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Abstract— We consider the problem of determining which
nodes should be measured in order to fully identify a network
of Linear Time Invariant (LTI) dynamical systems. Much
recent research has dealt with the identifiability of a dynamical
network in which the node signals are connected by causal
linear time-invariant transfer functions and are possibly excited
by known external excitation signals and/or unknown noise
signals. So far all research results on this topic have assumed
that all node signals are measured without error. Under this as-
sumption, it has been shown that such networks are identifiable
only if some prior knowledge is available about the structure
of the network, in particular the structure of the excitation. In
this paper we present the first results for the situation where
not all node signals are measurable, under the assumption that
the topology of the network is known. Using graph theoretical
properties, we show that the transfer functions that can be
identified depend essentially on the topology of the paths linking
the corresponding vertices to the measured nodes. A major
outcome of our research is that a network can often be identified
using only a small subset of node measurements.

I. INTRODUCTION

This paper examines the identifiability of dynamical net-
works in which the node signals are connected by causal lin-
ear time-invariant transfer functions and are possibly excited
by known external excitation signals and/or unknown noise
signals. Such networks can be looked upon as connected
directed graphs in which the edges between the nodes
(or vertices) are composed of scalar causal linear transfer
functions, and in which known external excitation signals
enter into the nodes.

The identification of networks of linear time-invariant
dynamical systems based on the measurement of all its node
signals and of all known external excitation signals acting
on the nodes has been the subject of much recent attention
[2], [4], [6]–[8], [10], [13]. It has been shown in [6], [7] that,
generically, such networks cannot be identified from the node
signals and the known external excitation signals, and that
identifiability can only be obtained provided prior knowledge
is available about the structure of the network. In practice,
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it is often the case that the excitation structure is known, i.e.
one often knows at which nodes external excitation signals
or unknown noise signals are applied. A number of sufficient
conditions for the identifiability of the whole network have
been derived under prior assumptions on the structure of the
network, involving either its external excitation structure, or
possibly also its internal structure [6]–[8], [13].

In all the results accumulated so far on the identifiability
of networks of dynamical systems, it is assumed that all
node signals can be measured without error. In this paper
we examine the situation where not all node signals are
measured, but where the topology of the network is known;
this means that the user knows a priori which nodes are
connected by nonzero transfer functions. In this context, a
number of questions can be raised, such as

1) Can one identify the whole network with a restricted
number of node measurements?

2) If so, are there a minimal number of nodes that need
to be measured?

3) Are some node measurements useless, in the sense
that they deliver no information about any transfer
function?

4) Are some nodes indispensable, in the sense that it is
impossible to identify the network without measuring
these nodes?

5) If one wants to identify a specific transfer function,
can the topology tell us which node or nodes need to
be measured?

6) Which transfer functions can be identified from the
measure of a specific node?

To answer these questions we shall heavily rely on prop-
erties from graph theory, using the connected directed graph
corresponding to our network as our major tool. Given the
difficulty of the problem, we shall also, in this first paper on
identifiability of networks with partial node measurements,
make the simplifying assumption that a known external
excitation signal enters each node.

To the best of our knowledge, the only other contributions
that consider identification in networks with unobservable
nodes are [9], [3]. However, the problem treated in these
papers consists of the identification of a subset of the net-
works transfer functions - typically a single one - and hence
is different from the one presented here. They formulate
and study the input selection problem: how to pick the
available measurements to be used in this identification
procedure in such a way that the desired transfer function(s)
can be identified uniquely, consistently and most efficiently.
Sparse measurements have also been considered in a different



context in [11]; the goal there was to recover the network
structure under the assumptions that the local dynamics are
known, as opposed to re-identifying the dynamics and/or the
whole network structure.

After stating the problem in precise terms in Section II, we
shall first, in Section III, motivate the reason for addressing
this problem by exhibiting some simple 3-node networks to
show that the nodes that need to be measured to identify
all transfer functions depend completely on the topology of
the network and that, in some cases, a unique measurement
suffices to identify the whole network for a 3-node network.
This already yields a positive answer to question 1 above.
Our brief analysis of 3-node networks will then lead us, in
Section IV to formulate a number of basic results pertaining
to questions 2, 3 and 4 above.

In Section V we shall present a number of identifiability
results that are based on properties of the path going from a
specific node within the network to a specific set of measured
nodes. This will lead to a necessary and sufficient result on
identifiability of all transfer functions, or of a specific set
of transfer functions, that are based on the properties of the
path from each node to a measured node. This section will
also give a partial answer to question 5 above.

In Section VI we shall address question 6 above. Instead of
looking at a specific node within the network and examining
its paths to a measured node or a set of measured nodes, as
was done in Section V, we consider the converse approach.
We look at a specific measured node and we present a graph-
theoretical result that lets us decide which transfer functions
can be identified from that specific node.

In Section VII we will conclude and describe some chal-
lenging open problems that remain to be solved.

II. STATEMENT OF THE PROBLEM

The problem studied in this paper is part of the recent
research on the question of identifiability of networks of
dynamical systems. We first present the network structure
and explain the network identifiability problem as it has so
far been posed, i.e. with all nodes measured. We then focus
on the new network identifiability problem for the case when
not all nodes are measured under the simplifying assumption
that there is a known external excitation signal that acts on
each node.

We adopt a simplified noise-free version of the standard
network structure of [6], [13] for networks whose edges
are linear causal scalar rational transfer functions. Thus, we
consider that the network is made up of L nodes, with node
signals denoted {w1(t), . . . , wL(t)}, and that these node
signals are related to each other and to external excitation
signals rj , j = 1, . . . , L by the following network equations,
which we call the network model and in which the matrix
G0 will be called the network matrix:
w1

w2

...
wL

=


0 G12 . . . G1L

G21 0
. . . G2L

...
. . . . . .

...
GL1 GL2 . . . 0



w1

w2

...
wL

+K0(q)


r1

r2

...
rL



Or, equivalently

w(t) = G0(q)w(t) +K0(q)r(t) (1)

with the following properties.
• Gij are proper but not necessarily strictly proper trans-

fer functions. Some of them may be zero, indicating
that there is no direct link from wj to wi.

• there is a delay in every loop going from one wj to
itself.

• the network is well-posed so that (I −G0)−1 is proper
and stable [1].

• ri are external excitation signals that are available to the
user in order to produce informative experiments for the
identification of the Gij . The L × L transfer function
matrix K0(q) reflects how the external excitation sig-
nals affect the node signals.

• q−1 is the delay operator.
• the network is connected, that is there is a path from

every node of the network to every other node.
• the topology of the network is known, i.e. one knows

which of the Gij are zero.
The network model (1) can be rewritten in a more tradi-

tional form as follows:

w(t) = T 0(q)r(t) (2)

where
T 0(q)

∆
= (I −G0(q))−1K0(q). (3)

The description (2) will be called the input-output (I/O)
description of the network. A corresponding parametrized
version Mio = T (q, θ) will be called the input-output (I/O)
model.

The question that has attracted a lot of attention in the
last few years is that of the identifiability of the network
and of the informativity of the external excitation data
r(t). The question of network identifiability can be briefly
stated as follows. Assuming that the network is driven by
sufficiently informative excitation signals r(t), what are the
conditions (in the form of required prior knowledge) on
the network matrices G0(q),K0(q) such that they can be
uniquely identified from measurements of the node signals
w(t) and the known external signals r(t)? Assuming that the
network structure is identifiable, the question of informativity
is then: what excitation is required from the external signals
r(t) for a parametric and identifiable network model structure
[G(q, θ),K(q, θ)] to converge to the true [G0(q),K0(q)].

It is well known from the theory of identification of
multi-input multi-output (MIMO) linear time-invariant (LTI)
systems that on the basis of measurements of the signals w(t)
and r(t) one can uniquely identify the matrix T 0(q) of the
input-output model (2) if the chosen model structure Mio =
T (q, θ) is identifiable and such that T 0(q) = T (q, θ0) for
some θ0 (this is the identifiability question), and if the signals
r(t) are sufficiently rich for the chosen parametrizations (this
is the informativity question). Observe that the identification
of (2) is an open loop identification problem for a LTI MIMO
system.



The question of network identifiability then relates to
the mapping from T 0(q) to [G0(q),K0(q)], namely under
what conditions (in the form of prior knowledge on the
network matrices G0(q),K0(q)) can one uniquely recover
[G0(q),K0(q)] from T 0(q)?

So far, all results on this problem have been obtained under
the assumptions that all nodes wi(t) are measured without
error. A range of sufficient conditions have been obtained for
this situation: see [6], [7], [13]. A representative example
of such sufficient conditions states that the network (1) is
identifiable if K0(q) is diagonal and of full rank.

In this paper we address the question of network identi-
fiability for the case where not all nodes are measured, i.e.
we assume that, together with the network (1), there is a
measurement equation

y(t) = Cw(t) (4)

where C is a p × L matrix that reflects the selection of
measured nodes. Thus, each row of C contains one element
1 and L− 1 elements 0. Given that the problem turns out to
be difficult, we start in this paper with the simple situation
where K0(q) = IL, and the excitation signals ri(t) are
assumed to be independent of one another and sufficiently
rich of any desired degree. Under those assumptions, the
network simplifies to

w(t) = T 0(q)r(t), with T 0(q) = (I −G0(q))−1(5)
y(t) = Cw(t) = CT 0(q)r(t) (6)

Clearly, the matrix CT 0(q) can be uniquely identified from
{y(t), r(t)} data. The network identifiability problem then
reduces to the question: which measurements are required
so that one can recover G0(q) uniquely from CT 0(q)? The
identification of the Gij(q) rests on the following relationship

CT 0(q) = CT (q) = C(I −G(q))−1 (7)

or, equivalently,

CT 0(q)(I −G(q)) = C (8)

For a given C, CT 0(q) is assumed known since it can be
perfectly identified from {w, r} data. We then solve (8) for
the unknown Gij and check which of these can be identified.
We note from (8) that each node measure contributes L scalar
equations in the scalar unknwons Gij . However, as we shall
see below, depending on the network structure, some of these
equations may be trivial equations (such as 1=1, or 0=0) and
therefore do not contain any information about the Gij .

III. MOTIVATING EXAMPLES

In order to motivate the reader, we now analyze a few
3-node networks and show that the nodes that allow identifi-
cation of the whole network depend entirely on the topology
of the network, and that the entire network can often be
identified from the measurements of a small subset of nodes.

Consider first a network with 3 unknown transfer functions
represented in Figure 1 and its corresponding true G(q) and
true T (q). Calculations based on (8) show that identification

of all 3 transfer functions requires the measurement of nodes
2 AND 3, and that measuring node 1 yields no information.
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G(q) =

 0 0 0
G21 0 G23

G31 0 0

 ,

T (q) =

 1 0 0
G21 +G23G31 1 G23

G31 0 1


Fig. 1. Example of network with three transfer functions where two nodes
(2 and 3) need to be measured.

By contrast, the identification of the 3 unknown transfer
functions in the network represented in Figure 2 is possible
by measuring just one node: node 1 OR node 3.
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G(q) =

 0 G12 G13

0 0 0
G31 0 0

 ,

T (q) = 1
∆

 1 G12 G13

0 1−G13G31 0
G31 G31G12 1


Fig. 2. Example of network with three transfer functions where measuring
one node (1 or 3) is sufficient. We use ∆

∆
= det(I −G) = 1 −G13G31

Finally, in the network of Figure 3, all 5 transfer functions
can be identified by measuring just two nodes: either nodes
1 AND 2, OR nodes 1 AND 3.
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G(q) =

 0 G12 G13

G21 0 G23

0 G32 0

 ,

T (q)= 1
∆

 1−G23G32 G12 +G13G32 G13 +G12G23

G21 1 G23 +G21G13

G32G21 G32 1−G12G21


Fig. 3. Example of network with five transfer functions where measuring
two nodes (1 and 2 or 1 and 3) is sufficient. We use ∆

∆
= 1 −G12G21 −

G23G32 −G13G21G32.

The examples show that the number of measurements that
are necessary to identify the network depends not only on
the number of unknown transfer functions to be determined
(the number of nonzero Gij) but also on the topology of the
network; it is also clear that not all measurements are equal.

IV. BASIC RESULTS

Inspired by our analysis of 3-node networks, we
now establish a number of basic results regarding the
identifability of general L-node networks from a reduced set
of node measurements. In particular we show that for the



identification of the network, some nodes are useless, while
others are indispensable. We also establish the minimum
number of nodes that need to be measured. To do so, we
first need to introduce some notations.

Notations and definitions: L = number of nodes; p =
number of measured nodes; f = number of sources, i.e. nodes
with only outgoing links; s = number of sinks, i.e. nodes
with only incoming links; n = number of unknown transfer
functions; C = the p×L matrix that reflects the selection of
nodes via y(t) = Cw(t): thus each row of C contains one
element 1 and L−1 elements 0; GTS denotes the restriction
of the network matrix G(q) to the rows contained in a set T
and the columns contained in a set S. Finally a walk denotes
a series of adjacent edges (including trivial walks consisting
of one node with no edge), while a path is a walk that never
passes twice through the same node, i.e. a walk without
loops.

We can now establish the following basic results. Most of
the proofs are in the Appendix.

Theorem 4.1: 1) If wi is a source, then Gij = 0 ∀j,
Tii = 1 and Tij = 0 ∀j 6= i. It then follows from (8)
that the corresponding equation yields no information. Thus,
measurement of sources is useless, but each source requires
excitation.
2) If wi is a sink, then Gji = 0 ∀j, Tii = 1 and Tji =
0 ∀j 6= i. Identifiability of the network requires that all sinks
be measured, but exciting a sink is useless.
Proof: see Appendix.

We now make some observations concerning the number
of useful equations that result from (8) for the computation
of the Gij .. Each measured node contributes L equations,
but some of these may not yield any information.

First we note that L− 1 ≤ n ≤ L(L− 1). The number of
equations is p× L; so it is obvious that we need p ≥ n

L . It
now follows from (8) and Theorem 4.1 that each sink causes
the appearance of one trivial equation 1 = 1 in the sink’s
measurement, and also of one trivial equation 0 = 0 at every
other measurement. Hence the number of trivial equations
caused by each sink equals p, and thus the total number of
trivial equations due to the existence of sinks is sp. Therefore
the number of useful equations is at most ne = pL − ps =
p(L− s). We then have the following result.

Theorem 4.2: Identifiability of the whole network re-
quires measurement of all sinks plus at least m more nodes
such that

m+ s ≥ n

L− s
(9)

Proof: Given that the number of useful equations resulting
from p measurements is p(L−s), identifiability of a network
with n unknowns and s sinks requires that p(L − s) ≥ n,
where p = m+ s. This implies (9).

The next theorem shows that we never need to measure
all L nodes to secure network identifiability.

Theorem 4.3: p = L − 1 is sufficient for identifiability.
In a fully connected network (that is, n = L(L − 1)) it is

also necessary.
Proof: see Appendix.

The next theorem yields a simple result for networks that
have the structure of a tree1.

Theorem 4.4: For a tree it is necessary and sufficient to
measure all the sinks.
Proof: see Appendix.

After a result for networks having a tree structure, the next
result covers the case of loop structures.

Theorem 4.5: Let the nodes wi, i ∈ I form one cycle
and assume that no other cycle in the graph contains any
of these nodes. Then measuring any one of these nodes is
sufficient to identify all transfer functions in the cycle.
Proof: see Appendix.

V. PATH-BASED RESULTS

In this section we present a series of identifiability results
that are based on the structure of the paths from a given
node to a set of measured nodes. We first reformulate the
identifiability problem. Recall that G is identifiable if and
only if (8) implies G = G0 for any G consistent with the
graph, i.e. with the topology. Define ∆

∆
= G − G0, which

is consistent with the graph if and only if G is. Substituting
G = G0 + ∆ in (8) shows that G is identifiable if and only
if

CT 0(q)∆(q) = 0⇒ ∆(q) = 0 (10)

for any ∆(q) consistent with the graph.
Condition (10) can be viewed as a set of L conditions,

one for each column, which must all be true. The condition
for the i-th column is:

C(I −G0)−1∆:i = 0⇒ ∆:i = 0, (11)

for ∆:i consistent with the graph i.e. ∆ki = 0 if there is no
edge (i, k) ∈ G. We denote by N+

i the set of out-neighbors
of i, i.e. those k for which ∆ki may be nonzero, and by
d+
i the out-degree of i, i.e. its number of out-neighbors. We

also use the notation j ∈ C to say that j is a measured node.
Condition (11) can be rewritten as∑

k∈N+
i

T 0
jk∆ki = 0,∀j ∈ C,⇒ ∆ki = 0,∀k ∈ N+

i (12)

Note that one can prove that T 0
jk is nonzero only if there is a

path from k to j. Note also that if condition (12) is satisfied
for some i, then we know that G:i = G0

:i for any G consistent
with the graph and satisfying C(I −G)−1 = C(I −G0)−1,
i.e. we can identify all transfer functions corresponding to
the edges leaving node i.

We now establish a number of identifiability results based
on the paths from a given node i to a set of measured nodes.

Theorem 5.1: For a node i, if each of its d+
i out-

neighbors has a directed path to a different measured node
j ∈ C, and if these directed paths are all disjoint, including
their measured end-points, then condition (12) is generically

1A tree is a graph without loops (directed or not); a graph is a tree IFF
n = L− 1. [5].



satisfied (i.e. it is satisfied for almost all choices of transfer
functions matrices G0 consistent with the graph), and the
transfer functions corresponding to the edges leaving i can
all be identified.
Proof: see Appendix.

We stress that the sufficient condition in Theorem 5.1
does not require all paths from the d+

i out-neighbors of i
to measured nodes to be disjoint, but only the existence
of a set of mutually disjoint paths. In other words, there
may very well exist many other paths than those used in the
condition, and there is no requirement on those, nor on their
intersections with those used in the condition.

The next result shows sufficient conditions under which
a subset of the out-going edges can be recovered even if
the others cannot. In particular, it yields a solution for the
identifiability of a single embedded transfer function.

Theorem 5.2: Consider a node i, and let N∗i ⊆ N
+
i be a

subset of its out-neighbors. Suppose in addition that
(i) There exists d∗i = |N∗i | vertex disjoint directed paths

joining nodes of N∗i to d∗i measured nodes, and let C∗ be
the set of these measured nodes.

(ii) There is no path from any node of N+
i \ N∗i to any

node of C∗.
Then the transfer functions corresponding to edges from i to
nodes in N∗ can be identified.
Proof: see Appendix.

We now present a necessary condition.
Theorem 5.3: Consider a node i and suppose there exists

a set of nodes B with cardinality b < d+
i such that any path

from an out-neighbor i ∈ N+
i of i to a measured node j ∈ C

includes a node in B.2 Then condition (12) is generically
not satisfied, and it is therefore not possible to identify the
transfer functions of all edges leaving i.
Proof: see Appendix.

The absence of such a set B is thus a necessary condition
for identifiability of all outgoing edges of node i.

The following Lemma implies that that there is no gap
between the sufficient condition of Theorem 5.1 and the
necessary condition of Theorem 5.3.

Lemma 5.1: Let S and P be sets of nodes in a directed
graph, possibly with a non-empty intersection. For any d,
exactly one of the two following conditions holds:
(i) There exist d vertex-disjoint paths, each joining a node
of S to a node of P .
(ii) There is a set B of b < d nodes such that every path
from S to P contains a node of B.
Proof: This follows from a variation of the min-cut max-flow
duality [12].

Our main path-based result provides necessary and suffi-
cient conditions for the identifiability of all outgoing edges
of any node i in a network.

Theorem 5.4: For every node i, one can generically
uniquely identify the transfer functions on the edges leaving i
if and only if there exist vertex-disjoint directed paths leaving

2B stands for bottleneck; note that it may contain nodes of N+
i .

the out-neighbors of i and arriving at measured nodes. 3

In particular, (8) yields G(q) = G0(q) if and only if the
condition above is satisfied for every i.
Proof: This follows from Lemma 5.1 and Theorems 5.1 and
5.3.

The theorem is illustrated by the example in Figure 4.
Remember that known external signals ri are applied to each
node, which we have not added on the figure for visibility
reasons. Node i has three outgoing nodes, each of which
has a vertex-disjoint directed path to the measured nodes 7,
8 and 9; they are represented by dashed green arrows. As
a result, the dotted red transfer functions G1i, G2i and G3i

can all be identified from these three measured nodes.

Fig. 4. Example illustrating Theorem 5.4: 3 vertex-disjoint dashed green
paths to the 3 measured nodes; the 3 dotted red edges are identifiable.

An immediate consequence is the following necessary
condition for identifiability of the whole network.

Corollary 5.1: The number of measured nodes must be
larger than or equal to the largest out-degree in the network.

Finally, we observe that some of the results of Section IV
can be obtained as corollaries of Theorem 5.4. However, in
section IV the proofs of these resutls are much more intuitive
and add insight into the relationship between topology and
identifiability.

VI. A MEASUREMENT-BASED RESULT

For the application of the results of the previous section,
one needs to consider each node in the network, and examine
the paths from its out-neighbors to measured nodes. This
procedure may lead one to decide which node needs to
be measured. In particular, our results are useful to decide
which nodes need to be measured if one wants to identify a
particular transfer function.

In this section, we present a dual approach. We consider
a measured node and examine which transfer functions are
identifiable from that measured node.

Theorem 6.1: Let j be a measured node, and consider a
node i that has a directed path to node j. Then all transfer
functions along that path can be identified if there is no other
walk that connects i to j.
Proof: Let N∗i of Theorem 5.2 contain only the out-neighbor
of node i that is on the path to j mentioned in the theorem,
and let C∗ contain only j. There is no path from any node

3The vertex-disjoint condition applies also for the departure and arrival
nodes.



k ∈ N+
i \ N∗i to j, since this path concatenated with the

edge (i, k) would constitute another walk from i to j. The
result then follows from Theorem 5.2.

Theorem 6.1 is illustrated by the following example in
Figure 5; remember again that known signals ri are added
to each node, which are not represented on the figure. It
follows from this theorem that the 7 transfer functions on
the dashed green-colored paths can all be identified from
the measurement of node 9. If in addition node 7 is also
measured, then the 10 transfer functions of the network can
all be identified from the two measured nodes 7 and 9.

Fig. 5. Example illustrating Theorem 6.1: all transfer functions on the
dashed green edges can be identified from the measurement of node 9.

VII. CONCLUSIONS

All results so far on the identifiability of networks of
dynamical systems have been built on the assumption that
all nodes are measured. In this paper, we have addressed the
situation where not all nodes are measured, leading to several
interesting results and observations.

We have first shown that the node measurements needed
for network identifiability depend entirely on the topology
of the network. In doing so, we have observed that the
measurement of some nodes (the sinks) are indispensable
while other nodes (the sources) yield no information, so that
their measurement is useless.

We have then provided a series of results on identifiability.
Some of these are based on looking at a particular node and
its out-neighbors, and their paths to measured nodes; others
have addressed the question of which transfer functions can
be identified from the measurement of a particular node.

An important outcome of our work is that networks can
often be identified by measuring only a small subset of
nodes. Our main result, based on the first approach, is a
necessary and sufficient condition for identifiability of the
transfer functions of all edges leaving a particular node. This
result paves the way for an algorithm that lets one decide
which transfer functions can be identified from a given set of
measured nodes. Our results also yield an easy solution to the
problem of identifying just one transfer function embedded
in the network. These and other extensions of the present
work will be the object of a comprehensive journal paper.

Future research questions will include the search for the
sparsest set of measured nodes that allow identification of
the whole network as well as the handling of noise.

VIII. APPENDIX

This section contains the proofs of the results whose proof
is not in the main text, as well as some technical lemmas
required for these proofs.

Proof of Theorem 4.1
1) The first part follows from the definition of a source and
from the calculation of T from such G using (5). The second
part follows from (8). The only way to identify the transfer
function on an outgoing path from a source i is if an external
input signal ri is applied at the source.
2) The first part follows from the definition of a sink and
from the calculation of T using (5). Let node i be a sink and
let node k be connected to i by a nonzero transfer function
Gik. Since node i is a terminal node of the path from k to
i, no node other than i can give any information about Gik.
On the other hand, applying an excitation signal ri to sink i
yields no information, since no path leaves node i.

Proof of Theorem 4.3
Necessity for the fully connected case is obvious, since to
identify n = L(L− 1) unknowns we need at least p = n

L =
L − 1 measurements. We derive the sufficient condition by
contradiction.

Suppose first that the network has at least one source.
From Theorem 4.1 it follows that measuring a source gives
no information. Thus, measuring all nodes except a source
yields the same information as measuring all nodes, which
proves the result for networks that have a source.

Suppose next that the network has no source. We know
from Theorem 4.1 that all sinks need to be measured. Since a
connected network cannot have L sinks, we now consider all
combinations of L− 1 measurements that contain all sinks.
Suppose that no such combination yields network identifia-
bility. This means that for any (L−1)×L selection matrix C
there exists a network matrix G(q), different from the true
G0(q), and a corresponding matrix T (q)

∆
= (I − G(q))−1

different from T 0(q)
∆
= (I −G0(q))−1, such that

CT (q) = CT 0(q) with T (q) 6= T 0(q) (13)

In particular this holds for C = [ IL−1 0 ].
This implies that the first L− 1 rows of T (q) and T 0(q)

are identical but that their last rows are different. Notice that
the last node, wL, is neither a source nor a sink. Let us then
partition T (q) and T 0(q) as follows:

T 0(q) =

(
T 0

11 t012

t021 t022

)
and T (q) =

(
T 0

11 t012

t21 t22

)
(14)

where T 0
11 is of size (L−1)×(L−1), t012 is a (L−1) column

vector, t021 and t21 are (L− 1) row vectors, and t022 and t22

are scalars. We apply the block matrix inversion lemma:[
A b
c d

]−1

=[
A−1 +A−1b(d− cA−1b)−1cA−1 −A−1b(d− cA−1b)

−(d− cA−1b)−1cA−1 (d− cA−1b)−1

]



to the two partitioned matrices of (14) and we note that A =
A0, b = b0. Recall now that [T 0(q)]−1 = (I − G0(q)) and
[T (q)]−1 = (I − G(q)) and that the diagonal elements of
(I −G0(q)) and (I −G(q)) are equal to 1. It then follows
that

d− c(A0)−1b0 = d0 − c0(A0)−1b0 = 1 (15)

Inserting this into the (1, 1)-block matrix, and using the
properties of the diagonal elements of (I − G0(q)) and
(I −G(q)) we have

diag([A0]−1 + [A0]−1b0c[A0]−1) (16)
= diag([A0]−1 + [A0]−1b0c0[A0]−1) = (1, . . . , 1)

Since node L is not a sink by assumption, it follows that the
elements of [A0]−1b0, which are the L− 1 first elements of
the last column of −G0, are not all zero. It then follows from
(16) that (c−c0)[A0]−1 = 0 and hence c = c0, i.e. t21 = t021.
Inserting this into (15) yields d = d0, i.e. t22 = t022.

Proof of Theorem 4.4
By Theorem 4.1 it is necessary to measure all the sinks
for any graph, so it remains to prove sufficiency. In a tree
every sink will be the terminal node of a path. Given that
all transfer functions Tji from any input ri to any sink is
identifiable, in order to determine all the Gkl in that path
one can proceed backwards from the sink up to the root,
since the transfer function from any given ri to the sink is
just the product of the Gkl of each edge in the path from ri
to the sink.

Proof of Theorem 4.5
Let η be the cardinality of I and consider, without loss of
generality, that the nodes in the cycle are labeled i = 1, . . . , η
sequentially, that is, there is a link from each node i to node
i + 1, so that the η transfer functions to be identified in
the cycle are Gi+1,i, i = 1, . . . , η − 1 and G1,η . Since
an external excitation signal is assumed to enter each node,
input-output identification provides all closed-loop transfer
functions Ti,j , i, j ∈ I, none of which are zero. Indeed,

Ti,j =
1

∆
Gi,i−1Gi−1,i−2 . . . G1,ηGη,η−1 . . . Gj+1,j , i < j

Ti,i =
1

∆

Ti,j =
1

∆
Gi,i−1Gi−1,i−2 . . . Gj+1,j , i > j

where ∆ = 1 − G1,ηΠi=1,...,η−1Gi+1,i. Now, suppose we
measure only the “last” node i = η. Then we have identified
all the transfer functions

Tη,j =
1

∆
Gη,η−1Gη−1,η−2 . . . Gj+1,j , j = 1, . . . , η − 1

Tη,η =
1

∆
Now, notice that

Gj+1,j =
Tη,j
Tη,j+1

, j = 1, . . . , η − 1

which gives each one of the Gk,l in the loop from G2,1 to
Gη,η−1. The same reasoning holds if we measure any other
node, since it is just a question of relabeling the nodes.

For the next lemmas, we use the adjacency matrix A of
a directed graph, which we define by Aij = 1 if there is an
edge from j to i and 0 else. The following Lemma is standard
in graph theory and can easily be proved by recurrence on
k.

Lemma 8.1: Let A be the unweighted adjacency matrix
of a directed graph. For any integer k, [Ak]ij denotes the
number of walks of length k from j to i. In particular
[Ak]ij = 0 for all k if there is no path from j to i. Similarly,
[Gk]ij = 0 for all k if there is no path from j to i.

Lemma 8.2: Let A be the unweighted adjacency matrix
of a directed graph consisting of d vertex-disjoint directed
paths, respectively from nodes s1 to t1, s2 to t2, . . . sd to td.
Then [(1−A)−1]tisi = 1, and [(1−A)−1]tisj = 0 if i 6= j.
As a consequence, the restriction of (1−A)−1 to the d lines
t1, t2, . . . and the d rows s1, s2, . . . is a permutation matrix,
which is nonsingular (determinant 1 or -1).
Proof: Let q be the length of the longest of the d disjoint
paths in the graph. Since these paths are directed and disjoint,
there is no walk of length larger than q, hence it follows from
Lemma 8.1 that Aq+1 = 0. Therefore,

(I −A)−1 = I +A+A2 + · · ·+Aq (17)

It then follows from (17) and Lemma 8.1 that [(I −A)−1]ij
is the number of walks of length L or less between j and i.
In particular, (i) there is no walk between si and tj (j 6= i),
so [(1−A)−1]tisj = 0, and (ii) there is exactly one walk of
length q or less from si to ti, so [(1 − A)−1]tisi = 1. The
restriction of (1 − A) to the rows t1, t2, . . . and columns
s1, s2, . . . contains only values 0 and 1, with exactly one
1 in each row and each column, and is thus a permutation
matrix, which is nonsingular (Stated otherwise, for each row
there is exactly one column with a 1, and the rest is 0).

Proof of Theorem 5.1
Since our aim is to prove a generic condition, we just need
to show that the system in condition (12) has a rank d+

i for
at least one choice of transfer functions. For the considered
node i, define Ḡkl = 1 if the edge (l, k) belongs to one of
the paths mentioned in the claim, and 0 else. The matrix
Ḡ is then the unweighted adjacency matrix of the subgraph
containing only the vertex disjoint paths mentioned in the
statement of the proposition, and is also a particular possible
instance of G0. Now define T ∆

= (I − Ḡ)−1. It then follows
from Lemma 8.2 that the restriction T̃ of T to the rows
corresponding to the end points of the paths (which are
measured) and the columns corresponding to their origins
(i.e. the out-neighbors of i) has full rank, i.e. its rank is
d+
i . (Note that since the paths from the d+

i out-neighbors
of i are disjoint, they define d+

i measured nodes, and hence
this restriction is a square matrix.) But this matrix T̃ is a
submatrix of the matrix T in the system∑

k∈N+
i

Tjk∆ki = 0,∀j ∈ C (18)

Thus, this matrix T has full row rank, and hence condition
(18) implies ∆ki = 0,∀k ∈ N+

i . Since this matrix is



obtained by simple (analytic) operations from the Gij , having
full row rank is a generic property. Hence the fact that T
has full row rank for Ḡ (i.e. one particular choice of G0

consistent with the network structure), implies it has full
row rank for almost all choices of G0 consistent with the
network topology.

Proof of Theorem 5.2
It follows from the second part of Lemma 8.1 and from
T 0 = (I − G0)−1 = I + G0 + (G0)2 + . . . that condition
(ii) implies T 0

jk = 0 if j ∈ C∗ and k ∈ N+
i \N∗i . Hence the

restriction of the equation system in (12) to the rows of C∗

does not have any nonzero coefficient for nodes in N+
i \N∗i ,

and can be written∑
k∈N∗

i

T 0
jk∆ki = 0,∀j ∈ C∗ (19)

The same argument as in the proof of Theorem 5.1 shows
that the matrix of this system is generically nonsingular. As
a result C(I −G)−1 = C(I −G0)−1 implies that ∆ki = 0
for every k ∈ N∗i , i.e. we recover all transfer functions on
the edges that link i to the nodes of N∗i .

Proof of Theorem 5.3
For a given node i, let us partition the indices in three sets
S,B, P in the following way: B is the set described in the
hypothesis of this theorem. S is the set of nodes that can be
reached from a node in N+

i without going through any node
of B (it does thus not necessarily contain all the nodes of
N+
i , as some of them might be in B), and P is the set of

remaining nodes. By construction of this partition, (i) there is
no edge joining S directly to P , (ii) all measured nodes are
either in P or B, and (iii) all neighbors of i are either in S or
B. It follows from (ii) and (iii) that the matrix of the system
in (12) is a submatrix of TP∪B,S∪B . And it follows from
(i) and Lemma 8.3 applied to G with the partition S,B, P
that the rank of TP∪B,S∪B is generically at most b < |d+

i |.
Hence condition (12) is generically not satisfied.

Lemma 8.3: Let G(q) be a L×L transfer function matrix
and {1, . . . L} = S∪B∪P be a partition of the indices such
that every path from S to P goes through one of the b := |B|
nodes of B, i.e. Gij = 0 if i ∈ P, j ∈ S, or in shorthand
notation GPS = 0. Suppose (I − G) is invertible and that
I−GPP is invertible (which is generically the case), and let
T = (I − G)−1 as before. Then the matrix TP∪B,S∪B has
rank at most b.
Proof: After re-ordering of the indices, the matrices are

G =

 GPP GPB 0
GBP GBB GBS
GSP GSB GSS

 and (20)

T
∆
= (I −G)−1 =

 TPP TPB TPS
TBP TBB TBS
TSP TSB TSS

 (21)

We focus on the rows P and lines S, keeping in mind that
T = I +GT . We have

TPS = IPS + [GT ]PS = 0 +GPPTPS +GPBTBS + 0TSS
Remembering that (I − GPP ) is assumed invertible, it
follows that

TPS = (I −GPP )−1GPBTBS . (22)

Similarly, there holds

TPB = IPB+[GT ]PB = 0+GPPTPB+GPBTBB+OTSB ,

from which follows

TPB = (I −GPP )−1GPBTBB . (23)

We then obtain from (22) and (23)(
TPB TPS
TBB TBS

)
=

(
(I −GPP )−1GPB

I

)(
TBB TBS

)
,

(24)
which proves the claim of the Lemma since (TBB , TBS) has
a rank at most b, its number of rows.
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