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Abstract—This paper deals with the design of Excitation and
Measurement Patterns (EMPs) for the identification of dynamic
networks, when the objective is to identify only a subnetwork
embedded in a larger network. Recent results have shown how
to construct EMPs that guarantee identifiability for a range of
networks with specific graph topologies, such as trees, loops,
parallel networks, or Directed Acyclic Graphs (DAGs). However,
an EMP that is valid for the identification of a subnetwork taken
in isolation may no longer be valid when that subnetwork is
embedded in a larger network. Our main contribution is to
exhibit conditions under which it does remain valid, and to
propose ways to enhance such EMP when these conditions are
not satisfied.

Index Terms—Network Analysis and Control; Dynamic net-
works; Network identification.

I. INTRODUCTION

This paper deals with the design of Excitation and Mea-
surement Patterns (EMP) for the identification of dynamic
networks. The network framework used here was introduced
in [1], where signals are represented as nodes of the network
which are related to other nodes through transfer functions.
These networks can be interpreted as directed graphs (or
digraphs) where the transfer functions, also called modules,
are the edges of the graph and the node signals are the vertices.

In [1] and in subsequent contributions, it was assumed that
either all nodes are excited or all nodes are measured. A
breakthrough was made in [2], where the first identifiability
results were obtained for networks where it is not assumed
that all nodes are either excited or measured. This scenario is
referred to as “partial excitation and measurement”.

Since the publication of [2], the search has been for the
construction of EMPs which guarantee network identifiability
and that are preferably sparse. Once it was discovered that
one could identify a network, or part of the network, using
only a selection of excited and measured nodes, this opened
up a whole new ball-game: designing valid EMPs that have
desirable properties, such as small cardinality. An EMP defines
which nodes are excited and which nodes are measured. It is
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called valid for a given network when it guarantees generic
identifiability of that network. It is sparse when it is valid
and the sum of the number of excited nodes and measured
nodes, called cardinality of the EMP, is kept small. It is called
minimal when it is valid with minimal cardinality. Precise
definitions will be given in Section II.

In this paper, we focus on the synthesis of EMPs for
networks with partial excitation and measurement. We briefly
review the existing results so far. They are all based on
the graph-theoretic framework developed in [3]. In [2], the
first results were obtained for the generic identification of
networks with specific graph topologies, namely trees and
loops. Subsequent results for the construction of valid EMPs
have been obtained for some classes of parallel networks
in [4], for DAGs in [5], for isolated loops in [6], where
a necessary and sufficient condition was derived leading to
a minimal EMP. The construction of a valid EMP for the
identification of a single module was proposed in [7]. The
paper [8], while not proposing a synthesis method, presented
a new set of necessary conditions for network identifiability
in the context of partial excitation and measurement. For this
same context, a different approach was proposed in [9], [10];
it is not based on the synthesis of a valid EMP, but on an
efficient and fast algorithm that allows to check the validity
of large numbers of EMPs.

A first new result of the present paper is a necessary and
sufficient condition for the generic identifiability of another
class of networks with a specific topology, namely Parallel
Paths Networks (PPN), leading to the construction of minimal
EMPs for such structures. However, constructing a valid EMP
for a new class of networks with specific structure is not
the main object of the present paper. Instead, we consider
a novel approach to network identification, by addressing the
following problem.

It is often the case that one wants to identify a subnetwork
that is part of a larger network. All the results summarized
above lead to the construction of an EMP that is valid for the
subnetwork under consideration (whether its graph is a tree,
a loop, a PPN, or any other structure) when it is treated in
isolation. However, an EMP that is valid for such subnetwork
considered in isolation may no longer be valid when it is
embedded in a larger network, as we illustrate in Section IV.

Our main contribution will be to present a set of sufficient
conditions under which an EMP that is valid for a subnetwork
in isolation remains valid when that subnetwork is embedded
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in a larger network. Our theorem will also indicate how one
can often complement an EMP that is valid for an isolated
subnetwork so that the augmented EMP remains valid for
that subnetwork when it is embedded into the larger network.
Based on that, it is possible to obtain valid EMPs for the whole
network by designing valid EMPs for specific subnetworks,
which are easy to construct.

The paper is organized as follows. In Section II we in-
troduce the notations and the main concepts about generic
identifiability of networks used in this paper, and we recall
the necessary conditions for the generic identifiability of any
network. In Section III we first recall existing necessary
and sufficient conditions for the identifiability of trees and
loops, leading to minimal EMPs for these structures. We then
present necessary and sufficient conditions for the generic
identifiability of Parallel Paths Networks. In Section IV we
illustrate why an EMP that is valid for a subnetwork treated
in isolation may no longer be valid when that subnetwork is
embedded in a larger network. Our main result is in Section V:
we present two sets of conditions under which an EMP that is
valid for a subnetwork treated in isolation remains valid when
that subnetwork is embedded. We illustrate this result with an
example, which shows how the main theorem can be used to
construct a valid EMP for the whole network by combining
EMPs that are valid, on the basis of the main theorem, for
subnetworks that, together, compose the whole network.

II. DEFINITIONS, NOTATIONS AND PRELIMINARIES

In this section, we introduce the dynamic networks with
partial excitation and measurement that we deal with in
this paper. We recall the necessary conditions for generic
identifiability that were derived in [2], and we also recall the
concept of a valid EMP.

We consider dynamic networks composed of n nodes (or
vertices) which represent internal scalar signals {wk(t)} for
k ∈ {1, 2, . . . , n}. These nodes are interconnected by discrete
time transfer functions, represented by edges, which are entries
of a network matrix G(z). The dynamics of the network is
given by the following equations:

w(t) = G(z)w(t) +Br(t), (1a)
y(t) = Cw(t), (1b)

where w(t) ∈ Rn is the node vector, r(t) ∈ Rm is the input
vector, and y(t) ∈ Rp is the set of measured nodes, considered
as the output vector of the network. The matrix B ∈ Zn×m

2 ,
where Z2 ≜ {0, 1}, is a binary selection matrix with a single
1 and n− 1 zeros in each column; it selects which nodes are
excited. Similarly, C ∈ Zp×n

2 is a matrix with a single 1 and
n−1 zeros in each row that selects which nodes are measured.

To each network matrix G(z) we associate a directed graph
(called digraph) G defined by the tuple (V, E), where V is the
set of vertices and E ⊆ V×V is the set of edges. The digraph G
defines the topology of the network. The edges are associated
to transfer functions, which define the relationships between
the nodes. We adopt the terminology j → i to denote an edge
(j, i). Node j is called an in-neighbor of node i, and node i is

an out-neighbor of node j. There is an edge (j, i) associated
with the transfer function Gij(z) of the network matrix only if
Gij(z) is nonzero. In this paper, we consider only connected
graphs, meaning that every node can be reached by at least
one other node in the network. A source is a node with no in-
neighbors, and a sink is a node with no out-neighbors. Nodes
that are neither sources nor sinks are called internal nodes.

For the digraph G associated to the network matrix G(z)
we introduce the following notations.

• V – the set of all n nodes;
• B – the set of excited nodes, defined by B in (1a);
• C – the set of measured nodes, defined by C in (1b);
• F – the set of sources;
• DF – the set of dources: see Definition 1 below;
• S – the set of sinks;
• DS – the set of dinks: see Definition 1 below;

The dources and dinks are defined as follows (see [11]).

Definition 1. A node j is called a dource if it has at least
one out-neighbor to which all its in-neighbors have a directed
edge. A node j is called a dink if it has at least one in-neighbor
that has a directed edge to all its out-neighbors.

Assumptions on the network matrix G(z)
Throughout the paper, we shall make the following assump-
tions on the network matrix:

• the diagonal elements are zero and all other elements are
proper;

• (I −G(z))−1 is proper and all its elements are stable.
One can represent the dynamic network in (1a)-(1b) as an

input-output model as follows

y(t) = M(z)r(t), with M(z) ≜ CT (z)B. (2)

where T (z) ≜ (I −G(z))−1. Observe that the matrix T (z) is
generically nonsingular by construction.

In analyzing the generic identifiability of the network
matrix, it is assumed that the input-output model M(z) is
known; the identification of M(z) from input-output (IO) data
{y(t), r(t)} is a standard identification problem, provided the
input signal r(t) is sufficiently rich. The question of generic
identifiability of the network is then whether the network
matrix G(z) can be fully recovered from the transfer matrix
M(z). It is defined as follows.

Definition 2. ( [3]) The network matrix G(z) is generi-
cally identifiable from excitation signals applied to B and
measurements made at C if, for any rational transfer matrix
parametrization G(P, z) consistent with the directed digraph
associated with G(z), there holds

C[I−G(P, z)]−1B = C[I−G̃(z)]−1B =⇒ G(P, z) = G̃(z),

for all parameters P ∈ RN except possibly those lying on a
zero measure set in RN , where G̃(z) is any network matrix
consistent with the digraph.

The following Proposition provides necessary conditions for
generic identifiability of any network; it combines Theorem
III.1, Corollary III.1 from [2] with Theorem III.1 from [11].
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Proposition II.1. The network matrix G(z) is generically
identifiable only if B, C ≠ ∅; F ,DF ⊂ B; S,DS ⊂ C and
B ∪ C = V .

This paper deals with networks in which not all nodes are
excited and not all nodes are measured. Finding conditions that
guarantee generic identifiability for such networks is equiva-
lent to constructing an EMP that guarantees identifiability. The
concept of EMP and of valid EMP, which led to the concept
of minimal EMP, was introduced in [12]. They are defined in
the following.

Definition 3. A pair of selection matrices B and C, with its
corresponding pair of node sets B and C, defines an excitation
and measurement pattern (EMP). An EMP is called valid for
the network (1a)-(1b) if this network is generically identifiable
with this EMP. Let ν = |B| + |C| 1 be the cardinality of an
EMP. A given EMP is called minimal for this network if it is
valid and there is no other valid EMP with smaller cardinality.

Proposition II.1 shows that for an EMP to be valid, it
must contain at least one excitation and one measurement, all
sources and dources must be excited and all sinks and dinks
must be measured, and every other node must be either excited
or measured. From now on, we drop the arguments z and t
used in (1a)-(1b) whenever there is no risk of confusion.

III. IDENTIFIABILITY RESULTS FOR SPECIFIC NETWORK
STRUCTURES

In this section, we present generic identifiability results for
some specific network structures, for the situation of partial
excitation and measurement. Stated otherwise, we present
valid EMPs for these network structures. We consider three
types of network structures that are defined by their specific
topologies, namely trees, loops and parallel paths networks.
We first briefly recall recent existing identifiability results for
trees and loops. We then present novel identifiability results
for parallel paths networks. First, we define these three specific
network structures.

A. Trees

Definition 4. A directed tree is a weakly connected graph
which has no loops even if one were to change the edges
directions.

For the identifiability of directed trees, the following nec-
essary and sufficient conditions were derived in [2].

Theorem III.1. A directed tree is generically identifiable if
and only if F ⊆ B, S ⊆ C, B ∪ C = V .

B. Loops

Definition 5. A loop is a network consisting of a path that
starts and ends at the same node. If the loop is part of a larger
network, it is called an isolated loop if no other loop in the
graph contains any of the nodes of the loop of interest.

1| · | - Denotes the cardinality of a set.

In [6] the following necessary and sufficient conditions were
derived for the generic identifiability of isolated loops that
have at least three nodes.

Theorem III.2. All transfer functions in an isolated loop are
generically identifiable if and only if B ∪ C = V and, in
addition: (i) either B ∩ C ≠ ∅, or (ii) the excited nodes (and
hence also the measured nodes) are not all consecutive along
the loop.

Alternative versions of necessary and sufficient conditions
for the identifiability of isolated loops can be found in [6], but
the formulation given in Theorem III.2 is by far the simplest;
the verification can be done by visual inspection of the loop.

C. Parallel Paths Networks

We now consider a class of networks with a single source,
a single sink, and np paths with an arbitrary number of nodes
between the source and the sink. Figure 1 depicts an example
of such network.

Fig. 1. An example of a parallel paths network.

Definition 6. A parallel paths network (PPN) is a network
composed of a single source and a single sink. There are np ≥
2 paths from the source to the sink, which are the only nodes
common to each path. At most one path may have no internal
nodes; every other path has at least three nodes.

This definition extends the concept of parallel network
presented in [4], where each path contained only a single
node. The following theorem gives necessary and sufficient
conditions for the generic identifiability of a PPN.

Theorem III.3. Consider a parallel paths network from
Definition 6 with one source F = {1} connected through
np ≥ 2 paths

(
P1,P2, . . . ,Pnp

)
to one sink S = {n}. Let

VPj be the set of nodes of path Pj . Assume that the nodes
have been labeled sequentially, such that for every path Pj

there exists a path from k′j to k′′j only if k′j < k′′j . A parallel
paths network is generically identifiable if and only if F ⊂ B,
S ⊂ C, B ∪C = V , and in addition there are np − 1 paths Pj

for which there exist at least k′j , k
′′
j ∈ VPj \ {1, n}, such that

k′j ≤ k′′j , k′j ∈ B, k′′j ∈ C.

Proof. Necessity: The first three conditions are known to be
necessary for any network, see Proposition II.1. It remains to
justify the last condition. Assume that two paths do not obey
the last condition. Without loss of generality, we denote them
P1, P2. This implies that, for each of these two paths, there
are three possibilities: 1) all internal nodes of a particular path
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are excited, 2) all internal nodes of a path are measured, or
3) the first l internal nodes of a path are measured and the
remaining are excited. Assume, without loss of generality, that
each path Pk for k = 1, 2, . . . , nj , has pk + 2 nodes, where
one of the pk can possibly be zero. Hence, the two paths P1

and P2 have a total of p1+p2+2 unknown edges. Now, from
Lemma III.1 in [5], we know that if there is no path from node
i to node j then Tji = 0. Thus, for the two paths P1 and P2

there are p1+p2+1 useful equations, because there are p1+p2
elements Tji ̸= 0 and in addition, we have Tn1 ̸= 0, which
is common to the paths. Therefore, there are more unknowns
than available useful equations.

Sufficiency: Let us consider that path Pm is the only path
that does not obey the last condition stated in the Theorem;
hence all other paths do obey this condition. We now show that
for each path Pl ̸= Pm all edges can be generically identified.
Let VPl

= {1, k1l , k2l , . . . , k
pk

l , n}, and assume that node kil is
excited and node kjl is measured, with kjl ≥ kil . The transfer
functions corresponding with the edges of Pl can be identified
as follows:

if k1l ∈ B, Gk1
l ,1

= Tkj
l ,1

/Tkj
l ,k

1
l
; (3)

if k1l ∈ C, Gk1
l ,1

= Tk1
l ,1

. (4)

Consider now k2l . If k2l ∈ C then we can recover Gk2
l ,k

1
l
=

Tk2
l ,1

/Gk1
l ,1

. Conversely, if k2l ∈ B, then we can recover
Gk2

l ,k
1
l
= Tkj

l ,1
/(Tkj

l ,k
2
l
Gk1

l ,1
). We can apply the same rea-

soning for all nodes k = k1l , k
2
l , . . . , k

j
l (remember that node

kjl is measured) and thus recover all transfer functions up to
Gkj

l ,k
j−1
l

. In a similar fashion we can recover the remaining
transfer functions as:

if kjl + 1 ∈ B, Gkj
l +1,kj

l
= Tn,ki

l
/(Tkj

l ,k
i
l
Tn,kj

l +1); (5)

if kjl + 1 ∈ C, Gkj
l +1,kj

l
= Tkj

l +1,ki
l
/Tkj

l ,k
i
l
. (6)

Applying this reasoning to the remaining nodes k = kjl +
1, kjl +2, . . . , n in Pl one can recover all transfer functions in
Pl, for all paths other than Pm.

Now, consider the remaining path Pm. It has pm +2 nodes
corresponding to VPm

= {1, k1m, k2m, . . . , kpm
m , n} and pm+1

unknown transfer functions. Since we assume that Pm does not
obey the last condition of the Theorem, its EMP obeys one of
the three possible scenarios previously stated. Suppose that k1m
is excited. It follows that we are in scenario 1, and hence all
other nodes of Pm are excited. In this situation, we can recover
all transfer functions of Pm, except for Gk1

m,1. Suppose now
that kpm

m is measured. This means that we are in scenario 2,
and hence all other nodes of Pm are measured. In a similar
way, we can recover all transfer functions of Pm, except for
Gn,kpm

m
. The last scenario is where the first {k1m, k2m, . . . , kjm}

are measured and the remaining {kj+1
m , . . . , kpm

m } are excited.
For this case, we can recover all modules of Pm, except for
Gkj+1

m ,kj
m

. We conclude that, in all cases, all transfer functions
in path Pm can be identified except one. Since all other
transfer functions in the network are known, this remaining
unknown transfer function can be successfully recovered from

Tn1, which has not been used for the computation of the other
transfer functions. ■

What Theorem III.3 says is that, for a PPN to be generically
identifiable, all paths except one must have an excitation that
precedes a measurement, in addition to the universal necessary
condition that the source must be excited, the sink must
be measured, and all other nodes must be either excited or
measured.

IV. ISOLATED VERSUS EMBEDDED

The necessary and sufficient conditions for generic iden-
tifiability of trees, loops and PPNs, respectively, allow one
to construct valid and even minimal EMPs for these specific
structures. However, these necessary and sufficient conditions,
and the EMPs that are based on them, are valid for these
structures taken in isolation. When these same structures are
part of a more complex network, these EMPs may no longer
be valid. To clarify this point, we will now introduce the
concept of subdigraph, and specify exactly what we mean by
an isolated subdigraph and an embedded subdigraph. We will
then illustrate why an EMP that is valid for a subdigraph taken
in isolation may no longer be valid when that subdigraph is
embedded in a larger network.

Let VA be a subset of nodes of V , and let GA(VA, EA)
be the subdigraph of G defined by the subset of nodes VA

and all the edges EA that link them, and let GA be the
associated subnetwork matrix. We extend Definition 3 to deal
with subdigraphs.

Definition 7. Consider a digraph G(V, E) and a subdigraph
GA(VA, EA) of G(V, E). Consider an EMP that is valid for
the subdigraph GA(VA, EA) when all vertices and edges from
G(V, E) that do not belong, respectively, to VA and EA have
been removed. This EMP is said to be valid in isolation for
the isolated subdigraph GA(VA, EA). If the same EMP is valid
when GA(VA, EA) is embedded into G(V, E), then this EMP
is said to be embedded valid with respect to G(V, E) for the
embedded GA(VA, EA).

Finding a valid, possibly minimal, EMP for the isolated
graph is likely to be a much simpler problem than finding an
EMP that is valid for the embedded graph. We illustrate this
with the following example.

Example 1
Consider the 5-node network depicted in Figure 2, and let
G(V, E) be its associated digraph, with V = {1, 2, 3, 4, 5} and
E = {1 → 2, 2 → 3, 3 → 4, 4 → 1, 4 → 5, 5 → 3}.

Suppose first that the dotted red edges are not present in
this network (G54 = G35 = 0), and that our objective is to
identify the loop formed by nodes 1, 2, 3 and 4. According to
Theorem III.2, there are two minimal EMPs for this isolated
loop, namely: EMP1 : B1 = {1, 3}, C1 = {2, 4} and EMP2 :
B2 = {2, 4}, C2 = {1, 3}. However, when this isolated loop is
connected to the other loop - and hence embedded in the 5-
node network - as seen in Figure 2, these EMPs are no longer
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Fig. 2. A network formed by two loops: the one on the left formed by the
solid blue edges, and the other on the right formed by the dotted red edges
and the edge 3 → 4.

valid for this embedded loop, i.e. they are not embedded valid
w.r.t. G.

This example shows that a valid EMP for an isolated
digraph may no longer be valid when this digraph is embedded
into a more complex network. Therefore, using the theorems
of Section III to produce valid EMPs for subdigraphs with
specific structures may no longer yield valid EMPs when these
subdigraphs are embedded in a larger digraph. In the next
section we present our main result which exhibits conditions
under which an EMP that is valid for an isolated digraph
remains valid when it is embedded into a larger network.

V. MAIN RESULT

Theorem V.1. Consider a digraph G(V, E) and its associated
network matrix G. Let VA be a subset of connected nodes of
V , and VB ≜ V \ VA, Let GA(VA, EA) be the subdigraph of
G defined by the subset of nodes VA and all edges EA that
link them, and let GA be the associated subnetwork matrix.
Assume that an EMP that is valid for the isolated subdigraph
GA has been obtained. This same EMP is embedded valid w.r.t.
G for GA if at least one of the following conditions holds.

1) There is no path starting in VA, passing through VB ,
and returning to VA.

2) All paths that leave VA and return to VA are known.

Proof. Let us start by partitioning the network matrix G and
the corresponding input-output matrix T according to the sets
VA and VB .

G =

[
GA GAB

GBA GB

]
, T =

[
TAA TAB

TBA TBB

]
.

The choice of an EMP for GA corresponds to the choice of
a submatrix of TAA, namely the submatrix defined by the
corresponding excited and measured nodes of VA. This EMP is
valid if GA can be uniquely reconstructed from this submatrix
of TAA. To examine whether an EMP that is valid for the
identification of GA, taken in isolation, remains valid when the
nodes VA are connected to the nodes VB , we use the following
identity that relates TAA to the other submatrices:

TAA = (IA −GA −GAB(IB −GB)
−1GBA)

−1

= (IA −GA −GABTBGBA)
−1, (7)

where TB ≜ (I − GB)
−1. All elements of GABTBGBA can

be written as: ∑
k1,k2∈VA,j,i∈VB

Gk1jTjiGik2 .

Now, if there is no path from VA passing through VB and
returning to VA, then one of the following holds: 1) Gk1j = 0;
2) Tji = 0; 3) Gik2

= 0, for all k1, k2 ∈ VA and j, i ∈ VB .
Hence, all elements of GABTBGBA are zero, which implies
that

TAA = (IA −GA)
−1 ≜ TA (8)

This is the expression that relates GA to TA in the subnetwork
GA taken in isolation. We have shown that the same relation-
ship holds when that subnetwork is embedded in the complete
network. Hence, the network matrix GA can be recovered if
an EMP is applied to TAA that is valid for the subnetwork GA

taken in isolation, which proves item 1.
In order to prove item 2, we note that the expression (8)
relates TAA to GA for the subnetwork GA taken in isolation.
If an EMP is valid for this subnetwork taken in isolation, it
means that, with the submatrix of TAA corresponding to this
EMP, GA can be recovered from GA = IA − T−1

AA. When
this subnetwork is embedded in the full network, this relation
becomes (using a rewrite of (7)):

GA = IA − T−1
AA −GABTBGBA. (9)

If all paths leaving VA and returning to VA are known, then
GABTBGBA is also known. Hence, GA can also be identified
from (9), and this completes the proof. ■

Theorem V.1 is a powerful result for the situation where
only part of the digraph is of interest, and where the task is
to design a valid EMP for the corresponding subdigraph. But
it also allows one to synthesize EMPs for the full network if
a convenient decomposition of the digraph can be obtained.
We illustrate this with the following Example.

Example 2
Consider the network and its digraph denoted G(V, E) in

Figure 3, with ten nodes and twelve edges. Assume first that
the edge 6 → 3 does not exist, i.e. disregard the dotted red
edge for now. Suppose first that one only wants to identify the
subdigraph, denoted GA(VA, EA), that connects nodes 1 to 4,
i.e. VA = {1, 2, 3, 4}. It is a PPN. According to Theorem III.3,
the following EMP, denoted EMP1, is valid in isolation for
GA: B1 = {1, 3}, C1 = {2, 3, 4}; it is actually minimal. Now,
consider that same subdigraph GA(VA, EA) embedded in the
whole digraph formed by all ten nodes shown in Figure 3, still
without the edge 6 → 3. We observe that this subdigraph obeys
condition 1 of Theorem V.1, and hence EMP1 is embedded
valid w.r.t G (V, E \ {6 → 3}) for GA.

Now consider that the dotted edge 6 → 3 (i.e. G36) is added
to the previous graph. Then condition 1 of Theorem V.1 is no
longer satisfied, since there is an unknown path leaving VA

and returning to itself: (4 → 5 → 6 → 3) {G54, G65, G36}.
If these edges are known, then condition 2 of Theorem V.1
will be valid for the identification of the embedded GA. So,
one possibility to produce an embedded valid EMP w.r.t. G
for the identification of all edges in GA is to identify also
the edges in this path. This path, together with 3 → 4 (G43),
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Fig. 3. A network with multiple structures. The nodes 1, 2, 3, 4 form a
PPN. The nodes 3, 4, 5, 6 form a loop. The dashed blue edges linking nodes
1, 2, 6, 7, 8, 9, 10 form a tree.

forms a loop: (3, 4, 5, 6, 3). Consider first this loop in isolation.
It then follows from Theorem III.2 that the following EMP,
denoted EMP2, allows the identification of all edges in this
isolated loop: B2 = {3, 5}, C2 = {4, 6}. Now, consider this
loop as embedded in the complete network G. We observe
that there is no path in G that leaves this loop and re-enters it.
Hence, the conditions of item 1) of Theorem V.1 apply, which
means that this EMP2 is embedded valid w.r.t. G for this loop
(3, 4, 5, 6, 3).

Combining EMP1 and EMP2, we have EMP3, defined as
B3 = {1, 3, 5}, C3 = {2, 3, 4, 6}, which allows to identify
all edges in GA when it is embedded in the whole network
shown in Figure 3, including node 6. This illustrates how
Theorem V.1 can be used to construct a valid EMP for a
subdigraph that is embedded in a more complete digraph. As a
byproduct, EMP3 also allows the identification of the transfer
functions G54, G65, G36.

Finally, consider that one wants to identify the whole
network, that is, all the edges in G. Let GC be the digraph
formed by the nodes VC = {1, 2, 8, 9, 10} and by the edges
EC = {1 → 2, 8 → 9, 8 → 10, 9 → 1, 10 → 2}. Actually,
GC is a PPN. The EMP B4 = {8, 9}, C = {1, 2, 10}, denoted
EMP4, is valid in isolation for it. The PPN GC has no paths
leaving and returning to it. Thus, EMP4 is embedded valid
w.r.t. G for GC as Condition 1 from Theorem V.1 is satisfied.
It remains to identify the edges 7 → 1, 7 → 6 and 7 → 8.
Let GD be the digraph formed by nodes VD = {1, 6, 7, 8, 10}
and by edges ED = {7 → 1, 7 → 6, 7 → 8, 8 → 10}. This
digraph is a tree, and the EMP B5 = {7, 8}, C5 = {1, 6, 10},
denoted EMP5, is valid in isolation for that tree. For this EMP,
condition 2 from Theorem V.1 is satisfied for GD since all
other edges are known from the combination of EMP3 and
EMP4.

Therefore, the combination of EMP3, EMP4 and EMP5

allows the identification of the whole network. Define it as
EMP6: B6 = {1, 3, 5, 7, 8, 9}, C6 = {1, 2, 3, 4, 6, 10}. Its
cardinality is 12, much smaller than the maximum 19 - the
graph has only one source and no sinks - and only slightly
more than the minimum 10. Notice that different combinations
of valid EMPs for each subnetwork can be used to produce
a range of EMPs that are valid for the identification of the
whole network.

Example 2 has allowed us to illustrate the main result of
Theorem V.1. It has shown how a valid, possibly minimal,
EMP constructed for a subdigraph taken in isolation can be
preserved or enhanced when that subdigraph is embedded in a
larger digraph. At the same time, Example 2 has illustrated
that, when a network is decomposed into a set of simple
subdigraphs for which valid EMPs are easy to construct, the
combination of these valid EMPs can lead to an EMP that is
valid for the whole digraph, via the use of Theorem V.1. Our
ongoing work is to develop a decomposition algorithm of a
general network into subdigraphs to which this scenario can
be applied.

VI. CONCLUSION

We have presented new results for the generic identifiability
of Parallel Paths Networks. But our main contribution has been
to show that an EMP that is valid for a subnetwork treated in
isolation is typically no longer valid when that subnetwork is
embedded in a larger network, and to present sets of sufficient
conditions under which it remains valid. This result is of
importance for the practical situation when only part of a
network needs to be identified. With a proper decomposition
of the global network, it may also lead to an efficient method
for the identification of this global network.
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