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Extended Abstract

A model G(z, θ̂) identified in the Prediction Error (PE) framework [6] is always an approximation of the
real-life system G(z, θ0) we want to identify. A model is therefore useless if it is not accompanied with infor-
mation about the achieved error G(z, θ̂)−G(z, θ0). A classical domain where it is convenient to express the
features of this error is the frequency domain (i.e. the Nyquist plane). In this presentation, we characterize
this error in the frequency domain by determining a set of parametrized transfer functions G(z, θ) whose
frequency response is at each frequency constrained to lie in an ellipse in the Nyquist plane and that has
the property to contain the true system G(z, θ0) at a probability level of at least α (say, 95%). We shall call
such a set a frequency domain uncertainty region. This uncertainty region can be subsequently used e.g. for
the design of a robust controller for G(z, θ0) [10].

We consider the identification of model structures G(z, θ) that are linear in the parameter vector θ:
G(z, θ) = Λ(z)θ, where Λ(z) is a set of independent rational basis functions. Our results also hold for more
general model structures, modulo a linearization of these structures around the identified model. We fur-
ther assume that the true system can be parametrized exactly within the chosen model structure for some
parameter vector θ0, i.e. G0(z) = G(z, θ0), and that it can be represented by y(t) = G0(z)u(t) + v(t) where
v(t) is additive (colored) Gaussian noise.

A Prediction Error identification experiment consists of the collection of a finite number of input and
output data, from which an estimate θ̂ of the parameter vector θ0 is estimated using a prediction error
criterion: see [6] for details. Due to the stochastic assumptions on the noise v(t) and the assumptions on
the model structure, the parameter vector θ̂ is a Gaussian random variable with mean θ0 and a covariance
matrix Pθ that can be estimated from the data1:

θ̂ ∼ N (θ0, Pθ). (1)
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1The Gaussian assumption on v(t) is not essential for the prediction error framework; it can be replaced by an assumption

of quasistationarity on v(t), in which case the estimated parameter vector θ̂ is asymptotically Gaussian.
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By the linearity of the model structure, the frequency response of the estimated model G(z, θ̂) is also
Gaussian. If we represent the frequency response of the model G(z, θ) by a vector g(ejω, θ) containing its
real and imaginary parts

g(ejω, θ) ∆=
(

Re(G(ejω, θ))
Im(G(ejω, θ))

)
=

T (ejω)︷ ︸︸ ︷(
Re(Λ(ejω))
Im(Λ(ejω))

)
θ, (2)

we then have
ĝ(ejω) ∆= g(ejω, θ̂) ∼ N (g(ejω, θ0), P (ω)) (3)

with P (ω) ∆= T (ejω)PθT (ejω)T ∈ R2×2. (4)

Using the normal distribution of g(ejω, θ̂), we can easily build, at each frequency in the Nyquist plane,
elliptic confidence regions U(ω, χ2) that are guaranteed to contain the frequency response of g(ejω, θ0) at a
prescribed probability level α:

U(ω, χ2) = {g ∈ R2 | (g − ĝ(ejω))T P (ω)−1(g − ĝ(ejω)) ≤ χ2} (5)

The size χ2 of the confidence region U(ω, χ2) is determined by the probability level α via the χ2 distribution
with 2 degrees of freedom: it is chosen such that Pr(χ2(2) < χ2) = α. Examples of such confidence regions
abound in the literature (see e.g. [4, 1, 8, 5, 9]) and they can be computed with the System Identification
Toolbox of Matlab2).

Using the above results, constructing a frequency domain uncertainty set containing G0(z) at the prob-
ability level α could seem simple: we just glue together the ellipses U(ω, χ2) at each frequency in order to
obtain the set L(χ2)

∆= {G(z, θ) | g(ejω, θ) ∈ U(ω, χ2) ∀ω }. Such an approach is nevertheless not correct.
Indeed, as we will show, the probability that G0(z) ∈ L(χ2) (or, equivalently, Pr(g(ejω, θ0) ∈ U(ω, χ2) ∀ω))
is always smaller (and can be much smaller) than α.

Note that the difficulty of extrapolating the confidence level α obtained for the individual uncertainty sets
U(ω, χ2) to a confidence level for the uncertainty region L(χ2) obtained by connecting these sets together
has been noticed by Tjärnström in [7]. In that paper, in order to obtain an overall confidence region for
the true G0(z) with a predefined confidence level, Tjärnström proposes a method based on the bootstrap
technique developed in statistics in the seventies. In a nutshell, it consists of estimating the probability
distribution of the prediction errors, and then generating a large number of simulated input-output data
sets from the known inputs and residuals drawn from the estimated distribution function. For each of these
data sets, a model is identified. An uncertainty set with prespecified confidence level can then be computed
experimentally from the large number of estimated models. The procedure is interesting, but very heavy on
computer time.

The problem considered in this presentation is therefore similar to the one addressed by Tjärnström,
namely how to construct an uncertainty region for the whole transfer function G0(ejω) with a prespecified
confidence level, when this transfer function is obtained by Prediction Error Identification. However, we
propose a much simpler procedure based on the commonly used elliptic uncertainty sets U(ω, χ). More
precisely, we solve the following problem: “How should one choose the size χ of the ellipses U(ω, χ) in such
a way that the probability that G0(z) ∈ L(χ) is at least equal to some prespecified level α?”.

To address this problem, we first analyze why the choice χ = χ2 leads to a set for which Pr(G0(z) ∈
L(χ2)) < α. For this purpose, we study the parameter set Cθ(U(ω, χ2)) defined at each frequency as the set
of parameters θ such that the frequency response of G(z, θ), evaluated at z = ejω, lies in U(ω, χ2). We show
that Cθ(U(ω, χ2)) is a different parameter set at each frequency, and that these sets have infinite size.

2However, there, the uncertainty regions are represented in a bode plot as uncertainty bands around the magnitude and the
phase.
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The probability that the entire frequency response g(ejω, θ0) of the true system lies in every U(ω, χ2) (i.e.
Pr(G0(z) ∈ L(χ2)) ) is thus equal to the probability that θ0 lies in the intersection of the sets Cθ(U(ω, χ2))
over all frequencies, and is consequently smaller than Pr(g(ejω, θ0) ∈ U(ω, χ2)) = Pr(θ0 ∈ Cθ(U(ω, χ2))) =
α. We will present examples showing that the former probability can indeed be much smaller than the latter,
particularly as the size of the parameter vector θ increases.

Then, in order to determine a size χ for which Pr(G0(z) ∈ L(χ)) is at least α, we proceed in two steps:

1. first, we provide an estimate for the intersection of the sets Cθ(U(ω, χ)) over all frequencies, by observ-
ing that the parameter set Uθ(χ) ∆= {θ | (θ− θ̂)T P−1

θ (θ− θ̂) ≤ χ} is a (strict) subset of this intersection.
As a result, Pr(g(ejω, θ0) ∈ U(ω, χ) ∀ω) > Pr(θ0 ∈ Uθ(χ)).

2. the solution to the problem is then to select a χ such that Pr(θ0 ∈ Uθ(χ)) is equal to the desired
level α. Due to the distribution (1), this is trivial. Let us stress that, as soon as dim(θ) > 2, such χ is
larger than χ2.

To summarize, the main message and contribution of this presentation is to pinpoint the fact that the
intuitive and commonly used procedure that consists of “gluing together” in the Nyquist plane ellipses that
contain the frequency response of the true system at every frequency with probability α, say 0.95, does not
produce an uncertainty set that contains the true system with probability α at all frequencies. The actual
confidence level for this whole uncertainty set is smaller, and can be much smaller for moderate size parame-
ter vectors. However, as we show in the presentation, it is actually easy to construct a global uncertainty set
that contains the true system with a probability of at least α. To achieve this, one must construct ellipses
of larger size χ than the size that produces a probability level of α at any given frequency.

Finally, note that we published most of the technical results of this presentation in [2, 3]. However, the
novelty of this presentation lies in the interpretation we give to these technical results. Note also that an
extended version of this presentation has been submitted to Systems and Control Letters in December 2003.
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