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ABSTRACT 

This paper analyzes the sensitivity of transfer functions w.r.t. finite 
wordlength effect errors in the implementation of the coefficients of 
both shift operator and delta operator parametrizations. Both the 
absolute sensitivity, naturally connected to fixed point arithmetic, and 
the relative sensitivity, naturally connected to floating point 
arithmetic, are analyzed. In both cases, but particularly the latter, the 
delta operator parametrizations are shown to produce better sensitivity 
properties. 

1.INTRODUCTION 

In the last few years, both Peterka [I1 and Middleton and Goodwin [2] 
have promoted the use of the delta operator as opposed to the shift 
operator in estimation and control applications. This promotional 
effort has culminated in the publication of a book where much of the 
present digital control and estimation theory has been reformulated in 
a delta operator framework 131. Two major advantages are claimed for 
the delta operator formulation : a theoretically interesting unified 
formulation of continuous-time and discrete-time control theory which 
entails a better understanding of discrete-time control under fast 
sampling, and a range of practically interesting numerical advantages 
connected with finite wordlength effects. 

One problem not studied in [31 is that of comparing the sensitivity of the 
transfer function of a state-variable model w.r.t. coefficient errors in 
the (A,B,C) state-space matrices when the state-variable model is 
implemented in either a shift-operator parametrization or a delta- 
operator parametrization. This is the object of the present paper. This 
problem is of course of interest when the coefficients of the state-space 
model are implemented in finite wordlength (FWL), which causes the 
transfer function of the actual model to deviate from the ideal (infinite 
precision) transfer function. 

The effect of FWL errors in the state space matrices (A,B,C) on the 
transfer function has been studied by various authors ([31 - [61). In [7] 
this study has been extended to the effect of FWL errors on the closed 
loop transfer fuction in the case of a pole-placement control strategy 
while in [lo] the effect on LQG regulators has been examined. This has 
led to a commonly accepted measure for the sensitivity of a transfer 
function w.r.t. the coefficients of (A,B,C) (see [41 - [61), and to the search 
for optimal realizations (AoPt, Bopt, Copt), among the equivalence 

'class (TIAT, T l B ,  CT) of similarity transforms, that minimize this 
sensitivity. This problem has been solved by Thiele [U]. All of these 
results relate solely to shift operator state space representations. 

Here we first show in Section 2 that shift and delta operator 
representations can be embedded as special cases of more general 
polynomial parametrizations. The relationships between shift and 
delta operator parametrizations, both in transfer function and in state- 
space form, are established in Section 3. We use a definition of delta 
operator that is slightly more flexible than that commonly used by 
Middleton and Goodwin. Section 4 is concerned with the study of a 
commonly accepted absolute sensitivity measure and its upper bound. 
Our main new results of this Section consist in computing an expression 
for the best achievable absolute sensitivity of all equivalent delta 
state space realizations. We show that the set of optimal delta 
realizations can be connected in a simple way and therefore derived 
from the set of optimal shift realizations. It is then shown that, by a 
proper choice of the degree of freedom available in the definition of 
the delta operator, the absolute sensitivity upper bound achievable 
with the delta operator state space models is normally smaller than 
that achievable with the shift operator state space models. For 
floating point computations, it is more natural to search for 

CH2917-3/90/0000-0954$1 .OO @ 1990 IEEE 

parametrizations that make the relative sensitivity small. In Section 
5, we derive expressions for the relative sensivity for both shift and 
delta state space models, together with reasonable and tractable upper 
bounds. We show that if the sampling rate has been chosen reasonably, 
then the upper bound of the relative sensitivity is always smaller for 
delta parametrizations than for shift parametrizations. 

2. GENERALIZED POLYNOMIAL PARAhXETRIZATIONS 

Throughout this paper we consider scalar strictly proper time- 
invariant discrete time transfer functions. In the old days (i.e. before 
Middleton and Goodwin 131) it was customary to represent such transfer 
functions as follows : 

(2.1) 

Here z can be considered as the complex variable of the z - transform. 
However, it can also be looked upon as a timedomain operator : 

A 
zf(t) = f(t+l), forward shift (2.2a) 

z-'f(t) f f(t-l), backward shift (2.2b) 

Using vector notations, we can rewrite H(z) as 

where 

A 
i =(I al a, ... adT 

(2.3) 

(2.4a) 

(2.4~) 

Now consider a nxn nonsingular matrix T, whose first row is (I 0 ... 0) , 
but that is otherwise arbitrary. Then H(z) can also be represented as 

(2.5)' 

where 

with p&) a monic polynomial of degree n and pi(Z), i = 1, ..., n 
polynomials of degree less than or equal to n-1. The pi(z), i = 0, I, ..., n 
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can be thought of as basis functions in which the polynomials iTz and 

LTz are expressed. This shows that a given transfer function can be 
represented in an infinite number of equivalent (at least in infinite 
precision) parametrizations. When this transfer function model is to be 
implemented in finite precision, this observation can be exploited to 
improve the numerical properties such as sensitivity and roundoff noise. 
This will be fully explored in [8], but here we shall concentrate on a 
comparison of the numerical properties of two special cases of the 
representation (2.5), namely the shift operator representation (2.1) and 
the &operator representation popularized by Middleton and Goodwin 
[3]. We shall introduce the following definition for the &operator. We 
take 

where 

A Yt+l -Yt  6 y t = T .  (3.7) 

These two input-output relationships can also be represented by a shift- 
operator (resp. &operator) state-space model as follows : 

(2.7) 

(3.8) 
Here A is any positive number, not necessarily the sampling period Ts of 
the discrete time system as in [3]. The choice of a value for A and its 
role in improving some numerical properties will be discussed later. 

3, RELATIONSHIP BETWEEN SHIFT OPERATOR AND 6 -  
OPERATOR REPRESENTATIONS 

In this section we shall establish a number of equivalence relationships 
between the coefficients of shift operator and &opera to r  
representations, both in input-output form and in state-space form. 
With the definition (2.7) for 8, the transfer function H(z) of (2.3) can be 
reexpressed in &form as follows : 

and 

(3.9) 

The following relationships relate the internal and external 
representations : 

(3.10) 

We shall for future use introduce the notion of a realization set Sp. We 
define : 

sp 4 { ( A ~ , B ~ , c ~ )  : ~ ( p )  = C,(~I-A~PB,,I (3.11) 

where p = z or 6. Hence if (Ap,Bp,Cp) E S ~ ,  (TIAPT, T l B p ,  CpT) E Sp if 
and only if T is nonsingular. Substituting (2.7) in (3.9), it is 
straightforward to establish that the following relationship exists 
between the state-space realizations (AZ, BZ, Cz) E Sz and (A& Bg, C$) 
E s6: 

A, = A.Ag + I 

B, = A.Bg (3.12) 

The coefficients (ai, pi) are obtained from the (ai, bi) by substituting z = 
1 + A8 in H(z). This yields the following relationships : 

p =  

where 

, a=  =T (3.2) 

This means that if (As, Bg, C6) E Sa, one can find a corresponding 
realization (AZ, Bz, Cz) E Sz and vice-versa by the one-to-one mapping 
(3.12). O I  (3.3a) . . . .  

0 . . .  
t33 * 0 1  

t21 t22 

4. ABSOLUTE SENSITIVITY OF GENERALIZED POLYNOMIAL 
PARAMETRE ATIONS 

In any practical implementation of an input-output relationship, the 
coefficients can only be implemented in finite precision, with the 
number of bits determined by the available hardware. This means that 
the finite wordlength (FWL) errors on the implementation of these 
coefficients introduce errors on the actually computed transfer function. 
The magnitude of these errors can be measured by what is called a 
sensitivity measure. Here we first introduce a commonly used definition 
for the sensitivity 'measure of the state-space implementation of a 
transfer function for generalized polynomial implementations. We then 
specialize these expressions to the case of shift and &operator 
representations. 

Consider the generalized state space realization 

tn+l, n + J  

with 

(3.3b) 

Comparing with (2.5)-(2.6), we note that the &operator corresponds 
with the following choice of polynomial basis functions : 

(3.4) 

where the normalizing factor An is there to force the monicity of ~ ( z ) .  
Going back to (3.1), we observe that H(z) and H8(8) are two different 
but equivalent parametrizations representing the same object. Assuming 
that U(.) and y(.) are, respectively, the input and output of the filter 
H(z), they correspond to the following equivalent time-domain 
representations : 

(4.1) 

where p is z or 6 (see (3.8)-(3.9)),and where (Ap, Bp, Cp) is an infinite' 
precision implementation of a transfer function 
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~ ( p )  = C,C~I-A,)-'B,, p = z or 6. (4.2) 
on noting that 

Assume that Bo bits are available and denote by Ai,Bi,Ci the 
implemented version of Ap, Bp, Cp. where the coefficients have been 
truncated to Bo bits. The actually implemented state-space model is 
then 

(4.3) 

It follows that Hp(pk Cp(pI-Ap)-l B, and Hi(p) = Ci(pI-Ai)-'Bi 
will differ. One way to evaluate this error is to compute a measure of 
the sensitivity of the transfer function Hp(p) to errors on the matrices 
Ap, Bp, Cp. We now define such a sensitivlty measure. 

4.1. Absolute sensitivity measure 

Definition 4.1 

Let ME IRm be a matrix and let AM)€ @ be a scalar complex function of 
M, differentiable w.r.t. all the elements of M. We then denote 

(4.4) 

where Sij denotes the (i,j)th element of the matrix S. 

Definition 4.2 

Let f(z)EUnxm be any complex matrix valued function of the complex 
variable z. We then define the $-norm of f(z) as 

(4.5) 

where I l f ( e h I I  F is the Frobenius norm of the matrix f(ejw) . 

The absolute sensitivity measure of the transfer function H(z) w.r.t. the 
-parameters in the realization Ap, Bp, Cp is then defined as follows in 
HI, 

aH aH aH 
M,,,=I-I:+ aA, I-[;+ aBp 1-1' x: 2 .  (4.6) 

The word absolute is used to expresg the fact that this sensitivity 
measure expresses the effect on the transfer function of an absolute error 
on any coefficient of Ap, Bp, Cp . It is an obvious sensitivity measure in 
the case of fixed-point Implementations. It is easy to see that : 

(4.7) 

4.2. An upper bound for the absolute sensitivity measure 

One of the purposes of the sensitivity measure (4.6) is that it should 

enable one to compute a realization (A:, B:, C$ that minimizes Ma,p 
over the equivalence class Sp = [TIApT, T I B  , C TI of realizations. 

Ma,p. However, the problem becomes feasible if Ma,p is replaced by 
the following reasonable upper bound, which follows from the Cauchy- 
Schwarz inequality : 

As it turns out, it is extremely hard to perform p this p. optimization of 

,p For p = z, we can compute an interesting alternative expression for M, 

= tr [ $A:)i C: C, &]= tr WO 

Similarly 

i--I;=trw,. aH 
Z, 

(4.9) .. 

(4.10) 

Here WO and WC are, respectively, the observability and 
controllability Gramians of (Az, B,, Cz). The upper bound for shift- 

operator state-space forms, %,, can then be reexpressed as 

Ma,, = trtw,) tr(Wo) + tr(W,) + tr(Wo) . (4.11) 

To compare Ra,z with the upper bound for delta-operator state-space 

forms, Ma,&, we first compute the relatiL-iships between the respective 
Gramians. It follows from (473, (3.12) and 12.7) that 

aH - = (61 -A>-'C$ = (zI - I - AA>-'AC; 
aB8 

Therefore the sensitivity R , g  can be expressed as 

Ma,,= A2tr(W,) tr(W0) + tr(w,) + Aztr(Wo) 

4.3. Optimal realizations 

(4.12) 

(4.13) 

(4.14) 

One of the problems that has attracted attention of finite wordlength 

experts has been to minimize the upper bound Ea,, over all equivalent 
state-space realizations (Az, BZ, C,) in Sz, i.e. over all possible shift- 
operator state-space realizations. This problem has been solved by 
Thiele [61, who characterized the set of optimizing realizations 

He also showed that 

n 2 n  

minGa,,=( sz x o i )  1 + 2 x o i = @  1 (4.16) 

where oi, i = 1, ..., n are the Hankel singular values of the transfer 
function H(z) defined by 

(4.17) 

These singular values are invariants of the transfer function, i.e. they 
are state-space realization independent. We now establish two new 

results. First we give an expression for the minimizing value of &,g 

over all (Ag, Bg, Cg) in Sg. Then we characterize the optimal set S:@ 
by relating the optimal realizations in delta form to the optimal 
realizations in shift form. The proofs are available in the journal 
version of this papcr. 
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Theorem 4.1 

n e  minimal value of &,g over all equivalent realizations ( ~ 6 ,  BS, 
Cg) in Ss is 

It should be pointed out that recently Thiele has shown that the 

optimal realizations in Sip'not only minimize the upper bound w,,but 

also the actual sensitivity measure Ma,z[12]. The same holds for $''. 
Theorem 4.2 

Let Sip'= {AT', BY',@} denote the subset of Sg that minimizes M,,a 

and let Sip' = {AT', B;p', cpt} denote the subset of Sz that minimizes 

&&,. Then to each (A:ptB:p',Gp') E Szp' there corresponds a 

(Ao{', B y ,  Gp) E S$ such that 

(4.19) 

Expressions (4.16) and (4.18) allow a comparison between the best 
achievable sensitivity upper bounds in shift and delta state variable 
realizations, rcspectivcly. Clearly the delta form realization will 
yield a better bound if A can be chosen smaller than 1. Now, it appears 
from many examples that for stable systems the number A can be chosen 
less than 1 while preserving the same range for the coefficients of 

(AT', BY', GP) as the range of CA",p', BiPt, cpt) . 

4.4 Numerical example 

We now illustrate our previous results and calculations on the optimal 
sensitivity measure with the following example, already used in [91. 
Consider a system described in shift operator implementation by the 
following control canonical from : 

0.4538 -1.5562 1.9749 0.0792 

The poles are at 0.6579 and 0.6585 f j 0.5061. The smallest and largest 
numbers (in magnitude) are underlined, as they will be in the other 
realizations. The internally balanced form in Sz is one of the optimal 
realizations minimizing (4.11). It is given by 

A Y =  Q.6@56 0.3999 -0.0165 B Y =  0.4424 e= 0.4424 
-0.3999 0.5935 -0.34251 10.37991 [ -0.37991 
-0.0165 -0.3425 0.5577 0.1671 0.1671 I ----- 

The largest number (in magnitude) in the triplet (AO,pt-I, B;pt, cpt) is 
0.4423. Therefore we choose A = 2-1. The corrcsponding control 
canonical form and optimal realization in Sg are, respectively, 

0 1  
0 0  

'I 
-0.3527 0.7999 -0.0329 B F =  0.6256 e= 0.6256 

"1-0.7999 -0.8130 0 4  [ &iSz] [ :4):] 
-Om -0.6849 -0.8846 

The optimal values of the sensitivity upper bounds are, respectively, 

= 4.756 and Ms =1.8886 . (4.20) 

To illustrate the fact that the optimal realizations, both in shift 
operator form and in delta operator form, yield much smaller 

sensitivities than non-optimal realizations, we have also computed M, 
for the shift operator and delta operator control canonical forms. These 
are, respectively, 

6-& = 81.9891 and M ~ , s  = 5.1605 . (4.21) 

These theoretical results will now be confirmed by a numerical 
simulation on the same example. For both the optimal z-form 

realization ((A:pt, Bip', ept) ) and the optimal &form realization 

(Ao{', By' ,  Gpt) presented above, we compute the corresponding 
frequency response Hr.,(w) obtained when the coefficients are 
implemented in fixed point with p significant bits, with p ranging from 
5 to 30. We compare this with the ideal frequency response Hid(o) 
implemented with infinite precision, by computing the worst deviation 
over the frequency range, i.e. the H, error : 

A . .  
(4.22) 

The results, for the example described above, are shown in Figure 1. 

Absolute Sensitivity Confirmation 

- , I l l  I' 25 

Number of bits in fractional part of coefficients 
Fig. 1 

The optimal realization in Sz 

- The optimal realization in Sg 

Fig. 1 clearly shows the superiority of the optimal &form realization 
over the optimal z-form realization whatever the number of bits. 

--- 

5. RELATIVE SENSITIVITY OF POLYNOMIAL 
P-IZATIONS 

The absolute sensitivity is a natural quantity to be used to compute the 
effects of absolute coefficient errors on the output of a filter, i.e. it is 
naturally connected to FWL implementations in fixed point. In floating 
point implementations it is more natural to study the effect of relative 
errors in the coefficients. This leads to a definition of a relative 
sensitivity measure. 
5.1 Relative sensitivity measure 

Definition 5.2 

Let M and f(M) be as in Definition 4.1. We then denote 

6f A af af - = P, with pii= -- 6M aqi,,,,q -mji ' (5.1) 
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where pij denotes the (i,j)th element of the matrix P. 

The relative sensitivity measure of the transfer function H(z) w.r.t. the 
parameters in the realization Ap, Bp, Cp is then defined as follows, 

A 6H 6H 6H q , , = ~ - - n : + t - - l ; + l - ~ ; .  6A,, 6Bp x,, (5.2) 

Just as for the absolute sensitivity measure, Mp is not easily computable. 
Therefore we replace it, similarly, by an upper bound. To justify this 
bound we introduce the following technical result. 

Lemma 5.1 

Let f(M) be as in Definitions 4.1 and 5.1. Then 

Proof : The result follows directly as follows 

The inequality follows from the fact that the expression on the right 
hand side contains all the terms of the left hand side plus additional 
positive terms. 

+ 
This result is now used to establish an upper bound for Mr,p : 

=MIr,,, . (5.5) 

For p = z, we get 

q,, = I A, I$ tr(W,) tr(Wo) + U B, 11 tr(W,) + 1 C, I tr(W0) (5.6) 

To compute the upper bound for r = 6 and compare it with q,z, we use 
(4.12)-(4.13) and we note from (3.12) that 

I AS I F  = A-' I A, - I I F  
I B, II F =  A-' I B, I 
I c& I F =  I c, IF (5.7) 

Therefore : 

%,J= I A,-'1 $ tr(W,) &(WO) + 11 B, I tr(Wo) + IC, I $ tdW,) (5.8) 

A major difference between the exprcssions (4.14) and (5.8) for the 
absolute and relative sensitivity uppcr bounds is that A does not appear 
in the latter; this is of course due to the fact that the computation of 
relative sensitivities introduces a normalization (see (5.1)) in which A 
disappears. 

Just as in (4.14) it is important to note that the matrices appearing in 
(5.8) are all computed from the shift operator realization (AZ, Bz, CZ), 

and that y,sis the upper bound for the Corresponding (Ag, Bg, Cg) 
realization obtained from (AZ, BZ, Cz) via (3.12). This allows for the 
following comparison : 

MI,s- MI,, = ( I A, - I U f - I A, II $) tr(W,) tr(W0) . (5.9) 

A common practice, strongly recommended by Middleton and Goodwin 
131, is to choose the sampling frequency fs between 10 and 50 times the 
pass band of the system's transfer function. In such case, the poles lie 
within the shaded region depicted in Fig2 For reasons that we let the 
reader guess, we shall call this the MG region. 

f ImZ 

Fig.2. The MG region. 

We now show that, if  the sampling period is chosen according to 
Middleton and Goodwin's prescription, then y . 8  is smaller than q., 
Theorem 5.1 

Let the poles of a system (AZ, B,, Cz) be in the MG region depicted in 
Fig.2. Then 

Proof: See the journal version of this paper. 

This result has important implications. It shows that if the sampling 
period is chosen "reasonably" (i.e. the poles are in the MG region) and 
if a shift operator state space realization is chosen to optimize the 
relative sensitivity uppcr bound q,z, then the corresponding delta 
operator realization obtained from (3.12) will always yield a smaller 
sensitivity upper bound q,,. The minimization of &,,and urjj w.r.t. to 
all similarity transformations is much harder than the corresponding 

minimization of %,,and Mala,& and, to our knowledge, this problem has 
not been solved yet. 

5.2. Numerical examples 

We now illustrate our assertions with two numerical examples. 
The computations of I&, and 9, for the four realizations described in 
Section 4.4 yield the following results : 
- for the control canonical forms in z and 6 : 

q,, = 308.8346, fir,& = 40.0618 

- for the forms that optimize 9, and MaA : 

9, = 4.7428, q,,= 4.0420 . 

The next example is Example 5.2 from [ I l l .  In that paper, the system is 
described in transfer function form. We note that all the poles are in' 
,the MG region. Again, we have computed the two control canonical 
forms, as well as the z- and &operator realizations that minimize 9. 
For these four realizations we have computed the relative sensitivity 
upper bound. This yields the following results : 

-for the control canonical forms in z and 8 : 
y,z = 1.2836x1011, MI,, = 58.1231 

- for the forms that optimize q,, and Ma,, : 
q7 = 13.6537, &,a= 1.3417. 

These results illustrate two facts : the forms that optimize the absolute 
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sensitivity upper bound also yield good relative sensitivity property, 
and the &operator realizations yield better relative sensitivity 
behaviour than the corresponding z-operator realizations. 

In order to validate the upper bound 4 of the relative sensitivity 
measure, we have also computed the quantity 

for the last two realizations, respectively, where Hid(o) is the ideal 
(or infinite precision) frequency response corresponding to the given 

state space model, and HFwl(w) is the frequency response obtained when 
the coefficients are implemented in floating point with p bits for the 
mantissa, p ranging from 5 to 30. We call RZ the z-operator state space 

form that optimizes &,z and Rg the &operator state space form that 

optimizes @,z. The results are presented in Fig. 3. They confirm the 
superiority of the &operator model. 

Relative Scnsitivity Confirmation 
R 

Number of Bits in Mantissa 
Fig. 3. 

--- The realization Rz in Sz which minimizes h&z 

The realization Q in Sg which minimizes Ma,& - 

6. CONCLUSIONS 

Our aim in this paper has been to compare shift operator and delta 
operator state space parametrizations in terms of the effects of both 
absolute and relative finite wordlength errors on the actual transfer 
function. We have therefore defined an absolute and a relative 
sensitivity measure, and we have computed their expressions for these 
,two types of parametrizations. Given that these expressions are 
difficult to handle, we have replaced them by reasonable and more 
tractable upper bounds. 

In terms of the relative sensitivity (relevant for floating point 
computations) our results are clear-cut : they show that delta operator 
parametrizations will always yield a smaller upper bound than shift 
operator models for reasonable choices of sampling periods. As for the 
absolute sensitivity (relevant for fixed point computations), we have 
computed the set of optimizing realizations in both classes of 
parametrizations, and shown clear-cut comparison cannot be made, but 
all examples indicate that our design parameter A can always be chosen 
less than 1, in which case the delta parametrizations again achieve 
better upper bounds. 
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