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Abstract— This paper adresses the variance quantification
problem for system identification based on the prediction
error framework. The role of input and model class selection
for the auto-covariance of the estimated transfer function is
explained without reference to any particular parametrization.
This is achieved by lifting the concept of covariance from the
parameter space to the system manifold where it is represented
by a positive kernel instead of a positive definite matrix. The
Fisher information metric as defined in information geometry
allows an interpretation as a signal-to-noise ratio weighted
standard metric after embedding the system manifold in the
Hardy space of square integrable analytic functions. The
reproducing kernel of the tangent space with respect to this
metric is shown to provide an asymptotically tight lower
bound for the positive kernel representing the covariance at
the system which generated the input-output data.
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I. INTRODUCTION

A typical problem considered in system identification

(SYSID) is the design of estimators trying to recover a

discrete time linear time invariant (LTI) system based on

a noise corrupted output sequence resulting from a known

input sequence. In a parametric framework one assumes

a priori knowledge about the system which restricts the

uncertainty about the unknown system to a set that can be

effectively parameterized. Examples include submanifolds of

the space of stable causal transfer functions having constant

McMillan degree with additional constraints such as model

structures of Box-Jenkins (BJ), Autoregressive Exogeneous

(ARX), Output-Error (OE), or Finite Impulse Response (FIR)

type. Given a statistical model, the Fisher-Information matrix

arising from the Fisher Information metric (FIM) provides a

theoretical lower bound for the covariance of any unbiased

estimator of the parameter vector. However, in general, given

finitely many input-output samples there is no guarantee

that an unbiased estimator exists nor that this bound, also

known as the Cramér-Rao lower bound (CRLB), is tight,

i.e., can be achieved. Moreover the notion of unbiasedness

and performance measures such as covariance matrices is

not preserved under coordinate transformations [1]. In this
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paper we contribute a new and natural notion of covariance

which is based solely on the transfer function. Formally

the covariance of a transfer function estimator is defined

as a two-variable function which maps any two frequencies

to the correlation of the deviation from the mean at those

frequencies; this is precisely the auto-covariance if one

regards the transfer function estimator as a stochastic process

whose sample paths are functions on the unit circle. The

covariance given by this two-variable function is Hermitian

and positive in the sense of E.H. Moore [2] and hence defines

a positive kernel reproducing a space of functions on the unit

circle. Similar to the cone of all covariance matrices, the set

of all positive kernels admits a partial ordering relation. With

respect to this partial ordering we contribute a coordinate free

version of the CRLB which states that the covariance of any

unbiased transfer function estimator is bounded from below

by the reproducing kernel with respect to the FIM on the

tangent space of the system manifold at the point given by

the transfer function from which the data samples originated.

The sensitivity space of the prediction error previously used

in [3] and [4] can thus be bypassed and replaced by the

tangent space, which is a well studied object [5], [6]. Another

benefit of this is that our approach is unencumbered by

the sensitivity space and thus the resulting variance error

quantification is not restricted to Prediction Error Methods

(PEM). The analysis of estimators is carried out in the

simplifying scenario where the number of data samples is

large in comparison to the number of parameters to be

estimated and thus can be approximated by the asymptotic

behavior of the FIM, which captures the average information

per data sample and thus mimics the independent identical

distributed (i.i.d.) case, which is well studied in statistical

literature.

This paper is structured as follows: In Section II we

informally introduce the notion of covariance for a transfer

function and discuss how it is influenced by the dynamics

of the given true system, the chosen model class and the

chosen input sequence. In Section III we take a step back

and discuss the general problem of statistical inference on

function spaces without any restriction and without any

reference to a particular parametrization of those functions.

We introduce the FIM in a coordinate free manner and prove

an abstract version of the CRLB providing a lower bound for

the positive kernel which represents the covariance instead

of traditional positive definite matrices used in classical

parameter estimation. In Section IV we demonstrate how the

abstract CRLB applies in the context of SYSID and point

out promising links to the theory of real rational modules
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and Hardy spaces. In Section V we draw conclusions and

indicate future work.

Notation: (·)∗ adjoint of complex matrix. ∇(·) gradient of a

function. EP [·] expectation operator. T unit circle. H
2(T) Hardy

space. K field of real or complex numbers.

II. MOTIVATIONAL EXAMPLES

In this section we stress by means of examples that, when

the data have been collected in open loop, the covariance

of a transfer function estimator depends on three things: the

selected model class, the system which generated the data,

and the input which was chosen to identify the system. We

choose to postpone the technical assumptions to Section IV

to keep the discussion here informal.

Assume we are given samples xN = (x1, x2, . . . , xN )
with xt = (ut, yt) of a process satisfying

yt + 0.25 yt−2 = 0.25ut−2 + vt + 0.25 vt−2, (1)

where vt is i.i.d. with zero mean and unit variance. This can

be written in OE form as

y = Gu + v with G =
1

1 + 4z2
, (2)

with G having poles at z = ± 
2 . The parametrization of the

model class G is1

Π : Θ → G, θ 7→
θ1z

−1 + θ2z
−2

1 + θ3z−1 + θ4z−2
, (3)

and the PEM estimator of G given xN is denoted by ĜN .

In the following we assume Φu = 1 that is the input has a

unit spectrum. We define the covariance of ĜN evaluated at

the complex frequencies z, w ∈ T by2

Cov(ĜN )(z, w) = E[(ĜN − G)(z)(ĜN − G)∗(w)]. (4)

In Section IV we will show how to explicitly calculate

an approximation Cov(ĜN )(z, w) ≈ N−1K(z, w) of the

covariance for large N which, e.g., in this case yields

K(z, w) =
15w(w + z)

(4 + w2)(1 + 4z2)
. (5)

The function K(z, z) represents the variance at the com-

plex frequency z ∈ T and is easily verified to be positive

and symmetric such that K(z, z) = K(z−1, z−1). We will

derive an abstract result in Section III, Theorem 4, where we

will explain how Cov(ĜN )(z, w) depends on both the true

system G as well as the model class G.

If, for example, we observe data x̃N , generated by an OE

model of the same form ỹ = G̃u + v with

G̃ =
1

1
2 + z + z2

having poles at −
1

2
±



2
, (6)

we obtain a different covariance which is approximated by

N−1K̃(z, w) for large N where again K̃ can be calculated

by the methods given in Section IV; Fig.1 compares K(z, z)
and K̃(z, z).

1Here Θ ⊆ R
4 is open and excludes pole-zero cancellations.

2Note in particular that Cov(T )(z, z) gives E[|(ĜN − G)(z)|2], i.e.,
the variance at z.

1

4

6

Fig. 1. K(z, z) and K̃(z, z) corresponding to G and G̃. Note that K̃ has

higher peaks than K since the system poles, denoted by ⊗̃, of G̃ are closer
to the unit circle T than the poles of G which are denoted by ⊗.

1

4

6

Fig. 2. K corresponds to an input with Φu = 1 whereas Ki correspond to
a periodic input sequence u = (uk) with uk = cos(ωik) with ω1 = 0.3,
ω2 = 0.4 and ω3 = 0.6. Note that in a high frequency band K3 ≤
K2 ≤ K1 whereas in the low frequency band K1 ≤ K2 ≤ K3.

In order to facilitate our discussion regarding the influence

of the input spectrum Φu on Cov(ĜN ) we turn to a simpler

two parameter case with

G =
1

z − 1/2
and Π : θ 7→

θ1

z − θ2
. (7)

Let q = (z − 1/2)2 and define the Chebyshev moments of

Φu · |q|−2, i.e.,

µk =
1

2π

∫ π

−π

ekω Φu(ω)

|q(eω)|2
dω k = 0, 1, 2, . . . . (8)

Then there holds

E[|ĜN − G|2(eω)] ≈ 2
N

µ0−µ1 cos(ω)
(µ2

0
−µ2

1
)·|eω−1/2|4

. (9)

Thus the variance depends on q, which is the squared

denominator of G, and on the input spectrum Φu only

through the first two moments µ0, µ1 of Φu/|q|2. In equation

(8) we allow point spectral measures resulting from periodic

excitations where Φu is to be intepreted in the distributional

sense. The accuracy of the estimator in a specific frequency

band increases, i.e., the variance decreases, with the amount

of input power in that band; see Fig.2.
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III. GEOMETRIC PROPERTIES OF STATISTICAL SPACES

We separate this section from the SYSID context because

in what follows it will not matter whether we seek to estimate

a transfer function of a LTI system or a general function.

We restrict our attention to the case where the function to be

estimated is a priori known to reside in a finite dimensional

smooth manifold. In particular we assume that the set of

functions in which the function estimator takes its values

can be parametrized by a finite number of real numbers.

In Section III-A we define the notion of regular statistical

spaces for which we define the FIM in Section III-B. The

abstract version of the CRLB for function estimation is given

in Section III-C and its asymptotic properties are discussed

in Section III-D.

A. Regular Statistical Spaces

In terms of mathematical structure a statistical space is

a triple (X,X ,P) where P , the so called population, is a

family of probability measures P = {Pθ}θ∈Θ on a common

measurable space (X,X ) where X is called sample space.

The set Θ is called parameter space and often carries

additional structure such as being a differentiable manifold

or an open subset of R
n. Any random variable ξ : Ω → X

defined on some probability space (Ω,A, P ) is called sample

if its law obeys Pξ−1 ∈ P . Loosely speaking, given an

observation x, i.e., a realization of a sample ξ, the statistician

tries to make inferences about θ, such as estimating the

parameter by a function θ̂(x). More generally one tries

to make inference about functionals f : Θ → S using

estimators T : X → S where S can be any set.

In the following we will impose some regularity conditions

on the statistical space (X,X ,P) (see e.g. [1, p. 1567] for

details). We assume Θ is an open subset of R
n and the

parametrization π : Θ → P , mapping a parameter θ 7→ Pθ

to the corresponding probability measure, is bijective. This

turns P into an n-dimensional manifold. We assume P is

dominated by a σ-finite measure ν on F . This means P can

be identified with a family of ν-densitities {p(·, θ)}θ∈Θ. In

addition to dPθ = p(·, θ)dν we assume that the standard reg-

ularity conditions are met.3 The regularity conditions ensure

that Definition 1 introducing below the Fisher Information

metric on P makes sense. Moreover they are necessary for

Theorem 2, which justifies the term information for this

metric since it allows bounding the variance of all unbiased

estimators from below.

B. Abstract Fisher Information Metric

The Riemannian structure on the probability manifold has

been extensively studied by Amari et al [7].

3Those conditions are:

1) The following functions on X with i = 1, . . . , n are well defined

X → R, x 7→ ∂ log p(x, θ)/∂θi

R-linearly independent and dPθ-integrable.
2) p(x, θ) is a smooth function of θ for all x ∈ X such that partial

derivatives ∂
∂θi

and integration with respect to dν of p(x, θ) can

always be interchanged.

Definition 1 For any x ∈ X the log-likelihood function ℓx :
Pθ 7→ log p(x, θ) defines a smooth map P → R. We denote

the tangent space of P at a point P ∈ P by TPP . The

defining property of the Fisher Information metric (FIM) g

is given by

gP (u, v) = EP [dℓ(u) · dℓ(v)] for all u, v ∈ TPP, (10)

where (dℓx)(u) is the differential of ℓx ∈ C∞(P, R) for

all P ∈ P . We will denote gP (u, v) by 〈u, v〉 whenever we

think it is clear from the context that u, v are tangent vectors

at P ∈ P .

By means of Definition 1, TPP defines an n-dimensional

linear space over the reals equipped with an inner product

given by the FIM. Since we want to be able to study co-

variance functions of possibly complex and/or vector-valued

estimators we will use the language of tensor products which

are defined, together with the so called complexification, in

Appendix A.

From now on let K ∈ {R, C} denote the field of real or

complex numbers. Using this notation we can treat the real

and complex case in parallel. The FIM on C⊗TPθ
P is well

defined by extending (10) to the complexification via (A.3).

Theorem 2 (Information Inequality) Let T : X → K be

such that

m : Θ → R, θ 7→ EPθ
[T ], (11)

defines a smooth function m ∈ C∞(Θ, K). In particular T is

an unbiased estimator of m. Then there holds, for all θ ∈ Θ,

varθ(T ) = EPθ
[|T − EPθ

T |2] ≥ ‖∇m‖2, (12)

where the norm and the gradient ∇ correspond to the FIM

on K ⊗ TPθ
P .

Proof: We first check the claim for K = R. Let

∂i ∈ TPθ
P denote the partial derivative w.r.t. θi acting on

any smooth function of θ defined in a neighboorhood of

Pθ ∈ P . Then ∂iℓ : x 7→ ∂iℓx is a statistic X → R such

that4

EPθ
[T · ∇ℓ] = ∇m,

and EPθ
[∇ℓ] = 0 in particular. Now let f : X → K be given

by f = T − m(θ) − 〈∇m,∇ℓ〉 and observe that5

0 ≤ EPθ
[f2] = varθ(T ) − 2 〈∇m,∇m〉 + 〈∇m,∇m〉 .

4To see this note that

EPθ
[T · ∂iℓ] =

Z

T (x)
∂

∂θi

log p(·)(x) dPθ(x)

=

Z

T (x)

„

pθ(x)−1 ∂

∂θi

p(·)(x)

«

pθ(x)dν(x)

=
∂

∂θi

Z

T (x)pθ(x) dν(x) =
∂

∂θi

m.

5This holds due to

EPθ
f2 = varθ(T ) − 2EPθ

(T − m(θ)) 〈∇m,∇ℓ〉 + EPθ
〈∇m,∇ℓ〉2

= varθ(T ) − 2EPθ
[〈∇m, T∇ℓ〉] + EPθ

[(dℓ(∇m) · dℓ(∇m)]

and the fact that EPθ
[〈∇m, T∇ℓ〉] = 〈∇m, EθT∇ℓ〉 = ‖∇m‖2.
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For the complex valued case let m = u + v with u, v ∈
C∞(Θ, R) and T = R + S with R,S : X → R. Then

EPθ
[|T − m(θ)|2] = EPθ

[(R − u(θ))2] + EPθ
[(S − v(θ))2]

≤ ‖∇u‖2 + ‖∇v‖2 = ‖∇m‖2,

which concludes the proof.6

In applications one seldom tries to estimate scalar quanti-

ties. In Section III-C we treat the quite general case where

one wants to estimate a function instead of a scalar. In the

context of system identification this function corresponds to

the transfer function of a LTI system.

C. The Covariance Function

Assume Θ is diffeomorphic to a sub-manifold F of a

linear space H which consists of real- or complex-vector

valued functions F : Ω → K
q defined on some set Ω. In other

words the functions in F admit a parametrization defined on

Θ. For example H could be H2(Ω), the Hardy space of

square integrable functions, analytic on the open unit disk

Ω = D or the open right half plane Ω = {z |Re(z) > 0}.

After a reparametrization of P by {PF }F∈F we identify

TPF
P with TFF ⊆ H which is a space of functions. We

are now ready to define the natural analog of a covariance

matrix in the function space F .

Definition 3 Given a statistic T : X → F with m(z) =
EPF

[T (z)] for some m ∈ H we define its covariance at

F ∈ F , denoted by CovF (T )(z, w), setting it equal to

EPF
[(T (z) − m(z))(T (w) − m(w))∗], (13)

for all z, w ∈ Ω. Note that CovF (T ) is defined on Ω × Ω
and takes values in K

q×q. Also note that CovF (T ) ≥ 0 in

the sense of E.H. Moore, i.e., for all families {ez}z∈Ω ⊆ K

with finite support there holds7

∑

z,w∈Ω

ēzew v∗CovF (T )(z, w)v ≥ 0, (14)

for all v ∈ K
q.

To understand the interplay between covariance functions

and the FIM we need a link between positive kernels, i.e.,

a function K : Ω × Ω → K
q×q and inner product spaces

(F , 〈·, ·〉) of K
q-valued functions. This link is provided by

the reproducing property of positive kernels – discussed

in more detail in Appendix B. We choose to denote the

estimator T in Theorem 4 by F̂ to emphasize the fact that

the Theorem assumes that T is an unbiased estimators of F .

6Note that we use ∇m = ∇u−∇v which follows from dm = du+dv
and the definition of the gradient and the complexification of the inner
product. More explicitely:

dm(∆) = 〈∆,∇u〉 +  〈∆,∇v〉

= 〈∆,∇u − j∇v〉 = 〈∆,∇m〉 ,

for all ∆ ∈ TPθ
P .

7By finite support family we mean that {z ∈ Ω | ez 6= 0} is a finite
subset of Ω.

Theorem 4 (Abstract Cramér-Rao LB) Let F̂ : X → F
denote an estimator with EPF

[F̂ (z)] = F (z) for all z ∈ Ω
and all F ∈ F . Then there holds in the sense of E.H. Moore

CovF (F̂ ) ≥ KF for all F ∈ F , (15)

where KF is the reproducing kernel of K
q×q ⊗ TPF

P
w.r.t. the Fisher Information metric.

Proof: Let v ∈ K
q and C = CovF (F̂ ). There holds

that ∇ēwv∗F (w) = ewKF (·, w)v and thus by Theorem 2

∑

ēzewv∗C(z, w)v = EPF

∣

∣

∣

∑

ēwv∗(F̂ (w) − F (w))
∣

∣

∣

2

≥
∥

∥

∥

∑

ewKF (·, w)v
∥

∥

∥

2

=
∑

ēzewv∗KF (z, w)v.

holds for all F ∈ F .

D. Asymptotically Efficient Estimators

Up until now we just considered estimators where one

sample x ∈ X is observed. For time series analysis and

system identification in particular it is of course of interest to

study the properties of estimators T = {TN |N ∈ N} which

are given N samples in X , i.e., TN : XN → F , where

on XN we consider the product σ-algebra XN . Similarly

(X∞,X∞) denotes the measurable sequence sample space.

We assume P∞ = {PF }F∈F is an n-dimensional manifold

parameterized by F ⊆ H. Moreover we assume there exists

a number N0 such that the restriction P 7→ PN = P |XN

becomes injective on P∞ for all N ≥ N0.

Definition 5 On P∞ we define the asymptotic (average)

Fisher information metric g via

gP (u, v) = lim
N→∞

gP N (u, v |N)

N
, (16)

for all u, v ∈ TPP
∞ where g(·, · |N) denotes the FIM on

{PN |P ∈ P}. An estimator F̂ = (F̂N ) s.t. F̂N : XN → F
is called asymptotically efficient if

N · CovF (F̂N ) → KF as N → ∞, (17)

pointwise, where KF is the reproducing kernel of K
q×q ⊗

TPF
P∞ w.r.t. the asymptotic (average) FIM.

If F̂ is an efficient estimator then CovF (F̂N ) ≈ N−1KF

for a sufficiently large number N of samples. This is why the

asymptotic FIM can be used for approximate variance and

covariance quantification. It is well known that estimators

which are asymptotically maximum likelihood (ML) are also

asymptotically efficient [7].

IV. CONSEQUENCES FOR SYSTEM IDENTIFICATION

In Theorem 4 of Section III-C we derived the abstract

CRLB for unbiased estimator in function spaces. In this

Section we will interpret this result in the context of SYSID.

Of special importance is the interpretation of the tangent

space TFF as a direct sum of subspaces of the Hardy space

H2(T) discussed in Section IV-B. This interpretation allows

us to compute the FIM and its reproducing kernel in practice
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using real rational modules and Christoffel-Darboux type of

identities.

A. Prediction Error Identification

Let V = R
N, and let O ⊆ H2(T) denote the ring of stable

proper rational functions [8]. We turn the sequence space V
into an O-module by defining

O × V, (g, ξ) 7→ L(g) ∗ ξ with L(g) = (g0, g1, g2, · · · ),

where ∗ denotes convolution and g =
∑

giz
−i is the

expansion of g at infinity. Note that z−1 ∈ O acts on V as

a delay or right shift, i.e., (z−1ξ)(0) = 0 and (z−1ξ)(t) =
ξ(t − 1) for all non-zero t ∈ T. Hence the right shift is not

surjective which is not a problem if one assumes zero initial

conditions.

Let Vσ denote the product σ-algebra on V and (V,Vσ, P )
a probability space such that the projections et : ξ 7→ ξt are

i.i.d. with zero mean and bounded variance Ee2
t = σ2 for all

t ∈ T. We think of e = (et) as a white noise sequence.

We seek to identify a system F = (G, H) ∈ z−1O × O
with H being a monic unit in O. Exciting it with by a known

input sequence u ∈ V and observing its output y given by

y = Gu + He.8 The probability law of the random output

sequence y depends on P, u and F . Since P is fixed and u is

known it makes sense to denote this law by PF ; see Fig. 3.

Fig. 3. Dependence of the law PF of the output process y on F = (G, H).

We assume the input u ∈ V is persistently existing such

that F 7→ PF is injective. Let X∞ = V × V with product

σ-algebra X∞ such that every x ∈ X∞ represents a data

sequence written as x = (u0, y0, u1, y1, u2, y2, . . . ). This

data is assumed to be generated by a system F ∈ F where F
is a finite dimensional manifold such that (X∞,X∞,P∞)
with P∞ = {PF }F∈F is a regular statistical model.

The Prediction Error framework is based on the asymp-

totically ML estimator sequence F̂ = (F̂N )N=1,2,... with

F̂N : XN → F s.t. for all x = (x1, . . . , xN ) we have

F̂N (x) = arg min
F∈F

1

N

N
∑

t=1

|[ŷF (x)]t − yt|
2, (18)

where N denotes the sample size and

ŷF (x) = H−1Gu + (1 − H−1)y, (19)

the one step ahead predictor given F = (G, H) ∈ F .

8Note that formally y : V → V is defined as the F -measurable function
which maps a potential noise realization ξ ∈ V to Gu + Hξ ∈ V which is
the corresponding output sequence.

B. Computing Asymptotic FIM on the System Manifold

The n-dimensional system manifold F is a submanifold

of the product manifold G × H ⊆ z−1O × O where G is

the image of F under (G, H) 7→ G whereas H is the image

under the corresponding complementary projection. If F =
G × H then G and H can be independently parameterized.

In general for any F = (G, H) ∈ F we have the inclusion9

TFF ⊆ TF (G ×H) ∼= TGG ⊕ THH.

and thus every tangent vector of F at F = (G, H) has two

components one being tangent to G at G the other being

tangent to H at H . The tangent vector at G is represented

by a unique strictly proper rational function since G ⊆ z−1O.

Similarly the tangent vector at H is represented by a unique

proper rational function. In the following we interpret the

abstract tangent vector ∂F ∈ TFF as element in z−1O × O
and denote this vector by ∂F = (∂G, ∂H).

Since the PEM estimator F̂N defined in (18) is asymptot-

ically efficient for large N there holds

CovF (F̂N ) ≈ N−1KF , (20)

where KF is the reproducing kernel of TFF w.r.t. the

asymptotic FIM given by the integral expressions (22) in

Theorem 6.

Theorem 6 Let F = (G, H) ∈ F and g denote the

asymptotic FIM on F ∼= P∞. Then there holds

gF (∂F,i, ∂F,j) = gF (∂G,i, ∂G,j) + gF (∂H,i, ∂H,j). (21)

If we denote Φu and Φv = σ2HH∗ the input and noise

spectrum, respectively, then for ∂F,i, ∂F,j ∈ TFF we have

gF (∂G,i, ∂G,j) =

∫

T

(∂G,i · ∂
∗
G,j)(e

ω)
Φu

Φv

dω

2π
, (22a)

gF (∂H,i, ∂H,j) =

∫

T

(∂H,i · ∂
∗
H,j)(e

ω)
σ2

Φv

dω

2π
, (22b)

where integrals are taken over the unit circle T w.r.t. the

standard Lebesgue measure. Note that Φv varies with F on

F since it depends on H .

Proof: Is an immediate consequence of Lemma A.4

and Theorem A.5.

Remark 7 The pair (Φu,Φv) determines gF but not the

other way around. To see this, let XqG denote the smallest

real rational module containing TGG (see Appendix D for

the Definition of Xq). Then the moments µk ∈ R with

µk =
1

2π

∫

T

zk Φu

Φv

dω

|qG|2
k = 0, . . . ,deg(qG) − 1, (23)

determine gF |TGG since zk

qG
form a basis for XqG ; see Fig. 4.

9If TFF equals the sum TGG ⊕ THH this means that the transfer
functions G and H can be independently parametrized. For example this is
the case when F is given by a BJ model structure. In general we have no
equality; pick, e.g., F from the ARX model class.
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Fig. 4. The Fisher Information metric gF on the tangent space of G at

G can be expressed in terms of a Φu
Φv

weighted H2(T) metric on the real

rational module XqG .

Similarly gF |THH is determined by

µk =
1

2π

∫

T

zk σ2

Φv

dω

|qH |2
k = 0, . . . ,deg(qH) − 1, (24)

where XqH is the real rational module hull of THH.

C. Computing Asymptotic Covariance from FIM

In general the computation of the reproducing kernel KF

of TFF w.r.t. the asymptotic average FIM amounts to finding

an orthonormal basis (ONB), i.e., inverting a Gram-matrix

of a general basis of TFF using the Aitken-Collar-Berg

Lemma A.3. However simplifications can occur:

1) If TFF = TGG ⊕ THH then

KF =

[

KF |G

KF |H

]

. (25)

2) For Φu

Φv
= |ρ|2 and ρTGG = Xq for some polynomial

q ∈ R[z] then KF |G = K with K given by (A.12), see

e.g., [3][(27,49,50)] where Xq is Xn and ρ = Sζ/H .

3) If TGG = Xq then KF |G can be computed from K
defined in (A.12) via

KF |G(z, w) =
∫

K(eω, w) · K∗(eω, z) Φv

Φu

dω
2π , (26)

where the integral is weighted with the inverse signal-

to-noise (SNR) ratio.

One should note that if TFF is a proper subspace of

TGG ⊕ THH, which is the case for model classes where

G and H cannot be independently parametrized, then KFF
is no longer diagonal. There holds

KF |F = gF (ΠKF |G×H,w,KF |G×H,z), (27)

with Π denoting the orthogonal projection onto TFF
w.r.t. the FIM metric gF .

V. CONCLUSIONS

In this paper we have established that the auto-covariance

of an unbiased function estimator is a positive kernel which

can be bounded from below by the reproducing kernel of the

tangent space of the function manifold in a general statistical

space framework. This bound becomes asymptotically tight

if the function estimator is efficient. The consequence these

results have for system identification is that the problem

of quantifying the auto-covariance of a transfer function

estimator splits into two subproblems: determining the tan-

gent space of the model manifold at the system which

generated the data, and computing its reproducing kernel

with respect to the SNR-weighted inner product. Often the

tangent space forms a real rational module; in any case there

exists a smallest real rational module containing it; this fact

gives rise to closed form expressions for the reproducing

kernel which can be used in optimal-input design. For future

work we want to relax the system in the model manifold

assumption and allow the data generating system to be

in the topological closure of the model manifold but not

in the manifold itself also referred to as overmodelling.

In such situations quantifying the covariance matrix of a

paramater vector is an ill-defined problem. We believe that

by means of the coordinate free methods developed in this

paper autocovariance quantification with overmodelling will

be possible even if the topological closure is not a manifold.
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APPENDIX

A. Tensor Products and Complexification

Tensor products form the abstraction of Kronecker prod-

ucts for matrices. Recall that if A ∈ R
a×c and B ∈ R

b×d

the Kronecker product A ⊗ B ∈ R
ab×cd is a block matrix

with block size b × d whose i, j-th block given by aijB.10

The main disadvantage of Kronecker products is that they

are not applicable to general linear spaces before choosing a

basis. For instance choosing a basis for the tangent space in

Theorem 2 amounts to the choice of a specific parametriza-

tion. If the tangent space is a space of functions where inner

products can be computed in a natural way, e.g., say on the

unit circle, it is of interest to preserve the structure instead

of choosing an arbitrary basis treating this space as if it were

a general inner product space. This motivates the following

abstract Definition of Tensor products.

Definition A.1 Let U, V denote two linear spaces over the

real numbers of dimension n and m respectively. A linear

space (W,⊗) of dimension nm equipped with a bilinear map

⊗ : U × V → W, (u, v) 7→ u ⊗ v,

is called tensor product of U and Y if {ui ⊗ vj} is a basis

of W whenever {ui} is a basis of U and {vj} is a basis of

V . If this is the case W is denoted by W = U ⊗ V .

Moreover if 〈·, ·〉U and 〈·, ·〉V denote inner products on U
and V respectively there exists a unique inner product 〈·, ·〉
on U ⊗ V such that for all ui ∈ U , vi ∈ V

〈u1 ⊗ v1, u2 ⊗ v2〉 := 〈u1, u2〉U · 〈v1, v2〉V . (A.1)

If n = 2q and we have a C-linear space structure on U
then W = U ⊗ V becomes a C-linear space as well by

defining the R-bilinear map ⊙ : C × W → W via

z(u ⊗ v) := (zu) ⊗ v for all z ∈ C, (A.2)

10This example is treated by Definition A.1 below if one sets U = R
a×c

and V = R
b×d. One can gain insight by looking at the special case: c = 1

and b = 1. Note that in this A⊗B are rank 1 matrices which span R
a×b.
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and all u ∈ U , v ∈ V . Note that U ⊗ V has C-dimension

q ·m. Finally if U has a complex inner product 〈〈·, ·〉〉U then

〈〈u1 ⊗ v1, u2 ⊗ v2〉〉 := 〈〈u1, u2〉〉U 〈v1, v2〉V , (A.3)

can be uniquely extended to a complex inner product on

U ⊗ V .

Definition A.2 A special case of this construction is U = C

with inner product given by 〈〈u1, u2〉〉U = u∗
2u1. We call

C⊗V the complexification of V . The complexification C⊗V
is a linear space over C whose C-dimension equals the R-

dimension of V . Instead of writing z⊗v one writes αv+βv
with α, β ∈ R such that z = α + β. With this notation

V, V ⊆ C ⊗ V are R-subspaces such that

C ⊗ V = V ⊕ V, (A.4)

where the sum is orthogonal w.r.t. to the real inner product

〈·, ·〉 defined in (A.1) with 〈1, 〉U = 0 and 1,  ∈ U having

unit norm. For V = R
n we have C

n = C ⊗ V . Also note

that trivially V = R ⊗ V .

B. Positive Kernels Reproducing Spaces

For any space (F , 〈·, ·〉) of K
q-valued functions on Ω

the associated kernel KF is defined for all α ∈ K
q, z ∈

Ω by KF (z, w)α = Kw,α(z) where Kw,α ∈ F is the

unique Riesz-representantive of the evaluation F → K, f 7→
α∗f(w) = 〈f,Kw,α〉 which is assumed to be continuous [2].

If F is finitely generated, then

KF (z, w) =

n
∑

i=1

bi(z)b∗i (w), (A.5)

where {bi}
n
i=1 can be any ONB of F . Conversely any posi-

tive kernel K generates a space FK which is the completion

of the linear space generated by {Kw,α}w∈Ω,α∈Kq w.r.t. the

inner product defined by

〈Kw,α,Kz,β〉 = β∗K(z, w)α, (A.6)

for all z, w ∈ Ω and α, β ∈ K
q. An easy to check yet

fundamental property is that K 7→ FK and F 7→ KF are

inverse to each other.

Lemma A.3 (ABC) Let g = [g1, . . . , gn] denote a basis for

the K-inner product space (F , 〈·, ·〉) consisting of K-valued

functions. Moreover let Gij = 〈gj , gi〉 denote the Gramian

matrix. Then g(z)G−1g∗(w) is the reproducing kernel of F .

C. Asymptotic Efficiency of PEM

The proof of Lemma A.4 follows from direct computation

and is therefore omitted.

Lemma A.4 For fixed x ∈ X∞ the one step-ahead predic-

tor defined in (19) can be viewed as a function

ŷ(x) : F → R
N, F 7→ ŷF (x), (A.7)

which has smooth components [ŷ(x)]t : F → R. In partic-

ular, given any ∂F ∈ TFF , the sequence (∂F [ŷ(x)]t)t≥1,

denoted by ∂F ŷ(x), is well defined and can be expressed in

terms of x = (u, y) and F = (G, H) via

∂F ŷ(x) = H−1(∂G u + σ ∂H e), (A.8)

where e is such that y = Gu + He holds.

The following Theorem A.5 was proven in Caines and

Ljung [9] and is of fundamental importance. It says that the

PEM is asymptotically efficient and it gives a way to compute

the asymptotic (average) FIM.

Theorem A.5 Define ĝF (∂F,i, ∂F,j |N) : X∞ → R via

x 7→ (Nσ)−2 ·
∑N

t=1[∂F,i ŷ(x)]t · [∂F,j ŷ(x)]t, (A.9)

for all ∂F,i, ∂F,j ∈ TFF . Then as N → ∞ we have

ĝF (∂F,i, ∂F,j |N) → gF (∂F,i, ∂F,j) (PF -a.s.), (A.10)

where g denotes the asymptotic FIM on F ∼= P∞.

D. Real Rational Modules as Coinvariant Spaces

A very simple and yet fundamental class of subspaces in

H2(T) given by real rational modules also called coinvariant

subspaces [10].

Definition A.6 Let q ∈ R[z] denote a stable polynomial.

The associated real rational module is denoted by Xq with

Xq =

{

p

q
∈ R(z), p ∈ R(z),deg(p) < deg(q)

}

. (A.11)

The reproducing kernel of C⊗Xq ⊆ H2(T) is given by the

Christoffel-Darboux formula

K(z, w) =
1

q(z)q⋆(w)
·
q⋆(z)q(w) − q(z)q⋆(w)

1 − zw̄
, (A.12)

with q⋆(z) = znq(z−1) and n = deg(q).
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