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Abstract: Parameter identification experiments deliver an identified model together with
an ellipsoidal uncertainty region in parameter space. The objective of robust controller
design is thus to stabilize all plants in the identified uncertainty region. We design an
identification experiment such that the worst-case ν-gap over all plants in the resulting
uncertainty region between the identified plant and plants in this region is as small as
possible. The experiment design is performed via input power spectrum optimization. Two
cost functions are investigated, which represent different levels of trade-off between accuracy
and computational complexity. It is shown that the input optimization problem with respect
to these cost functions is amenable to standard numerical algorithms used in convex analysis.
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1. INTRODUCTION

This contribution continues the line of research that
aims at connecting prediction error identification
methods with robust control theory ((Bombois et al.,
2001), (Gevers et al., 2000)). Subject to investigation
are discrete time SISO real-rational stable LTI plants,
which are to be identified in open loop within an ARX
model structure. We assume the true plant to lie in the
model set. Hence the model error is determined only
by the covariance of the estimated parameter vector.

Since the aim of the identification experiment is con-
trol design, we wish to obtain an uncertainty region
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with good stability robustness properties. By this is
meant that the set of controllers that stabilize all mod-
els in the uncertainty set should be as large as possible.
A suitable measure of robust stability that connects the
"size" of an uncertainty set with a set of robustly stabi-
lizing controllers is the worst-case ν-gap δWC(Ĝ,D)
introduced in (Gevers et al., 2000). It is the supre-
mum of the Vinnicombe ν-gap (Vinnicombe, 1993)
between the identified model Ĝ and all plants in the
uncertainty set D . Specifically, all controllers C that
stabilize the model Ĝ with a stability margin bĜ,C >

δWC(Ĝ,D) stabilize all plants in D .

In previous papers ((Bombois et al., 2001), (Gevers
et al., 2000)) a special type of uncertainty sets D
of transfer functions, which emerges from prediction
error identification experiments, was described and
investigated. It is given by an ellipsoid in parameter
space and is determined by the covariance matrix of
the parameter vector and the prespecified confidence
level, i.e. the probability with which the true plant is
lying inside the considered uncertainty set.



The goal of this contribution is to minimize the worst-
case ν-gap of such uncertainty regions D by choosing
a suitable input u(t) for the identification experiment.
To restrict the class of admissible inputs we assume
the total input energy to be bounded.

The problem setting of experiment design first arose in
statistics and was extensively studied (see e.g. (Kiefer,
1974), (Kiefer and Wolfowitz, 1959), (Goodwin et
al., 1974), (Zarrop, 1979)). We adopt the most com-
mon viewpoint and study input optimization in the
frequency domain, i.e. optimize the input power spec-
trum with respect to a cost function that depends on
the average per data sample information matrix M̄ of
the experiment. This matrix is defined as the limit
of the ratio between the information matrix and the
number of data as the number of data tends to infinity
(see e.g. (Zarrop, 1979)). For typical number of data
this leads to a sufficiently good approximation of the
optimal input. Thus we will essentially regard the av-
erage information matrix instead of the input power
spectrum as the quantity that is going to be optimized.
Once the optimal average information matrix is found,
we proceed by construction of an input power spec-
trum that produces this information matrix.

For different classes of cost functions iterative proce-
dures were designed to find the optimal input power
spectrum up to a prespecified precision. Most of these
criteria are analytic in the entries of M̄ and Kiefer-
Wolfowitz theory (Kiefer, 1974) can effectively be
applied to them. All these classical criteria are convex
and monotonic with respect to M̄ (Zarrop, 1979, p.39).

Our criterion is the worst-case ν-gap of the uncer-
tainty region D . This is a nonstandard cost function,
it is nonsmooth and thus more difficult to treat than
the classical criteria. We shall also introduce another
cost function, which approximates the worst-case ν-
gap, but is somewhat simpler. Nevertheless, both cost
functions are compound criteria (Kiefer, 1974, section
4G) and application of Kiefer-Wolfowitz theory does
not make them more tractable. However, they satisfy
the natural condition of monotonicity with respect to
M̄, as well as the condition of quasiconvexity.

It can be shown (Zarrop, 1979) that under above as-
sumptions the corresponding set of admissible average
information matrices, over which the optimization is
performed, represents a moment space of a trigono-
metric Tchebycheff system. The foundations of the
theory of moment spaces are classical. It follows from
a well-known fact of Tchebycheff system theory (see
e.g. (Karlin and Studden, 1966)), restated in Theorem
1 in this contribution, that any admissible average
information matrix M̄ can be obtained by applying
an input with discrete power spectrum, and that there
exist admissible M̄ which can be realized only by
discrete power spectra. In view of this, we propose
an algorithm that yields optimal input power spectra
which are discrete. There are different ways to choose
an input sequence with a desired power spectrum. We

can choose the input e.g. as a multisine function. How-
ever, in many cases one could use also binary signals
(see e.g. (Zarrop, 1979, p.29)) or other functions.

A classical result on moment spaces (Karlin and Stud-
den, 1966, chapter VI, Theorem 4.1) states that the
set of possible average information matrices M̄ can be
represented as the feasible set of a linear matrix in-
equality (LMI). For a survey on LMI’s see e.g. (Boyd
et al., 1994). We show that optimization with respect
to the worst-case ν-gap and the proposed approximate
criterion can be accomplished by application of the
apparatus of convex analysis and the theory of LMI’s.

Several authors successfully treated input design prob-
lems arising in Identification for Control with convex
optimization methods. In (Lindqvist and Hjalmarsson,
2001), the input spectrum for an open loop identifica-
tion experiment was designed to minimize the closed-
loop system performance. By a Taylor series trunca-
tion, the cost function reduced to a weighted-trace
criterion (L-optimality). However, the input spectra
were restricted to those which can be realized by white
noise filtered through an FIR filter. An LMI descrip-
tion of the corresponding set of information matrices
can be derived from the positive-real lemma ((Boyd et
al., 1994),(Wu et al., 1996)). Note that in this contri-
bution we optimize over the whole set of nonnegative
input power spectra. For recent results in convex opti-
mization see e.g. (Nesterov and Nemirovskii, 1994).

The assumption of an ARX model structure and an
input energy constraint are in no way restrictive. The
ideas and methods proposed in the present contribu-
tion easily carry over to other model structures and to
input power or output power/energy constraints.

The remainder is structured as follows. In the next
section the considered identification problem as well
as the cost functions will be formally defined. In sec-
tion 3 we show that the set over which the optimiza-
tion takes place is LMI representable. In section 4 we
prove that the optimization problem is quasiconvex.
In section 5 we show how to construct cutting planes
to the different cost functions. The results obtained in
sections 3 to 5 allow the problem to be treated with
standard convex analysis methods. Since the optimiza-
tion takes place in an abstract parameter space, it is
necessary to convert values in this space into power
spectra and input sequences. This is accomplished in
section 6. In section 7 we illustrate the advantages
of the proposed procedure by a simulation example.
Finally, in section 8 we draw some conclusions.

2. PROBLEM SETTING

Let us consider an ARX model structure with pa-
rameters na,nb,nk: y(t) + a1y(t − 1) + . . . + ana y(t −
na) = b1u(t− nk)+ . . .+ bnbu(t− nk− nb + 1)+ e(t),
where u(t) is the input signal, y(t) is the output signal,
θ = (a1, . . . ,ana ,b1, . . . ,bnb)

T is the parameter vec-



tor, and e(t) is normally distributed white noise with
covariance λ0. Assume that the true system can be
described within this structure and corresponds to a
parameter value θ = θ0, and that it is stable. Denote
by z−1 the delay operator. Then we can write

y = z−nk+1 B(θ)

A(θ)
u+

1
A(θ)

e = G(θ)u+
1

A(θ)
e,

where A,B are polynomials in the delay operator with
coefficients depending on the parameter vector.

Suppose that an identification experiment with input
(u(1), . . . ,u(N)) is performed, leading to an observed
output (y(1), . . . ,y(N)) with N data samples, where
u(t) is a realization of a quasistationary stochastic
process with power spectrum Φu. Suppose a parameter
estimate θ̂ is obtained by least squares prediction error
minimization. Then it is well-known (Ljung, 1999)
that the estimate θ̂ is asymptotically unbiased as N →
∞ and for large N its covariance is proportional to
N−1, i.e. E(θ0 − θ̂)(θ0 − θ̂)T ≈ P

N . The matrix P
is a function of the input power spectrum and the
true values of the coefficients of A and B (Ljung,
1999). The inverse of the parameter covariance matrix
is the Fisher information matrix M. Let us denote
the asymptotic expression for the average information
matrix per data sample limN→∞

1
N M = P−1 by M̄.

Then M̄ is given by a convolution of the input power
spectrum Φu with a rational trigonometric function
plus a constant offset stemming from the noise.

Since the parameter estimate θ̂ is asymptotically nor-
mally distributed (Ljung, 1999), we can assume, fol-
lowing (Gevers et al., 2000), that the true parameter
vector θ0 lies with a prespecified probability α ∈ (0,1)
in the uncertainty ellipsoid
U =

{

θ |N(θ − θ̂)T M̄(θ − θ̂) < χ2
na+nb

(α)
}

, where
χ2

l is the χ2 distribution with l degrees of freedom.
The uncertainty ellipsoid U corresponds to an uncer-
tainty set D =

{

G(z,θ) = z−nk+1B(θ)/A(θ)|θ ∈U
}

in the space of transfer functions. The set D belongs to
the class of generic prediction error model uncertainty
sets as defined in (Gevers et al., 2000).

The worst-case ν-gap between the identified model
G(θ̂) and the uncertainty region D is defined by
δWC(G(θ̂),D) = supθ∈U δν(G(θ̂),G(θ)), where δν
denotes the Vinnicombe ν-gap between two plants
(Vinnicombe, 1993). Since G(θ̂) belongs to D , the
worst-case ν-gap can be expressed in the following
way (Gevers et al., 2000, Lemma 5.1): δWC(G(θ̂),D)=
supω∈[0,π] κWC(G(e jω , θ̂),D), where κWC(G(e jω,θ̂),D)
is called the worst-case chordal distance between
G(θ̂) and D at frequency ω and is defined by

supθ∈U
|G(e jω ,θ̂)−G(e jω ,θ)|√

(1+|G(e jω ,θ̂)|2)(1+|G(e jω ,θ)|2)
.

We have to minimize the quantity δWC(G(θ̂),D) by
choosing an input with an appropriate power spec-
trum. To restrict the class of admissible power spectra
we impose an input energy constraint

1
2π

π
∫

−π

Φu(ω)dω ≤ c, (1)

where c > 0 is a prespecified positive constant.

The worst-case ν-gap depends on Φu via the aver-
age information matrix M̄. Via M̄ it depends also on
the unknown true parameter value θ0 and noise co-
variance λ0. In addition it depends on the identified
parameter value θ̂ , which is not available before the
identification experiment. All these three quantities
have to be approximated with values derived from
previous knowledge about the system, for instance
from a preliminary identification experiment. Since
the expectation of θ̂ equals θ0, these two quantities
can be approximated by the same value θ̄ .

Problem 1 Find Φu satisfying (1) such that M̄(Φu)
minimizes the cost function J1 = δWC(G(θ̂),D).

Along with the worst-case ν-gap we will consider
another cost function, which is easier to compute and
is an approximation of δWC(G(θ̂),D). Let us approx-
imate cost function J1 = J1(M̄) by its asymptotic
expression for large information matrices, namely

J2 = lim
ε→0

J1(ε−2M̄)

ε
(2)

=

√

χ2
na+nb

(α)

N
sup

ω∈[0,π]

√

λmax(T (ω)M̄−1T (ω)T )

1+ |G(e jω , θ̂)|2
,

where T (ω) is a 2× (na +nb)-matrix given by

T (ω) =







Re
∂G(e jω ,θ)

∂θ
|θ=θ̂

Im
∂G(e jω ,θ)

∂θ
|θ=θ̂






.

Problem 2 Find Φu satisfying (1) such that M̄(Φu)
minimizes cost function J2 defined by equation (2).

Our goal is to develop numerical algorithms for solv-
ing both Problems 1 and 2. There is a two-fold reason
for introducing cost function J2. Beside its much
lower computational complexity, it turns out that iden-
tification with an input power spectrum minimizing
J2 in many cases gives better results than one with
an input power spectrum minimizing J1. We address
this question in detail in the simulation section.

3. LMI DESCRIPTION OF THE SEARCH SPACE

In this section we shall describe the set of possible
average information matrices M̄, over which the opti-
mization takes place, as the feasible set of an LMI. The
following fact is from (Payne and Goodwin, 1974).

Proposition 1. The matrix M̄ is contained in a (na +
nb)-dimensional affine subspace of the space of sym-
metric (na +nb)× (na +nb)-matrices.



This subspace can be parameterized by the trigono-
metric moments of the measure Φu

πλ0|A|2
, i.e. the num-

bers xk = 1
π

∫ π
0

Φu
λ0|A|2

cos(kω)dω , k = 0, . . . ,n, where

n = na +nb−1. Namely, we have M̄ = ∑n
k=0 xkM̃k +M̃,

where the matrices M̃k, M̃ are constant and depend
only on the coefficients of A and B. While the M̃k

can be obtained immediately from the expression for
M̄, the matrix M̃ is most easily computed using the
method proposed in (Ljung, 1999, p.50).

Let us compose a vector x̃ ∈ Rn+1 of the real numbers
xk, k = 0, . . . ,n. Since 1

πλ0|A|2
is strictly positive on ω ∈

[0,π], the set of all x̃(Φu) such that Φu is a nonnegative
measure on [0,π] equals the moment space M (n+1)

of the Tchebycheff system {1,cosω, . . . ,cosnω} on
[0,π] (see e.g. (Zarrop, 1979)). Thus the set of fea-
sible information matrices M̄ is an affine image of
the trigonometric moment cone M (n+1). It is a clas-
sical result that this set is LMI representable (see
e.g. (Karlin and Studden, 1966, Chapter VI, Theorem
4.1)). Denote the interior of the feasible set by M .

Definition 1. (see e.g. (Karlin and Studden, 1966))
Let Φu be a discrete power spectrum with support
suppΦu ⊂ [0,π]. The number #[suppΦu ∩ (0,π)] +
1
2 #[suppΦu∩{0,π}], where # denotes the cardinality,
is called the index of Φu.

Theorem 1. (see e.g. (Karlin and Studden, 1966)) Let
x̃ be a point in M (n+1). Then x̃ ∈ Bd(M (n+1)) if and
only if there exists a discrete nonnegative measure on
[0,π] with index less than n+1

2 that induces x̃. This
measure is unique. Moreover, x̃ ∈ Int(M (n+1)) if and
only if there exists a discrete nonnegative measure on
[0,π] with index n+1

2 that induces x̃.

Thus the notion of the index allows us to characterize
the interior of the moment space M (n+1). By the
special structure of the matrices M̃k, M̃ we have

Proposition 2. The average information matrix M̄
corresponding to a power spectrum Φu is singular if
and only if Φu is discrete with index less than nb

2 .

Corollary 1. Any M̄ ∈M is strictly positive definite.

This corollary ensures the existence of the inverse
M̄−1 in the interior of the search space. From the
definition of J1,J2 we obtain the following mono-
tonicity property.

Proposition 3. Let M̄1,M̄2 be two positive semidefi-
nite average information matrices, and suppose M̄1 �
M̄2. Then the values of the cost functions J1,J2 at
M̄2 do not exceed the respective values at M̄1. 2

By Proposition 3 the minimum of the considered cost
functions under constraint (1) is attained when equal-
ity holds, i.e. we can assume in (1) an equality sign. In
(Zarrop, 1979) it was shown that this equality reduces
the feasible set to an affine section of the trigonometric

moment cone. It allows us to express the variable x0

affinely through x1, . . . ,xn. Thus the feasible set is de-
scribed by an LMI on the variables x1, . . . ,xn. Denote
by X the set of vectors x = (x1, . . . ,xn)

T ∈ Rn in the
interior of the feasible set of this LMI. Any feasible
information matrix M̄ can hence be represented as
M̄ = M̄0 +∑n

i=1 xiM̄i, where x = (x1, . . . ,xn)
T ∈ X̄ and

M̄0, M̄i are known constant matrices.

Thus we reduced the infinite-dimensional problem of
searching the minimum of the cost functions over the
set of all admissible input power spectra to the n-
dimensional problem of searching the minimum over a
convex compact section of the trigonometric moment
cone, which can be described by an LMI.

4. QUASICONVEXITY

Proposition 4. On M cost function J1 is quasicon-
vex with respect to M̄.

This follows from a general fact about quasiconvexity
of functions depending on a quasiconvex constraint.
Consider the function F(y) = maxx∈X ,g(x,y)≥0 f (x),
where X is an arbitrary set, f (x) is an arbitrary func-
tion, and g(x,y) is quasiconvex in y. The following
lemma is proven by set-theoretic arguments.

Lemma 1. F(y) is quasiconvex in y.

Since J1(M̄) is the maximum of a function of θ over
the set U , and U is defined by an inequality which is
linear in M̄, the above lemma applies.

Since there is no restriction imposed on f (x), it is
in general impossible to draw computational advan-
tages from the quasiconvexity of the cost function
F(y). In order for the problem to be tractable, the
function f (x) needs to have some structure. In our
case the worst-case chordal distance can be expressed
as a solution to a generalized eigenvalue problem
(GEVP) (Gevers et al., 2000, Theorem 5.1). We have
κWC(G(e jω, θ̂),D) =

√γopt , where γopt is the solution
of the GEVP

minimize γ s. t. F0 + γF1 + τR� 0, τ ≥ 0. (3)

Here F0,F1,R are symmetric matrices given by

F0 = V









−1 0 −ImG ReG
0 −1 ReG ImG

−ImG ReG −|G|2 0
ReG ImG 0 −|G|2









V T , (4)

F1 = (1+ |G|2)VV T ,

R =

(

Ina+nb

−θ̂ T

)

M̄

(

Ina+nb

−θ̂ T

)T

−











0 · · · 0
...

. . .
...

0 · · ·
χ2

na+nb
(α)

N











The function G has to be taken at z = e jω and pa-
rameter value θ̄ . V is a (na + nb + 1)× 4-matrix de-



fined by V =

(

ReZT
N ImZT

N ImZT
D ReZT

D
0 0 0 1

)

with ZN =

z−nk+1(0 · · · 0 z−1 · · · z−nb), ZD =(z−1 · · · z−na 0 · · · 0)
being complex row vectors of dimension na +nb.

Proposition 5. On M cost function J2 is quasicon-
vex with respect to M̄.

The proposition follows from well-known convexity
properties of the maximal eigenvalue and the inverse
matrix on the positive definite cone.

5. CUTTING PLANES

In this section we provide the necessary tools that
allow the user to apply standard convex algorithms
to solve Problems 1 and 2 numerically, using the
LMI description of the feasible set. Most black-box
methods in convex analysis are based on the notion of
a cutting plane (see e.g. (Boyd et al., 1994)). If S⊂Rm

is a convex set and f : S→R is a quasiconvex function
defined on S, then a cutting plane to f at a point x(0) ∈
S is defined by a nonzero vector g ∈ Rm such that
f (x(0)) ≤ f (x) for any x ∈ S satisfying the inequality
gT (x− x(0)) ≥ 0. We will compute cutting planes for
cost functions J1,J2 at an arbitrary point x(0) ∈X .
For a description of different methods see e.g. (Boyd
et al., 1994),(Nesterov and Nemirovskii, 1994).

Let M̄(0) be the average information matrix corre-
sponding to x(0). We shall now compute a cutting
plane for J1 = maxω∈[0,π] κWC(G(e jω , θ̂),D). De-

note by ω (0) the frequency where the worst-case
chordal distance κWC attains its maximum. The value
of ω(0) can be found e.g. by a grid search. A cut-

ting plane to the function κWC(G(e jω(0)
, θ̂),D) or its

square will also be a cutting plane to J1. In the sequel
we assume ω = ω (0) and omit ω as argument. Thus
our goal is to find a cutting plane for the optimum
value γopt of GEVP (3),(4), considered as a function
of x. Note that R depends affinely on x, i.e. R(x) =
R0 + ∑n

i=1 xiRi with known constant matrices Rk. Let

γ(0)
opt ,τ

(0)
opt be the optimal values for γ ,τ in GEVP (3),(4)

at x = x(0). Then the matrix F0 + γ(0)
optF1 + τ(0)

optR(x(0))

is singular. Let V 0 be the nullspace of this matrix.

Proposition 6. If τ (0)
opt > 0, then there exists a unit

length vector v ∈ V 0 such that vT Rv = 0. If τ (0)
opt = 0,

then there exists a unit length vector v ∈ V 0 such that
vT Rv≤ 0. In either case the vector g ∈ Rn given com-
ponentwise by gi = −vT Riv, if it is nonzero, defines
a cutting plane for the function J1. If g is zero, then
J1 achieves a minimum at x(0).

The proof is based on inclusion relations between the
nullspaces, positive and negative spaces of F0,F1,R.

Let us now compute a cutting plane for cost func-
tion J2. Denote by ω (0) the frequency at which the

function λmax(T (ω)M̄−1T (ω)T )

(1+|G(e jω ,θ̂)|2)2 attains its maximum. Let

v ∈ R2 be a unit length eigenvector to the maximal
eigenvalue of the matrix T (ω (0))M̄−1T (ω(0))T .

Proposition 7. Let g ∈ Rn be defined componentwise
by gi = −vT T (ω(0))M̄−1M̄iM̄−1T (ω(0))T v. If g 6= 0,
then g defines a cutting plane for the cost function J2

at x(0). If g = 0, then J2 attains a minimum at x(0).

The proof is by computing the gradient of the function
f (x) = tr(T (ω (0))T vvT T (ω(0))(M̄(x))−1).

6. DESIGN OF INPUT SIGNALS

In this section we design an input signal from an ob-
tained solution x(0) ∈ X̄ . By Theorem 1, any moment
point can be realized by a discrete spectrum, and there
exist moment points which can be realized only by dis-
crete spectra. Thus we propose a two-step procedure.
First a discrete input power spectrum generating the
moment point x(0) is computed, and then a multisine
input with the desired spectrum is generated.

The point x(0) corresponds to a point x̃ =(x0,x1, . . . ,xn)
in moment space M (n+1). By Theorem 1, there ex-
ists a discrete realization of x̃ with index not greater
than n+1

2 . Its construction can be cast into a standard
semidefinite program by exploiting an idea that is used
to prove Theorem 1. We omit the details here.

Once we have obtained a discrete realization of x̃
with frequencies ω1, . . . ,ωm and associated weights
λ1, . . . ,λm, we can construct the multisine input u(t) =

∑m
i=1 αi sin(tωi + φi) with αi =

√
2cλi, φi arbitrary, if

ωi 6= 0,π; and αi =
√

cλi, φi = ±π
2 , if ωi ∈ {0,π}.

It has the input power spectrum defined by the initial
realization (see e.g. (Zarrop, 1979)).

7. SIMULATION RESULTS

Consider the true system y = G0u + H0e = B(z)
A(z)u +

1
A(z)e with G0 = B(z)

A(z) = 0.1047z−1+0.0872z−2

1−1.5578z−1+0.5769z−2 . Here u

is the input, subject to the energy constraint Ēu2(t) =
1, and e is white Gaussian noise with variance 0.1.
The system is to be identified within an ARX model
structure of order two. The number of collected data
is N = 1000. The aim is to minimize the worst-case ν-
gap of the resulting uncertainty region corresponding
to a confidence level of α = 0.95.

A Monte-Carlo simulation of 500 runs was performed.
Each run consisted of five identification experiments:
one preliminary and four mutually independent sec-
ondary experiments based on this preliminary exper-
iment. The secondary experiments corresponded to
the cost functions J1, J2, and, for comparison, the
classical criteria D-optimality and E-optimality, re-
spectively. In the preliminary experiment, the input
was chosen to be white Gaussian noise with variance



1. The parameter vector and noise variance identified
in the preliminary experiment were used as a priori
estimates of the true parameter vector and the true
noise variance for designing the input power spectrum
for the series of second experiments. The actual input
sequence was a multisine having the evaluated optimal
power spectrum, in each of the four secondary experi-
ments with respect to the corresponding cost function.
After each identification experiment the worst-case ν-
gap of the identified uncertainty region was recorded.

The mean over 500 runs of the worst-case ν-gap
resulting from the preliminary experiments equals
0.1345. The means of the worst-case ν-gap resulting
from the experiments with multisine input optimized
with respect to the criteria J1,J2 are 0.0937 and
0.0927, respectively. The difference between them is
statistically significant (2×1.64 standard deviations).
The means of the worst-case ν-gap resulting from the
experiments with D- and E-optimal multisine input are
equal to 0.1434 and 0.1055, respectively.

It is evident that using inputs optimized with respect to
criteria J1,J2 gives better results than using white
noise input or input optimized with respect to the
classical D- and E-optimality criteria. Note also that
the inputs optimized with respect to the cost function
J2, which is a first order approximation of the exact
cost function J1, give better results than J1, despite
the fact that the worst-case ν-gap is in fact J1. This
tendency was observed also in simulations with other
systems. The reason is that the optimum of the input
power spectrum with respect to J2 is less dependent
on the error in the preliminary estimate θ̄ of the true
parameter vector than the optimum with respect to
J1 and that this difference as a rule overweighs the
error introduced by approximating cost function J1

by J2. Given the lower complexity of J2 and hence
the lower computational effort in comparison with
J1, it is preferable to use primarily the former.

8. CONCLUSIONS

We design an input sequence for an identification
experiment that minimizes the worst-case ν-gap be-
tween the identified model and the uncertainty region
around it. The design is via power spectrum opti-
mization. Two nonstandard cost criteria J1 and J2

are defined, which reflect the optimization task with
different accuracy. J1 is the exact worst-case ν-gap,
while J2 is an approximation of J1. These functions
fulfil the natural conditions of monotonicity and qua-
siconvexity with respect to the power spectrum.

It was shown that optimization of the input power
spectrum with respect to these cost criteria can be cast
as standard convex optimization problem involving
LMI constraints. In Propositions 6 and 7 we demon-
strate how to construct cutting planes to the cost func-
tions J1,J2, which is essential for applying standard
numerical methods such as the ellipsoid algorithm. We

have also briefly touched the problem of designing an
input sequence with a prespecified power spectrum.
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