into the variance
only by the stochastic embedding procedure. The term
∑

i,j(Cη)ijN
−1(Ē(ψψT ))−1Ξij(Ē(ψψT ))−1 is due

to the increase of the asymptotic parameter variance
by the undermodeling for any fixed η.

Note that the covariance matrix PN does not com-
pletely describe the distribution of θ̂N − θ0, even if
η is normally distributed. The distribution of θ̂N will
not be Gaussian if Ξ is not identically zero, because its
asymptotic covariance Pθ(η) is a function of the ran-
dom vector η, as stated above. The same holds for the
distribution of the transfer function in the frequency
domain. The definition of uncertainty regions at cer-
tain probability levels will therefore face considerable
difficulties. We stress that this property does in no way
contradict the familiar theorems on asymptotic nor-
mality of the parameter estimate. The non-normality
of θ̂N − θ0 is an artifact introduced by randomizing
the undermodeling, i.e. by averaging with respect to
the probability distribution of the actually constant
undermodeling parameter vector η. However, if Ξ is
zero, i.e. when using multisines as input, then averag-
ing over η yields a Gaussian probability distribution of
θ̂N , given η is normally distributed.

5. NON-MONOTONICITY OF THE
INFORMATION MATRIX

In this section we investigate the monotonicity prop-
erties of the total parameter variance with respect to
the input power spectrum under the assumptions of
stochastic embedding. We shall work with the infor-
mation matrixM , the inverse of the covariance matrix,
M = [E(θ̂N − θ0)(θ̂N − θ0)

T ]−1. This information
matrix depends on the input power spectrum Φu, and
one would expect that the usual monotonicity prop-
erty holds, namely M(Φu + Φ′u) � M(Φu) for any
power spectra Φu,Φ

′
u. This is in general not true, as

demonstrated by the following example.

Example. Consider prediction error identification in
a stochastic embedding framework for the following
system:

y = θ0z
−1u+ ηz−2u+ e,

where the model has the structure θΛ = θz−1. Thus
n = 1, L = 1, H ≡ 1, Λ = z−1, Z = z−2. Let
xk(Φu), k = 0, 1, be the first trigonometric moments
of the power spectrum Φu, i.e.

xk(Φu) =
1

2π

π
∫

−π

Φu(ω)e−jkω dω, k = 0, 1.

Suppose further that the inputs are multisines, so that
Ξ = 0. Then direct computation yields

M(Φu) =
x2

0(Φu)

λ0N−1x0(Φu) + Cηx
2
1(Φu)

.



Let us now consider the three multisine sequences
ut =

√
3

3
cos(πt) + 2

√
3

3
sin(π

3
t), u′t =

√
2

2
cos(πt) +

sin(π
2
t), u′′t =

√
30

6
cos(πt) + sin(π

2
t) + 2

√
3

3
sin(π

3
t).

Their respective power spectra Φu, Φ′u and Φ′′u are re-
lated by the equality Φ′′u = Φu+Φ′u and have moments
x0(Φu) = x0(Φ

′
u) = 1, x1(Φ

′
u) = x1(Φ

′′
u) = − 1

2
,

x1(Φu) = 0, x0(Φ
′′
u) = 2. Hence the information

matrices of experiments performed with inputs u and
u′′ are given by

M(Φu) =
N

λ0

, M(Φu + Φ′u) =
4

2λ0N−1 + 1

4
Cη

.

Hence we have M(Φu) �M(Φu+Φ′u) if and only if
CηN ≤ 8λ0. Thus if the SNR is large enough (i.e. λ0

is small), if the undermodeling effects begin to domi-
nate the noise effects, or if the number of data becomes
large, then the input u′′ yields a smaller information
matrix than the input u, although its power spectrum
Φ′′u is larger or equal to Φu frequency-wise. 2

This leads to the counterintuitive conclusion that an
increase in input power at some frequencies without
decrease at the other frequencies does not necessarily
imply an increase of information, and may even lead to
a decrease. This is an artifact caused by the stochastic
embedding procedure, which randomizes the under-
modeling by considering it as being of stochastic na-
ture and lumping it together with the actual parameter
variance. The increase of variance can therefore be
attributed to an increase of the bias.

A weaker monotonicity property does hold, however.
The following assertion is a consequence of (12).

Corollary 1. Let Φu be a power spectrum and let
β > 1 be a constant. Let M(Φu) denote the in-
formation matrix when the input signal has power
spectrum Φu and let M(βΦu) be the corresponding
information matrix for inputs with power spectrum
βΦu. Assume further that the inputs satisfy condition
(7). Then M(βΦu) �M(Φu). 2

6. CONCLUSIONS

In this contribution we have investigated the asymp-
totic parameter variance under time-domain prediction
error identification in the presence of undermodeling.
It was shown that under identification with a zero
mean periodic input the undermodeling does not in-
fluence the parameter variance. This result is summa-
rized in Proposition 1.

For stochastic input, undermodeling leads to an in-
crease of the variance. In general the amount of this
increase is difficult to evaluate and depends on higher
order properties of the input signal. Under assumption
(7) on the input signal, however, it is proportional
to the integral of the squared real part of the cross-
spectrum between the prediction error and its gradient.

This result is formalized in formulae (9), (4). Thus
the undermodeling impacts the parameter variance
through the correlation between the prediction error
and its gradient.

Further we investigated the asymptotic parameter co-
variance within the stochastic embedding framework.
An explicit expression is given by formula (12), but
note that in general the distribution of the parameter
vector is not normal. This can be attributed to the way
the bias error is randomized under the assumptions
of stochastic embedding, and does not contradict the
standard asymptotic normality theorems of prediction
error identification. Normality of the distribution is
preserved under the conditions of Proposition 1. For
the information matrix as a function of the input power
spectrum a weak monotonicity property holds, which
is formalized in Corollary 1. A counterexample to the
usual monotonicity condition has also been given.
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