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Abstract: This paper examines the identification of a single-output two-input system. Mo-
tivated by an experiment design problem (should one excite the two inputs simultaneously
or separately), we examine the effect of the (second) input signal on the variance of the
various polynomial coefficients in the case of FIR, ARX, ARMAX, OE and BJ models. A
somewhat surprising result is to show that the addition of a second input in an ARMAX
model reduces the variance of all polynomials estimates.Copyrightc©2005 IFAC
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1. INTRODUCTION

Our initial motivation for this piece of research was
as follows. Suppose we are to identify a system with
one output and two inputs, and we are given a limited
amount of experiment time to do so. Is it then better
to excite one input at a time, each over half the
experiment time say, or should one excite both inputs
simultaneously, assuming of course that both inputs
are independent?

In the literature, it is argued that in industry the guide-
line for identification practice is still single-variable
based thinking, e.g (Zhu, 1998). However, several au-
thors propose to excite all inputs simultaneously (Zhu
and Backx, 1993; Dayal and MacGregor, 1997). Still,
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there is no pertinent analysis of the variance to support
these statements.

To obtain a reliable answer to the question stated in the
first paragraph, we undertook to perform an analysis
of the variance of the estimated polynomial coeffi-
cients, assuming in all cases that the correct model
structure is used. The expressions for the distribution
of parameter estimates that are asymptotic in the num-
ber of data is a classical result (Ljung, 1999). The
theoretical conditions for the validity of this asymp-
totic theory have recently been treated in (Garattiet
al., 2004).

It appeared to us that the answer to the above question
might well be different for different model structures
such as FIR, ARX, ARMAX, OE, or BJ. The conclu-
sion of our analysis is that, whatever the model struc-
ture, the simultaneous application of two independent
input signals during the whole experimentation time
always leads to a smaller covariance matrix of the es-
timated polynomial coefficients than the consecutive



application of the two input signals, each during part
of the experimentation time.

This result in itself is probably not too surprising,
even though a number of system identification ex-
perts would probably be inclined to apply the exci-
tation signals during separate experimentation periods
in the case of a two-input system. However, our co-
variance analysis led to some results that run contrary
to commonly held beliefs in the system identification
community. Let us just foreshadow here two of these
findings.

• It is a commonly held view that, in open loop
identification, the variance of the noise model is
unaffected by the input signal. This view finds
its origins in the asymptotic (both in model or-
der and number of data) variance formula for
the estimated noise model,V ar(ĤN (eω)) '
n
N

Φv(eω)
|H0(eω)|2 in which the input signal plays no

role whatsoever (Ljung, 1999). Recently, ex-
act variance expressions that are not asymp-
totic in model order have been derived in (Xie
and Ljung, 2001) and (Ninness and Hjalmars-
son, 2004). Ninness and Hjalmarsson have con-
sidered the BJ and OE models and found that,
in these cases, the variance of the noise model
is independent of the input signal. However, no
result is available so far for the ARX and AR-
MAX model, which are treated in this paper. We
show in particular that, for the ARMAX model
A(z−1)y(t) = B(z−1)u(t)+C(z−1)e(t) ( with
z−1 being the delay operator), the input signal
u(t) does in fact contribute to a reduction of the
variance ofĈN , as well as that of̂AN , of course.

• It follows from the first result that the addition
of a second input signal, sayu2(t), always re-
duces the variance of the estimated noise model
ĈN (ejω)

ÂN (ejω)
of an ARMAX model. In addition,

we show that, for ARX and ARMAX models,
the addition ofu2(t) also reduces the variance
of the estimated coefficients of the polynomial
B1(z−1) related to the other input.

Of course, our results do not contradict any established
result in the identification literature. It so happens that,
to the best of our knowledge, very little attention has
been paid to the variance analysis of the parameters in
recent years, most probably because of the widespread
use of and reliance on the asymptotic (in model order)
variance formulas for the transfer function estimates
quoted above. These results, which are based on an
assumption that the model order goes to infinity, have
contributed to the widely held but incorrect view that
the input signal has no bearing on the precision of the
noise model in open loop identification.

Our results do not only provide a clear answer to the
question of whether or not one should excite both in-
puts of a two-input system simultaneously. They also
suggest that, when that is at all possible, it pays to add

additional input energy into the system for the sake
of identifying model parameters whenever the input-
output and noise models have common parameters.
For example, if the physics of the problem allow one
to add a second input signal somewhere in a single-
input single-output system, so as to convert the system
Ay = Bu+Ce into the systemAy = B1u1+B2u2+
Ce say, then the addition of the signalu2 improves the
precision of all other estimated polynomialsA,B1 and
C. Such thought would certainly not have occurred to
the authors prior to this piece of research.

The paper is organized as follows. Preliminary mate-
rial is given in Section 2. Section 3 treats the linear
regression FIR and ARX models. The ARMAX model
is considered in Section 4 where it is shown that the
addition of a second input reduces the variance of all
estimated coefficients. Section 5 extends the conclu-
sion of the variance analysis to other model structures
and brings some final remarks.

2. PRELIMINARIES ON PREDICTION ERROR
IDENTIFICATION

We consider the identification of an unknown linear
time-invariant “true” system with one output and pos-
sibly two inputs (hereafter denoted a DISO system, for
double input single output):

S : y(t) = G1(z)u1(t) +G2(z)u2(t) +H(z)e(t), (1)

whereG1(z) andG2(z) are strictly causal rational
transfer functions,y is the measured output,u1 andu2

are two input signals, and where the noise, assumed
to be quasistationary, is modelled as the output of
a causal and causally invertible noise modelH(z)
driven by a white noise inpute with varianceσ2

e .
A special case of (1) is a single input single output
(SISO) system, whenu2 = 0. We consider the identi-
fication of a model forS using a parametrized model
set:

M = {G1(z, θ), G2(z, θ),H(z, θ), θ ∈ Dθ ⊂ Rk}(2)

whereG1(z, θ), G2(z, θ) and H(z, θ) are rational
transfer functions,θ ∈ Rk is a parameter vector, and
Dθ is a subset of admissible values forθ. The analysis
of this paper will focus entirely on variance errors;
thus we assume from now on thatS ∈ M. To every
θ corresponds a one-step ahead predictorŷ(t|t−1, θ),
and hence a one-step ahead prediction error:

ε(t, θ) , y(t)− ŷ(t|t− 1, θ) (3)

=H−1(z, θ)[y(t)−G1(z, θ)u1(t)

−G2(z, θ)u2(t)]

The least squares PE estimateθ̂N based onN input-
output data is defined as

θ̂N = arg min
θ∈Dθ

VN (θ), with (4)



VN (θ) =
1
N

N∑
t=1

[ε(t, θ)]2. (5)

The estimatêθN defines the model̂G1 = G1(z, θ̂N ),
Ĝ2 = G2(z, θ̂N ), Ĥ = H(z, θ̂N ). SinceS ∈ M, it

follows that under reasonable conditionsθ̂N
N→∞−→ θ0,

where θ0 ∈ Dθ is such thatG1(z, θ0) = G1(z),
G2(z, θ0) = G2(z), andH(z, θ0) = H(z). Thus
the transfer function estimates converge to the true
transfer functions. The parameter error then converges
to a Gaussian random variable (Ljung, 1999):

√
N(θ̂N − θ0)

D−→ N (0, Pθ), asN →∞ (6)

where

Pθ = σ2
e [Eψ(t, θ0)ψT (t, θ0)]−1 , σ2

eM
−1, (7)

with an obvious definition for the information matrix
M ∈ Rk×k. Here ψ(t, θ) is the gradient of the
prediction error with respect to the parameters (i.e. the
sensitivity to these errors):

ψ(t, θ) ,
∂ε(t, θ)
∂θ

= −∂ŷ(t|t− 1, θ)
∂θ

(8)

It follows from the formulas (8), (3) and (1) that this
gradientψ can be rewritten as follows:

ψ(t, θ) =
−1

H(z, θ)

[
∂G1(z, θ)

∂θ
u1(t)+

∂G2(z, θ)
∂θ

u2(t) +
∂H(z, θ)

∂θ
ε(t, θ)

]
.(9)

Combining (7) and (9), and using Parseval’s theorem,
we can then write the following expression for the
information matrixM :

M =
1
2π

π∫
−π

dω

|H|2

{(
∂G1

∂θ

) (
∂G1

∂θ

)∗
Φu1 (10)

+
(
∂G2

∂θ

) (
∂G2

∂θ

)∗
Φu2 +

(
∂H

∂θ

) (
∂H

∂θ

)∗
σ2

e

}
For a large enough numberN of data, the asymptotic
covariance formulas (6)-(7) are typically used to com-
pute approximate expressions for the covariance of the
parameter vector estimate:

cov(θ̂N ) ≈ 1
N
Pθ =

σ2
e

N
M−1. (11)

The expression (10) will be our key tool for the anal-
ysis of the effect of one input signal, sayu2, on the
covariance of the coefficients of the various model
polynomials. By specializing this formula to any of
the classically used polynomial model structures (FIR,
ARX, OE, BJ, ARMAX), one can examine whether or
not the inputu2 has a variance reduction effect on any
or all of the estimated coefficients of the polynomi-
alsA,B1 andC in an ARMAX model structure, for
example. We mention that (Klein and Mélard, 1994)
have computed the gradients appearing in (10) for all
commonly used polynomial models.

For model structures that are linear in the parameters,
such as FIR or ARX, the one-step ahead predictor can
be written as:

ŷ(t|t− 1, θ) = ϕT (t)θ, (12)

whereϕ(t) ∈ Rk is a vector containing known input
and output signals only, i.e. independent ofθ. In such
cases, the matrixM = Eϕ(t)ϕT (t) is very easy
to compute, and there is no need to resort to the
frequency domain integral expression (10).

In the sequel, we use the formula (10), or its simplified
versionM = Eϕ(t)ϕT (t) whenever appropriate, to
study the effect of a particular input on the variance of
the parameter estimates, for the classical polynomial
models mentioned above. Given the space limitation
in this conference paper, we present a full analysis
only for the linear in the parameter FIR and ARX
models, and the ARMAX model. The analysis meth-
ods for the other cases can be easily derived from the
methods presented here for the FIR, ARX and AR-
MAX models. We present in section 5 the conclusions
of our analysis for all model structures.

3. THE ARX AND FIR MODELS

In this section we consider the special case of ARX
(Auto-Regressive with eXogeneous inputs) and FIR
(Finite Impulse Response) model structures.

A. ARX models with two inputs

Consider an ARX model structure with two indepen-
dent inputs:

A(z−1)y(t) =B1(z−1)u1(t) +B2(z−1)u2(t) + e(t)

(13)

where A(z−1) = 1 +
∑n

j=1 ajz
−j , B1(z−1) =∑n

j=1 b
j
1z
−j andB2(z−1) =

∑n
j=1 b

j
2z
−j are poly-

nomials in the delay operatorz−1. For simplicity, we
choose all polynomials in our models to have the same
degree. The system can also be rewritten in linear
regression form:

y(t) = ϕT (t)θ0 + e(t), with (14)

θT = [a1 . . . an; b11 . . . b
n
1 ; b12 . . . b

n
2 ]

, [ aT ; bT
1 ; bT

2 ]

ϕT (t) = [−y(t− 1) . . .− y(t− n);

u1(t−1) . . . u1(t−n);u2(t−1) . . . u2(t−n)]

, [Y T (t− 1) ; UT
1 (t− 1) ; UT

2 (t− 1)],

with the obvious definitions for then-dimensional
vectorsa, b1, b2, Y (t − 1), U1(t − 1) andU2(t −
1). For an ARX model, the Least Squares parameter
estimatêθN of θ based onN input-output data is unbi-
ased. Its covariance, for largeN , can be approximated
by (11) whereM is now given by



M =

 RY Y RY U1 RY U2

RU1Y RU1U1 0
RU2Y 0 RU2U2

 (15)

with RY Y , E{Y (t − 1)Y T (t − 1)}, RY U1 ,
E{Y (t − 1)UT

1 (t − 1)}, etc. The zero blocks inM
follow from the independence between the two input
signals. In order to apprehend the effect of each of
the two input signals on the accuracy of the parameter
estimates of the polynomialsA,B1 andB2, we need
to compute, blockwise, the inverse of the information
matrixM . We denote:

C , M−1 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 (16)

Remember thatPθ = σ2
eM

−1 = σ2
eC. We now com-

pare the covariances of the estimates of the parameter
vectorsa, b1 andb2, based onN input-output data,
for the case of one input only (u2 = 0) and the case
where two independent input signals,u1 andu2, are

applied simultaneously. We havecov(â) ≈ σ2
e

N C11,

cov(b̂1) ≈ σ2
e

N C22, andcov(b̂2) ≈ σ2
e

N C33. We shall

denote byC(1)
ii , i = 1, 2 the block-diagonal elements

of the matrixC obtained when only inputu1 is ap-
plied, and byC(2)

ii , i = 1, 2, 3 the corresponding ele-
ments when the two inputs are applied simultaneously.

When only inputu1 is present, we have:

C
(1)
11 = (RY Y −RY U1R

−1
U1U1

RU1Y )−1

C
(1)
22 = (RU1U1 −RU1Y R

−1
Y Y RY U1)

−1 (17)

When the two inputs,u1 andu2, are present, we have:

C
(2)
11 = (RY Y−RY U1R

−1
U1U1

RU1Y−RY U2R
−1
U2U2

RU2Y )−1

C
(2)
22 = (RU1U1 (18)

−RU1Y (RY Y−RY U2R
−1
U2U2

RU2Y )−1RY U1)
−1

We can now establish the following result.

Theorem 1. Consider the identification of the param-
eter vectorsa andb1 of the ARX model (13), where
the inputsu1 andu2 are independent. Then the covari-
ance matrices of the parameter estimatesâ andb̂1 are
smaller ifu2 6= 0 than ifu2 = 0, i.e.

C
(2)
11 ≤ C

(1)
11 and C(2)

22 ≤ C
(1)
22 .

Proof. We first compare the covariances of the param-
eter estimates of theA polynomial. In comparingC(1)

11

andC(2)
11 , we must keep in mind that the covariances

RY Y are different in these two situations. To take
this into account, we explicitly split up the covariance
matrix RY Y into the sum of its contributions due to
u1, u2 ande, respectively (see (10)):

RY Y = RY Y (u1) +RY Y (u2) +RY Y (e).

Comparing (18) with (17), we then observe that:

(C(2)
11 )−1−(C(1)

11 )−1 = RY Y (u2)−RY U2R
−1
U2U2

RU2Y

The latter quantity is always nonnegative definite,
because the matrix(

RY Y (u2) RY U2

RU2Y RU2U2

)
is a covariance matrix. HenceC(2)

11 ≤ C
(1)
11 . We now

turn to the covariance of the parameter estimates of the
B1 polynomial. ComparingC(1)

22 andC(2)
22 , we observe

that they differ by the inverse that appears in the
middle of their second term. In the case whereu2 = 0,
the term to be inverted isRY Y (u1) + RY Y (e). In the
case whereu2 6= 0, that term becomesRY Y (u1) +
RY Y (e) + RY Y (u2) − RY U2R

−1
U2U2

RU2Y . For the
same reason as above, the latter term is always larger
than the former, and henceC(2)

22 ≤ C
(1)
22 . 2

Analysis of the ARX case

(1) Addition of a second input signal in an ARX
system improves the accuracy of all parameter
estimates. While the improved accuracy of the
estimate of theA polynomial is easily under-
stood by the increased energy in they(t) data
resulting from the additional input signal, the
improvement of the estimate of the polynomial
B1 most probably comes as a surprise to most
readers. In fact, the improved accuracy of theB1

polynomial estimate results from the improved
accuracy of theA polynomial estimate and the
correlation between the estimates of theA and
B1 polynomial coefficients.

(2) A practical consequence of the last observation is
as follows. There are situations where the aim is
to identify a SISO ARX model with constraints
on the inputu, but where it is physically possible
to add an additional excitationu2 going through
the same pole dynamicsA(z−1). Our result sug-
gests that it then pays off to add such a second
excitation, because it improves the accuracy of
the estimates of the polynomialsA andB.

Simulation example
We consider the DISO ARX model structure (13) with
A = 1−0.2z−1,B1 = 10z−1 +z−2, B2 = 0.1z−1 +
4z−2, with u1, u2, and e being three independent
white noises, with standard deviationsσu1 = 2, σu2 =
10, andσe = 4, respectively. We have compared the
situation where only inputu1 is used with the situation
where the two inputs are used simultaneously. For
each case, we have computed the theoretical covari-
ance matrix, and we have also performed a Monte-
Carlo simulation to confirm these theoretical results.
Case A: 1 input
The theoretically computed asymptotic covariance
matrixPθ for θ = (a1, b

1
1, b

2
1) is:

Pθ =

 0.2954 0 −2.9538
0 4.0000 0

−2.9538 0 33.5385


The variances of the 3 parameter estimates computed
by 1000 Monte-Carlo runs are:



0.2849 4.0171 32.7052

Case B: 2 inputs
We now obtain the following theoretical covariance
matrix for the vectorθ = (a1, b

1
1, b

2
1, b

1
2, b

2
2):

Pθ =


0.0092 0 −0.0921 0 −0.0009

0 4.0000 0 0 0
−0.0921 0 4.9208 0 0.0092

0 0 0 0.1600 0
−0.0009 0 0.0092 0 0.1601


The variances obtained by Monte-Carlo runs are:

0.0088 4.0185 5.1151 0.1616 0.1580

Comparing the two situations, we observe that the
presence of the second input,u2, not only reduces
the variance ofa1 drastically, but it also significantly
improves the precision of the estimated coefficientb12.
Note that it has no effect onb11 because of sampling
delay. The Monte-Carlo simulations confirm the theo-
retical calculations.

B. FIR models with two inputs

We now consider that the true system is described by
the following FIR model structure:
y(t) = B1(z−1)u1(t) +B2(z−1)u2(t) + e(t). (19)

It is a special case of the ARX model in which
A(z−1) = 1. The parameter vectorθ thus specializes
to θT = [b11 . . . b

n
1 ; b12 . . . b

n
2 ]. The covariance analysis

for the FIR model structure therefore results from that
of the ARX model structure. Thus, the Least Squares
parameter estimatêθN of θ based onN input-output
data is unbiased, and its covariance, for largeN , is
given by (11) where

Pθ = σ2
e

(
RU1U1 0

0 RU2U2

)−1

(20)

In the special case where the inputs are white noises
with varianceσ2

u1
andσ2

u2
, respectively, we get the

following approximate formula:

cov(θ̂N ) ≈ 1
N


σ2

e

σ2
u1

In 0

0
σ2

e

σ2
u2

In

 (21)

Analysis of the FIR case

(1) The asymptotic accuracy of the estimates of the
bj1 coefficients is totally independent of the pres-
ence ofu2 or of its power. Thus, even if in the
output signaly the signalu2 accounts for90%,
say, of the total power, this has no effect on the
quality of the estimates of theB1 coefficients.

(2) The accuracy of the estimate of each coefficient
bj1 is identical; it depends only on the signal to

noise ratio
σ2

u1
σ2

e
.

(3) Given a limited experimentation time of length
N , it is best to excite both inputs simultaneously.

4. THE ARMAX MODEL

In the case of an ARMAX system, the variance anal-
ysis is not quite as simple, because the predictor is no
longer a linear regression of measured signals. Thus,
we need to appeal to the frequency domain expression
(10), in which the general expressions of the sensitiv-
ities are specialized to the ARMAX case. As we shall
see, the effect of adding a second input signal in an
ARMAX model structure follows immediately from
the covariance analysis of a SISO ARMAX model
structure. Thus, we consider the ARMAX structure:

A(z−1)y(t) = B(z−1)u(t) + C(z−1)e(t) (22)

with A and B as before andC(z−1) = 1 +∑n
j=1 cjz

−j . The parameter vector is defined as:

θT , [ aT ; bT ; cT ].

For this ARMAX model, the predictor becomes:

ŷ(t|t− 1, θ) =
B

C
u(t) + (1− A

C
)y(t)

Thus, the two terms in the expression (10) of the
information matrix specialize to:

1

H

∂G

∂θ
=

1

C



−
B

A
e−jω

...

−
B

A
e−jωn

e−jω
...

e−jωn

0...
0



,
1

H

∂H

∂θ
=

1

C



−
C

A
e−jω

...

−
C

A
e−jωn

0...
0

e−jω
...

e−jωn


With these expressions under our belt, we observe that
the information matrixM for an ARMAX model takes
the following block-diagonal structure:

M =

M11(u) +M11(e) M12(u) M13(e)
M21(u) M22(u) 0
M31(e) 0 M33(e)

 (23)

where, e.g.,M11(u) denotes the contribution of the
(1, 1)-term of the information matrix that is due to the
signalu. By computing the inverseC = M−1 of (23)
we can then study the effect of the input signalu on the
precision of each of the componentsâ, b̂, andĉ of the
parameter estimatêθ. We have the following result.

Theorem 2. Consider the identification of the param-
eters of the ARMAX model (22). The covariance of
the parameter estimatesâ, b̂ and ĉ are all influenced
by the input signal. In particular, the covariance matrix
of ĉ has the following expression:

Pc = σ2
e{M33(e)−M31(e)[M11(u) +M11(e)

−M12(u)M−1
22 (u)M21(u)]−1M13(e)}−1 (24)

For the corresponding ARMA model structure (i.e.
no input) with the sameA and C polynomial, the



covariance of the estimate of theC polynomial is
larger than in the ARMAX model structure. We get:

Pc = σ2
e{M33(e)−M31(e)M−1

11 (e)M13(e)}−1 (25)

Proof. Space limitations prevent us from giving a
complete proof, but it is very straightforward. A com-
parison of the expressions (24) and (25) clearly shows
thatPc(ARMA) ≥ Pc(ARMAX). 2

Analysis of the ARMAX case
(1) It follows from the result above that the input

signalu has a variance reduction effect on the
estimate of theC polynomial.

(2) It follows from the analysis of the ARX and AR-
MAX cases that addition of a second input in an
ARMAX model structure reduces the covariance
of the estimates of all polynomials.

Simulation example
We have simulated the ARMAX model (22) withA =
1−0.2z−1,B = 10z−1 +z−2 andC = 1−1.6z−1 +
0.64z−2, and with u and e two independent white
noises withσu = 1 andσe = 4, respectively. We have
compared, both theoretically and by Monte-Carlo sim-
ulations with1000 runs, the covariances obtained for
the parameter estimates for this ARMAX model with
those obtained with the ARMA model with sameA
andC polynomial, i.e. withu = 0 in the above model.

ARMA model
The theoretically computed asymptotic covariance
matrixPθ with θ = (a1, c1, c2) is:

Pθ =

 3.6879 2.4837 −2.3934
2.4837 2.2631 −2.1879
−2.3934 −2.1879 2.1437


The variances obtained by Monte-Carlo runs are:

3.9433 2.4015 2.2896

ARMAX model
The theoretical covariance matrix for the vectorθ =
(a1, b1, b2, c1, c2) is: Pθ =

0.6906 −1.8792 11.2279 0.4651 −0.4482
−1.8792 14.5597 −39.7682 −1.2656 1.2195
11.2279 −39.7682 191.9959 7.5617 −7.2867
0.4651 −1.2656 7.5617 0.9036 −0.8778
−0.4482 1.2195 −7.2867 −0.8778 0.8813


The variances of the 5 parameter estimates obtained
with 1000 Monte-Carlo runs are:

0.6805 15.8600 194.6594 0.9922 0.9735

The Monte-Carlo simulations confirm the theoretical
computations. More importantly, we observe that the
presence of an input signal in the ARMAX model, in
comparison with the ARMA model, not only reduces
the variance of thea parameter (by a factor of5), but
perhaps more surprisingly, it also reduces the variance
of thecj parameter estimates (by a factor of2.5).

5. CONCLUSIONS

We have performed the same variance analysis for
the other standard polynomial models, namely the
Output-Error (OE) and Box-Jenkins (BJ) models. It
follows from our analysis that the following overall
conclusions can be drawn.

• In the case of DISO systems, it is always best to
excite the two inputs simultaneously.

• For ARX and ARMAX structures, that have
common parameters in the input-output and
noise dynamics, the addition of a second input
u2 improves the accuracy of all parameter es-
timates, including those of theB1 polynomial
corresponding tou1, and of theC polynomial of
the noise model. Thus, if you can add a second
input signal, do so.

• For FIR, OE, or BJ structures, that have no com-
mon parameters between the different transfer
functions, the input signalu2 does not affect the
variances of the parameters corresponding to the
first input or to the noise model.

Finally, it is worthwhile to extend the results pre-
sented here to more general MISO (multi-input single-
output) structures.
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