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Abstract— We consider optimal experiment design for para-
metric prediction error system identification of linear time-
invariant systems in closed loop. The optimisation is performed
jointly over the controller and the external input. We use a
partial correlation approach, i.e. we parameterize the set of
“admissible controller” - “external input” pairs by a finite set of
matrix-valued trigonometric moments. Our main contribution
is twofold. First we derive a description of the set of admissible
finite-dimensional moments by a linear matrix inequality. Op-
timal input design problems with semi-definite constraints and
criteria which are linear in these moments can then be cast as
semi-definite programs and solved by standard semi-definite
programming packages. Secondly, we develop algorithms to
recover the controller and the power spectrum of the external
input from the optimal moment vector. This furnishes the user
a complete and very general procedure to solve the input design
problems of the considered class. Our results can be applied to
multi-input multi-output systems, but for pedagogical reasons
we present here the single-input single-output case. We also
assume that the true system is in the model set.

I. INTRODUCTION

Optimal input design for system identification has seen
an intense development in this decade. This advance was
initiated by the appearance of modern convex optimisation
methods in the nineties, most notably semidefinite program-
ming. Accordingly, most of the recent work in optimal input
design focuses on casting different input design problems
as semidefinite programs. Once an optimisation problem is
available in the standard format of a semi-definite program,
it can be solved by commercially or freely available solvers.
One of the pioneering contributions introducing semidefinite
programming into system identification was [1]. For further
motivation and an extensive reference list we refer to [2].

However, converting optimisation problems into semi-
definite programs is often far from trivial. Sometimes this
is due to the NP-hardness of the problem. If a semi-definite
description cannot be obtained, one usually tries to relax the
problem in order to construct a semi-definite approximation.
Often such a relaxation is easily at hand, but nothing about its
quality is known. Furthermore, usually the relaxation yields
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only a bound on the optimal value of the cost criterion, but
no clue on how to construct a suboptimal design.

Here we consider optimal input design for parametric
closed-loop identification of linear time-invariant (LTI) sys-
tems. We consider a broad class of problems, namely when
the joint optimal design of both controller and external input
for the identification experiment is sought. A semi-definite
description of optimal input design problems in this class has
for years been elusive. The main obstacle is that the set of
input-controller pairs constituting valid experimental setups
could not be described in a way that is suitable for a semi-
definite program formulation. One of our main results is to
provide such a description. Rather than solving a particular
problem, we thus present a scheme to solve a broad class
of problems. Accordingly, the focus of our contribution will
not be on the constraints and the cost function defining a
particular optimal input design problem instance, but rather
on a proper description of the feasible set of input-controller
pairs. Plugging his particular constraints and cost criteria into
our scheme, the user obtains a standardized semi-definite
program which he can handle by commercially or freely
available solvers. We allow the system to have multiple
inputs and outputs (MIMO), but impose the condition that the
true system is within the model structure. For pedagogical
reasons and space limitations, we shall treat the single-input
single-output (SISO) case only in this conference paper.

The description of an optimal input design problem as a
semi-definite program is principally determined by the choice
of the design variables, i.e. those quantities whose values
the solver has to optimize. Different requirements have to be
imposed on the choice of these variables. Firstly, the space
of design variables has to be of finite dimension, even if there
are possibly infinitely many degrees of freedom available for
the design of the experiment. Secondly, the design variables
have to enter both the constraints and the cost criterion of
the design problem linearly. Thirdly, the set of admissible
vectors of design variables has to be semidefinite repre-
sentable, i.e., the condition on the vector of design variables
to correspond to a realizable experiment design has to be
equivalent to the satisfaction of a linear matrix inequality
(LMI), possibly involving additional auxiliary variables.

The degrees of freedom relevant for closed-loop input
design problems are the external excitation signal fed into
the system and the controller in the loop. The external input
usually enters into the cost criteria and the constraints in
the form of its power spectrum, the controller in the form
of its transfer function. Both can easily be converted into
a joint power spectrum of some signals present in the loop.



These spectra are frequency-dependent functions and as such
infinite-dimensional objects. Their infinitely many degrees
of freedom have to be condensed into a finite-dimensional
vector of design variables. Two basic approaches to the
choice of the design variables can be distinguished.

One is the finite dimensional spectrum parametrization
(see e.g. [2], [3], [4]). Here the spectrum is developed into
an infinite series and the design variables are given by the
truncated vector of coefficients. If the basis functions are
rational, by the Kalman-Yakubovich-Popov (KYP)-lemma
([5]) the positivity of the spectrum is expressed by an LMI,
leading to a semi-definite relaxation of the original input
design problem. This relaxation is an inner approximation,
i.e., every feasible point of the relaxation is also feasible
for the original problem. This has the advantage that the
optimal solution of the relaxation yields a realizable input
design. However, this approach considers only a finite-
dimensional subspace cut out of the infinite-dimensional va-
riety of possibly useful spectra. This results in a performance
loss, as the optimisation procedure returns only suboptimal
solutions. For simple systems this loss can be compensated
by considering a long truncated coefficient sequence, but in
practice the gap is significant and optimisation over large
enough numbers of coefficients computationally prohibitive.

The other approach is the partial correlation approach
(see e.g. [6], [2]), which is in some sense dual to the finite
dimensional spectrum parametrization. Namely, an infinite
sequence of linear functionals on the space of spectra is
considered, and the design variables are the values of a finite
number of these functionals on the spectrum in question.
These values are called (generalized) moments ([7], [8]) of
the spectrum. The linear functionals are chosen in such a way
that both the constraints and the cost function depend only on
a finite number of moments. Geometrically, the optimisation
is performed over a finite-dimensional projection of the
infinite-dimensional cone of possible spectra, as opposed
to a finite-dimensional section in the finite dimensional
spectrum parametrization approach. Each point in the finite-
dimensional truncated moment space thus still corresponds
to an infinite set of spectra rather than a single spectrum, and
the points of the finite-dimensional moment cone exhaust all
possible spectra. Thus the partial correlation approach does
not suffer from the performance loss characteristic of the
finite dimensional spectrum parametrization approach.

The role played by the KYP-lemma in the finite-
dimensional spectrum parametrization is played by the
Carathéodory-Fejer theorem in the partial correlation ap-
proach. This theorem implies that a given finite sequence
of moments is generated by a positive power spectrum if
and only if it satisfies a certain LMI ([9]). In this case the
feasible set of moment vectors is semi-definite representable.
However, the Carathéodory-Fejer theorem for matrix-valued
moments holds only if no restrictions are imposed on the
spectrum other than to produce the truncated sequence of
moments under consideration, and positivity. In other words,
a finite sequence of moments can be extended to an infinite
sequence of moments of a positive spectrum if and only if

it satisfies the LMI condition, but no additional constraint
on the moments of this extension can be guaranteed to be
satisfied. The partial correlation approach has been used to
cast a variety of input design problems in closed-loop with
fixed controller as semi-definite programs. However, here we
treat the more ambitious problem where the controller is not
fixed, but is also part of the optimal design.

In the case considered in this contribution, namely when
the optimisation is performed over both controller and ex-
ternal input, the Carathéodory-Fejer theorem is no longer
valid. The reason is that, in the closed-loop case with
variable controller, constraints have to be imposed on the
matrix-valued joint power spectrum under consideration,
essentially pertaining to the required stability of the re-
sulting closed-loop system. These constraints translate into
additional constraints on the infinite moment sequence of
the spectrum, which the Carathéodory-Fejer theorem can
no longer guarantee to be satisfied. Therefore the LMIs
furnished by this theorem are still necessary, but no more
sufficient for a moment vector to correspond to a valid
closed-loop experiment design. Thus the partial correlation
approach leads to an outer semi-definite relaxation of the
original input design problem. Solving this relaxation yields
a lower bound on the optimal value of the cost criterion,
but the furnished optimal moment vector does a priori not
correspond to a valid experiment design. Accordingly, the
partial correlation approach was mentioned as potentially
useful in [10], [11], but conditioned on the availability of a
proper description of the feasible set. The finite dimensional
spectrum parametrization approach had thus to be proposed
as a remedy: in [11] a solution is proposed for the closed-
loop experiment design problem where stability of the loop
is enforced through the use of a Youla parameter, which is
approximated by a finite dimensional parametrization.

Our main contribution is to provide theoretical results to
overcome this difficulty. In particular, we show that if a
finite sequence of moments satisfies the additional constraints
mentioned in the previous paragraph, then the LMI condition
given by the Carathéodory-Fejer theorem not only guarantees
the existence of a general extension of this moment sequence,
but the existence of an extension which satisfies also the
constraints. The main tool of our proof is the partial positive
definite matrix completion theorem from [12]. Comple-
menting the proof of exactness of the outer semi-definite
relaxation provided by the Carathéodory-Fejer theorem, we
provide a procedure to recover a valid input design from
the optimal moment vector furnished by the relaxation. This
allows to employ the partial correlation approach to its full
extent, and to solve the considered class of optimal input
design problems without the performance loss inherent to
the finite dimensional spectrum parametrization approach.

The remainder of the paper is structured as follows. In the
next section we define the class of input design problems to
be solved. In Section 3 we provide a semi-definite description
of the feasible set of truncated moment sequences. In Section
4 we develop methods to recover a set of valid experimental
conditions from a given truncated moment sequence. Finally,



in Section 5 we present an example. In the Appendix we pro-
vide the theoretical framework for the main result of Section
3, namely some results on chordal graphs and the associated
partial positive definite matrix completion theorem.

II. PROBLEM FORMULATION

In this section we define the class of optimal input design
problems we are going to study. We intend to perform
parametric prediction error identification of a SISO LTI
system in closed loop. The system dynamics is given by

y = Go(q)u + Ho(q)e. )

Here G is the plant transfer function, Hy the noise transfer
function, ¢ the forward-shift operator, e a zero mean white
noise with variance g, v is the input, and y is the output of
the system. We assume H to be stable and inversely stable.
The transfer functions Ggo(z), Ho(z) are embedded in a
model structure G(z; 6), H(z; 6) and correspond to some true
parameter value 6y, Go(z) = G(z;00), Ho(z) = H(z;6p).
The parameter vector 6 is to be identified by an experi-
ment consisting in closing the loop according to the relation

where 7 is an external excitation signal, and collecting a set
of input-output data u, y. The design variables at our disposal
are thus the signal r and the feedback controller K (q). The
estimator 6 of the true parameter value 6 is then evaluated
as the minimizer of some prediction error criterion.

Our goal is to design an experiment by choosing an exter-
nal input r and a controller K such that some cost function
of r, K is minimized and some constraints on the pair (r, K)
are satisfied. As mentioned in the introduction, our focus will
not be on the cost criterion and the constraints of the optimal
input design problem, but rather on a description of the set
of feasible pairs (r, K') which is suitable for processing by
a semi-definite program solver.

Following [2], we first pass from the quantities r, K to the
spectra ®,,, ®,,., which, as long as we work in the frequency
domain and use formulas that are asymptotic in the number
of data, yield an equivalent description of the experimental
conditions. The power spectrum @, of r and the controller
K determine ®,, ®,. by the formulas

Dy(w) = Xo|l(1+ KGo) 'K Ho|?+|1 + KGo|2®,.(w),
Pye(w) = —Xo(1 + KGo) 'K Hy, 3)

where the transfer functions on the right-hand side are
evaluated at z = e/“. On the other hand, ®, and K can
be recovered from ®,,, ¥, by the formulas

D, = |1+ KGo|*(Py — Ay |Puel?), 4)
K = _(I)ue(AOHO + GO(Pue)_l- (5)

Parametrizing the experimental setup by the joint power

spectrum
P P
Py, = L (6)
X0 ( (I)ue )\0 )

of the signals u,e instead of the quantities r, K has the
advantage that the feasible set becomes convex, which is
a prerequisite for a semi-definite representation [2].

Within the framework of the partial correlation approach,
the ultimate design variables are a finite set of moments of
the joint power spectrum @, , which we now introduce.
Consider a polynomial d(z) = Y., d;z' of degree m,
m > 0, such that the coefficients d; are real, obey dy # 0,
dp, # 0, and the polynomial d(z) has all roots outside of the
closed unit disk. Define 2 x 2 matrices

LT ike g 7
w5 | e @
for integral k. The matrices mj defined by (7) are called
the generalized moments of the spectrum ®, . Note that the
moments my, are real and obey the relation my = mT e

The cost criterion and the constraints of the design prob-
lem have to be expressible in a tractable manner in terms of
these moments, as expressed by the following assumption.

Assumption 1: There exist integers N >0, n > m > 0
and N auxiliary variables xz1,x2,...,2xxy such that the
constraints of the input design problem can be written as
a linear matrix inequality

A(mg,my,...,mp,z1,...,2n5) =0 (8)
in the moments my, k = 0, ..., n and the auxiliary variables
x5, L =1,..., N, and the cost function of the input design
problem is given by a linear function

n N
folmo, - mn, 1, wn) =Y (Crymi) + Y
k=0 =1
)
where CY, are fixed matrices, ¢; are fixed reals, and (A, B) =

trace(ABT).

The conditions of Assumption 1 are representative of a
wide variety of problem formulations in open and closed-
loop optimal experiment design; see e.g. [1],[2],[11]. In
particular, all classical designs (D-optimal, A-optimal, L-
optimal etc.) fall within the framework of Assumption 1.

To see this, we observe that under some mild assumptions
the asymptotic (in the number N of data) average sample
information matrix of the experiment is given by [13]

— 1 7 , ,
M g ) F(e?*)®y, (w)F*(e’*) dw, (10)
where
, 1 0G(e’,0) OH (e, 0)
Jwy —
F(er) Ho(ejw)[ 90 99 |y, an

If the model structure is rational and d(z) is chosen as the
least common denominator of the elements of F*(z), then
(10) is affine in a finite number of generalized moments
mo, M1, ..., m, defined in (7): see e.g. [2] for details. Now
a typical experiment design problem, known as the weighted
trace design problem, is

min tr{C(60)W} (12)



where @ is either ®,(w) in open loop or ®,, (w) in closed
loop, C(fy) is the asymptotic per sample covariance matrix
evaluated at the true 6y, and W is a positive semi-definite
(PSD) weighting matrix, typically the Hessian of the identi-
fication criterion. Such criterion has been studied e.g. in [1],
[2]. Now, using the Schur complement, the optimal design
problem (12) can be transformed into ming trX, subject to

1/2
{ x w! }>0.

W1/2 M (13)

Thus, the criterion (12) can be re-expressed in the form
of Assumption 1, where f; takes the simple form f, =
22:1 1, where [ is the size of X.

III. THE SET OF FEASIBLE MOMENTS

In this section we develop an algorithm to solve optimal
input design problems satisfying Assumption 1. In order to
cast such problems as semi-definite programs, we derive
a semi-definite description of the set of truncated gener-
alized moment sequences (my,...,m,) which correspond
to realizable experiment designs. This is one of the main
results of the paper; lack of such a description inhibited the
implementation of the partial correlation parametrization as a
tractable semi-definite program. The main tool for our proof
will be the positive matrix completion theorem introduced
and formulated in the Appendix.

Let T C C be the unit circle. The moment matrices my,
defined by formula (7), depend on the spectra ®,,, ®,,., which
in turn determine the experimental conditions. However, not
all pairs (®,,, ®,.) correspond to valid experiment designs.
Besides positivity of the joint power spectrum @, we have
to impose that the transfer functions from the signals 7, e
to the signals u,y are stable. This requires that the function
fue : T — C, defined by the cross spectrum ®,. by means
of fue(e’¥) = ®,.(w), can be extended to a holomorphic
function outside of the unit disc, including the point at
infinity (compare also [11]).

Let us divide the 2 x 2 matrix moments my, into its 4
elements my, 11, Mk, 12, Mk, 21, Mk, 22, all belonging to R.

Theorem 1: Assume the notations of Assumption 1. Let
(mg, ..., my) be an (n+1)-tuple of 2 x 2 matrices satisfying
mo = md, and define m_j, = mg forall k =1,...,n. Then
the following two sets of conditions are equivalent.

1. There exist 27-periodic scalar-valued distributions
®,, P, satisfying the following conditions.

a) the distribution ®, (w) defined by (6) is complex
hermitian, satisfies ®,,(w) = ®,,(—w)T for all w, and is
positive semi-definite;

b) the function f,. : T — C, defined by fu.(e’¥) =
®,(w), is extendable to a holomorphic function outside the
unit disc, including the point at infinity;

c) the matrices m_y,...,m, are related to ®,, by
formula (7).

2. The matrices m_,, ...,
ditions.

) My 22 = 5= fj'ﬂ ‘d(e’\Jiw)lze @ dw for k =

b) Z;io dimg—121 =0fork = 1,...,n

my, satisfy the following con-

—Ny...,N;

c¢) the block-Toplitz matrix

T T T
mo mi Mpy—1 My,
T T
— m mo My_2 My
T, =
My Mp-1 - m1 mo

is positive semi-definite.

Proof: Let us first show the implication 1. = 2.
Condition 2a follows from 1. by definition of &, and
formula (7). Condition 2c is the Carathéodory-Fejer crite-
rion necessary (and sufficient) for (mg,...,m,) to be the
truncated moment sequence of some positive spectrum, and
thus follows from la.

Let us prove that 2b is implied by 1. We have

“+
m — Pue(~w) —uer ) eike qy
k21 = (=) d(e39) .

It follows that
m
1 fue(zil)
dmy_jo1 = — | ——2
ZH) HTe—L21 27Tj/1r d(z)

By condition 1b the function f,.(e~7%) is extendable to a
holomorphic function inside the unit disc. Since all zeros of
d(z) are outside the closed unit disc, the ratio f,.(z)/d(z)
is also holomorphic inside the unit disc. It follows that
Somo dimg_y21 =0 for all k > 0.

In a similar manner it follows that the elements my 22 =

% jﬂ We “ dw have to satisfy

E dimp_y,20 = 0,
1=0

Let us now turn to the implication 2. = 1.
To this end, we first show that we can extend the finite mo-
ment sequence my, . .., M, to an infinite moment sequence,
such that for every n’ > n, the truncated moment sequence
mo, ..., My still satisfies condition 2.

We will proceed by induction. Assume that conditions 2a
— 2c¢ hold for some (n'+1)-tuple (mq, . .., m, ) of matrices,
where n’ > m. Here m is the degree of the polynomial d,
and in condition 2¢ we have the matrix 7, instead of T,
defined in a similar way. We shall show that there exists a

21z,

k> 0. (14)

matrix my, 11 such that the (n’ + 2)-tuple (mg, ..., My 41)
also satisfies these conditions.
In order to satisfy conditions 2a and 2b we set
M_(n'41),22 = Mn’+1,22 (15)

L[ X !
— - jn'+1)w d
o / [d(er )2 “

m
-1
M_(n/41),12 = My 41,21 =—dg Zdlmn’+1fl,21-(16)
=1
It remains to show the existence of elements m, 1,11 =
M_(n/+1),11 and Mp/+1,12 = M_(n/41),21 such that the
resulting block-Toplitz matrix 7;,/ 41 is PSD.



This is a classical positive matrix completion problem,
which can be dealt with by the results presented in the
Appendix. To this end, we consider the matrix 7,/ 41 as a par-
tially specified matrix. The entries of 7,41 which appear in
T, as well as the entries defined by (15), (16) are specified,
while the entries my/41,11, My 41,12 are unspecified. We
denote by G = (V| E) the graph corresponding to the known
entries of the matrix T,/y1, with labels 1,2,...,2(n' 4+ 2).
We shall proceed in two steps: first we show that this
graph is a chordal graph; next we show that the partially
specified matrix 7,4, is partial PSD. It will then follow
from Proposition 3 of the Appendix that 7)., is PSD

completable.
Step 1. The diagonal elements of 7,4, are all known.
Consider now, for k = 1,...,2(n’ + 2) the set of vertices

corresponding to the k-th diagonal element of 7;,/;1 and the
known elements below it, i.e. the set {k} U {l > k| (k,I) €
E} C V. Itis easy to see that, for each k = 1,...,2(n'+2),
this set forms a clique. Hence, the numbering of the vertex
set V' corresponding to the numbering of the rows of T},
is a perfect elimination ordering of the vertices of G (see
Appendix). Therefore, by Proposition 1 in the Appendix, G
is a chordal graph.

Step 2. We now show that the partially specified matrix
T, 41 is partial PSD. To this end, we have to find the max-
imal cliques of GG and to check whether the corresponding
fully specified principal submatrices of T},/4; are PSD. By
Proposition 2 in the Appendix, the maximal cliques can only
be of the form {k} U{l > k| (k,l) € E} for some vertex k.
We thus only have to test for maximality the cliques of this
specific type for all vertices k. The only maximal cliques are
given by the values k¥ = 1 and k = 3. All other vertices lead
to cliques which are contained in these two. The value k = 3
corresponds to the largest fully specified lower right subblock
of T, 41, which equals 7, and is PSD by the induction
hypothesis. The value k& = 1 corresponds to the principal
submatrix of T,/ built of the first 2(n’+1) and the last row
and column. It remains to show that this submatrix, denote
it by T, is also PSD.

In order to prove this, we first define a [2(n/ + 1) + 1] x
[2(n' + 1) + 1] matrix

S = ( I2(n’+1)
O1x2(n/+1-m)+1] dm 0 dpm—10... dy do

Here O; denotes a k£ x [ zero matrix, while O denotes a
scalar zero. Clearly the matrix S is nonsingular, therefore
positive semi-definiteness of T is equivalent to positive
semi-definiteness of the product T = ST ST. It is easily
seen that the upper left 2(n’ + 1) x 2(n’ + 1) corner of T¢
equals that of T, which is given by 7;,/. By condition 2b,
which by virtue of (16) is valid also for £k = n’ + 1, and by
(14), which is valid for k¥ = 1,...,n’ by condition 2a and
for k = n’ + 1 by (15), the lower left 1 x 2(n’ + 1) corner
of T is zero. Finally, the lower right element of Te equals

: /Jr7r i 3 j(k—1
— 29 dypdye? D9 gy = \g.
21 J_n |d(eiw)|? kéo

02(n’+1)><1> .

Therefore T = diag(T,, Ao) = 0, hence T is PSD, and
the partially specified matrix 75,/ 41 is partial PSD. It follows
from Proposition 3 that 7},,;; is PSD completable, i.e. there
exist elements 7,/ 41,11, My/+1,12 Which make T,/ 1 PSD.
Thus the sequence (my, .. ., M, +1) constructed in this way
satisfies also condition 2c.

So far we have extended the given finite sequence
(mg,...,my) to an infinite sequence of moments my, sat-
isfying condition 2. The construction of the distributions
®,,, P, now follows classical lines.

Consider the space P of 2 x 2-matrix-valued complex
hermitian polynomials P(z) defined on the unit circle. For
a polynomial P(z) of degree r, define coefficient matrices
Py by P(2)|d(2)]? = ZiT(rer) Ppz"; they are of size
2 x 2 with P_;, = ;. By the Carathéodory-Fejer criterion,
the polynomial P(z)|d(z)|?, and equivalently P(z), is PSD
for every z € T if and only if there exists a PSD complex
hermitian matrix 7F = (T]5>k,l:O,‘..,r+m of size 2(r +
m + 1), partitioned into blocks T,ﬁ of size 2 x 2, such that
P=>, T foralli=—(r+m),...,r +m.

We define a linear functional £ on the space P by P(z) —

Z—:j'(r-km) (P, my). If P(z) is PSD on T, then the value
of the functional £ equals (T4, TT) > 0, where T, is
the PSD block-T6plitz matrix from condition 2c, built on the
moments My, . . ., My4y,. By the M. Riesz extension theorem
[14], we can extend L to a linear functional £’ on the space
of all continuous matrix-valued complex hermitian functions
F(z) defined on the unit circle, in such a way that £ is
nonnegative on all functions obeying F'(z) = 0 for all z € T.
Since the polynomial functions are dense in the continuous
functions on T, the extension £ is unique.

By the Riesz representation theorem, the functional L’
corresponds to a matrix-valued distribution @, on the unit
circle. The properties of @, required in condition 1. readily
follow from the properties 2a — 2c of the infinite sequence
of moments my. In particular, since the coefficients of the
Laurent expansion of f,. are bounded by the positivity of
®, ., and the coefficients at the positive powers are zero by
condition 2b, this series converges outside of the unit disc
to a holomorphic function. This completes the proof. [ ]

Theorem 1 furnishes a semi-definite description of the
set of feasible truncated generalized moment sequences
(mog, ..., my). Condition 2a determines the elements my, 22
explicitly. Condition 2b yields linear relations on the ele-
ments my, 21, while condition 2¢c amounts to an LMI. The
optimal input design problem defined in Assumption 1 is
thus turned into the following semi-definite program.

n N
min <Z<Ck’mk> + ZC[CL‘[) a7
k=0 1=1
with respect to the set of constraints
A(mo,ml,...,mn,xl,xg,...,xN) t 0,
m = — ———e"dw, k=-n,...,n
k,22 o0 ‘/_7.( |d(€-7w)‘2 ) ) s 10y



m
E dimi_121 =0, k=1,...,n, (18)
1=0
T .. T T
mo m1 . mnfl mn
T T
ma mo mn_Q mn_l
= 0,
My Mp-—1 T my mo

where m_j = mf.

By solving this semi-definite program, the user obtains
the optimal truncated moment sequence (mo,...,m,) and
the optimal value of the cost function. In order to perform
the identification experiment, the external input signal r and
the controller K must now be computed from the optimal
moment matrices my. This task is tackled in the next section.

IV. RECOVERY OF THE EXPERIMENTAL SETUP

In this section we assume that a sequence of moment
matrices (my, ..., my) satisfying conditions 2a — 2c of The-
orem 1 is given. We are interested in constructing a controller
K and a power spectrum ®,. such that the quantities ®,,, P,
defined by (3) reproduce the given moments my, ..., m, by
the formula (7).

Let us first give an informal motivation to the algorithm
presented in this section. Our strategy will consist of splitting
the moments into sums mj = mj, + m{ in a way that
separates the contributions of the signals 7 and e to the joint
power spectrum @, . By (3), the contribution of 7 in ®, is
given by

o — (|1+KG0|_2(I>T(w) o)
X0 0 0/)°

Inserting this matrix instead of ®,, into formula (7), we
see that only the upper left element m;, ;; of the resulting
moments m;, is nonzero. The sequences mj, and mj, have to
correspond to positive power spectra. By the Carathéodory-
Fejer criterion, the block-Toplitz matrices 7, , T'S constructed
of these sequences have thus to be PSD. We perform the
splitting such that 7T’ becomes singular, which, as we will
see below, allows us to construct a rational realization of
the joint spectrum ®,.. We now show that such splitting is
always possible.

Theorem 2: Let (my,...,my) be a sequence of 2 x 2 real
matrices satisfying conditions 2a — 2¢ of Theorem 1. Then
there exists a splitting my = mj, +mg, kK =0,...,n, such
that mj, and mj, are real for all k and
mZ,n 0).

0 0)’

ii) the block-Toplitz matrices 7., 7T, constructed of the
matrices mj, and myj, respectively, are positive semi-definite;

iii) the matrix 77 is singular.

Proof: Consider the (n+1)x (n+1) principal submatrix
of the block-Toplitz matrix 7, formed by the elements
(mg—_1,22)k.1=0,...n of T},. By a permutation of the rows and
columns of T),, bring this submatrix into the lower-right cor-
ner and denote the resulting matrix 7;, with 722 denoting the

i) the matrices mj, are of the form (

lower-right block. By condition 2¢ the matrix 7,, is PSD, and
thus 7T,, is also PSD. Hence, the Schur complement of Tﬁz,
denote it by M, is a PSD (n+1) x (n+1) matrix. Let now A
be the smallest eigenvalue of M then M — A, 4 is singular
and PSD. Define mg,; = A, my ; =0 for k =1,....n,
and mz’m = m2,21 = mz,gz = 0 for all k. Finally, define
my, = my, — my. Then T}, = diag(A,0,,0,...,),0) and
is therefore PSD, and so is T}, 1, = diag(\, A, ..., A). The
singularity and positivity of 7,> follow from the singularity
and positivity of M —AI,, 1 and from properties of the Schur
complement. [ ]

The construction of a singular T = T,, — 1, above is
by no means unique. It was obtained by defining moments
my, that are zero for all k& # 0. This corresponds to a
filtered white noise reference signal: ®,.(w) = |d(e*)|?|1 +
KGo|*X: see (3)-(7). There are many other ways to produce a
block-Toplitz matrix 7, that yields a singular T, = T,, =T,
with the desired properties, as we shall illustrate below.

Let us now turn to the moment matrices mj,. Since the
block-Toplitz matrix 777 is singular, we have T-v = 0 with
vV = (p’ru qn>Pn—154n—1,- - -, P0, QO)T € R2(n+1)' Observe
that the sequence mg, ..., m;, still satisfies the conditions
2a — 2c of Theorem 1. We have seen in the previous section
that in this case we can extend the sequence mg, ..., m;, to
an infinite sequence of moments my, such that for every
N > n, the larger truncated sequence mg,...,m% still
satisfies conditions 2a — 2c¢ of Theorem 1. However, the
singular matrix 7 now appears N — n + 1 times as a
principal submatrix of the larger PSD block-T6plitz matrix
T constructed of the sequence mg, ..., m$%;. This implies
that we can write out two sets of 2N — n + 1 linear
homogeneous equations:

19)

NE

e e _
(Mg 1P+ My 10q) = 0,

o~
Il
=]

(20)

NE

e e —
(My121P1 + Mgy 00q) = 0

~
Il
=]

for all kK = —N,...,N —n. Since N can be arbitrarily
large, (19), (20) must ultimately hold for every integer k.

Define the transfer functions p(z) = >, pz~", q(2) =
Yoo qz~". Then the distribution Dy, — P}, corresponding
to the moment sequence mj must satisfy the relation

(px(;(w)*q);m(w) p(zil) _
d(z)d(z— 1) (q(z‘1)> =0

This implies

(I)u(:'(w) - _)\Opil(z)q(z),
W) = A P

@1)
! 22)

Py (W) - — D,
W = T RGR

for all w, with z = e7*. Using (5) then allows to express the
controller K in terms of the polynomials p(z) and ¢(z):

B q(z)
K& = S 0me) — @)

(23)



Consider  the  special  choice of T =
diag(A,0,1,0,...,A,0) described above, let v be the
corresponding solution (defined up to a scalar factor) of
(T, = T})v =0, and p(z), ¢(z) be the polynomials defined
by v. Then the controller K (z) defined by (23) and the
spectrum @,.(w) = |d(e’*)|?|1 + KGy|?)\ are one possible
set of valid experimental conditions that reproduce the given
truncated moment sequence. The degree of the controller
will then be determined by (23) and will depend on the
specific model structure adopted for Gy, Hy.

In general, the set of possible solutions for v will depend
on the chosen model structure and on the complexity of the
controller: the lower the complexity of the controller, the
smaller the dimension of the space of potential solutions for
the vector v. We illustrate this for an ARX model structure.

Consider an ARX model structure Gy = % and Hy = i,
with A =1+a1z7 ' + -+ +a,, 27", and B = b1z~ +-- -+
bn, 2~ ", and let K be factored into K = % where N and D
are polynomials. For a vector x £ (x9, 1, ...,2,)T € R*H!
we now introduce the following (n + m) X m matrix:

z, 0 ... ... O
: z, O
Zo
Sm) = 0 0
Tn,
0 ... ... ... o

We can then write, using (23), that A(z)g(z) = N(z) and
p(2) — B(2)q(2) = D(z). Introducing the vectors p =
(pna s 7p0)T7 q £ (Q’m R QO)T7 a = (170‘17 s 7ana)T7
b £ (0,by,..., bn, )T, these equations can then be written
as a set of 2(n + 1) + n, + n, linear equations as follows:

g S (P )= (5) e

where n = (1, 1, --->70)7 and d = (dp, 1nys-- - do) T
The set of equations (19)-(20) can similarly be rewritten as

Tn 11 — TT 11 Tn 12) ( P ) ( 0 )
ALT Sn1 o, — 25
( Th 21 T, 22 q 0 (25)

with T}, and 7" as defined above. The bottom part of (25)
represents n+1 constraints on the 2(n+1) unknown elements
of p and q. If in the 2(n+1)+4n,+n;, equations (24), we fix k
of the controller coefficients (to zero, say, in order to reduce
the controller complexity), then this adds k linear constraints
on the 2(n+1) elements of p and q, yielding a solution space
of dimension n + 1 — k. Fixing n of them at predetermined
values will yield a unique, up to multiplication by a common
factor, solution for p and q. However, there is no guarantee
that there exists a Toplitz matrix Tg’u such that the first
n + 1 equations (25) are satisfied for this solution. Thus,
the procedure is to first compute a Toplitz matrix T;;n that

(O(n-‘rna-‘rl)x(n—i-l)

makes matrix in (25) singular. The resulting solutio! n set
{p, q} then determines a corresponding set of admissible
controllers via (24).

V. EXAMPLE

Let us apply our results to the optimal experiment design
(2)

problem posed in [15]. Consider the true system y = i(z) u+

1 : _ B(2) _ _0.104727'40.08722"2
e with Go = 5y = 1-T.5578:= 110576922

Az
thEﬁ Z)utput, subject to the energy constraint Ey%(t) = 1, and e
is white Gaussian noise with variance A\g = 0.01. The system
is to be identified within an ARX model structure of order
two. The length of the data set is N = 1000. The aim is
to minimize the worst-case v-gap of the uncertainty region
around the identified model corresponding to a confidence
level of av = 0.95 (for details see [15]).

We compare two experimental setups, namely the optimal
open loop configuration and the optimal closed loop config-
uration. The optimal input power spectrum ., for the open-
loop experiment was computed with the methods presented
in [15]. The optimal closed loop experimental configuration
was computed using the results of this paper. The worst-
case v-gap, as a function of the average sample information
matrix (10) [15], depends on the moments mg, mq, Mo, M3
defined by (7) with d(z) = 1+ a1z + azz2. The output
power constraint is affine in the elements of the matrices
my, k = 0,1,2. Hence it is sufficient to optimize over the
moment matrices my, ..., M, up to the order n = 3. We
perform the decomposition T3 = T35 + T3 of the optimal
block-Toplitz moment matrix 73 such that the trace of T3
is maximized. Then 7§ will automatically have a nontrivial
kernel. From T3 we compute a multisine reference input
signal 7 and from the kernel of 75 a 6-th order controller K
according to (24). The computed external input signal r and
the controller K are a realization of the optimal closed loop
experimental setup described by the moment matrix 735.

In a Monte-Carlo simulation, 750 runs were performed
with each configuration, and the worst-case v-gap of the
corresponding uncertainty regions was recorded. Its mean
over 750 runs for the optimal open loop and closed loop
experiments equals 0.0547 and 0.0553, respectively. Thus,
for the chosen value of Ay, the optimal open loop and the
optimal closed loop experiments perform equally well. In
fact, even though the theoretical value for the worst-case v-
gap is smaller for the closed loop optimal experiment than
for the open loop one, the values are equal to within the
precision of the optimization algorithm. If we consider the
graph of the worst-case v-gap as function of the moments,
the optimal moment matrix 73 is situated in a narrow, long
and very flat valley, which includes also the optimal open
loop experimental configuration.

The above picture can be observed for a wide range
of signal-to-noise ratios. It changes dramatically, however,
if the constraints make an open loop experimental setup
impossible, i.e., if the signal-to-noise ratio for the optimal
open loop experiment tends to zero. For a noise variance
Ao = 0.016, the input in an open loop configuration can only

Here y is



have a very small power, because the power of the noise
term in the output is close to 1. The mean over 750 runs
of the worst-case v-gap of the identified uncertainty regions
for the optimal open loop and closed loop experiments was
0.0999 and 0.0871, respectively. Clearly in this case the
optimal closed loop experiment performs much better than
the optimal open loop experiment. In addition, in cases where
the plant G is unstable, only a closed loop design is feasible.

VI. CONCLUSION

Based on the partial positive definite matrix completion
theorem, we have produced an optimal solution to the
closed-loop optimal experiment design problem, where the
optimization is performed jointly over the controller and the
spectrum of the external excitation. The solution is expressed
as a finite number of moments, from which we have shown
how to recover an optimal controller and reference spectrum.
Our simulations showed that for identification with the aim
of minimization of the worst-case v-gap of the identified
uncertainty region, open loop design is nearly optimal if the
signal-to-noise ratio is not too low. Future research has to
show whether this is a peculiarity of the particular plant used
in the simulation or whether this is a general phenomenon.

APPENDIX

In this section we provide the theoretical framework for
one of our main results, Theorem 1. Consider the problem
of completing a real symmetric matrix, only part of whose
entries are specified, to a full PSD matrix. This is known as
the positive matrix completion problem.

We first introduce some graph-theoretic notions, which
are necessary to describe the specification pattern of the
matrices. Let G = (V, E) be an undirected graph, with V
the set of vertices, of cardinality n, and £ C V' x V the set
of edges. The graph G is said to be chordal if every cycle
of length not less than 4 has a chord, i.e. an edge linking
two vertices of the cycle, but not being part of the cycle. A
subset C' C V of vertices such that (C,ENC x C) is a
complete subgraph of G, i.e. such that every pair of vertices
in C is linked by an edge, is said to be a cligue. A clique is
said to be maximal if it is not contained in any strictly larger
clique. A numbering of the elements of the vertex set V' with
labels 1,...,n is said to be a perfect elimination ordering if
forall k=1,...,nthe set {k} U{l > k| (k,]))e E} CV
forms a clique. We have the following classical resu! Its.

Proposition 1: [16] A graph G has a perfect elimination
ordering if and only if it is chordal.

Proposition 2: [17, Section 59.3.1] Let G be a chordal
graph with its vertices arranged in a perfect elimination
ordering. Then for every maximal clique C of G, there exists
a vertex k such that C = {k} U {l > k| (k,l) € E}.

We shall now introduce matrix completion problems with
specification patterns defined by graphs. Associated to a
graph G = (V, E) on n vertices is a set of partially specified
real symmetric matrices of size n X n. A partially specified
matrix M is in this set if i) the diagonal entries My of
M are specified, ii) the entries Mj; and M are specified

if and only if (k,l) € E, and in this case My, = M.
A partially specified matrix M with specification pattern
defined by the graph G is said to be partial positive semi-
definite if for every clique C' C V the fully specified
principal submatrix (Mp;)kicc of M is PSD. Obviously
it is sufficient to demand positive semi-definiteness only of
submatrices corresponding to maximal cliques. A partially
specified matrix M is said to be positive semi-definite
completable if there exists a specification of the unspecified
entries of M such that the resulting fully specified matrix is
PSD. Clearly partial positive semi-definiteness is a necessary
condition for PSD completability. The following result from
[12] characterizes the cases when this is also sufficient.

Proposition 3: Let the partial PSD matrix M have a
specification pattern defined by a chordal graph G. Then M
is PSD completable. On the other hand, let G be a graph
which is not chordal. Then there exists a partial PSD matrix
M with specification pattern defined by G which is not PSD
completable.
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