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Abstract—This paper deals with the design of Excitation and
Measurement Patterns (EMP) for the identification of a class
of dynamical networks whose topology has the structure of a
Directed Acyclic Graph (DAG). In addition to the by now well
known condition that the identifiabiltiy of any dynamical network
requires that the sources be excited, the sinks be measured, and
all other nodes be either excited or measured, we show that
for DAGs two other types of nodes have special excitation and
measurement requirements. Armed with this result, we propose
a systematic procedure for the design of EMPs that guarantees
identifiability of a network with DAG topology.

Index Terms—Dynamic Networks, Generic Identifiability, Net-
work Identification, Directed Acyclic Graphs.

I. INTRODUCTION

This work deals with identifiability of dynamic networks,
which has been an active research topic in the control com-
munity over the last decade. The network framework used
here was introduced in [1], where signals were represented
as nodes of the network which were related to other nodes
through transfer functions. These networks can be interpreted
as directed graphs where the transfer functions, also called
modules, are the edges of the graph and the node signals are
the vertices.

In [1], it was assumed that all nodes are excited and
measured. As a result, an input-output matrix of the network,
denoted T'(z), can be defined, which can always be identified
from these data. The network identifiability question is then
whether the network matrix, denoted G(z) (whose elements
are the transfer functions relating the nodes) can be recovered
from this closed-loop transfer matrix 7'(z). In subsequent
works, a range of new objectives were defined, from the
identification of the whole network to identification of some
specific part of the network [2]-[9]. As for the assumptions
on the signals, up to 2019, all contributions assumed that
either all nodes are excited, or all nodes are measured. A
typical question would be: given that all nodes are excited,
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which nodes must be measured in order to identify the whole
network?

The first identifiability results for networks where not all
nodes are excited AND not all nodes are measured were pre-
sented in [10]. That paper first provided a necessary condition
for identifiability of any network: each node must be either
excited or measured, at least one node must be excited and
at least one node measured. The paper [10] also presented
identifiability conditions for two special classes of networks,
namely trees and loops.

The results of [10] inspired the definition of an excitation
and measurement pattern (EMP), namely the combination of
excited nodes and measured nodes. The concept of EMP
was introduced in [11] where an EMP was called valid if it
guarantees the identifiability of the whole network. An EMP
was called minimal if it guarantees the identifiability of the
network using the smallest possible combination of excited
and measured nodes [11]. This number is the cardinality
of the EMP. Achieving identifiability of a network with a
minimal EMP is of both theoretical and practical interest. The
excitation of a node typically requires an actuator, while its
measurement requires a measurement device. On the other
hand, having some flexibility in the choice of a valid EMP
is also of practical interest. It may be that exciting node
42, say, is prohibitively expensive while its measurement is
easy; conversely, measuring a node may be difficult while its
excitation is cheap. In evaluating the choice of an EMP for
the identification of a network, one must of course remember
that each node must be either excited or measured or both.
As a result, the cardinality of a valid EMP is always at least
equal to n, the number of nodes.

The search for valid, and possibly minimal, EMPs began by
looking at special structures. In [10] a necessary and sufficient
condition was given for the identifiability of a tree, which
shows that a tree can possibly be identified with an EMP
of cardinality n. In [12] necessary and sufficient conditions
were derived for the identifiability of some classes of parallel
networks. In [13] necessary and sufficient conditions were
given for the identifiability of loops. This result showed that
any loop with more than 3 nodes can also be identified with
a minimal EMP of cardinality n. In addition, it was shown
that constructing EMPs for loops is very easy and that the
number of minimal EMPs grows very quickly with the number
of nodes.

In this paper, we generalize the results derived in [10] for
the identification of trees to a much wider class of networks,
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namely those that have the structure of a Directed Acyclic
Graph (DAG), i.e. a directed graph that has no cycles. DAGs
have been widely studied in the literature [14]. A specific fea-
ture of a DAG is that the corresponding network matrix G(z)
can be rewritten in a lower triangular form via a relabeling
of the nodes. The corresponding input-output transfer matrix
T(z) is then also lower-triangular and this greatly simplifies
the relations between the elements G;;(z) of the network
matrix and the elements T;;(z) of this transfer matrix.

The main contributions of this paper are as follows. First,
we provide an explicit solution for the elements G;;(z) as a
function of elements of the matrix 7'(z) and elements of its
inverse: S(z) = T~1(2), with the property that the elements
Sij(z) of S(z) are expressed in terms of T;(z) only (i.e. they
do not involve inverses of elements Ty;(z)). Next we focus
on the construction of valid EMPs for the identification of
a DAG. We provide a necessary condition on the excitation
and measurement of specific nodes within a DAG. Finally,
we provide a simple procedure for the construction of a valid
EMP for the identification of a DAG.

The paper is organized as follows. In Section II we in-
troduce the notations, and recall the definitions of generic
identifiability of a network, and of a valid, as well as a
minimal, Excitation and Measurement Pattern. We also recall
the main necessary condition for identifiability of any network.
In Section III we present networks that have the topology of
Directed Acyclic Graphs and establish the key results that will
allow one to identify such networks. In Section IV we establish
necessary conditions for the identifiability of a DAG. The
results of Sections III and IV allow us to propose, in Section
V, a recursive procedure for the construction of a valid EMP,
i.e. one that secures identifiability of the network. Finally, we
present conclusions in Section VI.

II. DEFINITIONS, NOTATIONS, AND CONCEPTS

In this section, we briefly state the identifiability problem for
a dynamical network and recall the main necessary condition
for the identifiability of any such network. We then define
the concept of a valid Excitation and Measurement Pattern,
namely a choice of excited nodes and measured nodes that
guarantees identifiability. We also introduce the notations used
throughout the paper.

We consider dynamic networks composed of n nodes (or
vertices) which represent internal scalar signals {wy(¢)} for
k €{1,2,...,n}. These nodes are interconnected by discrete
time transfer functions, represented by edges, which are entries
of a network matrix G(z). The dynamics of the network is
given by the following equations:

w(t) = G(z)w(t) + Br(t),
y(t) = Cw(t),
where w(t) € R™ is the node vector, r(t) € R™ is the input
and y(t) € R? is the network’s output. The matrix B € Z5*™,
where Zo = {0, 1}, is a binary selection matrix with a single 1

and n — 1 zeros in each column; it selects the inputs affecting
the nodes of the network. Similarly, C' € Z5*" is a matrix

(1)
(1b)

with a single 1 and n — 1 zeros in each row that selects which
nodes are measured.

We now introduce some definitions and notations concern-
ing these dynamical networks and their network matrix G(z).
To each G(z) we can associate a directed graph G defined by
the tuple (1, £), where V is the set of vertices and £ C V x V
is the set of edges. The graph G defines the topology of the
network. A particular transfer function G;;(2) of the network
matrix is called an incoming edge of node ¢ and outgoing edge
of node j. Furthermore, for this transfer function, we say that
node ¢ is an out-neighbor of node j, and that node j is an
in-neighbor of node i. A node j is connected to node ¢ if
there exists a directed edge from node j to node i. For the
graph G associated to the network matrix G(z) we introduce
the following notations.

e W - the set of all n nodes;

e BB - the set of excited nodes, defined by B in (la);

e C - the set of measured nodes, defined by C' in (1b);

o F - the set of sources: nodes with no incoming edges;

o S - the set of sinks: nodes with no outgoing edges;

e 7 - the set of internal nodes, i.e. nodes that are neither a

source nor a sink: Z = W\(FUS);

. J\/'j_ - the set of in-neighbors of node j;

. J\/’;r - the set of out-neighbors of node j.

Additionally, we introduce the following two types of nodes:

o A node j is called a dource if all its in-neighbors have

a directed edge to at least one of its out-neighbors;
¢ A node j is called a dink if it has at least one in-neighbor
that has a directed edge to all its out-neighbors.
Assumptions on the network matrix G(z):

« the diagonal elements are zero;

e (I —G(z))~!is proper and all its elements are stable.
One can represent the dynamic network in (la)-(1b) as an
input-output model as follows

y(t) = M(2)r(t), with M(z) = CT(z)B. (2)
where
T(z) £ (I—-G(2)"" 3)

Observe that the matrix T'(z) is nonsingular by construction.

It is assumed that the input-output model M (z) is known;
the identification of M(z) from input-output (IO) data
{y(t),r(t)} is a standard identification problem, provided
the input signal r(¢) is sufficiently rich. The question of
identifiability of the network is whether the network matrix
G(z) can be fully recovered from the transfer matrix M (z).
We now give a formal definition of generic identifiability of
the network matrix from the data {y(t),r(¢)} and from the
graph structure.

Definition IL.1. ( [5]) The network matrix G(z) is gener-
ically identifiable from excitation signals applied to B and
measurements made at C if, for any rational transfer matrix
parametrization G(P,z) consistent with the directed graph
associated with G(z), there holds

ClI-G(P,2)| *B=ClI-G(2)]'B = G(P,2) = G(2),
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for all parameters P except possibly those lying on a zero
measure set in R, where G(z) is any network matrix con-
sistent with the graph.

In this paper, we discuss identifiability in terms of which
nodes must be excited and/or measured in the subsets B and
C in order to guarantee identifiability of the network. This
approach is inspired by [3]. The following Proposition gives
a necessary condition for generic identifiability of a network;
it combines Theorem III.1 and Corollary III.1 of [10].

Proposition IL1. The network matrix G(z) is generically
identifiable only if B,C #0, F C B, S CC and BUC = W.

As a consequence, every node of the network must be either
excited or measured. Generic identifiability of a given network
can thus be equivalently characterized by the network’s Exci-
tation and Measurement Pattern, denoted EMP. The concept
of EMP, which led to the concept of minimal EMP, was
introduced in [11]. They are defined in the following.

Definition IL.2. A pair of selection matrices B and C, with
its corresponding pair of node sets B and C, is called an
excitation and measurement pattern - EMP for short. An EMP
is said to be valid if it is such that the network (la)-(1b) is
generically identifiable. Let v = |B|+ |C| ! be the cardinality
of an EMP. A given EMP is said to be minimal if it is valid
and there is no other valid EMP with smaller cardinality.

The following result establishes a lower and upper bound
for the cardinality of a valid EMP for any network.

Theorem I1.1. The cardinality of a valid EMP for the identi-
fication of a dynamical network with n nodes is at least equal
to n and at most equal to 2n — f — s, where [ is the number
of sources and s the number of sinks.

Proof. The lower bound results from Proposition II.1; it can
actually be achieved for trees and loops [10], [13]. As for the
upper bound, we know by Proposition II.1 that all sources
must be excited and all sinks measured, while the remaining
n — f — s nodes must be excited or measured. Assuming that
these are all excited and measured, then the cardinality of the
EMPis f+s+2(n—f—s)=2n—f —s. [ |

From now on, we drop the arguments 2z and ¢ used in (1a)-
(1b) whenever there is no risk of confusion.

III. DIRECTED ACYCLIC GRAPHS AND THEIR PROPERTIES

In this section we investigate the generic identifiability
of dynamic networks whose topologies are associated with
directed acyclic graphs, denoted DAG?. These are very general
classes of graphs, of which trees are a special case. We will
derive necessary conditions for the generic identifiability of
these classes of networks and characterize which nodes need
to be excited or/and measured to obtain a valid EMP for these
networks. Directed Acyclic Graphs are defined as follows.

I .| - Denotes the cardinality of a set.
2For simplicity, we shall in the future just refer to a DAG rather than a
network that has the topology of a DAG.

Definition IIL.1. A directed acyclic graph is a directed graph
that has no cycles.

A property of DAGs is that the sequence of their nodes can
be relabeled by a topological sorting algorithm [15] in such a
way that G;; = 0 for ¢ < j. In the sequel, we assume without
loss of generality that the nodes of the dynamic networks we
study in this section have been relabeled this way. As a result,
the network matrix G can be written as a lower triangular
matrix.

0 0 0 e 0
Go 0 0 e 0

G = G31 G32 0 e 0 , (4)
Gnl Gn2 Gn,n—l 0

where some G;,% > j are typically zero. In [12] it was shown
that for a network matrix (4) with all G;; # 0 for ¢ > j generic
identifiability is achieved if and only if all sources are excited,
all sinks are measured, and every other node is both excited
and measured. Exciting and measuring all internal nodes is of
course a very strong condition; we shall explain in the next
section why it occurs when all G;; # 0.

The following Lemma establishes relationships between
such network matrix G with the structure of a DAG and the
corresponding I/O matrix 7'

Lemma IIL.1. Let G be as in (4) and define T = (I —G)~ 1.
Then the following relationships hold.

ﬂl = ]-7 (5)
Ty =0, forj>1, ©
-1
i=J
l
Ty = > TuGij, forl>j ®
i=j+1
-1
Gy =Ti; = Y GuTyj, forl> ©)
i=j+1
-1
Gy =T, — Z T:iGyj, forl>j (10)
i=j+1

Proof. The relations (5)-(7) follow directly from [ — G|T =
I,,, while (8) follows from T[] — G] = I,,. Observing that
T;; = 1in (7) yields (9), while (10) follows similarly from
(8). [ |
In the sequel of this paper we shall illustrate all our results
with the following 7-node DAG.
For this network, equation (10) allows us, for example, to
write:

Gy3 = Ty
Gs3 = T53 — T54Gu3
Gra = T73 — T74Gyz — Tr5Gss
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Fig. 1. A 7-node DAG network

Equations (9)-(10) define the expressions of the G; recur-
sively as a function of the T;; and of the previously computed
G- But the G;; can also be expressed explicitly as functions
of the Tj; as is shown in the following Theorem, which is one
of the main results of this paper. It shows that for DAGs one
can compute the unknown transfer functions G;; explicitly as
a function of the elements of the I/O matrix.

Theorem IIL.1. Define S 2 71 with elements Sij. Then the
following results hold:

(1) Gij = =Sy, and hence S;; = 0 for each pair {1, j}, | # j,
for which G; is known to be zero;

(2) Gy can be written as a sum of products of Ty; with k <1
and i > j.

Proof. Item (1) follows from G = I — T~! and the fact
that the inverse of a lower triangular matrix whose diagonal
elements are all equal to one is a lower triangular matrix
with the same property. As for item (2), it follows from the
direct computation of 7!, with the property that the inverse
of a lower triangular matrix whose diagonal elements are all
equal to one does not contain any Tigl. But it also follows
by substituting the G;; on the right hand side of (10) by their
expressions computed from the same equation. ]

To illustrate the result (2) of Theorem III.1, we observe that
if we substitute G55 and G43 in the expression of G73 above
by their expressions, we obtain

Grz = T73 — T7aTyz — T75T53 + TrsT54Ty3

as claimed.

Not only does Theorem III.1 provide an explicit expression
for the Gj; as a function of the input-output elements 77z, but
it also proves very useful to establish relations among the Tjj.
Indeed, for each G;; that is known to be zero, result (2) of the
Theorem allows one to compute one of the T3, as a function
of others. This may then allow one to eliminate the need for
the excitation or measurement of some nodes as we shall show
in Section V. Returning again to the 7-node DAG of Figure 1,
since G52 = 0, it follows that S5 = 0, which implies

Tso = T53T30 + T54Ts0 + T54Tu3T 0.

IV. NECESSARY CONDITIONS FOR THE IDENTIFICATION OF
A DAG

It was shown in [10] that a necessary condition for the
generic identifiability of any network is that all sources must
be excited, all sinks must be measured, and that each other
node must be either excited or measured. Here we show that,
for DAGs, some additional necessary conditions are required

for two special classes of nodes, namely the dources and the
dinks that were defined in Section II. Our main result is the
following.

Theorem IV.1. Consider a dynamic network with the topology
of a directed acyclic graph whose network matrix is given in
(4) with some known G;; = 0 for i > j. Then this network is
generically identifiable only if the following conditions hold.
(1) each node is either excited or measured;

(2) all sources are excited and all sinks are measured;

(3) all dources are excited and all dinks are measured.

Proof. Conditions (1) and (2) have been shown to be necessary
for the identification of any network in [10].

We turn to item (3). We first prove that the excitation of all
dources is necessary. Consider a node [ that is an out-neighbor
of ¢ such that all in-neighbors of node i are connected to that
out-neighbor [. This means that node 7 is a dource. It then
follows that for each in-neighbor j of node i, we have

o G;; # 0 since j is an in-neighbor of i;

o Gy # 0 since all in-neighbors of i are connected to .
To show that the dource 7 needs to be excited, we focus on
the transfer function 7j; between the dource ¢ and the out-
neighbor [ that is connected to all in-neighbors of 7. It follows
from (10) that in the equations defining G;; as a function
of the T3, and the other Gjj, this specific transfer function
T;; appears only in the expressions of Gy; in which [ is the
considered out-neighbor of dource ¢, and j is either the dource
i itself or one of its A/, in-neighbors. We now observe that
in these 1 + N, equations, 7}; is either multiplied by "1’ or
by the G;; that relate the in-neighbors of dource i to itself.
These G;; are nonzero (see above). Each of these 1 + N i
equations therefore contains an unknown G;; on the left hand
side and the unknown 7}; on the right hand side. Hence, node
¢ must be excited in order to compute 73; and therefore the
edges G; linking the dource 4 and all its in-neighbors to this
particular out-neighbor.

The proof for the necessity of measuring all dinks is the exact
dual of the proof for the necessity of exciting all dources and
will therefore be omitted. ]

We illustrate the result of Theorem IV.1 with the 7-node
DAG network pictured in Figure 1. This network has one
source (node 1), two dources (nodes 2 and 5), two sinks (nodes
6 and 7) and one dink (node 4).

We first show why node 5 must be excited. It is a dource
because all its in-neighbors (nodes 3 and 4) are connected to
out-neighbor 7. We write the equations (10) that relate the
out-neighbor to the dource and to its two in-neighbors.

Grs = Trs

Gra =Ty — T75G54

Gr3 = Trg — T74Gaz — T75Gss
We observe that, even if all quantities other than 775 on
the right hand side were known (i.e. Tr4, T73, G54, G4s, G53),

it would be impossible to identify the transfer functions
G5, Gry and Gr3 without knowing 775, which requires
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exciting node 5. We add that, if an edge G'7g was added, the
first equation would be replaced by G75 = T75 — G615, and
the conclusion would thus be identical.

We now illustrate why node 4 must be measured. It is a
dink because it has an in-neighbor (node 3) that is connected
to all its out-neighbors (nodes 5 and 7). We write the equations
(9) that relate its in-neighbor 3 to the dink and to all its out-
neighbors.

Gaz =Ty3
Gs3 = T3 — Gsalys
Grz = T73 — GraTy3 — Gr5T53

We observe that T3 is required to compute G453, and that
it cannot be computed from the other two equations for the
same reasons as above. Thus, node 4 must be measured for
the identification of G43, Gs3 and Grs.

Notice that a given node can be both a dource and a dink.
In a “full” DAG as in (4), with all G;; # 0, all internal nodes
are dources and dinks, which explains the need for exciting
and measuring them all, as shown in [12].

V. CONSTRUCTING A VALID EMP FOR A DAG

In this section, we show how to construct a valid EMP while
trying to keep the cardinality of this EMP low. Recall that this
cardinality is always between n and 2n — f — s.

An easy solution for the construction of a valid EMP
results from Theorem III.1. Indeed, each G;; can be expressed
explicitly as a combination of T};. The collection of all
these T}; indicates which node excitations and which node
measurements will lead to a valid EMP. In order to reduce the
cardinality of this explicit solution, one can, in a second step,
take advantage of the possible replacement of some of these
Ty by others using the equations S;; = 0 for each Gj; that
is known to be zero: see item (1) of Theorem III.1.

For the 7-node DAG of Figure 1 the explicit solution
provided by Theorem III.1 yields the following solution for
the Giji

Ga1 =T

G31 = T31 — To1T32, Gz = T3z

Gz = Tho — T32Tu3,Gag = Ty

Gs3 = Ts3 — Ty3T54,Gsa = T4

Ges = Tss

Grs = Trs — TrsTs3 — TraTuz + TrsT54Tus

Gra = Try — T54T75,Grs = Trs
Collecting all the indices that appear as inputs and outputs
of the Ty; yields the valid EMP B = {1,2,3,4,5} and
C = {2,3,4,5,6,7}. It has cardinality 11. Observe that
nodes 2, 3, 4, 5 are both excited and measured. According
to Theorem IV.1, nodes 2 and 5 are dources and node 4 is
a dink. Hence, nodes 2 and 5 must be excited, as well as
node 1, which is a source; while node 4 must be measured,

as well as nodes 6 and 7 which are sinks. Starting from
this initial EMP with cardinality 11, one can then use the

equations of Theorem III.1 and Lemma III.1 (in particular
the equations S;; = 0) to check whether one can eliminate
any one of nodes 3 and 4 from 5, or any one of nodes
2, 3, 5 from C. However, such procedure is tedious, and
there appears to be no systematic way to proceed with the
elimination of excitations or measurements. Therefore, we
propose a recursive procedure for the construction of a valid
EMP which is based on Theorem III.1 and Lemma IIIL.1.

Recursive procedure for the construction of a valid EMP.
First, build the matrix S, replacing each S;; by —G/;, where
these G; are computed using equation (10) of Lemma III.1.
For each G, that is known to be zero, equate the zero element
in Sj; to the expression resulting from the same equation (10).

Now, construct the preliminary EMP with the excitations
and measurements required by the structure of the DAG:
sources and dources must be excited, dinks and sinks must
be measured. Call it EMPy, thus defining a By and a Cqy. List
the corresponding known Tj;, i.e. all Tj; for which j € By
and 7 € Cp.

Now, proceed stepwise within the columns of S, say from
column 1 to column n, as explained below.

1) Column 1: the unknown G; appear in the first column
of S. Add to EMP, whatever excited node or measured node
is required to be able to identify all G;;. There may be several
choices. Use the remaining S;; = 0 equations to compute new
elements Tj;. Update EMPy to EMP;, update the known T},
and update the known G .

2) Column 2: the unknown G > appear in the second column
of S. Add to EMP; whatever excited node or measured node
is required to be able to identify all G ;2. There may be several
choices. Use the remaining S;2 = 0 equations to compute new
Ty;. Update EMP; to EMPs, update the known T},; and update
the known Gz.

3) Continue until all columns of S containing elements G;
have been covered.

Before we illustrate this procedure with our Example, let us
make the following comments.

Comments

« The computation of elements G;; based on column j of
S may require that several elements of that column be
used jointly, leading to the solution of a linear system
of equations. One must check that these equations are
linearly independent.

o The procedure proposed above uses a column by column
approach, going from left to right. Other approaches can
be used, such as covering the columns from right to
left, using a row by row approach, etc. These different
approaches will typically lead to different valid EMPs.

The EMP procedure applied to the DAG of Figure 1.
The construction of a valid EMP from the successive columns
of S is shown in Table I. For brevity of notation, for this
example with 7 nodes, we represent an EMP that has B =
{1,2,4,5} and C = {2, 3,4, 6,7}, say, by E1245, M23467.
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TABLE I
CONSTRUCTION OF AN EMP COLUMN-WISE.

E125, M23467
E125, M23467
E125, M23467

DR W=

column of S EMP update Known T Known Gj;
EMPg: E125, M467 Ty, Ta2,Te1,Te2, Tes, T71,T72, T75 -

+M23: E125, M23467 | T21,T31,132,T43 from S41 = 0,Tg3 from Sg1 = 0, T3 from S71 =0 Go1,G31

E125, M23467 Teq from Sgo = 0, T7y4 from S72 =0 G32,Gy2

- Ga3, Gs3 from Sg3, G73
- G54 from Sgq, Gra
_ Ges,Grs

We know a priori that nodes 1, 2 and 5 must be excited,
being a source and two dources, while nodes 4, 6 and 7 must be
measured, being a dink and two sinks. As a result, the starting
EMP, denoted EMP, above, is E125, M467. With this initial
EMPy, the elements Ty1,Tso, T61, 162, 165, 171, 172, T7s are
known. In Table I, we have listed the a priori information that
results from EMPO. By adding M23, i.e. the measurement of
nodes 2 and 3, we know T5q,731,735. In addition, the ex-
pressions S;; = —G)p of the first column of S, established in
(10), allow one to compute Go1, G31, as well as T3, T3, T73;
these are derived from S4; = 0,561 = 0, and S7; = 0,
respectively. Proceeding similarly with the elements of the
second column of S yields directly Gz, G42. It also allows to
compute Tg4 from Sgo = 0 and 774 from S75 = 0. Continuing
with columns 3, 4 and 5 of the matrix S subsequently yields
all other elements G;;. The procedure ends with a valid EMP
defined as E125, M23467, which has cardinality 8.

An alternative is to add E3 for the identification of the
elements of column 1, and E4 for the identification of the
elements of column 2. This yields the alternative valid EMP
defined as E12345, M467, with the same cardinality 8. A row
by row procedure, from top to bottom, applied to the same
example leads to the valid EMP: E125, M234567, which has
cardinality 9. In comparison, the explicit solution based on the
decomposition of each Gy; as a function of the Tj; only, as
explained above, has cardinality 11.

VI. CONCLUSIONS

We have pursued our study of specific substructures of
dynamic networks, with the aim of designing EMPs that
guarantee identifiability for these specific substructures. In
[5] a necessary and sufficient condition was established for
trees, with a corresponding valid (and minimal) EMP. In [12]
necessary and sufficient conditions for network structures with

takes advantage of the properties of DAGs. The procedure we
have proposed guarantees that the constructed EMP is valid.
However, there is no guarantee that it is minimal. The search
for an algorithm that constructs a minimal EMP is a topic for
future research.
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