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Abstract— The aim of this contribution is to demonstrate
efficient applicability of modern convex optimization techniques
in control theory. We solve the problem of designing an input
for a parameter identification experiment such that the worst-
caseν-gap over all plants in the resulting uncertainty region
between the identified plant and plants in this region is as small
as possible. The motivation for choosing this cost criterion is
robust controller design, where the controller has to stabilize
all plants in the identified uncertainty region.

I. I NTRODUCTION

In this contribution we deal with a problem that connects
prediction error identification methods with robust control
theory. A series of investigations in this direction has been
undertaken recently [2]. In this work we focus on com-
putational aspects, specifically we show that the existing
apparatus of convex analysis is capable of tackling this kind
of problems efficiently.

Subject to investigation are discrete time SISO real-
rational stable LTI plants, which are to be identified in open
loop within an ARX model structure. We assume the true
plant to lie in the model set. Hence the model error is
determined only by the covariance of the estimated parameter
vector.

Since the aim of the identification experiment is control
design, it is desirable to obtain an uncertainty region with
good stability robustness properties. The set of controllers
that stabilize all models in the uncertainty set should be
large. A suitable measure of robust stability that allows one to
connect the ”size” of an uncertainty set with a set of robustly
stabilizing controllers is the worst-caseν-gap δWC(Ĝ,D)
introduced in [2]. It is the supremum of the Vinnicombeν-
gap [10] between the identified modelĜ and all plants in the
uncertainty setD which emerges from the experiment. The
problem we deal with is to minimize the worst-caseν-gap
of the uncertainty regionD by choosing a suitable inputu(t)
for the identification experiment.
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The problem setting of experiment design first arose in
statistics and was extensively studied throughout the last
century. We adopt the most common viewpoint and optimize
the input power spectrum with respect to a cost function that
depends on the average per data sample information matrix
M̄ of the experiment. This matrix is defined as the limit of the
ratio between the information matrix and the number of data
as the number of data tends to infinity (see e.g. [12]). Thus
we effectively optimize the average information matrix with
respect to the considered cost function, and then construct
an input power spectrum and an input that produces this
information matrix.

For different classes of cost functions iterative procedures
were designed to find the optimal input power spectrum up
to a prespecified precision. Most common cost functions are
ln(detM̄−1) (D-optimality), trM̄−1 (A-optimality), trWM̄−1,
whereW ≥ 0 (L-optimality), λmax(M̄−1) (E-optimality). All
mentioned cost functions depend analytically on the entries
of M̄ and Kiefer-Wolfowitz theory can effectively be applied
to them (see [5]). These criteria are convex and monotonic
with respect toM̄ (see [12, p.39]).

In this contribution, we optimize the input power spectrum
with respect to the worst-caseν-gap of the uncertainty region
D . We shall also introduce another cost function, which
approximates the worst-caseν-gap, but is somewhat simpler.
Both cost functions are compound criteria (see [5, section
4G]) and application of Kiefer-Wolfowitz theory does not
make them more tractable. However, the proposed criteria
satisfy the natural condition of monotonicity with respect
to M̄, as well as the condition of quasiconvexity, which is
slightly weaker than convexity.

To tackle the considered problem we will use the theory
of Tchebycheff systems and their moment spaces. The set of
possible average information matrices̄M can be represented
as the feasible set of a linear matrix inequality (LMI) [4,
chapter VI, Theorem 4.1]. This allows to apply convex anal-
ysis and the theory of LMI’s to this optimization problem.
For recent results in convex optimization see e.g. [8].

It follows from a well-known fact of Tchebycheff system
theory that any admissible average information matrix̄M
can be obtained by applying an input with discrete power
spectrum, and that there exist admissiblēM which can be
realized only by discrete power spectra. A restatement of



this assertion is provided in Theorem 1 in this contribution.
In view of this, we propose an algorithm that yields optimal
input power spectra which are discrete. Given the result just
quoted, this is in no way a restriction. There are different
ways to choose an input sequence with a desired power spec-
trum. We can choose the input e.g. as a multisine function.
However, in many cases one could use also binary signals
(see e.g. [12, p.29]) or other functions. For a comprehensive
treatment of Tchebycheff systems see textbook [4] by Karlin
and Studden.

In the last years several authors successfully treated input
design problems arising in Identification for Control with
convex optimization methods. In [6], the input spectrum
for an open loop identification experiment was designed to
minimize the closed-loop system performance. By a Taylor
series truncation, the cost function reduced to the weighted-
trace criterion (L-optimality). However, the input spectra
were restricted to those which can be realized by white noise
filtered through an FIR filter. An LMI description of the
corresponding set of information matrices can be derived
from the positive-real lemma [1],[11].

We stress that the assumption of an ARX model structure
and an input energy constraint are in no way restrictive. The
ideas and methods proposed here easily carry over to other
model structures and to input power or output power/energy
constraints.

The remainder is structured as follows. In the next section
the considered identification problem as well as the cost
functions are formally defined. In section 3 we show that the
set over which the optimization takes place is amenable to an
LMI formulation. In section 4 we prove that the optimization
problem is quasiconvex. In section 5 we construct cutting
planes to the different cost functions. Sections 3 to 5 are the
key part. The results obtained therein allow the problem to
be treated with standard convex analysis methods. Since the
optimization takes place in an abstract parameter space, itis
necessary to convert values in this space into power spectra
and input sequences. This task is accomplished in section 6.
In Section 7 we demonstrate the benefits of the computed
input in a numerical example. Finally, in section 8 we draw
some conclusions.

II. PROBLEM SETTING

Let us consider an ARX model structure

y(t)+a1y(t −1)+ · · ·+anay(t −na) =

= b1u(t −nk)+ · · ·+bnbu(t −nk−nb +1)+e(t),

whereu(t) is the input signal,y(t) is the output signal, both
onedimensional,θ = (a1, . . . ,ana,b1, . . . ,bnb)

T is the param-
eter vector, ande(t) is normally distributed white noise with
covarianceλ0. Let us assume that the true system dynamics
can be described within this structure and corresponds to a
parameter valueθ = θ0. Assume further that the true system

is stable. Denote byz−1 the delay operator. Then we can
write

y = z−nk+1 B(θ)

A(θ)
u+

1
A(θ)

e= G(θ)u+
1

A(θ)
e,

where A,B are obviously defined polynomials in the delay
operator. Note that by our stability assumptionA has no zeros
on the unit circle and hence|A|2 is strictly positive there.

Suppose an identification experiment with input
(u(1), . . . ,u(N)) is performed, leading to an observed output
(y(1), . . . ,y(N)) with N data samples, whereu(t) is qua-
sistationary with power spectrumΦu. Suppose a parameter
estimate θ̂ is obtained by least squares prediction error
minimization. Then it is well-known [7] that the estimate
θ̂ is asymptotically unbiased asN → ∞ and its covariance
for largeN is given byE(θ0− θ̂)(θ0− θ̂)T ≈ λ0

N (ĒψψT)−1,
where ψT is the gradient of the predictor with respect to
θ at θ = θ0. The asymptotic expression for the parameter
covariance is then a function of the input power spectrum
and the true values of the coefficients ofA and B [7]. The
inverse of the parameter covariance matrix is the Fisher
information matrix. Let us denote the asymptotic expression
for the information matrix byM and the average information
matrix per data sample (see e.g. [12, p.24]) byM̄, M̄ = 1

N M.
Since the parameter estimateθ̂ is asymptotically normally

distributed [7], we can assume, following [2], that the true
parameter vectorθ0 lies with a prespecified probabilityα ∈
(0,1) in the uncertainty ellipsoid

U =

{

θ |
N

χ2
na+nb

(α)
(θ − θ̂)TM̄(θ − θ̂) < 1

}

, (1)

whereχ2
l is theχ2 probability distribution withl degrees of

freedom.
The uncertainty ellipsoidU corresponds to an uncertainty

setD =
{

G(z,θ) = z−nk+1 B(θ)
A(θ) |θ ∈U

}

in the space of trans-
fer functions.

The worst-caseν-gap between the identified modelG(θ̂)
and the uncertainty regionD is defined by

δWC(G(θ̂),D) = sup
θ∈U

δν(G(θ̂),G(θ)), (2)

whereδν denotes the Vinnicombeν-gap between two plants
[10]. SinceG(θ̂) belongs toD , the worst-caseν-gap can be
expressed in the following way [2, Lemma 5.1].

δWC(G(θ̂),D) = sup
ω∈[0,π]

κWC(G(ejω , θ̂),D), (3)

where κWC(G(ejω , θ̂),D) is called the worst-case chordal
distance betweenG(θ̂) andD at frequencyω and is defined
by

sup
θ∈U

|G(ejω , θ̂)−G(ejω ,θ)|
√

(1+ |G(ejω , θ̂)|2)(1+ |G(ejω ,θ)|2)
. (4)



Our goal shall be to minimize the quantity
δWC(G(θ̂),D) = maxω∈[0,π] κWC(G(ejω , θ̂),D) by choosing
an input with an appropriate power spectrum.

To restrict the class of admissible power spectra we impose
an input energy constraint

1
2π

∫ π

−π
Φu(ω)dω ≤ c, (5)

wherec > 0 is a prespecified positive constant.
Problem 1 Find Φu satisfying (5) such thatM̄(Φu) min-

imizes the cost functionJ1 = δWC(G(θ̂),D) defined by
equations (3),(4).

Along with the worst-caseν-gap of the uncertainty region
D , we will consider another cost function, which is easier
to compute and is an approximation ofδWC. For a fixed
positive definite matrixM̄0 the size of the parameter ellipsoid
U defined by any multipleM̄ = βM̄0 of M̄0, where β >
0, is proportional toβ−1/2. Since for small ellipsoids the
worst-caseν-gap is asymptotically proportional to the size
of the former, it follows that for largeβ the value ofJ1(M̄)
diminishes asymptotically proportionately toβ−1/2. Thus we
can approximateJ1 by the leading Taylor series term

J2 = lim
ε→0

J1(ε−2M̄)

ε
. (6)

Problem 2 Find Φu satisfying (5) such that̄M(Φu) mini-
mizes cost functionJ2 defined by equation (6).

The goal of the present contribution is the development
of numerical algorithms for solving both Problems 1 and 2.
There is a two-fold reason for introducing cost functionJ2.
Beside its much lower computational complexity, it turns out
that identification with an input power spectrum minimizing
J2 in many cases gives better results than one with an input
power spectrum minimizingJ1. This apparently counter-
intuitive observation has the following reason. Both cost
functions depend on the identified parameter valueθ̂ , the
true parameter valueθ0 and the noise covarianceλ0. These
quantities are unknown and must be replaced by estimates
obtained e.g. from a preliminary identification experiment.
This approximation introduces an error to the argument of
the minimum of the cost functionsJ1 and J2, i.e. to the
solutions of Problems 1 and 2. Now simulations show that
the impact of this effect on argminJ2 is lower than that on
argminJ1 and that this difference as a rule overweighs the
error introduced by approximating cost functionJ1 by J2.
We will address this issue again in the simulation section.

III. LMI DESCRIPTION OF THE SEARCH SPACE

In this section we shall describe the set of possible average
information matricesM̄, over which the optimization takes
place, as the feasible set of an LMI.

Proposition 1: [9] The average information matrix̄M is
contained in a(na +nb)-dimensional affine subspace of the
space of symmetric(na +nb)× (na +nb)-matrices.

This subspace can be parameterized by thetrigonometric
momentsof the measure Φu

πλ0|A|2
, i.e. the numbersxk =

1
π

∫ π
0

Φu
λ0|A|2

cos(kω)dω, k = 0, . . . ,n, wheren = na + nb−1.

Let us compose a vector ˜x ∈ Rn+1 of the real numbersxk,
k = 0, . . . ,n. It lies in the moment spaceM (n+1) of the
Tchebycheff system{1,cosω, . . . ,cosnω} on [0,π] (see e.g.
[12]). Thus the set of feasible information matrices̄M is the
affine image of the trigonometric moment coneM (n+1). It
therefore can be characterized as the feasible set of an LMI
(see e.g. [4, Chapter VI, Theorem 4.1]). Let us denote the
interior of the feasible set byM .

Definition 1: (see e.g. [4]) LetΦu be a discrete power
spectrum with supportsuppΦu ⊂ [0,π]. The number
#[suppΦu∩ (0,π)]+ 1

2#[suppΦu∩{0,π}], where # denotes
the cardinality, is called theindexof Φu.

The notion of the index allows us to characterize the
interior of the moment spaceM (n+1). The following theorem
is a standard result on moment spaces.

Theorem 1:(see e.g. [4]) Let ˜x be a point inM (n+1). Then
the following conditions hold.

i) x̃ ∈ Bd(M (n+1)) if and only if there exists a discrete
nonnegative measure on[0,π] with index less thann+1

2
that induces ˜x. This measure is unique.

ii) x̃ ∈ Int(M (n+1)) if and only if there exists a discrete
nonnegative measure on[0,π] with index n+1

2 that
induces ˜x. There are exactly two such measures. Exactly
one of them contains the frequencyπ.

iii) Let x̃ ∈ Int(M (n+1)) and ω ∈ [0,π]. Then there exists
a unique discrete nonnegative measure on[0,π] which
induces ˜x, has index not exceedingn+2

2 , and contains
the frequencyω. �

Proposition 2: Let Φu be a power spectrum and̄M the
corresponding average information matrix. ThenM̄ is singu-
lar if and only if Φu is discrete and its index is less than
nb
2 .

The proposition follows from the above theorem by con-
sidering the special structure of̄M.

Corollary 1: Any M̄ ∈ M is strictly positive definite.
This corollary ensures the existence of the inverseM̄−1 in

the interior of the search space.
The minimum of the considered cost functions under

constraint (5) is attained when equality holds, i.e. we can
replace (5) by

1
2π

∫ π

−π
Φu(ω)dω = c. (7)

This determines an affine hyperplane in the space of feasible
average information matrices [12]. Moreover, (7) defines
sections of the moment cone. Expressing the variablex0

affinely throughx1, . . . ,xn, we obtain a compact feasible set
described by an LMI on the variablesx1, . . . ,xn. Denote by
Xc the interior of this set and byMc the corresponding set
of information matricesM̄ = M̄0 + ∑n

i=1xiM̄i . Here M̄0, M̄i

are known constant matrices.



Thus we reduced the infinite-dimensional problem of
searching the minimum of the cost functions over the set of
all admissible input power spectra to the finite-dimensional
problem of searching the minimum over a convex compact
section of the trigonometric moment cone, which can be
described by an LMI.

IV. QUASICONVEXITY

In this section we prove quasiconvexity of cost functions
J1,J2 and thus of Problems 1 and 2.

Proposition 3: On M cost functionJ1 is quasiconvex
with respect toM̄.

The proposition follows from a general assertion on qua-
siconvexity of cost functions depending on a quasiconvex
constraint. Let us consider the following constrained opti-
mization problem.

F = max
x∈X,g(x,y)≥0

f (x), (8)

whereX is an arbitrary set,f (x) is an arbitrary function, and
g(x,y) is a constraint function picked out from a family of
constraint functions parameterized by the variabley. The only
assumption we make is thatg(x,y) is quasiconvex iny. The
following lemma is easily proven by set-theoretic arguments.

Lemma 1:The value of problem (8), considered as a
function of y, F = F(y), is quasiconvex iny.

Note that cost functionJ1 is the maximum of a function
of θ over the setU given by (1). ButU is defined by
an inequality which is linear inM̄. Thus the above lemma
applies.

Proposition 4: On M cost functionJ2 is quasiconvex
with respect toM̄.

Proof. Direct calculation shows thatJ2 can be expressed
as follows.

J2 = const· sup
ω∈[0,π]

√

λmax(T(ω)M̄−1T(ω)T)

1+ |G(ejω , θ̂)|2
,

whereT(ω) is a 2× (na +nb)-matrix given by the gradient
∂G(ejω ,θ)

∂θ . The inverseP−1 of a symmetric positive definite
matrixP and the maximal eigenvalueλmax(Q) of a symmetric
positive semidefinite matrixQ are convex functions with
respect toP or Q respectively. Henceλmax(TM̄−1TT) is
convex with respect toM̄ for fixed ω. Since the operation
of taking the maximum over a family of functions preserves
convexity, we have thatJ 2

2 is a convex function with respect
to M̄. This yields quasiconvexity ofJ2. �

V. CUTTING PLANES

In this section we provide the necessary tools that allow the
user to apply standard convex algorithms to solve Problems
1 and 2 numerically.

Most black-box methods in convex analysis are based on
the notion of a cutting plane [1]. IfS⊂ Rm is a convex
set and f : S→ R is a quasiconvex function defined onS,
then a cutting plane tof at a pointx(0) ∈ S is defined by

a nonzero vectorg ∈ Rm such that f (x(0)) ≤ f (x) for any
x∈ S satisfying the inequalitygT(x−x(0)) ≥ 0. We compute
cutting planes for cost functionsJ1,J2 at an arbitrary point
x(0) ∈ Xc. Along with the LMI description of the feasible
set this allows the user to employ standard convex black-box
methods for solving Problems 1 and 2. For a description of
different methods see e.g. [1],[8].

Cutting planes for cost functionJ1 can be computed
using the special structure of this function. Namely, the
worst-case chordal distance can be expressed as a solution to
a generalized eigenvalue problem (GEVP) [2, Theorem 5.1].
The parameters of this GEVP enter in the components of the
normalg(x) to a cutting plane atx. Details can be found in
[3] and are omitted here.

Let us now compute a cutting plane for cost function
J2. Denote byω(0) the frequency at which the function
λmax(T(ω)M̄−1T(ω)T )

(1+|G(ejω ,θ̂)|2)2 attains its maximum. Letv∈ R2 be a unit
length eigenvector to the maximal eigenvalue of the matrix
T(ω(0))M̄−1T(ω(0))T .

Proposition 5: Let g∈ Rn be defined componentwise by
gi = −vTT(ω(0))M̄−1M̄iM̄−1T(ω(0))Tv. If g 6= 0, then g
defines a cutting plane for the cost functionJ2 at x(0). If
g = 0, thenJ2 attains a minimum atx(0).

The proof is by computing the gradient of the function
f (x) = tr(T(ω(0))TvvTT(ω(0))(M̄(x))−1).

VI. D ESIGN OF INPUT SIGNALS

Now we show how to design an input signal from an
obtained solutionx(0) ∈ X̄c. By Theorem 1, there exist mo-
ment points which can be realized only by discrete spectra.
On the other hand, any moment point can be realized by
a discrete spectrum. Therefore we propose the following
two-step procedure. First a discrete input power spectrum
generating the moment pointx(0) is computed, and then a
multisine input with the desired spectrum is generated. The
latter is a standard task.

The pointx(0) corresponds to a point ˜x= (x0,x1, . . . ,xn) in
moment spaceM (n+1). Denote by ˜xs(ω) the moment point
induced by the design measure that satisfies constraint (7)
and concentrates all power at the single frequencyω. The
point x̃ is a convex combination∑k λkx̃s(ωk) of points on the
curve {x̃s(ω) |ω ∈ [0,π]}. The weightsλk and frequencies
ωk determine a power spectrum which induces the moment
point x̃.

In order to findλk, ωk we exploit an idea that is used
to prove Theorem 1 [4]. Namely, the expression of a point
on the boundary of the feasible set as convex combination
of points x̃s(ω) is unique and the corresponding frequen-
cies ωk are the roots of a trigonometric polynomial whose
coefficients can be computed from a supporting plane at
that point. The weights are obtained by solving a standard
linearly constrained least squares problem. But we can easily
represent any feasible point ˜x as convex combination of two
points on the boundary.



VII. S IMULATION RESULTS

Consider the true systemy = G0u+ H0e = B(z)
A(z)u+ 1

A(z)e

with G0 = B(z)
A(z) = 0.1047z−1+0.0872z−2

1−1.5578z−1+0.5769z−2 . The inputu is subject

to the energy constraint̄Eu2(t) = 1, and the noisee has unit
variance.

The system is identified within an ARX model structure
of order two. The number of data points to be collected
is N = 1000. We minimize the worst-caseν-gap of the
uncertainty region around the identified model corresponding
to a confidence level ofα = 0.95.

In a Monte-Carlo simulation, 500 runs were performed.
Each run consisted of five identification experiments: one
preliminary and four mutually independent second experi-
ments based on this preliminary experiment, corresponding
to the four different cost functionsJ1, J2, D-optimality
and E-optimality.

In the preliminary experiment, the input was chosen to
be white Gaussian noise with variance 1. The identified
parameter vector and noise variance were used as a priori
estimates of the true parameter vector and the true noise
variance for designing the input power spectrum for the series
of second experiments. After each identification experiment
the worst-caseν-gap of the identified uncertainty region was
recorded.

The noise realizations for the five experiments within one
run and for different runs were different, as well as the input
realizations for the preliminary experiments of the different
runs.
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Fig. 1. Identification with white and subsequently estimatedoptimal input

In figure 1 the worst-caseν-gap obtained from the prelim-
inary experiment with white noise input, as well as from the
experiments with inputs optimized with respect toJ1 and
J2 respectively, are shown for the first 50 simulation runs.
The mean over 500 runs of the worst-caseν-gap resulting
from the preliminary experiments equals 0.1345. The means

of the worst-caseν-gap resulting from the experiments with
multisine input optimized with respect to criteriaJ1,J2

are 0.0937 and 0.0927, respectively. The difference between
them is statistically significant (2×1.64 standard deviations).
The means of the worst-caseν-gap resulting from the exper-
iments with D- and E-optimal multisine input are equal to
0.1434 and 0.1055.

It is evident that using inputs optimized with respect to
criteria J1,J2 gives better results than using white noise
input or input optimized with respect to the classical D-
and E-optimality criteria. Note also that the inputs optimized
with respect to the cost functionJ2 give better results than
J1, despite the fact that the plotted quantity is in factJ1.
This tendency was observed also in simulations with other
systems. As mentioned already in section 2, the reason is
that the optimum of the input power spectrum with respect
to J2 is less dependent on the preliminary estimate of the
true parameter vector. Given the lower complexity ofJ2 and
hence the lower computational effort in comparison withJ1,
it is recommendable to use primarily the former.

VIII. C ONCLUSIONS

Let us summarize the results obtained in the present paper.
We have to design an input sequence for an identification
experiment that makes the worst-caseν-gap between the
identified model and the uncertainty region around it as
small as possible. The design takes place via power spectrum
optimization. Two nonstandard cost criteriaJ1 andJ2 are
defined, which reflect the optimization task with different ac-
curacy.J1 is the exact worst-caseν-gap one would want to
minimize, whileJ2 is an approximation ofJ1. Both fulfil
the natural conditions of monotonicity and quasiconvexity
with respect to the power spectrum.

It was shown that optimization of the input power spectrum
with respect to these cost criteria can be reduced to a convex
optimization problem involving LMI constraints.

Simulations show clearly the superiority of the proposed
cost functions over classical design criteria. They also sug-
gest to use cost functionJ2 rather thanJ1, due to both
lower computational effort and higher performance.
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