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(3) CESAME, Université Catholique de Louvain

4 Avenue Georges Lemaitre, B-1348 Louvain-la-Neuve, Belgium. Email: gevers@csam.ucl.ac.be
(4) LMC, Université Joseph Fourier
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Extended Abstract

A controller for a real-life system G0 is usually designed on the basis of a model Ĝ of G0 identified using
data collected from the true system. When designing the identification experiment, the control engineer
often has to make a trade-off between her/his desire of obtaining an accurate model and the economical
constraint of keeping the experimental costs low. Obtaining an accurate model requires a long identification
experiment and a powerful input signal, while keeping the experimental costs low corresponds to a short
experiment time and the excitation of G0 with a low power signal.

The typical approach to this problem has been to maximize the accuracy of the identified model (possibly
with a given, say, control-oriented objective in mind) for a given experiment time and under prespecified
constraints on input power. In this paper, we address this tradeoff from the dual perspective; namely, we
seek the least costly identification experiment leading to a required model accuracy, with a control-oriented
objective in mind. More precisely, we assume that the experiment time is fixed, and we then define the
least costly identification experiment for control as the experiment on G0 whose input signal power Pu is
minimized under the constraint that the controller Ĉ designed from the identified model Ĝ is guaranteed
to stabilize and to achieve sufficient performance with the unknown true G0. In this paper, the desired
performance on G0 is expressed by magnitude bounds on one (or several) closed-loop transfer functions of
[Ĉ G0] (H∞ performance constraints). Even though our results focus on the design of the input signal u(t)
with minimum total power Pu, for a fixed data length, they can easily be extended to the design of the
shortest identification experiment for control, given a fixed input spectrum.

Our “least costly identification for control” approach to the experiment design problem is a novel way of
addressing the above-mentioned tradeoff between low experiment cost and sufficient precision of the model
(or the controller). Until now, this experiment design problem has been addressed from a different and/or
converse angle. In [9, 15], model accuracy only is considered: the optimal identification experiment is
defined as the one for which a weighted version of the covariance matrix of the identified parameter vector
is minimized under a constraint on the maximal power of the input signal. In [8, 11, 6, 13, 10, 12], the
experiment design problem is connected to control design; the optimal identification experiment is defined
as the one which, under a constraint on the maximal power of the input signal, minimizes:

• either a measure of the performance degradation between the achieved loop [Ĉ G0] and the ideal loop
[C0 G0] (Ĉ is the controller designed with the identified model Ĝ, and C0 is the controller that would
be designed with the unknown G0). This measure of performance degradation is in fact E|y(t)− ŷ(t)|22
where y(t) is the output of the ideal loop and ŷ(t) is the output of the achieved loop [8, 11, 6, 13].

• or some measure of the performance degradation between the achieved loop [Ĉ G0] and the designed
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loop [Ĉ Ĝ] [10, 12]. In [10], this measure is the ν-gap between Ĝ and G0 (a robust stability measure).
In [12], this measure is the difference between T̂ = (ĜĈ)/(1 + ĜĈ) and T0 = (G0Ĉ)/(1 + G0Ĉ).

To summarize, the main difference between the experiment design problem defined in the above references
and the problem defined in this paper lies in the pursued objective. Indeed, our objective is to minimize
the economical cost of the identification while guaranteeing the required performance level for the achieved
loop [Ĉ G0]; the objective in the above references is somehow the dual objective i.e. obtaining the best per-
formance for [Ĉ G0] given a fixed cost for the identification experiment. In addition, this paper is the first
one on experiment design which defines the performance objective for the model-based controller in an H∞
control design framework (i.e. by magnitude bounds on the to-be-achieved closed-loop transfer functions).

Our new experiment design problem will be solved in the following context. We will assume that the
identification experiment concerns a SISO LTI1 true system G0 and is performed in open loop with a full-
order model structure [14]. We will further assume that the controller Ĉ we want to apply to the true system
will be designed from the identified model Ĝ = G(z, θ̂N ) using a pre-defined H∞ control design method with
fixed weights [16]. In this particular context, we will also make use of the fact that, along with the model Ĝ,
an identification experiment delivers an uncertainty region centered at Ĝ = G(z, θ̂N ) and containing the true
system G0 = G(z, θ0) at a user-chosen probability level [7]. In this paper, we will use an additive description
of this uncertainty region D. A reliable analytical expression of the size ru(ω) of this estimated additive
uncertainty region D can be obtained using a first-order approximation [14, 1]:

ru(ω) =
√

χλ1 (T (ejω)PθT (ejω)T ) (1)

where χ is a real constant dependent of the chosen probability level, λ1(A) denotes the largest eigenvalue of
A, Pθ is the covariance matrix of θ̂N and

T (ejω) ∆=
(

Re(ΛT
G(ejω, θ0))

Im(ΛT
G(ejω, θ0))

)
with ΛG(z, θ) =

∂G(z, θ)
∂θ

Expression (1) shows that ru(ω) is a function of the covariance matrix Pθ of the identified parameter vec-
tor θ̂N and, consequently, a function of the chosen input signal u(t). Note also the dependence of ru(ω)
on the unknown true system. This dependence will occur at different stages of this presentation. Such a
phenomenon is inherent for all experiment design problems and this difficulty will here be circumvented in
a standard way by assuming that a preliminary estimate of the true system is known beforehand.

In the context presented above, we propose the following two-step methodology to solve the experiment
design problem leading to the least costly identification for control. In a first step, we determine what is the
largest additive uncertainty region that we can a-priori tolerate around the to-be-identified model Ĝ for the
Ĝ-based controller Ĉ to achieve the required H∞ performance level with all systems in this uncertainty re-
gion. The size (i.e. the uncertainty radius) of this largest admissible uncertainty region for control is denoted
radm(ω). In a second (identification design) step, we then deduce the least powerful stationary input signal
u(t) such that the size ru(ω) of the identified uncertainty region D is at each frequency smaller than the
largest admissible uncertainty radius radm(ω). By doing this, we ensure that the controller Ĉ designed with
the model identified with such input signal, achieves the required H∞ performance level with all systems in
the identified D (and thus also with the true system G0).

Technical aspects. In order to determine the largest admissible uncertainty radius radm(ω) for control, the
main difficulty is the fact that the expression of the to-be-identified model Ĝ is not available for this com-
putation. This difficulty will be circumvented by constructing a-priori a set to which we assume the model
Ĝ will belong. We then show that the computation of radm(ω) boils down to a ν-analysis problem [4, 5].

In order to solve the second step, we will make use of results presented in [15] (and used in [10]). These
results show that, for each stationary input signal u(t), we can define a finite-sized vector xu of moments of
the input power spectrum Φu(ω) weighted with a special weight depending on the true system G0; and that

1single-input single-output linear time-invariant
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this vector xu is such that both the inverse P−1
θ of the covariance matrix of the parameter vector identified

with u(t) and the power Pu of u(t) are affine functions of xu. Using these properties, we then show that
the optimization of the power Pu of u(t) under the constraint ru(ω) ≤ radm(ω) ∀ω can be reduced to a
tractable LMI2 optimization problem on the finite-sized vector xu. A stationary input signal u(t) for the
identification can thereafter be constructed from the optimal moment vector xu.

Note that the results presented in this paper clearly improve the preliminary results in [3] where a high-
oder model approximation of ru(ω) was used instead of (1).

As a last remark in this extended abstract, we would like to stress that the results on the least costly
identification experiment for control can also be seen as a logical sequel to our earlier results on the connec-
tion between Prediction Error (PE) identification and Robust Control [2, 7]. Indeed, in these contributions,
we have shown that, given a set of data collected from the true system, we are able to identify a model Ĝ
along with its uncertainty description and to verify thereafter whether a Ĝ-based controller stabilizes and
achieves the required performance level with all systems in this uncertainty region. Due to the dependence
of both the model and the uncertainty region on the chosen data set, this procedure may deliver a model
with a too large uncertainty region for which it is impossible to design a controller meeting the performance
requirements. By giving a procedure to choose the data set appropriately in order to avoid such a situation,
this paper improves the connection between PE identification and robust control.
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