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Abstract. -The explicit connection is made between the (nonadaptive) control law design stage of Pre-
dictive Adaptive Control and recent techniques of Linear Quadratic Gaussian control with Loop Transfer
Recovery for robustness enhancement. The inherent controller design robustness of these methods is ex-
amined in terms of the nonadaptive closed loop properties. With this latter information, we then pose the
question of to which plant model does the Recursive Least Squares identification stage converge in closed
loop. We can demonstrate the robust interplay of the identifier and of the controller in this class of adaptive
control methods. Design guidelines for a Candidate Robust Adaptive Predictive Controller follow.

1 Introduction

Predictive adaptive control laws have achieved a sig-
nificant level of acceptability and practical success
in industrial process control applications. Their rai-
son d’étre is typically advanced as an heuristic gen-
eralization of minimum variance adaptive control,
where the control, uy, is chosen to minimize the plant
output, yx4+1, variance from a reference, w4y, l.e.
E(Yr+1 — wik41)?, at each time k [1]. Several gener-
alizations followed and culminated into a multistep
predictive controller called GPC [2]. There, u; to
Ug+N,—1 are chosen to minimize,

N3
J(N1,NayNu) = E{ ) [yk+i — wrs)?

j=N
Ny
+3 Alwei-P} ()
j=1
subject to ug4i = 0, i= Ny,...,Ns.

The identification component of these adaptive con-
trollers is usually chosen to be a variant of Recursive
Least Squares (RLS).

The criterion (1) may be interpreted as a receding
horizon Linear Quadratic (LQ) control objective, i.e.
at each time k the criterion may be viewed as a finite
horizon LQ problem with this horizon receding into
the future as the time advances. Thus asymptotically
the control law solving this problem will yield a fixed
state variable feeback controller, see [2,3,4].

In order to solve for the control value, u;, for this
problem it is necessary to generate predictions of the
future values of the plant output , yg4+;. The mech-
anism of generating these predictions does perform
the same role as does a state estimator or observer,
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[5,6] and, as stated in [8],the selection of the predic-
tor /observer polynomial, C(z), in practice has a dra-
matic influence upon the success of the adaptive con-
troller. Thus the predictive control strategy is com-
posed of the same elements as a linear state variable
feedback strategy with incomplete measurements and
a quadratic cost, which we denominate (somewhat
too generally) as Linear Quadratic Gaussian (LQG)
control.

Since the predictive control criterion has a direct
interpretation as an equivalent LQG problem, one
is led to ask whether this inherent control strategy
might be robust as a nonadaptive control law. LQG
has been the subject of considerable recent robustness
analysis. Specifically, LQG Loop Transfer Recovery
(LTR) [7] theory has been developed to allow the re-
covery in LQG designs of the robustness known to be
present in full state feedback LQ control. We shall
interpret the predictive controller design in terms of
the LQG/LTR theory and show how the réle of par-
ticular elements of the design, such as A in (1), is
the same as that of certain other variables in LTR
methods.

The robustness of LQG/LTR control systems is
measured by the ability to maintain closed loop sta-
bility in the face of multiplicative perturbations to
the open loop nominal plant. We show that the mul-
tiplicative error between the plant and its nominal
model is related to the relative error of the frequency
response of the open loop system.

In adaptive control systems, one is concerned not
Jjust with controller design and its robustness to exter-
nally imposed modelling errors, but also with on-line
plant identification where two facets of the same is-
sue arise: ‘What is the effect of the control law upon
the model identified in closed loop?’ and/or “To what
extent is the identifier capable of providing a model
compatible with the controller robustnesss?’. The Re-
turn Difference Equalities (EDR) of optimal filtering
and control, i.e. LQG, allows us to conclude that the
model fit achieved via the use of this control law dove-
tails precisely acccording to a relative error criterion.
In this way, the adaptation helps to tune the model to



fit the controller robustness, thereby improving closed
loop robustness overall.

Design guidelines for a Candidate Robust Adaptive
Controller follow from both the LQG/LTR analysis
and study of the interplay between identification and
control.

2 Predictive Control and LQG

Let the open loop plant have a state variable descrip-
tion as follows,

Tr41 Fz; 4+ Gug (2)
we = Hazyp. (3

H

2.1 The Control Law

We make the following observations concerning the
equivalence between GPC and LQG;

o the criterion (1) is quadratic in the plant state,
zk, and the input, uy.

s the weighting matrices associated with the state
and with the control are, respectively, Q = HTH
and R = M, ignoring the differences in horizons
Ny and Ny. Incorporating these horizons and Ny
requires the introduction of some zero @ values
and some infinite R’s for certain time indices [4].

o the solution of this standard finite horizon LQ
problem may be stated in terms of a time-varying
linear state variable feedback law,

Uk4N-j = —(GT1’3‘-1G+Rj_1)"lerP,~_xFik(»21)v-j-

Here & is a state estimate produced by an ob-
server, P; is the solution of a Riccati difference
equation:

Pip1 = FT B F=F" P,G(GT PG+ R;)~'G" P F+Q;
(5)

o the control law (??), in the predictive control sit-
uation, only results in u; being applied from this
entire finite time solution. A new finite horizon
problem is solved for u4+; with the same hori-
zon. Thus a stationary control law arises with
a gain only dependent upon Py_;. This is the
principle behind receding horizon LQ control.

¢ the reference signal, wy, may be introduced into
the picture to yield a tracking problem [9]. This
solution will have the same stability properties
as the regulation problem but will include a ref-
erence signal precompensator.

e the asymptotic stability of the closed loop with
a receding horizon LQ control law is not guaran-
teed, since the finite horizon subproblems do not
have any connection to infinite horizon proper-
ties such as stability. The asymptotic stability is
assured for the closed loop of an infinite horizon

LQ problem with [F, Q2] stabilizable.

2.2 The State Estimator

The linear state variable control laws above are all im-
plemented using state estimates, &, since full state
information is not available. We make the following
remarks concerning the generation of these state es-
timates;

¢ because the plant is assumed strictly proper it
is possible to produce state estimates using an
observer with a direct feedthrough term without
encountering algebraic loop problems. Such an
observer has the form,

Fp41 = (F — MHF)#4+(G - MHG) uk+M‘?Tl

6
where the eigenvalues of ' — M HF may be ar-
bitrarily placed by choice of M provided [F, H F]
is an observable pair.

o if we presume that output measurements are cor-
rupted by noise, as is the state, then an alterna-
tive derivation of an observer may be carried out
based upon optimal state estimation, Kalman
Filtering (KF) [10). Then the filter gain, M,
is designed via the solution of the filtering al-
gebraic Riccati equation as follows, with mea-
surement noise covariance ¢, and independent
process noise covariance F,,

M = SHTHSHT + R,)™! (7
T = FFT - FEHT(HZHT + R,)"1HEZFT
+Qo. ®)

o note the structural similarity (duality actually)
between the LQ control solution and the KF so-
lution. At least this is true inasmuch as Ric-
cati difference equations of similar form are used.
The actual duality exists between the LQ control
of a plant with delay and the Kalman one-step-
ahead predictor for the same plant, but the ob-
server/KF with direct feedthrough is not dual to
the LQ controller for a plant with delay.

o by careful choice of the state coordinate basis, it
is possible to formulate state estimates directly
as future plant output predictions {6]. In this for-
mulation, the observer characteristic polynomial
is identified with the predictor polynomial.

Hence, the nonadaptive predictive control law {per-
haps with some slight modification for guaranteed
stability) falls under the ambit of stationary infi-
nite horizon LQ control implemented with the use
of an observer. With only a slight abuse of notation
we shall denominate this Linear Quadratic Gaussian
(LQG) control in the sequel.

3 LQG Robustness and LTR

There has been considerable activity for an extended
period on issues associated with the robustness of
feedback control systems. Here we shall state a
subset of results which pertain to the robustness of
LQG control. The path followed here is close to
a single-input/single-output, discrete-time version of




Lehtomaki et al. [11], Doyle [12], Stein and Athans
[7], and Kwakernaak [13] and shall culminate with the
work of Maciejowski {14}‘ Extensions to multivariable
systems are direct from the referred works but would
hinder clarity here.

3.1 Closed Loop Robustness

Here we shall consider criteria for the preservation
of stability when a given feedback controller, C(z),
designed on the basis of a nominal plant, P(z), is
connected in closed loop with an actual plant, P(z),
which may differ from P(z).

Denote the actual plant, P(z), as being a multiple
of the nominal P(z},

P(z) = L(2)P(2), (9)

where the multiplicative perturbation is L(z) and
pole-zero cancellations may occur in (??). Denote
the nominal and actual controller/plant cascades by
P(2)C(z) = G(z) and P(2)C(z) = G(z). Then, an
important condition for the preservatlon of stability
under multiplicative perturbation is the following,

[L=Y(2)—1| < min[1, |1 + G(2)]] at each z € Q, (10)

where {2 is a contour consisting of the unit circle in-
dented around unit circle zeros of the open loop char-
acteristic polynomial of G(z).

This result links the closed loop robustness to mul-
tiplicative perturbation L(z) with the value of the fre-
quency response of the return difference, [1 + G(2)],
of the nominal controlled system. To gain a further
appreciation of the statement, consider the following
expression of the final inequality,

GELAIOE) - GL2))
PU@IPE-PEL ()

That is, the relative error between the nominal and
actual plant has to be bounded by the magnitude of
the frequency response of the return difference of the
nominal controller, in order to guarantee closed loop
stability.

L Nz)—1

3.2 LQ and KF Robustness

If we denote the feedback gain in the LQ solution (?7)
by K and regard the signal zz = —K&; as a fictitious
output in a unity feedback representation of the LQ
plant then one has for the cascaded plant/controller
transfer function, G(z) of the previous section,
G(z) = -K(zI - F)™'G. (12)
We may now state the discrete Return Difference
Equality of optimal control. This is a relationship
satisfied by the solution of an infinite horizon time-
invariant LQ problem. It follows simply from the al-
gebraic Riccati equation.

R+GP (I -F)TQ(z2I - F)'G=
[l - K(z"'1 - F)"'G]"(GT PG + R)

[I - K(zI - F)"'G) (13)

We consider this equality for z on the unit circle
and note that the left hand side is a spectrum which
consists of a strictly positive constant part, R, and a
strictly proper nonnegative part. Thus from (??) we
have directly that

R
W’ for all z € Q.
(14)

Referring now to (??) and (?7), we see that LQ full
state feedback possesses a natural robustness to mul-
tiplicative perturbation of the plant system, because
I+G(2)=1-K(zI - F)~'G.

For the Kalman Filter, there exists the dual Return
Difference Equality, and, by direct analogy to the LQ
case, we have that

H-K(zI-F)"'G} >

R,

m, fOl‘ all zE Q

(15)
where R, is the measurement noise covariance matrix
and @, is the process noise covariance matrix. Thus
the Kalman Filter also possesses an inherent degree
of robustness to multiplicative mismodelling of the

plant.

I-H(zI-F)~'M| >

3.3 Guaranteed LQ Margins with Ob-
servers

“There is none!” [12].

That is, it is possible to find examples of the com-
plete loss of the above robustness to multiplicative
perturbation when either the LQ controller is imple-
mented using an observer, LQG, or the Kalman Fil-
ter is used when the plant is operating under state-
estimate feedback.

The issue is that the plant/controller cascade, G(z)
above, is replaced as follows for the LQ (so-called in-
put preservmg) problem with an observer possessing
a direct feedthrough term,

G(z) = ~K x {I+(I - MH)(F + GK)
[z] - (I - MH)Y(F + GK)]™1}
xMH(zI - F)™'G.

For the KF, or output preserving problem with an
observer possessing a direct feedthrough term,

G(z) = —H(zI - F)"'GK
x{I+ (I - MH)(F + GK)
gl - (I-MHYF+GK)] '} x M. (17)

This alteration from the ideal G(z) has the poten-
tial effect that all robustness of the closed loop may
be lost, since we no longer have an automatic lower
bound upon |7 + G(e/*)| given by the return differ-
ence equality. It may well be the case that the new
closed loop is actually more robust than the ideal (see
the examples in [16]). What is at issue is that the
‘guaranteed’ margin implied by the return difference
equalities is lost.

(16)

3.4 Loop Transfer Recovery

Loop Transfer Recovery (LTR) refers to a design
methodology whereby the robustness guarantee of LQ




and KF can be recovered for certain plants operating
under LQG. The better known theory for LTR is in
continuous time, see [7,15), where the KF and LQ are
dual. The design methodology runs as follows;

1. perform an LQ design according to normal rules.

2. design an observer by using the Kalman Filter
with covariance matrices @, and R, = pl, with
the positive real parameter p — 0.

3. if the open loop plant, P(s) = H(sI - F)~1G,
is minimum phase, i.e. it possesses no zeros
which are in the right half complex plane, then
Grqe(s) — Grg(s) as p — O for all 5. If P(s) is
nonminimum phase then this convergence does
not occur.

An alternative design procedure is the dual of the
above;

1. perform a KF design according to normal rules.

2. design a state variable feedback via LQ with
weighting matrices @ and R = AI — 0.

3. if P(s) is minimum phase then Gpgg(s) —
Gkr(s)as A — 0 for all s.

Several points are in order here;

e The principle of these LTR methods is that by
performing a singular optimal filtering (control)
design in the LQG controller, the extra dynamics
appearing in Grqg(s) are forced to cancel with
the (stable) open loop plant zeros, thereby yield-
ing the required LQ or KF G(s), which possesses
an inherent degree of robustness.

e While the method guarantees nothing for non-
minimum phase plants, there abound claims that
the methodology performs well with many such
systems. The question is then what value of p or
A is a suitable stopping point.

e The robustness is achieved at the expense of
performance, since the nominal behaviour is de-
tuned from the natural LQG settings, @, R, Q,,
R,. '

o It is generally agreed that the latter (KF followed
by singular optimal control) method is preferable
to the LQ-first approach.

In discrete time, the situation is similar but de-
ceptively different, as has been investigated by Ma-
ciejowski [18] with the following remarks being perti-
nent.

Remark 1 In discrete time there is a distinction be-
tween the Kalman Filler and the Kalman one-step-
ahead predictor. This distinciion does not ezist in
conlinuous-time.

Remark 2 LTR is only possible in discrete time us-
ing the true Kalman Filter followed by singular opii-
mal control design. The nondualily of discrete time
LQ and KF for a strictly proper plant causes the dis-
crepancy between design approaches.

Remark 3 The LTR return difference converges to
the KF return difference as the LQ control weighting
A — 0 if and only if the open loop plant P(z) is mini-
mum phase and minimum delay, i.e. no zeros outside
the unit circle and det HG # 0, i.e. a unit delay.

To summarize, the discrete time LQG/LTR, design
{follows;

1. perform a Kalman Filter (with direct
feedthrough) design for the open loop plant.

2. conduct a singular optimal control design for the
LQ feedback with weighting matrices Q and R =
Al

3. if the open loop plant is minimum phase and min-
imum delay, then Grqgg(2) = Gkr(z) for all 2
as A — 0. Otherwise one must cease the design
at a nonzero value of A — the empirical claim
being that this works well for many systems.

We now claim that Predictive Control, (PC), as
a nonadaptive control law, implements ipso facto an
LQG/LTR design. Specifically, we have shown the
control objective of Generalized Predictive Control
(1) to be explicitly a receding horizon LQ criterion
which, if asymptotic stability modifications are made,
is identical to an infinite horizon LQ criterion with
weighting matrices @ > HTH and R = Al

The positive value A is selected as a somewhat ar-
bitrary control input weighting. Our thesis here is
that A is a small correction to our desired controller
criterion selected to achieve closed loop robustness to
our design. That is the A’s in Predictive Control and
in LQG/LTR are the same.

To complete our presciption of Predictive Control
as LQG/LTR, we note that the ‘missing link’ in the
PC design is the specification of the predictor poly-
nomials, C(z). A major feature of PC is that the
choice of C(z) is recognized as crucial for success and
also 1s presumed to have been fixed before the control
design stage and tuning is begun. Given the identity
between these predictors and observers, we are now
able to associate with each fraction of the PC design
an equivalent from discrete time LQG/LTR. Mohtadi
(5] advocates the use of C(z) which reflect the plant
and measurement noise models and which implement
delay-free predictions of the plant output. The con-
nection to Kalman Filtering theory is clear and in-
deed suggests how this component of PC should be
designed. By careful choice of KF weighting matri-
ces it is possible to maintain the coordinate-free state
variable controller design [16].

4 Adaptation and Robustness

The major application of Predictive Control laws is in
the area of adaptive process control. That is the non-
adaptive control law design is coupled with an on-line
Recursive Least Squares (RLS) parameter estimator.
The questions then concern the interplay between the
adaptation and the controller robustness achieved via
the LQG/LTR connection. We first consider how the
control signal, uy, affects the selection of the nominal
plant transfer function, P(z), and then move on to




consider the features of the control in the Predictive
Controller or LQG/LTR.

According to the recent theory of Ljung {8}, the
minimization of a Least Squares prediction error cri-
terion between asymptotically large, stationary data
sets of plant input and output can, via Parseval’s
identity, be interpreted in terms of a frequency re-
sponse deviation minimization. Specifically, we pre-
sume a plant structure

(18)

where vy is the measurement noise, and we presume
a model structure

Ur = P(z, 9)0); + H(Z, 9)6),,

i = P(2)ug + vy,

(19)

where £ is the prediction error of the model (?7?) and
P(z,8) and H(z,0) are parametrized transfer func-
tions. The Least Squares solution is sought as follows

min & [H~!(z,0) (s — P(z0)w))’.  (20)

This may equally well be regarded as a frequency do-
main minimization

min [ [PE) = P(e,0)@uu(w)

dw

LCCEU

4+, (w)

From (??) we see the rdle played in the selection of
plant model, P(z,8), by the input spectrum as well as
the parts played by the noise spectrum and the class
of noise models. For our (illustrative) purposes here
we shall assume in what follows that we are operating
with small noise, ®,,(w) € ¥, (w), and that we have
chosen no noise model, H(z,6) = 1. Further, we shall
assume that the on-line use of RLS with prediction
error updates yields the true Least Squares prediction
error minimizing value of #. Then the simplified iden-
tification criterion associated with the adaptation of
the controller is

T
min
€0 J_ .

We next pose the question of what is the nature of
Pyu{w) for PC or LQG/LTR. Recall that our control

law is given by

Py - P, 0)|” Bua(w)dw.  (22)

up = — K& + wy, (23)
where wy, is the reference signal and the state variable
feedback gain, K, is given by the solution of a singular
optimal predictive control problem, ie. R = A —
0 and Q@ = HTH fixed. The closed loop transfer
function between the external reference signal, wy,
and the control signal, ug, is precisely the inverse of
the (input preserving or LQ) return difference. For
the nominal plant, the observer dynamics cancel from
this transfer function to yield the closed loop relation

up = [I - K(2I - F)"'G]  wy. (24)

To ascertain the spectrum of ul&we need to analyse
this return difference withQ = H* Hand R = X — 0.
The following relation has been shown (see [16]);

Byu{w)

~ P )0y (w)P e T¥). (25)
This expression for the nominal closed loop control
spectrum stems directly from the singular optimal
control element of its genesis.

The control spectrum from (??) may now be sub-
stituted into the identification criterion (?7) to yield
the equivalent adaptive predictive control identifica-
tion criterion;

x
min /
0co J_,

That is to say, using (?7?), the adaptation criterion is
identical to the modelling criterion

2

P) = PE0)| g ) do.

P(eiw)

(26)

min / ’ |L(e) = 1] Buu (@) dw.  (27)

€@ j_

To draw these many threads together at this stage,
we have shown the following;

e The LQG/LTR control law is implicit in the
statement of Predictive Control.

e This control law is naturally robust to unmod-
elled multiplicative plant perturbations, L(2)
provided [L=1(z) - I| < | + G(z)] for all z € Q.

e The LQG/LTR control law engenders a closed
loop control spectrum which causes the adapta-
tion component to minimize a weighted integral

of |L(e#) - 1]* ®yu(w).

e The adaptation and control stages may thus be
seen to be mutually supporting in terms of their
effects vis-a-vis the closed loop robustness re-
quirements.

¢ One may use the above results to indicate how
the reference signal should be chosen to achieve
maximal robustness and also how one might
choose identification prefilters better to enhance
robustness, if extra information is available. By
careful choice of w; and prefilters, one may en-
courage the modelling to fit best precisely at
those frequencies where {I + G(2)] is small. In
this way, designs exceeding straight Ho, {worst
case) robustness design can be achieved.

The analysis so far has shown that, when identifica-
tion is performed in closed loop in an off-line manner,
the regulator influences the frequency spectrum of the
plant input and therefore affects the bias distribution
of the estimated model. In an adaptive control situ-
ation, the regulator parameters will be continuously
adjusted as a function of the on-line estimates of the
plant parameters. As a consequence, there is no guar-
antee, in an adaptive closed loop, that the solution of
the recursive parameter will converge, and, even if it
does so, it is not clear what the meaning of the conver-
gence point might be. This situation has been studied




in [16], where it is shown that under appropriate as-
sumptions, including persistence of excitation of the
regressors and slow adaptation, the solution of the
parameter update equation will converge to a point
that is close to the asymptotic solution of the off-line
parameter estimation criterion.

5 A Candidate Robust Adap-
tive Predictive Controller

Following the analysis which has been developped in
the previous sections, we may now start the synthe-
sis part by proposing an adaptive controller coupling
the robustness theory of LQG/LTR linear control law
design with Least Squares identification modelling
ideas. Actually, what follows here is not the precise
description of an adaptive controller ready for indus-
trial use. Instead, we give guidelines which, if used,
can lead to several adaptive predictive controllers
which will be robust (at least this is our claim sup-
ported by the previous analysis) to perturbations and
unmodelled dynamics. The candidate robust adap-
tive controller should consist of the interconnection
of the following components (see {16] for details):

o An RLS parameter identifier with slow adapta-
tion, fixed noise mode} based on prior knowl-
edge, signal filters rolling off outside the refer-
ence bandwidth and around the desired closed
loop bandwidth, and a reference signal consist-
ing of the desired trajectory plus (if necessary)
a perturbation which contains sufficient spectral
support to dominate the output disturbance over
the closed loop bandwidth. Further, additional
features such as normalization, deadzones and
leakage should be considered.

¢ An LQG controller with a Kalman filter design
based on a coupled plant and noise model, with
measurement noise power determined by a scalar
p and plant process noise covariance GGT, and
an LQ tracking control law design based on cou-
pled plant, noise and reference models with state
weighting being HT H and control weighting ).

The robustness of the control law stage is achieved by
two features. Firstly, the Kalman filter is designed
to have a degree of robustness, and secondly, the
LQG/LTR methodology is used to strive to achieve
a closed loop having the equivalent KP robustness.
The factor influencing the robustness of the KF is the
value of p. Clearly, a more robust KP is obtained by
choosing a bigger p, but this causes a more cautious
predictor having slower response. One is sacrificing
the closed loop performance for the sake of amelio-
rating the robustness.

The design variable complementary to p is the LQ
weighting A. The LQG/LTR theory dictates that the
selection of A should be made after the selection of p
and should, indeed, be to take A as small as is feasible
before the control signal in the closed loop begins to
fail to comply with its design limits. Thus p is chosen
first and then a suitably small value of A is sought.

Extimples of this prototype controller can be found
in [16].

6 Conclusion

We have analyzed the connections between an exist-
ing popular adaptive control scheme and the recent
theory of robustness of LQG systems to show that this
control law embodies the elements of LQG/LTR de-
sign together with an interrelating adaptation phase
whose objective is interpretable in terms of best fit-
ting the control robustness criterion. In this fashion
we have shown how adaptation and robustness may
be mutually supportive and, further, have demon-
strated both why this adaptive control method has
been found to work well in many circumstances and
how it might be modified better to take into account
further plant knowledge and more sophisticated de-
sign.

The pleasing feature of this work is that full con-
tact is established between practical adaptive control
and sophisticated control design theories. This should
reinforce both camps.
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