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Abstract— In this paper, an initial study is made on the
optimal input design for Wiener systems that consists of a FIR
filter, followed by a polynomial nonlinearity. A design method,
based on the dispersion function, is introduced, in order to find
an optimal set of elementary designs. For the considered class
of Wiener systems, it is shown that these elementary designs are
couples of successive input values. However, concatenation of
these elementary designs is not straight forward. By imposing
symmetry conditions on the total design, a solution is obtained
that can be realized as a time sequence and that is optimal in
the subspace of symmetric designs.

I. INTRODUCTION

Optimal input design for linear dynamic systems or static
nonlinear systems is well understood and well covered in the
literature [1], [2]. However, for nonlinear dynamic systems,
no general solution to the problem is known. Therefore,
different attempts have been made to extend the scope of
the linear methods to subclasses of nonlinear systems: see
e.g. [3]. In this paper a similar approach is followed for
the extension of the dispersion based input design for linear
dynamic systems [4].

The class of systems will be restricted to Wiener systems
consisting of a FIR filter followed by a polynomial nonlin-
earity (Fig.1). Such systems are already covered in [5], where
the input design is formulated as a convex optimization
problem, and [6], where the optimal input in the class of
random Gaussian signals was obtained.

Fig. 1. FIR filter followed by a polynomial nonlinearity

While the problem statement and solution of this paper
show strong similarities with [5], important differences exist.
First of all, the problem formulation in this paper is obtained
through generalization of a linear design method. This stands
in contrast with the approach followed in [5] where the
problem statement is obtained by restricting the general
nonlinear case. Second, an optimization scheme based on the
dispersion function is presented. This scheme offers an easy
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to interpret alternative for the convex optimization routines
suggested in [5].

To keep the explanation as simple as possible, all concepts
in this paper will be illustrated on a simple example consist-
ing of a 2-tap FIR filter followed by a cubic nonlinearity.
Extending the method to systems with a longer FIR filter
and/or a higher order polynomial can be done without
conceptual problems. However numerical difficulties may
occur due to the exponential scaling of the search space with
respect to the filter length.

The remainder of this paper is structured as follows.
Section II introduces basic concepts of dispersion based
input design for linear dynamic systems. Section III presents
how this concept can be extended to the considered class
of nonlinear dynamic systems. In Section IV the extended
method is illustrated on a numerical example. To conclude,
Section V will summarize the obtained results.

II. INPUT DESIGN FOR LINEAR DYNAMIC SYSTEMS

This section describes the basic concepts of frequency
domain input design for linear dynamic systems using the
dispersion function. Details can be found in [2] and [4].

A. Problem statement

The simple setting of a SISO system, subjected to i.i.d
Gaussian output noise, will be assumed.

Assumption 1. In this section the considered system is a
linear dynamic SISO (Single Input Single Output) system.
The relationship between the noiseless input u0(t) and the
noiseless output y0(t) of the system can be written as:

y0(t) = g(t, θ) ∗ u0(t)

Y0(ω) = G(ω, θ) · U0(ω)

where U0 and Y0 are, respectively, the complex spectra of
the input and output, θ are the parameters of the model, g is
the impulse response of the system, G is the transfer function
of the system, and ∗ denotes the convolution.

Assumption 2. There is only additive noise at the output,
which is identically independently and normally distributed
with known standard deviation σ. It is also independent of
the input signal.

u(t) = u0(t)

y(t) = y0(t) + e(t)

e(t) ∼ N(0,σ2)

Assumption 3. The estimator used to identify the model
parameters is unbiased and efficient.



Assumption 4. The class of input signals is restricted to
inputs which have a discrete spectral representation and a
total power of one.

ξu(k) = |U(ωk)|2 and
Nω�

k=1

ξu(k) = 1

where ξu represents the discrete power spectrum of the input
u, and ωk are the discrete frequencies.

Assumption 5. The D-optimality measure is used, which
means that the optimal input sequence uopt corresponds to
the sequence for which the determinant of the information
matrix Fi is maximal.

uopt = arg
u

max(det(Fi))

Given the noise assumption, Fi can be computed based on
the frequency domain data as [7]:

Fi =
2

σ2
· Re
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where ∂Y0
∂θ

is a N × nθ matrix containing the partial deriva-
tives of Y0, H stands for the Hermitian conjugate of a matrix
and Re indicates the real part of a complex number.

B. Elementary design

For a linear dynamic system the output at frequency ω
only depends on the input at that same frequency. If the input
signal is decomposed as a sum of sines (which is possible
due to Assumption 4), the contributions of each sine to the
output can be identified.

Definition 1. For a linear dynamic system, an elementary

design is a sine at frequency ωk with unit power.

C. Information matrix

Under the assumptions stated above, it is shown in [4] that
the information matrix Fi can be written as a weighted sum
of elementary information matrices Fik.

Fi =
Nω�

k=1

ξu(k) · Fik

The weights ξu(k) in the sum correspond to the discrete
power spectrum of the input signal.

Definition 2. An elementary information matrix Fik is the

information matrix computed for the kth elementary design.

In the linear case Fik can be computed as:

Fik(i, j) =
2

σ2

∂G(ωk)

∂θi

∂G(ωk)

∂θj
(1)

D. Dispersion

In order to find the power spectrum that maximizes the
determinant of the information matrix, an indirect approach
is used based on the dispersion function [2].

Definition 3. Under Assumptions 1 to 4, and for an input

with discrete spectrum ξu, the dispersion function v(., .) at

frequency ωk is defined as
1
:

v(ξu, k) = trace(Fi−1 · Fik) (2)

where Fi is the information matrix computed for the given

power spectrum ξu and Fik is the information matrix

corresponding to a sine input at frequency ωk.

Some useful properties of the dispersion function are [2]:
• The maximal value of the dispersion can never be lower

than the number of free parameters in the model.
• The inner product between the dispersion v(ξu, k) and

the corresponding spectrum ξu(k) equals the number of
free parameters.

• The dispersion can also be interpreted as a normalized
variance on the estimated model.

In [2] it is shown that the power spectrum that minimizes
the maximal value of the dispersion function also maximizes
the determinant of the information matrix.

Theorem 1. The following characterizations of an optimal

power constrained design are equivalent:

1) ξuopt maximizes det(Fi)
2) ξuopt minimizes maxkv(ξu, k)
3) maxkv(ξuopt , k) = nθ

where nθ is the number of free parameters in the model.

Proof: see [2] Chapter 6 page 147.

E. Optimization algorithm

In [4] a simple and robust, monotonically converging
algorithm is defined, which finds a discrete spectrum that
minimizes the dispersion on a predefined frequency grid.
This algorithm can be summarized in four steps:

1) Initialize the power spectrum uniformly
ξu(k) = 1/Nω

with Nω the total number of frequencies.
2) Compute the dispersion function v(ξu, k) for the cur-

rent input using (2)
3) Update the power spectrum of the input in correspon-

dence with the dispersion function as follows
ξnew(k) =

v(ξu,k)
Nθ

.ξold(k)

4) Stopping criterion: if (maxkv(ξnew, k)−Nθ) is smaller
than a predefined threshold, the optimal solution is
assumed to be found; else go to step 2.

The stopping criterion is based on the third expression of
Theorem 1. The monotonic convergence of the algorithm is
proven in [8].

1The dispersion function is also called response dispersion.



F. Signal generation

The algorithm above provides an optimal weighted linear
combination of elementary designs, of which each term
consists of a single sine at frequency ωk with specified
power ξ(k). All these weighted elementary designs could be
applied separately, one after an other. However, this would
be inefficient with respect to measurement time. Instead,
the elementary designs can be applied all at once with the
signal uopt, which is the weighted linear combination of the
elementary designs.

uopt(t) =
Nω�

k=1

�
ξ(k) · cos(ωk.t+ φk)

The phases φk of the sines can be chosen freely. Notice that
no additional constraints are needed in order to perform the
optimal experiment with a single time sequence.

III. NONLINEAR DYNAMIC SYSTEMS

In the previous section, an optimal input design based
on the dispersion function was introduced for the linear
dynamic case. This design method will now be extended to
a class of nonlinear dynamic systems. In order to keep the
explanation of the method as simple as possible, all concepts
will be explained for a 2-tap FIR filter followed by a cubic
nonlinearity.

A. Problem statement

Assumptions 2, 3 and 5 from the linear dynamic case
are kept, while Assumption 1 and 4 are replaced with the
assumptions below.

Assumption 6. The considered system consists of a 2-tap
FIR filter, followed by a cubic nonlinearity.

w(t) = b1u(t) + b2u(t− 1)

y0(t) = w(t)3, y(t) = y0(t) + e(t)

where u(t) is the noiseless input, y0(t) is the noiseless output
and b are the parameters of the FIR filter.

Assumption 7. The class of inputs will be restricted to
deterministic time sequences of given length N + 1. The
amplitude can only take values from a finite, predefined set
of A values.

∀t : u(t) ∈ {u1, ..., uA} (3)

Unlike the linear case, no direct constraints are imposed on
the total power of the input. Of course, limiting the maximal
amplitude value and fixing the signal length restricts the total
power indirectly.

B. Elementary designs

Considering the system model, it is clear that y(t) only
depends on the values u(t) and u(t − 1). Therefore each
couple (u(t − 1), u(t)) is considered to be an elementary
design for the system. Because the possible amplitude values
of the input are discretized, the number of distinct couples
is finite.

Definition 4. An ordered set of 2 values drawn out of the

predefined set {u1, u2, ...uA} is called a couple. In total

A2
different couples can be defined. All possible couples

will be stored in a multidimensional cell array called C ∈�
R2

�A×A

where each cell contains a couple.

C(i1, i2) = (ui1 , ui2) (4)
∀i1, i2 ∈ {1, 2, .., A}

Definition 5. For a system consisting of a 2-tap FIR filter

followed by a cubic nonlinearity, an elementary design

consists of a single couple.

Notation 1. When a A×A matrix X is rewritten as a A2×1
vector x, the following mapping between the linear index k
and subindices i1 and i2 will be used:

x(k) = Vec(X(i1, i2)) (5)
k = i1 +A(i2 − 1)

C. Information matrix

Under Assumption 2 and given a specific input sequence
u(t) of length N +1, the information matrix can be written
as a sum over the time samples:

Fi(i, j) =
1

σ2

N�

t=1

fi,j(u(t− 1), u(t), θ) (6)

fi,j(u(t− 1), u(t), θ) =
∂y0(t, θ)

∂bi

∂y0(t, θ)

∂bj
(7)

where θ = [b1 b2]. It is assumed that y(0) is omitted during
the estimation because the value of u(−1) is unknown.
Because the derivatives only depend on two successive input
values, the number of different terms equals the number of
different couples in the array C. By grouping the equal terms,
the sum over time can be rewritten as a sum over the couples:

Fi(i, j) =
1

σ2

A
2�

k=1

ξN (k) · fi,j(c(k), θ) (8)

where c is the vectorized version of the matrix C (see
Notation 1). The weights ξN (k) indicate how often each
couple occurs in the sequence u(t). An optimal design will
consist of optimizing over the ξN (k).

Definition 6. The vector containing the number of times a

couple occurs in a signal u(t) is called the couple frequency

vector ξN of that signal. The couple frequency vector divided

by the total number of couples N in the signal is called the

normalized couple frequency vector ξ of the signal u(t):

ξ =
1

N
· ξN (9)

Remark 1. The normalized couple frequencies have similar
properties as a unit power spectrum (see Assumption 4). The
sum of a couple frequency vector always equals one, and
each entry lies between zero and one.

∀k : ξ(k) ∈ [0, 1] and
A

2�

k=1

ξ(k) = 1 (10)



Coming up with an optimal experiment consists of finding
the vector ξN that optimizes the determinant of the informa-
tion matrix, given that N+1 samples can be measured. This
problem is very similar to finding the optimal input spectrum
for a linear system, given a total power constraint.

In order to recover the optimization algorithm based on
the dispersion of the linear problem, the information matrix
needs to be written as a weighed sum of matrices. Moreover,
the weights all have to be positive and should sum to
one. Such formulation can be obtained if the problem is
normalized with respect to the total number of couples N
in the signal:

Fi(i, j)

N
=

A
2�

k=1

ξ(k) · Fik (11)

Definition 7. For a FIR filter followed by a cubic nonlinear-

ity the elementary information matrix Fik can be computed

as:

Fik(i, j) =
1

σ2
fi,j(c(k), θ) (12)

The optimization algorithm, described in subsection II-
E for linear systems, can now be used unchanged to find
the normalized couple frequency vector ξopt that maximizes
the normalized information matrix for the nonlinear dynamic
systems of this section.

D. Signal generation

The optimal couple frequency vector ξN,opt can be inter-
preted as an experiment of N measurements, where each
measurement consists of applying a single couple to the
system and measuring the corresponding output sample.

A naive way to perform this experiment is to place all the
couples in succession, and only measure the output samples
which correspond to these couples. This means that a signal
with 2N samples is used at the input, but only N samples are
used at the output. Clearly this is not an efficient approach,
since half of the output samples is omitted.

It would be better to generate an input sequence of N +1
samples containing the N couples needed for the experiment
as defined by the optimal couple frequency vector. A possible
generation method could be based on Markov chains as was
already mentioned in [5]. However, not every couple vector
has a corresponding input sequence of length N+1, because
the second input of an optimal couple may not correspond
to the first input of another optimal couple.

The conditions needed for the existence of at least one
time sequence of length N +1 containing the couples of the
optimal frequency vector are:

∀i ∈ {1, ..., A} :
A�

j=1

ΞN,opt(i, j) =
A�

j=1

ΞN,opt(j, i) (13)

where ΞN,opt is the matrix representation of ξN,opt (see
Notation 1). These conditions guarantee that for each value
ui ∈ {u1, ..., uA} the number of couples starting with ui

are equal to the number of couples ending with ui, such
that all couples can be placed in succession without creating
unwanted transition couples.

E. Constrained optimization

To impose the constraints (13) during the optimization,
such that the obtained solution can be realized as a time
signal, the frequency vector will be rewritten as a linear
combination of Nb base vectors ξbi ∈ RA

2
. These base

vectors span the space of vectors that are in accordance with
the constraints (13).

∀k ∈ {1, 2, ..., A2} : ξ(k) =
Nb�

i=1

γi.ξbi(k) (14)

The optimization will now be performed with respect to the
coefficients γi.

If the optimization algorithm is now used to find the
optimal values γi, these values will all be positive and sum to
one; however it is not guaranteed that the couple frequency
vector ξ(k) defined by (14) has the required properties (10)
and (13). Therefore additional constraints are imposed on the
basis.

Using a non-overlapping symmetric basis is a sufficient
(but not necessary) condition to guarantee that the couple
frequencies will have the required properties. This allows
the re-use of the optimization algorithm, with coefficients in
the role of the couple frequencies.

Definition 8. A set of vectors [ξb1 , ξb2 , ..., ξbNb
] in RA

2
is

called non-overlapping symmetric if they have the following

four properties:

1) positivity constraint:

∀k, ∀i : ξbi(k) ≥ 0
2) non-overlapping constraint:

∀k, ∃!i : ξbi(k) > 0
3) unity sum constraint:

∀i :
�

A
2

k=1 ξbi(k) = 1
4) symmetry constraint:

∀i1, i2 : Ξbi(i1, i2) = Ξbi(i2, i1)
where Notation 1 is used to rewrite the vectors as matrices.

Remark 2. The first two properties guarantee that the couple
frequencies are positive, the third property makes sure that
the sum of the couple frequencies is one, while the fourth
property imposes symmetry on the couple frequency matrix
such that the constraints of (13) are fulfilled.

Remark 3. The number of non-overlapping symmetric base
vectors Nb equals A(A+1)

2 . This corresponds with the number
of degrees of freedom in a symmetric matrix of size A×A

Example 1. To illustrate the definition, consider that only
two different amplitude values are possible say u1 and u2;
the non-overlapping symmetric base is then:

Ξb1 =

�
1 0
0 0

�
, Ξb2 =

�
0 0.5
0.5 0

�
, Ξb3 =

�
0 0
0 1

�

In order to optimize the dispersion function over the
coefficients γj , the expression for the normalized information
matrix (11) will be rewritten:

Fi

N
=

Nb�

j=1

γj

A
2�

k=1

ξbj (k) · Fik =
Nb�

j=1

γj · Fiγj (15)



Fig. 2. Results without constraints. Top, left: determinant of the normalized
information matrix. Top, right: maximal dispersion. Bottom,left: couple
frequencies. Bottom,right: dispersion. Final value in blue, others in gray.
The green, dotted line is the theoretical minimum.

where Fiγj are the new elementary information matrices.
During the constrained optimization the dispersion will be
computed based on these Fiγj .

vγ(ξ, j) = trace(Fi−1 · Fiγj ) (16)

Notice that the values and dimension of the dispersion func-
tions vγ(ξ, j) and v(ξ, k) are different, while the information
matrix remains invariant.

IV. NUMERICAL EXAMPLE

The above results will now be illustrated on the following
numerical example:

y(t) = [b1u(t) + b2u(t− 1)]3 + e(t)

u(t) ∈ [−1 : 2/9 : 1] and e(t) ∼ N(0, 1)

with b = (1, 3). Notice that the amplitude set contains 10
uniformly spaced values between -1 and 1. This means that
100 different couples should be considered.

A. Unconstrained optimization

First, the method without the constraints was applied.
In total 150 iterations steps were performed. In each step
the dispersion, couple frequency and determinant of the
normalized information matrix was computed and stored.
The evolution of these values can be seen in the plots of
Fig. 2.

Considering the top plots, it becomes clear that the method
successfully lowers the maximal value of the dispersion and
at the same time increases the determinant of the information
matrix. Important to note is that in the end the maximal

TABLE I
TABLE CONTAINING THE COUPLE INDEX, COUPLES AND COUPLE

FREQUENCIES OF THE UNCONSTRAINED SOLUTION

couple index couple frequency
1 [1,1] 0.25
40 [-1,1/3] 0.25
61 [1,-1/3] 0.25

100 [-1,-1] 0.25

dispersion reaches the value of 2, which corresponds to the
number of free parameters. This indicates that the obtained
solution is optimal (Theorem 1).

In the bottom right plot, the evolution of the couple
frequencies is shown. Initially, all couples have the same
frequency, while at the end only a limited set of couples has
a nonzero frequency.

Table I contains the couple indices, couples and couple
frequencies of the final solution after truncation of the
frequencies (see Remark 4). From this table it is clear that
there can never be an input sequence that corresponds to
these frequencies. For example the couple [−1,−1/3] can
never be placed without making a transition couple that is
not a part of the optimal design.

Remark 4. The results of Table I, and also Tables II and
III below, are truncated: all values of the couple frequency
vector that are two orders of magnitude smaller than the
maximal value are put to zero. Afterwards, the vector is
rescaled so that the sum of its elements equals one.

B. Constrained optimization

Next, the optimization was performed with constraints as
explained in Section III-E. This leads to the results of Fig. 3.
They are very similar to the unconstrained case. Again the
determinant is systematically increased, while the maximal
value of the dispersion vγ is driven to its minimal value.

The dispersion of the constrained and unconstrained so-
lution can not be compared directly, because different ele-
mentary designs are used. In order to make a comparison
possible, the dispersion and determinant of the constrained
solution is recomputed for the elementary designs Fik.

The results are plotted in Fig. 4. From the right plot it is
clear that v has higher values than vγ . This indicates that
the constrained solution is not optimal if the full solution
space is considered. The left plot shows that the determinant
is independent of the considered elementary designs, as was
expected from (15).

The fact that the dispersion vγ reaches the value 2 in
Fig 3 indicates that the constrained solution is the best
possible solution, spanned by the non-overlapping symmetric
base vectors. Of course this does not exclude the possible
existence of a non-symmetric frequency vector that still
complies with the constraint (13) and that has a higher
determinant than the symmetric solution.

By looking at Table II, which contains the couple in-
dices, couples and frequencies of the constrained solution,
it becomes clear that imposing constraints leads to a couple



Fig. 3. Results with constraints. Top, left: determinant of the normalized
information matrix. Top, right: maximal dispersion. Bottom,left: couple
frequencies. Bottom,right: dispersion. Final value in blue, others in gray.
The green, dotted line is the theoretical minimum.

Fig. 4. Maximal dispersion and determinant of the normalized information
matrix in the constrained case, computed for different elementary designs.
Full space corresponds to Fik . Subspace corresponds to Fiγj

frequency vector which corresponds to a realizable time
sequence.

C. Grid search

To confirm that the algorithm with constraints does not
get stuck in a local minimum, an exhaustive grid search
was performed for the same example, but only considering
2 different amplitude values -1 and 1. The frequency values
were discretized in 20 levels between 0 and 1. All possible
frequency vectors are generated for which the sum of their
elements equals one. For each vector the dispersion and
determinant of the information matrix were computed.

The results of this grid search are presented in Table
III and compared with the constrained and unconstrained
solutions obtained with the iterative algorithm.

The best solution found during the grid search has the

TABLE II
TABLE CONTAINING THE COUPLE INDEX, COUPLES AND COUPLE

FREQUENCIES OF THE CONSTRAINED SOLUTION

couple index couple frequency
1 [1,1] 0.25

40 [-1,1] 0.25
61 [1,-1] 0.25
100 [-1,-1] 0.25

TABLE III
TABLE CONTAINING THE RESULTS OF THE 2 DIMENSIONAL GRID

SEARCH

solution type det(Fi) max(v)
starting value 8.04e+04 3.32e+00
unconstrained 1.94e+05 2.00e+00
constrained 1.42e+05 2.85e+00

best unconstrained grid search 1.94e+05 2.00e+00
best constrained grid search 1.42e+05 2.85e+00

same determinant as the unconstrained iterative solution.
However, if only the solutions satisfying the constraints (13)
are considered, no better solution than the constrained one
was found. Similar results were found in the case where three
different amplitudes are considered.

V. CONCLUSION

In this work, an optimization scheme, based on the disper-
sion was adapted for systems consisting of a 2-tap FIR filter
followed by a cubic nonlinearity. The optimization was done
with respect to the couple frequency vector, instead of the
time sequence. Without constraints, a solution was found that
did not correspond to a realizable time sequence. By impos-
ing that the solution should lie in the subspace described by
a symmetric and non-overlapping base, a realizable solution
was obtained that is optimal in its subspace.
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