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Abstract— Recently attention has been paid to the identifica-
tion of networks of linear time-invariant dynamical systems.
One of the problems of interest is the identification of a
particular transfer function within the network on the basis
of available measurements. This raises the question of which
signals need to be measured and which external excitation
signals need to be present in the network in order to yield a
consistent estimate of this desired transfer function. This paper
examines the properties of the estimated transfer function in
terms of bias error and variance error, for different models
of the network. The main contribution is the derivation of
sufficient richness conditions on the external signals for the
consistent identification of the desired transfer function.

I. INTRODUCTION

The identification of networks of linear time-invariant
dynamical systems has been the subject of much recent
attention. The problem contains two aspects. The first is
the identification of the topology of the whole network; this
consists of identifying the interconnection structure of the
subsystems from the available data. Some recent contribu-
tions towards the identification of the network topology can
be found in [5], [8], [3], [2].

The second aspect is the identification of a particular
transfer function or a family of transfer functions within
the network, assuming that its interconnection structure is
known. The major contribution on this aspect of the problem
can be found in [10]. A recent contribution focuses on
the design of optimal input signals for the identification
in interconnected systems, where the optimality criterion
depends on the specific application [6]. The results of [10]
and [6] heavily rely on the observation that, when it is
desired to identify a particular transfer function within an
interconnected system, the problem can be reconfigured as
a closed-loop system with the ‘to be identified’ transfer
function in the open-loop path, and the relevant parts of the
network acting as a feedback loop.

In this paper, we shall adopt the network model formalism
developed in [10]. In that paper the authors have derived
a number of results for the consistent identification of a
particular transfer function within a known network, using
three different closed-loop identification methods, whose
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properties they have compared for the accomplishment of
this task. A key assumption for their results is that the
vector consisting of all the node signals in the network are
informative. This assumption is crucial for the consistent
estimation of the desired transfer functions, but it is an
assumption on the internal signals rather than an assumption
on the experiment design. In other words, by measuring all
internal signals one can evaluate whether they are informative
by checking the positivity of the corresponding spectral
density matrix, but nothing is said about how to make
these data informative by proper experiment design, i.e. by
imposing conditions on the externally applied signals. The
major contribution of this paper is to fill this gap.

We first show that the network model of [10] can be
transformed in a number of equivalent descriptions, leading
to different ways of estimating the desired transfer function,
or transfer functions. We briefly describe the bias errors
obtained with these different network models. We then focus
on the direct identification of the desired transfer functions,
and we develop expressions that relate the richness of the
external signals that enter the network to the informativity
of the data vector consisting of the vector of node signals.
These expressions also allow us to compute the covariance
of the estimated parameter vectors and transfer functions,
and to compare the effect of different experiment design
scenarios on these covariances. For the sake of simplicity
our analysis is developed on a 3-node network; we show
why it is representative of a general network with L nodes,
and we actually formulate some of our results for this general
L-node network. Finally, a simple 3-node example serves to
illustrate the usefulness and practicality of our results.

The content of the paper is as follows. The problem is
stated in section II. We then present different configurations
of the 3-node network in section III. In section IV we
illustrate the informativity problem with a simple example.
Three different models for the 3-node network, leading
to three ways of estimating the desired transfer functions,
are presented in section V, where the bias errors obtained
from these models are discussed. Our main results are in
section VI where we provide conditions on the network for
the external signals to provide informative data. An extension
of our main result for general L-node networks is presented
in section VII.

II. PROBLEM STATEMENT

We adopt the network structure and notations of [10].
Thus, we consider that the network is made up of L nodes,
that the outputs of each node, also called node signals,



are denoted {w1(t), . . . , wL(t)}. These node signals are
related to each other and to the external excitation signals
rj , j = 1, . . . , L and the noise signals vj , j = 1, . . . , L by
the following network equations:
w1

w2

...
wL

=


0 G12 . . . G1L

G21 0
. . . G2L

...
. . . . . .

...
GL1 GL2 . . . 0



w1

w2

...
wL

+


r1

r2

...
rL

+


v1

v2

...
vL


= G(q)w + r + v (1)
= (I −G)−1(r + v) (2)

with the following properties:

• Gij are proper but not necessarily strictly proper trans-
fer functions. Some of them may be zero, indicating
that there is no direct link from wj to wi.

• There is a delay in every loop going from one wj to
itself.

• all node signals wj , j = 1, . . . , L are measurable.
• ri are quasi-stationary external excitation signals that

are available to the user in order to produce informative
experiments for the identification of some or all of the
Gij . Some or all of the rj are possibly zero.

• vj are unmeasured stationary noise signals with rational
spectral density that can be modeled as vj = Hj(q)ej
where Hj(q) is a monic stable and inversely stable
modeling filter and ej is white noise with variance λj .
Some or all of the vj are possibly zero.

• the external excitation signals ri are assumed to be
uncorrelated with all noise signals vj , j = 1, . . . , L.

• q−1 is the delay operator.
In this paper we consider the problem of estimating a

particular transfer function, say Gij , from the available nodes
signals wi and the excitation signals ri. Without loss of
generality, we shall assume that the transfer function to be
identified is G12 in the first row of the network model above.
We shall first show that the identification of G12 can be
obtained through different ways of reconfiguring the network
model (1) into an equivalent subnetwork that relates G12 to
available signals.

First we show that for the estimation of G12 the model
(1) can always be rewritten as a classical feedback system
with L−1 inputs and one output, i.e. a Multiple Input Single
Output (or MISO) feedback system. We can then split up the
vector w into

w =

[
w1

w̃2

]
(3)

where w̃1 is the L−1 vector defined by w̃2
∆
= [w2 . . . wL]

T .
Correspondingly, we split up the matrix G(q) into the 4-
block matrix

G =


0 ( G12 . . . G1L ) G21

...
GL1


 0

. . . G2L

. . . . . .
...

GL2 . . . 0


 (4)

which we denote as

G(q) =

[
0 K1(q)

K2(q) K3(q)

]
(5)

We can now rewrite the initial network description (1) as a
MISO feedback system as follows. First we rewrite (1) as[

w1

w̃2

]
=

[
0 K1(q)

K2(q) K3(q)

] [
w1

w̃2

]
+

[
r1

r̃2

]
+

[
v1

ṽ2

]
(6)

where the vectors r and v of (1) have been split conformably
with the split of w in (3). Next we rewrite (6) in the
traditional form of a MISO feedback system:

w1(t) = K1(q)w̃2(t) + r1(t) + v1(t) (7)
w̃2(t) = [I −K3(q)]−1{K2(q)w1(t) + r̃2(t) + ṽ2(t)}(8)

We observe that, if our objective is to identify the transfer
functions of the first row of G, then we can apply all the
well known results about the identifiability, the excitation
requirements, as well as the bias and variance properties
for the identification of the open loop path of a multivari-
able feedback system to the system (7)-(8). Necessary and
sufficient conditions for the identifiability of K1(q), K2(q)
and K3(q) can, e.g., be found in [1] and [7]. Necessary and
sufficient conditions on the richness of the excitation signals
for closed loop systems have been given in [4] for the single
input single output (SISO) case. In the present paper these
conditions are extended to the MISO system in which any
network can be transformed, as we have just shown.

For the network described by (1), or alternatively (6),
several questions are to be addressed:

• Assuming that only G12 needs to be estimated, what is
the best procedure for such estimation, in the case where
the other transfer functions are known, and in the case
where they are unknown but of no interest? The choice
of the ”best procedure” involves criteria such as bias
error and variance error.

• If G12 can be estimated using different combinations
of measured signals, do some of them lead to better
properties for the estimated Ĝ12?

• What are the excitation conditions (on r and on v) that
allow for the estimation of G12?

Some of these questions have been addressed in recent papers
[3], [10].

III. THE 3-NODE NETWORK

We examine the different questions raised in Section II on
the basis of a 3-node network. The reason for this choice
is as follows. We have shown that the L-node network can
always be transformed into a MISO feedback system with
a ”regulator” of size (L − 1) × 1. Taking L = 2 leads to
a SISO feedback system that is not representative of the
situations encountered in the L-node network because of
the triangular structure of the matrix G(q) in (5) and the
fact that K1(q),K2(q) and K3(q) are all scalar. The first
network structure of modest size that is representative of the
general L-node network is the 3-node network. It allows one
to address and analyze all questions raised in the previous



section, and come up with solutions that are representative
of the larger networks. In section VII we shall actually make
some specific extensions to a general L-node network.

Thus, consider the following 3-node network: w1

w2

w3

=

 0 G12 G13

G21 0 G23

G31 G32 0

 w1

w2

w3

+

 r1

r2

r3

+

 v1

v2

v3


(9)

We first rewrite it in the form: w1

w2

w3

=

 M11 M12 M13

M21 M22 M23

M31 M32 M33


 r1

r2

r3

+

 v1

v2

v3


(10)

where the 3× 3 matrix M(q) is defined as follows:

M=
1

∆

 1−G23G32 G12 +G13G32 G13 +G12G23

G21 +G23G31 1−G13G31 G23 +G21G13

G31 +G32G21 G32 +G31G12 1−G12G21


(11)

and where ∆(q)
∆
= det(I −G):

∆(q) = 1−G12G23G31 −G21G13G32

−G13G31 −G23G32 −G12G21 (12)

We observe that ∆(∞) = 1 by the conditions on the absence
of algebraic loops enunciated in Section II.

The questions we shall address on the network (9) are:
1) what is the best procedure to identify the first row

[G12 G13]?
2) assuming we only want to identify G12, what is the

best procedure in the case where either G13 is known
(this is a typical case if G13 is a regulator), or where
G13 is unknown but not useful to be estimated?

3) what are the sufficient richness conditions on the
external signals ri and vi, for i = 1, 2, 3, that allow a
consistent estimation of G12 when G13 is known, or
when G13 is unknown?

4) how do the external signals impact on the variance of
the estimated Ĝ12?

IV. A 3-NODE MOTIVATING EXAMPLE

In this section we examine a simple 3-node example
that illustrates the major issues raised above, in terms of
identifiability, richness of the external signals, bias and
variance.

We consider the following 3-node example: w1

w2

w3

 =

 0 a1q
−1 + a2q

−2 bq−1

q−1 0 0
0 cq−1 0

 w1

w2

w3


+

 r1

r2

r3

+

 e1

e2

e3

 (13)

where the parameters a1, a2, b, c are unknown parameters
to be identified from available signals. For simplicity, we
assume that the noises, if they exist, are all white noises
with variances λ1, λ2 and λ3, respectively, and that they are
uncorrelated.

Now assume first that r3 = 0 and e3 = 0. Suppose we
want to estimate G12(q)

∆
= a1q

−1 + a2q
−2 and G13(q) =

bq−1 from the available signals. A direct approach would be
to use the first equation:

w1 = (a1q
−1 + a2q

−2)w2 + bq−1w3 + r1 + e1 (14)

and to estimate the parameters a1, a2 and b with a direct
prediction error approach, using w1 as the ouput and w2, w3

and r1 as the inputs of this MISO system. However, we show
that these parameters cannot be uniquely identified.

Replacing b in (14) by b = b1+b2 and then substituting w3

in the term b1q
−1w3 by its expression in the third equation

of (13) we obtain:

w1 = [a1q
−1 +(b1c

0 +a2)q−2]w2 +b2q
−1w3 +r1 +e1 (15)

where c0 is the coefficient appearing in the last equation of
the true system. We now observe that the one-step ahead
prediction errors for (14) and (15) are identical for all
combinations b = b1 + b2 since w3 = c0q−1w2. Thus, using
the signals w1, w2, w3, r1 with the model (14) will not lead
to a unique mimimum of the prediction error criterion.

Suppose we now add a nonzero excitation signal r3 so
that the third equation becomes

w3 = c0q−1w2 + r3 (16)

Equation (15) is then replaced by

w1 =[a1q
−1+(b1c

0+a2)q−2]w2+b2q
−1w3+r1+b1q

−1r3+e1

(17)
If we now use the signals w1, w2, w3, r1 and r3, with a model
structure that is able to represent all FIR functions in (17),
then all parameters can be consistently estimated.

Finally, we note that if the true G13 = b0q−1 is
known, then G12(q, θ) can be consistently estimated from
w1, w2, w3, r1 even if r3 = 0, because it makes the predictor
for ŵ1(t|t− 1) unique: see (14) with b = b0. This example
illustrates how the presence or absence of external signals,
and the knowledge or lack of knowledge of other transfer
functions may decide whether or not G12 can be identified.

V. MODELS FOR THE 3-NODE NETWORK

We show now that the identification of G12 can be per-
formed using alternative models that relate G12 to measured
signals, and we discuss the bias properties that result from
the use of these alternative models.

The first and most obvious idea for the identification of
G12 is to use the first equation of (9):

w1 = G12w2 +G13w3 +H1e1 + r1, (18)

and to identify G12 using the signals w1, w2, w3 and,
possibly, r1 if it exists. Since w2 and w3 may be correlated
through the other equations of (9), this consists of the
identification of a closed loop MISO model with input signals
w2, w3 and possibly r1, with a possible excitation with an
unknown disturbance v1 = H1(q)e1. We call this model the
network model.



Another model for the identification of G12 is obtained
from the closed loop equations (10), which we call the joint
model. From the model (10) we can define the following
(1× 2) and (2× 2) submatrices

M̄1
∆
= [M12M13], and M̄2

∆
=

[
M22 M23

M32 M33

]
(19)

Then straightforward calculations show that

[G12 G13] = M̄1M̄
−1
2 (20)

The identification of G12 using this joint model uses the
signals w1, w2, w3 as well as r2 and r3, if they exist.

An alternative model for the identification of G12, that we
shall call hybrid model, is obtained as follows. Substitute
w2 in the first equation (9) by its expression in the second
equation; this yields:

w1 = G12[G21w1 +G23w3 + r2 + v2] +G13w3 + r1 + v1

= G12G21w1 + [G13 +G12G23]w3

+ r1 +G12r2 + v1 +G12v2

Equivalently:

w1 =
1

1−G12G21
[(G13 +G12G23)w3 + r1 +G12r2

+ v1 +G12v2] (21)

We rewrite this equation as follows, with the appropriate
definitions, and we obtain the following hybrid model:

w1 = L11r1 + L12r2 + L13w3 +N11v1 +N12v2 (22)

and we observe that the desired G12 can be expressed as

G12(q) =
L12(q)

L11(q)
. (23)

Thus, we observe that with this hybrid model, G12 can be
estimated using the signals w1, w3, r1, r3. The word hybrid is
used for this model because, when viewed as a MISO model,
it uses a combination of internal and external signals.

The models (18), (10) and (21) provide us with three
different ways to perform the identification of G12, using
different signals. However, the estimates obtained from these
different models will have different bias properties.
Bias properties for the estimates of G12

Comparing the estimation of G12 from the three models
discussed above, using their corresponding signals, we can
make the following observations.

1) The unbiased estimation of G12 from the signals
w1, w2, w3, r1 in (18) requires the simultaneous esti-
mation of a fully parametrized model for G13 and for
H1. By fully parametrized, we mean that the model
sets chosen for G13 and for H1 must be able to
represent the true transfer functions.

2) As shown by (20), the use of the joint model (10) for
the unbiased estimation of G12 requires an unbiased
estimation, and hence a full parametrization, of the
last two columns of M . However, it does not require
the identification of the noise models H1, H2 or H3,

i.e. an Output Error model for (10) will deliver an
unbiased estimate of G12 even with colored noises.
Note also that this identification uses the signals
w1, w2, w3, r2, r3.

3) The unbiased estimation of G12 using the hybrid
model (21) is based on (23). It requires an unbiased
estimation, and hence a full parametrization, of the
transfer functions L11, L12, L13 in (21), but G12 will
be unbiased even if the noise models are not estimated.

VI. DIRECT IDENTIFICATION IN THE 3-NODE NETWORK

We now study the direct identification of G12 using
signals w1, w2, w3 in (18). We have shown above that the
identification of G12 may require the identification of the
vector [G12 G13] and, possibly also, of H1. For the purpose
of analysing the effect of different excitation scenarios on
the estimates, we adopt the following model structure for
the parametrization of G12, G13 and H1, as proposed in [9]:

M = {G12(α), G13(α, β), H1(α, β, γ),

θ =
(
αT βT γT

)T ∈ Dθ ⊂ Rnθ
}

(24)

where G12(α), G13(α, β) and H1(α, β, γ) are rational trans-
fer functions, θ ∈ Rnθ is the vector of model parameters,
and Dθ is a subset of admissible values for θ. Note that
this parametrization covers a wide range of model structures,
including all the standard ones. As for the true system, we
shall denote by G0

ij the true transfer functions in (9), and
by M0

ij the true transfer functions in (10). Throughout our
further analysis, we make the following assumption.

Assumption 1: The true subsystem S1 is contained in the
model structure M for some θ0 = (αT0 , β

T
0 , γ

T
0 )T ∈ Dθ.

The example has shown that the consistent identification
of G12 in (18) depends on the network structure and on
the signals. Proposition 2 in [10] provides conditions for
the consistent identification of G12 in (18), but the crucial
informativity condition is expressed in terms of the positivity
of the spectrum Φ(ω) of the vector w. This is not a very
practical condition in terms of experiment design since the
wi are internal variables, subject to feedback.

Here we examine the experimental conditions that lead to
an unbiased estimate of G12 under various conditions on the
presence or absence of the external signals, the richness of
these signals, the structure of the network, the knowledge
one may or may not have about certain transfer functions.

The one-step ahead prediction error for w1(t) in (18) is

ε1(t, θ)
∆
=w1(t)− ŵ1(t|t− 1, θ)

=
1

H1(θ)
[w1(t)−G12(α)w2(t)−G13(α, β)w3(t)−r1(t)]

Provided the model structures are identifiable and the data
informative, then the parameter vector θ̂N converges asymp-
totically to the true θ0, and the per sample asymptotic
covariance matrix is given by Pθ = λ1[I(θ0)]−1 where I(θ)
is the information matrix defined by

I(θ) = Ē[ψ(t, θ)ψT (t, θ)] (25)



and the pseudoregressor vector is defined as ψ(t, θ) ,
∂ε1(t,θ)
∂θ . The pseudoregressor vector ψ(t, θ) will have full

rank at θ0, and thus also the information matrix, if w(t)
is informative, meaning that it is persistently exciting of
sufficient order. This condition seems like a technicality
that will be generally satisfied, but in a network this is far
from true. Its satisfaction rests on the network structure, on
the complexity of the transfer functions Gij , and on the
external signals r(t) and v(t) - their existence and richness.
Necessary and sufficient conditions for the nonsingularity of
the information matrix have been given for open and closed
loop SISO systems in [4]. Here we extend these results to a
MISO system with a multivariable feedback loop.

Following the same procedure as in [4] we shall express
the pseudoregressor vector as a function of the external
signals r1, r2, r3 and the white noise sources e1, e2, e3:

ψ(t, θ) = Vr(q, θ)

 r1(t)
r2(t)
r3(t)

+ Ve(q, θ)

 e1(t)
e2(t)
e3(t)

 (26)

where Vr(q, θ) and Ve(q, θ) are d × 3 matrices of transfer
functions, d being the dimension of the parameter vector θ.
Remember that the network may be such that some signals
ri(t) or ei(t) may not be present. In the definition of Vr and
Ve in expression (26) it is understood that, if some of the
signals ri or ei are zero for the network under investigation,
the corresponding columns of Vr and/or Ve are zero. It then
follows from the analysis of [4] that the pseudoregressor
ψ(t, θ) can have full rank (and hence I(θ) > 0) if and only
if there exists no vector µ ∈ <d with µ 6= 0 such that

µT [Vr(q, θ) Ve(q, θ)] = 0. (27)

and the available signals rj can be made sufficiently rich.
Stated otherwise, the necessary condition (27) means that
the columns of the matrix [Vr(q, θ) Ve(q, θ)] cannot have
a common left nullspace. It is important to note that this
condition depends entirely on the network structure and
on the parametrization of the transfer functions that are
estimated. We refer to [4] for details and extensions on the
specific richness conditions for the signals ri.

The task now is to express these vectors in terms of the
parameters of the model and of the true system. Obtaining
these expressions will serve two purposes:

• rank conditions on the vectors contained in Vr and Ve,
and richness conditions on the applied signals r1, r2

and r3 will enable to ensure informativity of the data
set w(t), under various scenarii, e.g. presence or not of
some of these external signals

• these expressions will determine the covariance of the
parameters {α, β, γ} and the variance of G12(q, α̂N )
under various scenarii.

To compute Vr(q, θ) and Ve(q, θ) we define the partial
derivatives ∇1

∆
= ∂G12(α)

∂θ , ∇2
∆
= ∂G13(α,β)

∂θ , ∇3
∆
= ∂H1(θ)

∂θ ,

and we observe that they take the following form:

∇1=

 ∂G12

∂α
0
0

 , ∇2=

 ∂G13

∂α
∂G13

∂β

0

 , ∇3=

 ∂H1

∂α
∂H1

∂β
∂H1

∂γ

 (28)

Some lenghty calculations then show that Vr and Ve can be
expressed as follows:

Vr(q, θ) =
1

H1(θ)
[V1 V2 V3] (29)

Ve(q, θ) =
1

H1(θ)
[∇3 +H0

1V1 H0
2V2 H0

3V3] (30)

V1 = ∇1M
0
21 +∇2M

0
31 (31)

V2 = ∇1M
0
22 +∇2M

0
32 (32)

V3 = ∇1M
0
23 +∇2M

0
33 (33)

We thus have the following result for the 3-node network.
Theorem 6.1: Consider the identification of G12, G13

and H1 in the network (9) using a direct prediction error
method applied to (18). Then the data w(t) can be made
informative by proper choice of external excitation signals
for the consistent estimation of the parameters α, β, γ in M
in (24) only if the columns of Vr(q, θ) and Ve(q, θ) in (29)-
(30) have no common left nullspace.
Proof: The proof follows immediately from the condition
(27) applied to this 3-node model structure.
If the condition is satisfied, then informative data are ob-
tained either from the existing noise signals, or by adding
sufficiently rich excitation signals ri.

Now we observe that the left nullspaces of the last
two columns of Vr are, respectively, identical to the left
nullspaces of the last two columns of Ve, since multiplication
by H0

2 and H0
3 does not change the ranks of the correspond-

ing columns. Thus, we have the following result.
Theorem 6.2: Suppose one wants to identify G12, G13

and H1 in the 3-node network (9). If the configuration of
the network and its external signals is such that the data are
not informative, i.e. I(θ) is singular, then adding an external
reference signal, r2 or r3, at a node where there is a noise
disturbance will not improve the informativity of the data.
Proof: The proof follows immediately from the expressions
of the last two columns of Vr and Ve in (29) and (30).

We now return to the example of Section IV to illustrate
the usefulness of the expressions of Vr and Ve for the
generation of informative data w(t). We have H1 = 1, α =
(a1 a2)T , β = b and θ = (a1 a2 b)T = (αT β)T . ∇3 = 0,
∇1 =

[
q−1 q−2 0

]T
and ∇2 =

[
0 0 q−1

]T
.

Applying the formulas (31)-(33) we get

V1(q, θ) =
[
q−2 q−3 c0q−3

]T
V2(q, θ) =

[
q−1 q−2 c0q−2

]T
V3(q, θ) =

[
b0q−3 b0q−4 q−1 − a0

1q
−3 − a0

2q
−4
]T

From these expressions it is clear that Ker(V1) =
Ker(V2) = {µ ∈ <3 : µ = k[0 c0 − 1]T ∀k ∈ R}, while
Ker(V 3) = {0}. This shows why the data in the network



(13) are not informative for the identification of G12 and G13

when r3 = e3 = 0. A remarkable result of our analysis of
sufficient richness is the following.
Conclusion for the example: The consistent identification
of the transfer functions G12(θ) and G13(θ) in the network
(13) of Section IV is possible if either e3 6= 0, or r3 is
sufficiently rich of order 3 (see [4] for details). G12(θ) and
G13(θ) can be consistently identified (i.e. the data w(t) are
informative) if all external signals in the network (13) are
zero except either r3 or v3.
Comment: The condition above shows that only the external
signals entering in the third node can ensure informativity of
the data w(t). This does not mean that the other signals are
useless. They will contribute to a decrease in the variance of
the estimated transfer functions.

VII. RESULTS FOR THE L-NODE NETWORK

Some of the results derived for the 3-node network in
Section VI can be easily generalized to the general L-node
network of (1). The expressions Vr(q, θ) and Ve(q, θ) of (29)
and (30) can be generalized to a L-node network as follows.

Lemma 7.1: Suppose one identifies the transfer functions
of the first row of a L-node network by a prediction error
method that minimizes a norm of ε(t) = w1(t)−ŵ1(t|t−1).
Then the pseudoregressor that defines I(θ) has the form

ψ(t, θ) = Vr(q, θ)

 r1(t)
...

rL(t)

+ Ve(q, θ)

 e1(t)
...

eL(t)

 (34)

where Vr and Ve are expressed as follows:

Vr(q, θ) =
1

H1(θ)
[V1 V2 . . . VL] (35)

Ve(q, θ) =
1

H1(θ)
[∇H1

+H0
1V1 H

0
2V2 . . . H0

LVL](36)

with ∇H1

∆
= ∂H1(θ)

∂θ .
Proof: The proof is a straightforward extension of the
derivations that led to (29) and (30) with an appropriate
redefinition of the vectors Vi in (31)-(33) to account for the
presence of the additional terms in the equation for w1(t).

Now observe that the left nullspaces of the L− 1 rightmost
columns of Vr and Ve are identical, because multiplication
by the noise models Hi in the columns of Ve does not change
the ranks of the corresponding columns. Thus, we have the
following interesting result.

Theorem 7.1: Suppose one wants to identify the nonzero
transfer functions Gij , j = 1, . . . , L of any row i of G in (1)
and assume that the existing external signals {rj} and {vj}
are not informative for the identification of these transfer
functions with the existing configuration, i.e. the information
matrix I(θ) is singular, and hence these transfer functions
cannot be identified. Then adding an external reference
signal, say rk, at a node where there is a noise disturbance
vk will not improve the informativity of the data.
Proof: The proof, for the identification of the transfer

functions G1j , follows immediately from the fact that the
left nullspaces of Vek and Vrk are identical, as shown in
Lemma 7.1. Extension of the result to the elements of any
row i of G is obtained by a permutation of the positions in
(35) and (36) and proper adjustment of the definitions of the
columns Vi.

VIII. CONCLUSIONS

We have studied the identification of a particular transfer
function in an interconnected network. A critical condition
for the consistent identification of such transfer function is
that the data be informative. Guaranteeing such informativity
condition in a network is by no means trivial, as we have
indicated with a simple example. We have used a 3-node
network as a representative model for the identification of
a transfer function in a network, because any network can
be transformed into a MISO feedback system and the 3-
node network is the simplest MISO feedback system. For
this 3-node network, we have derived novel informativity
conditions expressed in terms of the external signals and
the structure of the network. These conditions have led to a
simple result for the case of a general L-node network.

The expressions we have derived for the transfer of exci-
tation from external signals to node signals also allow one
to compute the variance of the estimated transfer function,
and to compare its expression under various experimental
conditions. These lead to interesting design considerations
in terms of the choice of signals to be applied when the
objective is to reduce the variance of the estimated transfer
function below some threshold. For lack of space, this
analysis is left for a future paper.
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