
Unbiased estimation of the Hessian for Iterative Feedback Tuning (IFT)

Gabriel SOLARI* and Michel GEVERS*
Center for Systems Engineering and Applied Mechanics (CESAME)
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Abstract— Iterative Feedback Tuning (IFT) is a data-based method
for the optimal tuning of a low order controller. The tuning o f the
controller parameters is performed iteratively, using a generalized
Robbins-Monro type gradient descent scheme. An update stepof the
controller parameters is performed at each iteration on thebasis of
data obtained partly during normal operating conditions and partly
from some special experiments. These data come from the closed
loop system with the current controller. This paper presents a simple
improvement to the IFT scheme: it is shown that one can compute an
unbiased estimate of the Hessian on the basis of additional experiments
on the closed loop system.

I. INTRODUCTION

Iterative Feedback Tuning (IFT) is a model-free data-based
method for the optimal tuning of the parameters of a controller
of given structure, typically a restricted complexity controller [3].
The method is simple and has proved very successful in a wide
range of applications. A number of extensions and applications of
IFT have been proposed: see the survey [2] and the special issue
[4]. The control performance objective used in IFT is a quadratic
performance criterion, which is minimized by a stochastic gradi-
ent descent scheme of Robbins-Monro type. Thus, the iterative
parameter update rule of IFT is given by

ρn+1 = ρn + γnR
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where ρn is the controller parameter vector at iterationn,
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is an estimate of the gradient of the performance
criterionJ , γn is the step size, andRn is a positive definite matrix.

The key feature of IFT is that an unbiased estimate of the
gradient ∂J

∂ρ
, evaluated at the current controller parameter values,

is computed using a filtered set of data obtained from both normal
operation conditions and from a special experiment performed on
the plant at each iteration. As for the matrixRn, a simple choice
is to take the identity, but this may lead to slow convergence.
An optimal choice in the vicinity of the optimalρ∗ is to take
the Hessian of the criterion. A typical choice is to take a Gauss-
Newton approximation of the Hessian. In the implementationof
the IFT algorithm, a biased estimate of the Gauss-Newton direction
can be computed from the signals that have been generated forthe
computation of the gradient. This choice has been recommended
in [3], and has been commonly adopted since then.

The contribution of this paper is to show that, with two addi-
tional special experiments at each iteration of the IFT algorithm,
one can construct an unbiased estimate of the Hessian, evaluated at
the present controller parameter vector, directly from data collected
on the closed loop system. The idea of computing an unbiased
estimate of the Hessian for the IFT iterations has already been
proposed in [1], however at the cost of two identification steps.
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In this paper, we show how one can compute an unbiased
estimate of the Hessian for a simple version of the IFT algorithm,
namely where the control performance objective is to perform
disturbance rejection only, and where no penalty is added onthe
control energy. This keeps our presentation simple and focused
on the main ideas. While the extension to an IFT criterion that
incorporates a tracking objective may not be straightforward, the
extension to the case of an added penalty on the control is almost
trivial.

II. IFT FOR DISTURBANCE REJECTION

We consider that the task is to optimize the controller parameters
of a linear time-invariant closed loop system driven by stochastic
disturbances, and described by

yt(ρ) =
1

1 + G(q)C(q, ρ)
vt = S(q, ρ)vt

whereG(q) is a linear time-invariant operator,C(q, ρ) is a linear
time-invariant transfer function parameterized by some parameter
vector ρ ∈ R

nρ , andvt is a zero mean weakly stationary noise.
The transfer functionS(q, ρ) from vt to yt(ρ) is called the
sensitivity function. For the purposes of implementing thespecial
experiments of IFT, we consider the block diagram shown in the
figure wherert is a reference signal that is set to zero or a constant
under normal operating conditions. The transfer function from rt

to yt(ρ) is called the complementary sensitivity functionT (q, ρ).
For ease of notation we omit theq argument from now on.

rt = 0 ut(ρ)
G(q)

vt

yt(ρ)

C(q,ρ)

Fig. 1: System under normal operating conditions

The goal is to minimize the quadratic criterion
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by choice of the controller parameter vectorρ, whereE[.] denotes
expectation with respect to the disturbancevt. The optimal con-
troller parameterρ is defined byρ∗ = arg minρ J(ρ).

The IFT method is based on a stochastic gradient descent
scheme of Robbins-Monro type: see (1). In the IFT scheme, the
gradient estimate is constructed from batches of data of length N ,
obtained on the closed loop system [3]. The exact expressions of
the gradient and the Hessian of the cost function are as follows.
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The gradient and second derivative ofyt(ρ) are given by:
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Here ∂C
∂ρ

(ρ), ∂2C

∂ρ2 (ρ) are known functions ofρ; however,T (ρ)
andS(ρ) are unknown because they depend on the unknownG(ρ).

It was shown in [3] that one can compute an unbiased estimate
of the gradient∂J

∂ρ
by storing a batch ofN output datay1

t (ρ)
collected under normal operating conditions, and by then applying
theseN data at the reference inputr during a second (special)
experiment. The signals collected during these two periodsof
lengthN are indexed by1 and2. Thus we get:
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From the collected signals, we can construct a noisy, but unbiased,
estimate of the gradient ofyt w.r.t. ρ, denoted est1:
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III. U NBIASED HESSIAN ESTIMATOR FORIFT

We now show that, with two additional special experiments, we
can construct an unbiased estimate of the Hessian. We index the
signals with3 and4.
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With these additional experiments we can construct an estimate of
the second derivative and an extra estimation of the gradient:
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The disturbancesvi
t during two different experiments are assumed

to be mutually independent becauseN is large compared to the
correlation time of these disturbances. We then have
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Combining these properties, we can thus construct an unbiased
estimate of the Hessian,∂

2J

∂ρ2 (ρ), described in (2).

IV. I LLUSTRATION BY MONTE CARLO SIMULATIONS

We evaluate the benefits of our new computation ofRn in the
IFT algorithm on the following system:

G(q)=
0.2826q−3 + 0.5067q−4

1 − 1.418q−1 + 1.589q−2 − 1.316q−3 + 0.8864q−4

H(q)=
1

1 − 1.418q−1 + 1.589q−2 − 1.316q−3 + 0.8864q−4

with vt = H(q)et andσ2
e = 1 (σ2

v = 12.875).

For a disturbance rejection problem (rt = 0) with a cost
function J(ρ) = 1

2
E
ˆ

yt(ρ)2
˜

, and a controller of the form

C(ρ, q) = ρ1+ρ2q−1

1+ρ3q−1+ρ4q−2 , one local minimum is atρ∗ =

[0.08204 − 0.55654 0.0075 0.15019], yielding J(ρ∗) = 3.3719.
We have compared three possible choices forRn in (1):
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R1 is the classical choice made in the IFT literature,R2 is the
unbiased estimator of the Hessian developed in this paper, while
R3 is the same asR2 but leaving aside the second derivative. To
compare the quality of these three estimates of the Hessian,we
have performedM = 500 Monte Carlo runs of lengthN = 4000
each on the system[G H ] with the controllerC(ρ∗) in the loop,
in order to generate the signalsyi

t(ρ
∗), i = 1, . . . , 4, and henceM

estimatesRi
m, m = 1, . . . , M of Ri for i = 1, 2, 3. The following

table shows a measure of the experimental bias and mean square
error, for all three estimates:
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bRi 6.4451 0.096 0.8966
MSERi 35.7496 1.9676 1.1644

TABLE I: Bias and mean square error of the three estimates of R

These simulations confirm that the new estimates of the Hessian
proposed in this paper, based on additional special experiments,
yield significantly improved estimates with a much reduced bias
error. Even the estimateR3, which requires only one additional
experiment, has a significantly smaller bias error than the tradi-
tionally used estimate. We have performed tests on actual IFT
iterations, in which the estimateR1 is replaced byR3 near the
optimum; this leads to a significant reduction in the number of
iterations required to reach the convergence point.

V. CONCLUSIONS

In this contribution we have proposed a new way of computing the
controller parameter updates in the IFT controller tuning scheme.
We have shown how to construct an unbiased estimate of the
Hessian on the basis of either one or two additional experiments.
Simulations have shown the claimed unbiasedness properties.

REFERENCES

[1] Franky De Bruyne and Leonardo C. Kramer. Iterative Feedback
Tuning with guaranteed stability. InProceedings of the American
Control Conference, pages 3317–3321, San Diego, California, USA,
June 1999.

[2] H. Hjalmarsson. Iterative Feedback Tuning - an overview. Interna-
tional Journal of Adaptive Control and Signal Processing, 16(5):373–
395, 2002.

[3] H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin.Iterative
Feedback Tuning: theory and applications.IEEE Control Systems
Magazine, 18:26–41, August 1998.

[4] Special Section on Algorithms and Applications of Iterative Feed-
back Tuning. Control Engineering Practice, 11(9):1021–1094,
September 2003.


