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Abstract— In a recent paper (Gevers et al., CDC 2013) [6]
we have presented identifiability and excitation conditions for a
class of linearly parametrized polynomial systems with a scalar
state. The present paper expands the model class in two ways:
we consider a class of rational systems with vector states that
can be written in the so-called “generalized controller form”.
The identifiability for such systems can be determined using the
Ritt algorithm as shown in the seminal paper (Ljung and Glad,
1994) [10]. Here we present an alternative and simple method
which offers a lot of insight into the structural conditions on
the model class that make it globally identifiable and into the
generation of informative experiments.

I. INTRODUCTION

The question of identifiability of a model structure can be
stated as follows: does there exist an experiment such that
the data collected from this experiment allow one to uniquely
determine the parameter values? The seminal papers [?],
[10] provided a broad answer to this question for large
classes of linearly and nonlinearly parametrized systems
using tools from differential algebra. It is important to note
that identifiability is a property of the chosen model structure
(i.e. the parametrization); it is independent of the true system
and of the data. The question asked is: are there data that
make the mapping from parameter space to output space
injective? The question of finding such a data set is that of
informativity: once it has been established that the model
structure is identifiable, it becomes an experiment design
problem.

The solution provided in [10] is based on the application
of Ritt’s algorithm to the model equations; see e.g. [4]. It
is very powerful but very heavy on computations; for rather
simple-looking model structures, it is often impossible to
terminate the computations of Ritt’s algorithm on a standard
PC. Ritt’s algorithm essentially produces a large set of
differential algebraic equations that are equivalent to the
initial model structure, by a long sequence of differentiations
and substitutions. When the procedure terminates in the
required form, it means that the model structure is equiavlent
to a set of linear regression equations, where each parameter
can be written as the ratio of two polynomial expressions in
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the input u, the output y and their derivatives. This indicates
that the model class may be globally identifiable. Sufficient
conditions for global identifiability are then obtained if one
can produce an experiment that makes a number of these
polynomials in u, y and their derivatives nonzero.

While the procedure of [10] is very powerful, it is very
computer intensive and not very intuitive. Hence the desire to
produce alternative methods for special classes of nonlinear
systems that better reveal the connection between identifia-
bility, informativity and the parametric structure of the model
class. A large number of authors have produced such results,
in particular in biological and biochemical systems. Let us
just mention a few recent papers: [13], [12], [8], [2] as well
as [11] which presents results for discrete-time systems.

Our present work follows the same objective. In [6]
we have produced necessary and sufficient conditions for
identifiability and informativity for a class scalar polynomial
models. In the present paper, we expand the results of [6] to
a model class with rational functions and vector states.

For this class of model structures, we first illustrate the
approach of [10] based on the Ritt algorithm, with the
aim of illustrating not just the linear regression equations
that are obtained at the end of the algorithm, but also the
identifiability analysis that follows. This analysis consists in
finding experimental conditions on the input and/or the initial
state that make some polynomial expressions in u, y and their
derivatives nonzero.

We show that for the model class considered in this paper a
necessary and sufficient condition for global identifiability is
equivalent to a certain semi-infinite matrix being full rank. A
sufficient condition for global identifiability is easily derived
by requiring that a finite truncation of that matrix be of full
rank. We demonstrate that this matrix can easily be factored
into the product of two matrices that depend only on the
structure of the model class, namely the dimension n of
the state and the degree q of the highest degree polynomial.
In other words, these matrices can be written by inspection
from the model structure. An informative experiment is one
that makes these matrices have full rank. One of the main
advantages of the tools developed in this paper is that the
full rank conditions on these matrices allow for a better
understanding of the different experiment design scenarios
that lead to global identifiability: excitation by the input
and the initial condition, excitation by the initial condition
only with no inputs, or excitation by the input whatever the
unknown initial condition may be.

The paper is organized as follows. We first present the
model class and some basic assumptions in Section II.
Section III presents some background material on identifia-



bility of parametric model structures; it presents the classical
algorithm of [4] and [10] and illustrates it with two examples.
In Section IV we present a range of results for the analysis
of identifiability and informativity of the considered model
class, based on our alternative approach. In Section V the
classical approach and our new approach are applied to an
example, which illustrates the similarities and differences.
As always, we conclude.

II. MODEL CLASS AND ASSUMPTIONS

Consider the following class of deterministic continuous-
time nonlinear model structures in generalized controller
canonical form:

y = x1 (1)
ẋ1 = x2 (2)
ẋ2 = x3 (3)

...

ẋn =
1

n(x)
[φT (x)θ +m(x) + g(x, u)] (4)

g(x, u) =

l∑
i=1

gi(x)u
i (5)

where x = [x1 . . . xn]
T is the state vector, u is the

scalar input; θ ∈ <d is a vector of real parameters; φ(x) is
a d-dimensional vector of multivariate polynomial functions,
m(x), n(x) and gi(x) are scalar multivariate polynomials,
with the property that n(x) > 0 for all x. The model class
(1)-(4), often called Brunovsky canonical form, has been
widely studied in nonlinear control: see e.g. [5]. Observe
that in this structure, the state vector can be written as
x = [y, ẏ, . . . , y(n−1)] where y(i) denotes the i-th derivative
of y.

The degree of the polynomial of highest degree in φ(x)
is called the degree of φ(x) and denoted q. Moreover, the
term m(x) is such that @η : m(x) ≡ ηTφ(x). This last
assumption does not represent a loss of generality in the
model; if m(x) = ηT1 φ(x) for some η1, then the two terms
could be grouped together with a reparametrization. For
each parameter value θ the model class represents a model,
whose trajectory and output are denoted x(t, θ, u(t),x(0))
and y(t, θ, u(t),x(0)).

In the same spirit as [3] and [10], we shall make the
following assumption on the input signal u(.).

Assumption 1: The signal u(t) is analytic and is such
that the solution x(t, θ, u(t),x(0)) of (2)-(4) is analytic in t.
The virtue of this assumption, which is standardly used in
nonlinear system identification, is that knowing all deriva-
tives of an analytic signal at some time is equivalent to
knowing that signal at all times.

Ideally the choice of parametrization made in (1)-(4)
should be such that the model class can describe exactly
the true system S; we shall throughout make the following
assumption.

Assumption 2: There exists a parameter value θ0 such
that the true system is described by (1)-(4) with θ = θ0.

III. BACKGROUND ON IDENTIFIABILITY AND
INFORMATIVITY

We briefly review the definitions from [6]. These are the
nonlinear deterministic counterpart of the classical defini-
tions as can be found in [9], which are for linear time-
invariant systems in a stochastic framework with quasi-
stationary processes.

Consider two different models obtained from the model
class (1)-(4) at two different parameter values θ∗ and θ, both
with the same initial condition x(0) = x0 and the same input
u(t).

Definition 1: (Identifiability at θ∗) The model class (1)-
(4) is globally identifiable at θ∗ if there exists an experiment
z(.)

∆
= {u(.),x0} such that, for all θ ∈ <d, the outputs

y(t, θ∗, u(t),x(0)) = y(t, θ, u(t),x(0)) ∀t ≥ 0 only if
θ = θ∗.

This definition relies on the possible existence of an
appropriate experiment z(.) which allows to differentiate
between different values of θ by measuring the output. Such
an experiment, when it exists, is called informative. The
following is the deterministic counterpart of the concept
of informativity for stationary stochastic LTI systems intro-
duced in [1].

Definition 2: (Informativity at θ∗) An experiment
z(.)

∆
= {u(.),x0} is globally informative at θ∗ for the

model class (1)-(4) if for all θ ∈ <d, the outputs
y(t, θ, u(t),x(0)) = y(t, θ∗, u(t),x(0)) ∀t ≥ 0 only if
θ = θ∗.

Definitions 1 and 2 of identifiability and informativity
consider that the experiment may consist of the choice of
an initial condition and the choice of an input. There are
situations where there is no input to the system and where
the estimation of the parameters must be secured from a
transient response to a properly chosen initial condition; this
situation can be handled by Definition 1 with u ≡ 0. It is
also often the case that the initial condition is not available to
the designer of the experiment and that it is in fact unknown
to him/her. In this situation identifiability must be secured
from the input only, assuming that the initial condition is
unknown, and might actually kill the transfer of excitation
from the input to the state. To handle this case, we introduce
the following definition.

Definition 3: (Identifiability at θ∗ from u only) The
model class (1)-(4) is globally identifiable at θ∗ from the
input if there exists an input u(.) such that, for all
initial conditions x0 and for all θ ∈ <d, the outputs
y(t, θ∗, u(t),x(0)) = y(t, θ, u(t),x(0)) ∀t ≥ 0 only if
θ = θ∗.

Otherwise said, the model class is identifiable from the input
only if there exists an input u(t) which yields an informative
experiment for all possible initial conditions. These defini-
tions exhibit the two ingredients that are necessary for a



meaningful identification: informativity, which is a property
of the applied experiment (input signal, initial condition, or
a combination of these), and identifiability, which refers to
the possible existence of an informative experiment given
a particular model structure. These two ingredients depend
only on the model structure. We should add, however, that
under our Assumption 2, the purpose of the identification is
to identify the true system. This requires that one is able to
produce an informative experiment at θ0; in that sense, an
experiment that is informative for the identification of the
true system depends on that system.

Classical results on identifiability of deterministic systems
for broad classes of nonlinear systems are given in [4] and
in [10], where an algorithmic solution (Ritt’s algorithm) is
also given. The main result of [10] can be stated as follows.
Ritt’s algorithm is applied to the model class in such a way
as to obtain, if possible, an equivalent (equivalence meaning
that both sets of equations have the same set of solutions) set
of equations in which the dependence on θ is algebraic and
linear. The model structure is globally identifiable at any θ
if the following two conditions hold simultaneously for the
equations obtained at the end of the algorithm:
1) the equations involving θ all take the following form

pi(y, ẏ, . . . , u, u̇, . . .)θi = qi(y, ẏ, . . . , u, u̇, . . .) (6)

where pi(y, ẏ, . . . , u, u̇, . . .) and qi(y, ẏ, . . . , u, u̇, . . .) are
scalar polynomials in y, u and their derivatives;
2) the polynomials pi(y, ẏ, . . . , u, u̇, . . .), called “initials”,
and the multipliers Si(y, ẏ, . . . , u, u̇, . . .) used at each step
of the algorithm, called “separants”, are all nonzero.
Note that these are sufficient conditions only.

The second condition depends on the experimental condi-
tions; establishing identifiability thus requires verifying the
existence of experimental conditions such that the initials
and separants are nonzero. Furthermore, the informativity
issue, that is the issue of constructing such experimental
conditions that make the initials and separants nonzero, also
requires separate consideration. In a number of examples
(see [10]) the resulting expressions are simple enough so as
to allow such verification of identifiability, and sometimes
also solving the informativity issue, by inspection. In more
complex cases this is usually not the case. Moreover, Ritt’s
algorithm itself is quite costly computationally, requiring
more resources than a typical personal computer has to offer
even for modestly complex models. The following example
illustrates the merits and difficulties of applying Ritt’s al-
gorithm for the verification of the global identifiability of a
model structure.

Example 3.1:

ẋ1 = x2, y = x1 (7)
ẋ2 = x3 (8)

ẋ3 =
θ1x

3
1 + θ2x1x2 + θ3x2x

2
3

1 + x2
2 + x2

3

+ u (9)

Application of Ritt’s algorithm to this model yields

q1(y, ẏ, ÿ, y
(3), u) = −p(y, ẏ, ÿ, y(3), u)yθ1 (10)

q2(y, ẏ, ÿ, y
(3), u) = p(y, ẏ, ÿ, y(3), u)θ2 (11)

q3(y, ẏ, ÿ, y
(3), u) = p(y, ẏ, ÿ, y(3), u)θ3 (12)

where p(y, ẏ, ÿ, y(3), u) is given by (13) and the only sep-
arant that does not contain p(y, ẏ, ÿ, y(3), u) as a factor is
given by (14) below.

p(y, ẏ, ÿ, y(3), u) = x
(3)
1 ẋ2

1x
2
1x3 − x(3)

1 ẋ1x
3
1ẋ3 − 3ẍ2

1ẋ1x
2
1x3

+ 2ẍ2
1x

3
1ẋ3 + 6ẍ1ẋ

3
1x1x3 − 4ẍ1ẋ

2
1x

2
1ẋ3 + ẍ1ẋ1x

3
1ẍ3

− 6ẋ5
1x3 + 6ẋ4

1x1ẋ3 − 2ẋ3
1x

2
1ẍ3 (13)

S(y, ẏ, ÿ, y(3), u) = x2
1ẍ1 − 2x1ẋ

2
1 (14)

Observe that the polynomials p and S can all be
expressed as functions of y, u and their derivatives by
making successive substitutions using the model structure
(7)-(9). The results of [10] tell us that the model structure
of Example 3.1 is globally identifiable at all θ if there exists
an experiment (i.e. an input signal) such that the initials
p, py and the separant S are all nonzero. Recall that this is a
sufficient and not necessary condition. It appears difficult to
establish the existence of such an experiment. In addition,
assuming that such experiment does exist, it is not clear
how to find or characterize one.

IV. IDENTIFIABILITY

In this section we provide conditions on the structure of
the model class (1)-(4) that guarantee identifiability for such
model class. We start by presenting an equivalent and more
workable characterization of global identifiability at θ∗.

Since the parameter vector appears only in the last equa-
tion, identifiability and informativity rely entirely on the
following equation.

n(x)ẋn −m(x)− g(x, u) = φT (x)θ (15)

It follows from the model equations that ẋn = y(n). The left
hand side of this equation is a measured quantity, and so



is the regressor vector φ(x). Therefore identifiability rests
entirely on the properties of the vector φ(x). The following
Lemma provides an alternative characterization of global
identifiability.

Lemma 4.1: The model structure (1)-(4) is globally iden-
tifiable at some θ∗ if and only if there exists an experiment
z(.)

∆
= {u(t) t ≥ 0,x0} such that

βTφ(x(t, θ∗, u(t),x0)) = 0 ∀t ≥ 0 =⇒ β = 0 (16)

Proof: Consider the solution x(t, θ∗) of the model (1)-(4) at
θ∗, and the solution x(t, θ) of the same model at some other
θ, both solutions driven by the same input signal and with
the same initial condition.Suppose that for all input signals
{u(t), t ≥ 0} and for all initial conditions x0 the solutions
y(t, θ) and y(t, θ∗) are identical; it follows that x(t, θ∗) and
x(t, θ) are also identical. The left hand sides of (15) are then
also identical. Therefore φ(x(t, θ)) = φ(x(t, θ∗)) ∀t ≥ 0
and

(θ∗ − θ)Tφ(x(t, θ∗)) ≡ 0 ∀t ≥ 0

It then follows that θ = θ∗ if and only if (16) holds.

For convenience and for clarity, let us define

R∞(x)
∆
= [φ(x) φ̇(x) φ̈(x) . . .] (17)

and let %(·) represent the rank of a matrix. We can now
state a nonscalar version of Theorem 4.1 in [7].

Theorem 4.1: The model structure (1)-(4) is globally
identifiable at some θ∗ if and only if there exists an exper-
iment z(·) ∆

= {u(t), t ≥ 0;x0} such that %(R∞(x0)) = d.
Proof: It follows from Lemma 4.1 that the model structure
(1)-(4) is not identifiable at θ∗ if and only if for all initial
conditions x0 and for all inputs u(t), t ≥ 0,

∃β 6= 0 : βTφ(x(θ?, t)) ≡ 0 ∀t ≥ 0 (18)

Because the solutions of (15) are analytic by Assumption 1,
(18) is equivalent to the satisfaction of

βTφ(x) = βT φ̇(x) = . . . = βTφ(k)(x) = 0 ∀k ≥ 0 (19)

for some β 6= 0 at any particular value of x, in particular at
x(0) = x0.

Theorem 4.1 provides a strong result to characterize the
identifiability of the model structure (1)-(4), but it is hard
to verify whether the condition is satisfied. A more tractable
(but only sufficient) condition is to construct a finite matrix
having the first k-columns of R∞(x) with k ≥ q and to
show that it has full row rank; thus we define the d× (k+1)
matrix

Rk(x)
∆
= [φ(x) φ̇(x) . . . φ(k)(x)] (20)

We have the following obvious but very useful result.
Corollary 4.1: The model structure (1)-(4) is globally

identifiable at some θ∗ if there exists an experiment z(·) ∆
=

{u(t), t ≥ 0;x0} such that %(Rk(x0)) = d for some k.

We shall illustrate this approach with an example in Sec-
tion V. Alternatively, R∞(x) can be decomposed into a
product of two matrices, whereby the rank of R∞(x) can
be related to some structural properties of the model class.

Both approaches require the computation of the successive
time derivatives of φ(x) for the model structure (2)-(4),
which proceeds as follows:

φ̇(x) =

n∑
k=1

∂φ(x)

∂xk
ẋk (21)

φ̈(x) =

n∑
k=1

[

n∑
j=1

(
∂2φ(x)

∂xkxj
ẋkẋj) +

∂φ(x)

∂xk
ẍk] (22)

φ(3)(x) =

n∑
k=1

{
n∑
j=1

[

n∑
i=1

(
∂3φ(x)

∂xk∂xj∂xi
ẋkẋj ẋi) (23)

+ 2
∂2φ(x)

∂xk∂xj
ẍkẋj +

∂2φ(x)

∂xk∂xj
ẋkẍj ] +

∂φ(x)

∂xk
x

(3)
k }

and so on. It is seen that each derivative of φ(x) with respect
to time - say the m-th derivative - can be written as a linear
combination of the derivatives, up to the m-th order, of φ(x)
with respect to each one of the state variables x1, . . . xn. Let
us organize all the partial derivatives of φ(x) with respect to
the state variables in a single matrix called Jnq (x). To this
end, define ∂kφ(x) as the row vector containing all the k−th
order partial derivatives, that is:

∂φ(x) =
[

∂φ(x)
∂x1

. . . ∂φ(x)
∂xn

]
∂2φ(x) =

[
∂2φ(x)
∂x2

1

∂2φ(x)
∂x1∂x2

. . . ∂2φ(x)
∂x2

n

]
∂3φ(x) =

[
∂3φ(x)
∂x3

1

∂3φ(x)
∂x2

1∂x2

∂3φ(x)
∂x2

1∂x3
. . .

∂3φ(x)
∂xn−1∂x2

n

∂3φ(x)
∂x3

n

]
,

up to ∂qφ(x), noting that ∂kφ(x) = 0 ∀k > q, since q is the
degree of φ(x). Then define the identifiability matrix:

Jnq (x)
∆
=
[
φ(x) ∂φ(x) ∂2φ(x) . . . ∂qφ(x)

]
. (24)

The matrix Jnq (x) depends only on x and its dimensions
are d×m, where

m = 1 +

q∑
i=1

CRni (25)

and CRni denotes the i-combination of n elements with
repetition, that is:

CRni =
(n+ i− 1)!

i!(n− 1)!
(26)

Then the matrix R∞(x) can be written as

R∞(x) = Jnq (x)W∞(x) (27)

where W∞(x) is a matrix in which each entry is a combina-
tion of time derivatives of the state variables. A remarkable
feature of the matrix W∞(x) is that it can be written on
the basis of the knowledge of the dimension n of the state



and the degree q of φ(x) only. Thus, all model structures that
have the same n and q have the same expression for W∞(x).
An example in Section V will illustrate this feature.

An obvious necessary condition for identifiability arises
from the decomposition (27).

Lemma 4.2: The model structure (1)-(4) is identifiable
only if %(Jnq (x)) = d.
Proof: Sylvester’s inequality applied to (27) yields

%(Jnq (x)) + %(W∞(x))−m ≤ %(R∞(x))

≤ min{%(Jnq (x)), %(W∞(x))} (28)

The result follows immediately from the second inequality.

It is worth mentioning that %(Jnq (x)) = d requires m ≥ d.
Now, from the first inequality in (28) it follows that,
provided that the necessary condition %(Jnq (x)) = d is
satisfied, %(W∞(x)) = m would suffice for identifiability.

The following theorem provides a sufficient condition for
global identifiability of the model structure studied in this
paper.

Theorem 4.2: The model structure (1)-(4) is glob-
ally identifiable at any θ if, for some experiment z(.),
%(Jnq (x)) = d and %(W∞(x)) = m, where m is a function
of n and q, defined by (25)-(26).
Proof: The result follows from the left inequality in (28).

The following is an immediate consequence.

Corollary 4.2: The model structure (1)-(4) is globally
identifiable at any θ if, for some experiment z(.) and for
some finite k, %(Jnq (x)) = d and %(Wk(x)) = m, where
Wk(x)) is defined from Rk(x) = Jnq (x)Wk(x).

V. EXAMPLES

Example 5.1: Consider the following example:

ẋ1 = x2 (29)

ẋ2 =
θ1x

2
1 + θ2x1x2

1 + x2
2

+ 1 + x2
1 + x1x2u (30)

that is,

φ(x) =

[
x2

1

x1x2

]
n(x) = 1 + x2

2

g(x, u) = (1 + x2
2)x1x2u m(x) = (1 + x2

1)(1 + x2
2)

A necessary condition for identifiability is %(Jnq ) = 2 with

Jnq (x) =
[
φ(x) ∂φ(x)

∂x1

∂φ(x)
∂x2

∂2φ(x)
∂x2

1

∂2φ(x)
∂x1∂x2

∂2φ(x)
∂x2

2

]
=

[
x2

1 2x1 0 2 0 0
x1x2 x2 x1 0 1 0

]
(31)

Clearly, %(Jnq ) = 2, and the necessary condition is satisfied.
Then a sufficient condition is the existence of an experiment
such that the corresponding W∞(x) matrix, whose first six
columns are given below, has rank 6 (see Corollary 4.1).

W6(x) =



1 0 0 0 0 0

0 ẋ1 ẍ1

(3)
x 1

(4)
x 1

(5)
x 1

0 ẋ2 ẍ2

(3)
x 2

(4)
x 2

(5)
x 2

0 0 ẋ2
1 3ẍ1ẋ1 4

(3)
x 1 ẋ1 + 3ẍ2

1 5
(4)
x 1 ẋ1 + 10

(3)
x 1 ẍ1

0 0 2ẋ1ẋ2 3ẍ1ẋ2 + 3ẋ1ẍ2 4
(3)
x 1 ẋ2 + 6ẍ1ẍ2 + 4ẋ1

(3)
x 2 5

(4)
x 1 ẋ2 + 10

(3)
x 1 ẍ2 + 10ẍ1

(3)
x 2 +5ẋ1

(4)
x 2

0 0 ẋ2
2 3ẍ2ẋ2 4

(3)
x 2 ẋ2 + 3ẍ2

2 5
(4)
x 2 ẋ2 + 10

(3)
x 2 ẍ2


(32)

It is important to realize, as stated above, that all models
with the same n and q have the same W∞(x) matrix; they
differ only in the matrix Jnq (x).

According to Theorem 4.1, the model is identifiable if
and only if there exists an experiment such that the matrix
R∞(x) has rank equal to 2. From Corollary 4.1 the model
is identifiable if R2(x) has rank equal to 2. This last matrix
is given by

R2(x)
∆
=

[
x2

1 2x1ẋ1

x1x2 x1ẋ2 + ẋ1x2

]
(33)

and its rank is equal to two if and only if its determinant is

not zero, that is:

| R2(x) |= x3
1ẍ1 − x2

1ẋ
2
1 6= 0 (34)

Hence, existence of an experiment for which (34) is satisfied
constitutes a sufficient condition for identifiability. Such an
experiment, if it exists, is then called informative. We can
now consider different experimental scenarios.
(a) Consider first that the initial condition x1(0) and the
input u(t) are available to the designer. Taking x1(0) 6= 0

reduces condition (34) to ẋ2(0) 6= x2
2(0)
x1(0) . Replacing ẋ2(0)

by its expression given by (30) shows that for any choice
of x2(0) 6= 0 one can choose u(t) such that this inequality
hods. Other informative experiments exist as well.



(b) Now consider that u(t) ≡ 0 and that informativity must
come from the initial condition. For any x1(0) 6= 0, (34)
yields

θ1x1(0)
2 + θ2x1(0)x2(0)

1 + x2(0)2
+ 1 + x1(0)

2 6= x2
2(0)

x1(0)
. (35)

Since (35) is a fourth order polynomial equation in x2(0),
there are at most four real roots x2(0) of this polynomial; all
other values of x2(0) result in an informative experiment; the
model is identifiable. Clearly, other informative experiments
exist as well.
(c) Let us now analyze identifiability from the input. The
model is identifiable from the input if there exists an input
u(t) such that (34) is satisfied for all initial conditions. The
initial condition x2(0) = 0; x1(0) =

√
−1

1+θ1
will result

in x(t) ≡ 0 whatever u(t) or θ. Hence the model is not
identifiable from the input, at least at those θ such that θ1 <
−1, because initial conditions with x2(0) = 0 may “kill” the
excitation coming from whatever u(t).

Now, application of Ritt’s algorithm to this example re-
sults in the following initials and separants, which must be
different from zero:

p1(x1, ẋ1, ẍ1) = −(x3
1ẍ1 − x2

1ẋ
2
1) 6= 0 (36)

p2(x1, ẋ1, ẍ1) = −(x2
1ẍ1 − x1ẋ

2
1) 6= 0 (37)

S1(x1, ẋ1) = (x1ẋ1)
2 6= 0 (38)

Hence the simultaneous satisfaction of conditions (36),
(37) and (38) is a sufficient condition for identifiability.
Condition (36) is the same as obtained by our method,
while condition (37) is equivalent to it. As for condition
(38), it is an additional constraint originated from the fact
that the concept of identifiability treated in [10] is that of
Definition 3, i.e. identifiability from the input. Indeed, (38)
excludes the initial conditions with x2(0) = 0, which have
been shown above to “kill” the excitation coming from the
input. Thus condition (38) says that there exist inputs u(t)
that provide informative experiments for any initial condition
except those violating (38). In the sense of Definition 3, this
means that the system is not identifiable from the input only.

This example illustrates one advantage of the method
developed in this paper, besides the speed of computation.
Our method leads to a set of sufficient conditions that are
typically a subset of those resulting from the Ritt polynomials
being all nonzero. In addition, it allows us to make search
for informative experiments (and hence identifiability) under
different experimental scenarios.
Return to Example 3.1
The computation of the 3×3 matrix R3(x) for Example 3.1
takes 1 second on a PC as opposed to more than 5 minutes for
the Ritt algorithm leading to the polynomials (13) and (14).
The determinant of R3(x) is given by p(y, ẏ, ÿ, y(3), u)y,
where p(y, ẏ, ÿ, y(3), u) is given by (13). This leads us to
confirm two statements made earlier:
(1) the computation time is significantly lower for our

method than for the computation of the Ritt polynomials;
(2) the sufficient condition obtained by our method is a
subset of the conditions obtained by running the algorithm
developed by [10]; see the discussion on Example 5.1.

VI. CONCLUSIONS

Several results on the identifiability of rational models
represented in a canonical form have been presented in
this paper, extending the results of [6] to a broader class
of models. A necessary and sufficient condition has been
given. Then two more easily computable conditions, one
necessary and one sufficient, have been derived from it.
The relationships among these conditions and the classical
ones arising from differentiable algebra (as in [4], [10])
have been illustrated by means of an example. As could be
expected from the fact that our results are valid for a specific
class of models, whereas those classical results apply for
general rational models, our methods give tighter and more
easily computable conditions for the considered class. Future
work will focus on further exploring computational aspects,
particularly in constructing informative experiments through
the analysis of the rank of the matrix W∞(x).
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