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Abstract

The iterative method labelled Correlation-based Tuning (CbT) is corsidierthis paper for tuning linear time-invariant multivariable
controllers. The approach allows one to tune some elements of the cantrafisfer function matrix to satisfy the desired closed-loop
performance, while the other elements are tuned to mutually decouple serldimop outputs. Decoupling is achieved by decorrelating
a given reference with the non-corresponding outputs. The contmdiermeters are calculated either by solving a correlation equation
(decorrelation procedure) or by minimizing a cross-correlation fundiorrelation reduction). In addition, the preferred way of exciting a

2 x 2 system for CbT is investigated via the accuracy of the estimated controtlempgers. It is shown that simultaneous excitation of both
reference signals does not improve the accuracy of the estimatedlmmparameters compared to the case of sequential excitation. In
fact, one must choose between low experimental cost (simultaneoitatien) and better accuracy of the estimated parameters (sequential
excitation). The theoretical results are illustrated via three simulation studies.

Key words: Correlation-based tuning, data-based controller design, multivariableot, instrumental variables, decoupling, asymptotic
variance expressions.

1 Introduction An alternative to model-based control design is to use the in
formation collected on the pladtrectlyfor controller design

or controller update, i.e. without the intermediate stepstiF
mating a plant model. This idea stems from the area of direct
adaptive control, in particular from self-tuning regudedi
(STR) and model reference adaptive control (MRAC) [2].
Recently, several methods have appeared in the field of data-
driven controller tuning; these methods include controlle
unfalsification [20,1], Simultaneous Perturbation Stacha
tic Approximation control (SPSA) [24], Iterative Feedback
Tuning (IFT) [8] and Virtual Reference Feedback Tuning
(VRFT) [4]. An important issue in this research area regards
the way to cope with the noise that necessarily corrupts the
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The essential ingredients of any control design procedhure i
clude the acquisition of process knowledge and its efficient
integration into the controller. Reliable models of indiadt
plants are often difficult or impossible to obtain due to the
high complexity of the plants and/or the excessive cost of
modeling. On the other hand, the controllers designed on
the basis of reduced-order models might well lead to un-
satisfactory performance when applied to real plants due to
model mismatch.

Recently, another controller tuning approach was proposed
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tems from the external reference signal. Ideally, the tegyl ization of the closed-loop system”), while the elements on
closed-loop output error contains only the contributiothef the main diagonal are tuned to provide the desired closed-
noise and thus perfect model-following can be achieved. It loop performance. The fact that the decoupling is done in a
is shown in [12] that the sensitivity functions of the acl@dv ~ natural way by decorrelating a given reference from the non-
closed-loop system tend asymptotically to those of the de- corresponding outputs without the need for additional expe
sired closed-loop system. The analysis performed in [15] iments makes CbT particularly appealing for tuning MIMO
shows that the CbT controller is asymptotically insensitiv controllers. The controllers on the main diagonal feathee t

to noise. One may argue that this insensitivity to noise im- same characteristics as those for SISO systems. The parame-
plies that CbT is not appropriate for disturbance rejection ters of the decouplers and controllers are asymptotically n
However, since the output sensitivity function of the re- affected by noise. A single experiment per iteration is suffi
sulting closed-loop system approaches that of the desiredcient for tuning all controllers and decouplers regardiefss
closed-loop system, it is possible to handle the disturbanc the number of inputs and outputs since all reference inputs
indirectly by imposing disturbance rejection specificaio  can be excited simultaneously.

on the desired output sensitivity function. An adaptatién o

this approach to the disturbance rejection problem has beenmyo ways of computing the controller parameters can be
treated in [15] in the situation where the disturbances can gistinguished, depending on the complexity of the corgroll
be measured or where it is possible to inject a test signal inyith respect to the plant. When the controller structure i ab
closed-loop operation. A theoretical presentation of CbT i  tg perfectly decorrelate the closed-loop output error ftben
given in [12]. reference signal, the controller parameters can be cédzlila

) ~as the solution to a system of correlation equations. This
CbT belongs to gradient-based methods and uses an idengpproach is called “decorrelation procedure”. When this is
tified model for computing the gradient of the underlying not possible, the controller parameters are computed so as
criterion. Thus, it can-not be classified as a “model-free” {5 minimize a correlation criterion; this approach is labe!
method. However, since a model is not used explicitly to “correlation reduction”. The features of these two varsant

compute the controller, it is not “model-based” either. €on  4re discussed and compared in terms of applicability to-prac
sidering that the controller parameters are computedttlirec  tjcal control situations.

using closed-loop data, the approach can be considered as

data-driven’. Our work shows that CbT offers a considerable advantage in

terms of decoupling compared to other data-driven control
design methods in which the controller parameters are cal-
culated by minimizing the norm of some error signal, such
as is done with the IFT or VRFT methods. Using the latter
methods, perfect decoupling cannot be achieved due to the

A common approach to multivariable control is to proceed
in two steps: first a “decoupler” is designed to eliminate
process interactions, then a set of controllers is tuned for
the “diagonalized” plant to achieve specific performance ob

jectives [21]. The design of decouplers and controllers us- nature of the underlying criterion that introduces a traffe-

ing standard model-based methods may be very sensitive t . L . L
modeling errors and uncertainties. On the other hand, Sincgpetween the decoupling objective and the noise rejectien ob

data-driven methods use data collected in closed-loop op—JeCtive' In contrast, the CDT criterion is'asymptoticahylde-. .
eration, these data reflect the local behavior of the plant in pendent of the noise so that the resulting controller sasisfi

the vicinity of the present operating point (with the acting the decoupling specifications exactly, provided that itfis o

controller). The use of the present closed loop system as anappropnate order.

“implicit model” for computing decouplers and controllers . o i . .

is likely to improve the performance. However, the diffigult ~An additional contribution of this paper is to provide anlana
with data-driven gradient-based methods is the computatio YSis of the variance of the estimated controller paraméters

of the gradient of the criterion. Typically, the number of ex WO cases of excitation. The case where all reference signal
periments needed to estimate the gradient increases with th aré excited simultaneously is compared to the case where
number of plant inputs., and outputs:,,. For example, the the elements of the reference signal vector are e>50|ted one-
IFT approach typically requires,n, + 1 experiments for ~ by-one; the latter type of excitation will be called “sequen
each iteration of the controller parameter vector [7], even tial excitation”. Our analysis shows that, as a result of the

though some efforts have been made recently to reduce thedecoupling specifications, the simultaneous excitatioallof
number of experiments with this approach (for more details references increases the variance of the estimated dentrol

see [5,6,10]). parameters compared to the case of sequential excitation.

The main contribution of this paper is to extend the CbT The remainder of the paper is organized as follows. Some
method developed in [11,12,15] to the design of multivari- notations and the basic idea of the multivariable CbT ap-
able LTI decoupling controllers. For simplicity of presen- proach are introduced in Section 2. Section 3 deals with the
tation, an equal number of inputs and outputs is assumed.tuning of multivariable LTI controllers by both the decor-
The off-diagonal elements of the controller transfer fiorct relation procedure and the correlation reduction procedur
matrix are tuned to eliminate interaction between the con- Simulation results are presented in Section 4, and conclud-
trolled outputs (in the sequel this will be called “diagonal ing remarks are given in Section 5.



where

‘ Achieved Closed-Loop System o(t) | . O @ ) (© (D) (na—1)
i, = [Pk s Tk s Tk oSk Sk -85 ] (B)

r(t)l _e(pt) u(p,t)
K(p) — @G

Thus,n, = 4(n, + ny).

The lower part of Fig. 1 shows the reference madgldefin-

ing the desired response of the closed-loop outpu{s) to

the reference signalgt). In this paper, we consider that this
desired reference model is diagonal. It can be constructed,
for example, as the closed-loop system obtained from the
feedback interconnection of a modd) of the plantG and

Fig. 1. Achieved multivariable closed-loop system and its reference @ controllerKy:

model My

2 Preliminaries Mdé<Md” 0
0 Mase

) = (I 4+ GoKo) 'GoKy.  (6)

2.1 System description and notations

with I € R?*2 being the identity matrix. It is therefore as-
For the sake of simplicity, and without loss of generality, i Sumed that, and( are diagonalizable by output feedback.
is assumed that the plant has two inputs and two outputs.Necessary and sufficient conditions for a linear multivari-
Consider the block diagram of the model-following prob- able system to be diagonalizable by output feedback can be
lem presented in Fig. 1. The upper part shows the achievedfound in [25] and references therein.
closed-loop system with the unknown true plant whose out- )
puts can be described by the following LTI multivariable The closed-loop response can be written as:

discrete-time model:
y(pst) = Tr(t) + Sv(t), )

y(t) = Glg)u(t) + v(t) () |
and the control error is:
wherey(t) € R? denotes the outputs of the true plant at
timet, u(t) € R? the control signalsy(¢) € R? the distur- e(pt) =r(t) —ylp,t) =S (r(t) —v(t)),  (8)
bances on the outputs, att{g—!) € R?*? a transfer func-
tion matrix withg—! being the backward-shift operator. Itis WhereS denotes the output sensitivity function:
assumed that(t) is a zero-mean quasi-stationary stochastic

process. S=(I+GK)™! 9)
The 2 x 2 controller transfer function matri¥ (¢!, p) is and7 the complementary sensitivity function:
parameterized using the parameter vegioe R", and
r(t) € R? represents external reference signals. T=(I+GK) 'GK. (20)
The (4, k) element of the controller transfer function matrix
is: . The closed-loop output error is defined as:

Kilg ) =290 50 1s

Rj (q 7/)) soe(pa t) = y(p7 t) - yd(t) (11)

where
Ri(qgt,p)=1+ rﬁ)q—l 4ot T‘J(_Z’”)q_"“ Notational Remarks

i -1 _ 0 (1) —1 L. (ns—1) —po+1 ) ) )
Sie(a™ s p) =850 T 85007+ sy ®) The signals collected under closed-loop operation usiag th
. o ) controller K'(p) will carry the argumenp. The elements of
Itis assumedi,lfor simplicity of notation, that the four con- signal vectors and transfer function matrices will carrg th
trollers K.(¢™*, p), j = 1,2, k = 1,2 have the same num-  position as a subscript. For exampe(p, t) will denote the
ber of poles and the same number of zeros. Moreover, it is jth component of the output vectgt p, t). In contrast, the
assumed that the controllers have no common parameterseoefficients in numerator and denominator polynomials of
The controller parameter vectprcan be written as follows:  the controllersk . (¢, p) will carry the position as a su-

. perscript: see (5). Furthermore, the backward-shift dpera

Pl = [0ky 1 Prcras Pliays Phas) 4) ¢! will be omitted whenever appropriate.



2.2 Multivariable correlation-based tuning

Consider the controller structure presented in Fig. 2. &inc
the desired sensitivity functionS; and7; are in diagonal
form, it is required tha&G K be diagonal. Hence, the follow-
ing design specifications will be imposed on the elements
of K:

The diagonal element&;;(p), j = 1, 2 of the controller
transfer matrix K (p) are tuned to provide satisfactory
tracking ofya: (t) by y1(p,t) andyaz(t) by y2(p,t), re-
spectively.

The off-diagonal element&;.(p), j # k, j,k = 1,2
are tuned to be decouplers. That is, the contrdiles(p)

is tuned to eliminate the influence of the reference sig-
nal ro(t) on the outputy; (p,t). Hence, if the decoupler
K51 (p) is tuned similarly, the mutual influences@f(p, t)
andys(p, t) are suppressed.

Consider first the tuning of the decoupléf»(p). When
applying the controlleik, defined in (6), to the true plant
excited by the reference signglt), the outputy, (p,t) con-
tains the contributions due to the reference signals) and
ro(t) and the disturbance(t). The reference signals (t)
andry(t) are mutually independent and uncorrelated with
v(t). Hence, the idea is to adjust the parameter&of(p)

to make the outpug; (p, t) uncorrelated with the reference
signalry(t). The resulting decoupler provides(p, t) that
contains only the contributions due te(t) andr(t), i.e.
the influence o2 (¢) andra(t) ony1(p, ) is eliminated.

Consider next the tuning ak(11(p). Again, with K, op-
erating in the loop, the observed closed-loop output error
€0e1(p, ) contains a contribution due to the disturban¢e

and another contribution stemming from the difference be-
tween G and Gq that, in turn, has two parts originating
from r(t) andry(¢t). The idea is to adjust the parameters
of K11(p) so as to make,.1(p,t) uncorrelated withr (¢).
Since the parameters @€, (p) and K;2(p) are tuned si-
multaneously, the effect of modeling errors excitedrbft)

is eliminated by the decoupléti2(p). Hence, the resulting
controller compensates the effect of modeling errors to the
extent that the closed-loop erreg.;1(p, t) contains only the
disturbance filtered by the closed-loop system. This way, th
outputy; (p,t) will achieve the desired output; (¢).

A similar reasoning follows fo51 (p) and Ko (p) that are
related to the outpugz(p, t).

3 CbT for the decoupling of MIMO systems
Let the cross-correlation function be defined as follows:

F(p)=E {F(p)} (12)

e1(p,t) Ku(p) .~ u(pst)
Ka1(p)
Ki2(p)

ea(p,t) Konlp) LY ua(p,t)

Fig. 2. Multivariable2 x 2 controller. Signalz: (p, t) andez(p, t)
are defined in (8).

whereE{-} is the mathematical expectation, and the vector
F(p) € R™ reads:

FT(p) = [fi1, (P)s e, () Fics, (P) Ficny ()]

with

(13)

_ 1
ijk (p) = N Z CKjk (P, t)ngk (p7 t)
t=1

where N is the number of data angk, (p,t) € R"< the
vector of instrumental variables associated with the con-
troller K1 (p). Note thatn: = n, +ng, andn, = 4n¢. The
componentfx,, (p) € R™ corresponds to the controller
Kji(p). The way(k, (p, t) and the variabl€x , (p,t) € R
are constructed depends on whether the contraéilgr(p)
is a diagonal controller or an off-diagonal decoupler:

(14)

e j=k: K,;(p)istuned so as to reduce the correlation be-
tweene,.;(p,t) andr;(t). Taking into account the fact
that the tuning of the controller&;;(p) and the decou-
plers Ki(p) is done simultaneously, the outpuf(p, t)
will, in the case of perfect decorrelation, follayy; (t) up
to the effect of the disturbance. Thus, the vector of instru-
mental variablegy; (p, ) should be chosen to be corre-
lated with the reference signaj(¢) and independent of
the disturbance;(t). The variablefy ; (p,t) is chosen
aSeoe;(p, t).

e j # k: To eliminate the influence afi(t) ony;(t), it is
sufficient to decorrelate these two signals, (g,, (p,?)
should be correlated with, () and&x, (p,t) = y;(p,t).

Hence, the variabl€x, (p,t) is constructed as follows:

{

and the vectors of instrumental variablgs,, (p, t) for j = k
andj # k are both a function of(¢).

j=Fk
J#k

goej(pa t)7
yj(pv t)7

ngk (pv t) = (15)

The parameters of the controller are computed either as the
values that make the cross-correlation function (12) etqual



zero or by minimization of a norm of this function. Observe
that, in either case, the underlying criterion is nonlingeh

respect to the controller parameters. Certain assumption
that are needed for the convergence and variance analysi

are introduced next.

Assumptions

(i) The signals in the loop are bounded, i.e. the controllers

stabilize the closed-loop system at each iteration.
(i) The reference signals(t) are persistently exciting of
sufficiently high order with respect to the number of con-

troller paramteres and are uncorrelated with the distur-

bancesv(t). Furthermore, the elements of the reference
signal vectorr(¢) are assumed to be mutually indepen-
dent.

(iii) The decorrelating controllefi’* exists and belongs

to the set of parameterized controllers (the corresponding

parameters will be denoted a¥).

3.1 Decorrelation procedure for MIMO systems

Under Assumption (iii), the parameters of the controllatth
perfectly decorrelatesg, (p,t) from £k, (p,t) are com-
puted as the solution to the following system of correlation

equations:
F(p) =0 (16)

whereF(p) is defined by (12)-(14). A solution to (16) can be
found using an iterative stochastic approximation proocedu
for example the Robbins-Monro algorithm [19]:

(17)

piv1 = pi — viF(pi).

where the sequence of positive numbgre R is selected to
o0

satisfy the following convergence condition _~; = oo
=1

oo
and » 7 < oo.

i=1

It is shown in [12] that, under Assumptions (i)-(iii) and as-
suming thatF'(p) possesses continuous partial derivatives
of first and second order with respectdathis scheme con-

verges to a solution of the correlation equations (12), pro-

vided thatF'(p) is monotonically increasing in the vicinity
of the solutionp*, i.e. the following condition holds:

p=p*

The condition (18) is crucial for the convergence of the
algorithm (17) to a solution of (16). One way to satisfy this
condition is detailed in the next subsection.

9F (p)

5 (18)

Q") =E {

3.1.1 Positive-definiteness 6f(p*)

SWe now investigate the structure@fp). It follows from (4),
13), (14) and (18) thaf)(p) €

€ R™*" can be expressed
as:

K
Qi

K
Qs

K
Qo

K
Qi

K
Qriy
K
Qs
K
Qrar

K
Qi

K
Qi

K-
Qi

K
Qx,

K.
Qs

K.
Qi

Ko
Qi

K
QK

K.
Qi

(19)

whereQﬁj:n éE{&ijk (p)/0pk,,, } can be expressed as:

In the vicinity of the solution, the first term in (20) van-
ishes since the derivative of the instrumental variabléorec
Cr;, (p,t) is not correlated witt€x , (p, ). Note also that:

0 ’
Z <K7A p;t (

Kmn

agK,k(Pa t)
Opk

Qi t)

Cipe t)} (20)

mn

k.. (p,t ;
OPK OPK
At the solutionp*, (7)-(10) lead to:
((p) ) =S(p")G (p() ) e(p*,t) (22)
aPKmn Pt 8PKW, Pt
wherep = 1,...,n, + ns. Considering that the subvectors

PK,., aremdependentandthﬁnsd|agonalap it follows

from (22) and the second equality in (8) that:

9 (p, t)
a/’K

(23)

mn men

whered denotes that the signal on the left-hand side of this
operator is a function of the right-hand side signal. Furthe
more, according to the discussion leading to (15), one can
write:

Crejr (s 1) Loy (t). (24)

Using the relationships (23) and (24), the expression (20),
and the fact that(¢), r2(t), v1(¢t) andwvs(t) are uncorre-
lated, it follows that

Kn = 05

k#n (25)



i.e. the matrixQ(p*) takes the following form:

qu 0 Q§21 0
0 ng 0 ng
Q= | e TR (o)
QK21 0 QK21 0
0 Qi 0 Qg2
where
QK Nrk(t)vvk‘(t)' (27)

From (20) and (26), it is obvious that the choice of the
instrumental variablegy,, affects the positive definiteness
of Q(p*). Hence, it is important to take this fact into account
when constructing the instrumental variables. This will be
investigated next.

Choice of Instrumental Variables

In the case of SISO systems, the typical choice for the instru
mental variable vector is a noise-free estimate of the gredi

0y, /0pk..., Which guarantees the positive definiteness of
Q(p*). However, in the case of MIMO systems, the choice
of (k. (p,t) is less trivial since the aforementioned choice

choice of the instrumental variables specializes to finding
hl,, that makes

Qp*,hy,,) > 0. (30)
In this feasibility problem, it is necessary to evaluate
Q(p*, Iy, ) for different values offj. . Plugging (20),

(21), (22) and (28) in (26), it is obvious tha(p*, I, )
yj (p;t)

depends on the derivatlv%
ever, this derivative can be estimated using (22), wheye: (i
the transfer function matrig(p*) is replaced bys,; (i) the
unknown plantG is replaced by eithe€, or an identified

model G; (iii) the signale(p*, t) is replaced by its estimate
é(p*,t) = Sar(t).

In performing the experiments leading to the computation
of (k. (pst), €k, (1), i, (p) and F(p) required for
the application of the Robbins-Monro algorithm (17) (see
(13), (14)), the following question then arises: Is it bette
excite all reference signals simultaneously or in a sedalent
manner? This question is addressed in the next subsection,
where the accuracy of the parameter estimates arptingl
investigated as a function of the external reference signal
Tl(t) and’f'g(t).

that is unknown. How-

ensures only the positive definiteness of the elements on the3-1.2  Variance Analysis

principal diagonal of(p*).

Itis clear from (24) that the instrumental variables shded
chosen as signals obtained by filteringt). Therefore, the
instrumental variables can be generated using the follpwin
model structure:

nhfl

CKjk(p7t) = Z (}—l(q

=0

“re(t) b, (28)

wheren;, denotes the model ordef;(¢~!) is thel*" ele-
ment of a set of stable basis transfer functions la@g,gk the
corresponding weighting coefficient. The simplest choare f
these functions isF;(¢~1) = ¢~'. However, in order to re-
duce the model order, one can adopt

1

]:l(q_l) = 1_ qilfl

(29)

where the poleg; are chosen so as to incorporate some a

priori information regarding the underlying dynamics [18]
Another possibility is to use orthonormal basis functions
such as Laguerre or Kautz functions. Singg, (p,t) and
consequently)(p*) are linear with respect to the parameters
hﬁ(jk:, the problem of obtaining a positive definite matrix
Q(p*) can be formulated as a convex feasibility problem and
solved using Linear Matrix Inequalities (LMIs) [3]. Hence,
once the basis functiong;(¢—!) have been selected, the

The following theorem will be used.
Theorem 3.1 Assume that

(1) The iterative algorithm (17) converges 16 almost
surely asi — oo.

(2) The step sizeg; = ¢,

(3) All eigenvalues of the matrii =
a negative real part.

whereq is a positive constant.
31— aQ(p*) have

Then, the sequencei(p; — p*) converges asymptotically
in distribution to a zero-mean normal distribution with co-
variance

V =a? / Pz p el gy (31)
0
where
= lim E{F(p*)F"(p*)} (32)
Proof. The proof can be found in [17]. O

We now examine the structure of the matridesD andV
for our decorrelation procedure. Note that,pat p*, (15)
reduces to:

Sji(p™)v;(t), j=k
{755 (p*)r;(t)

+S5i(p*)v; (D)}, §#k

5Kjk(p’ t) = (33)



Considering that (t), r2(t), v1(t) andvs(t) are indepen-
dent, and using (13), (14), (32) and (33), leads after ditaig
forward but tedious calculations to:

P10 0 0
0 PK12 PK21
P(p*) _ 1;12 I;{m (34)
0 PK2112 PK2211 0
K
0 0 0 Pk
where
K 1 &
PKZm =B {]\/’2 Z CKjk (p’ t)SKjk (pa t)
t=1

N
X Z C}’Z;mn (pa S)EK'm,‘n, (p7 S)

s=1

1

}. (35)

Observe that the matriR (p*) = 51 —aQ(p*) has the same
structure ag)(p*) in (26). Due to (27), its elements satisfy:

(t), vi(1).

Finally, note that the covariance matitkcan be partitioned
as:

(36)

K11 Kiz y/K21 /K22
VK11 VKu VK11 VKu
K11 Ko Ko Koo
VK12 VK12 VK12 VK12
K11 Ki2 y/ K21 Koo
VK21 VK21 VK21 VKzl

K
VK22

(37)

ViR Vi Vi

Sequential vs. Simultaneous Excitation

We now consider two different cases of excitation: sequen-
tial and simultaneous excitation. In the case of sequestial
citation, the elements dk (¢!, p) are tuned in two phases.
In the first phase, the closed-loop system is excited, )
while ry(t) is kept constant, and the parameterd@f; (p)
and K (p) are tuned. In the second phasg(t) is excited
while 71 (¢) is kept constant, and the parametersif (p)
andK»(p) are tuned. In the case of simultaneous excitation
by r1(t) andrs(t), all elements ofK (¢~ 1, p) are tuned to-
gether. In the analysis that follows, these two cases are com

matrices and their elements will carry the subscrigt,
for examplevflg’jm, j k,m,n=1,2,0or D,.

b) The closed-loop system is excited by(t) andry(t) si-
multaneously; the corresponding matrices and their ele-
ments will carry the subscript”.

When onlyr, () is excited, it follows from (14) and (24) that
only the controllerd<;; (p) andK; (p) can be tuned. Hence,

our variance analysis will compare the variantg$'* and

Véﬁl for that case of excitation by (¢) only, with the cor-
responding variances obtained for the case of simultaneous
excitation. Furthermore, in order to enforce no signal path
from es(t) to uq(¢) andus(t), Ki2(p) and Koo (p) are set

to zero. This way, similarly to the case where the optimal
controllersK»(p*) and K2 (p*) are used, there is no influ-
ence ofy»(t) anduvy(t) ony, (t). Note, however, that it is not
possible to sef(12(p) and K22 (p) to zero when the MIMO
plant to be controlled is unstable. In this case, the tuning o
the controllerK (p) can only be performed by exciting both
components of-(¢) simultaneously.

Next, the following result can be established.

Theorem 3.2 Consider the tuning of the parametesg, ,

and pg,, of the controllersK71(p) and K (p). Let the
components (¢t) and () be persistently exciting of suf-
ficient order and independent in the case of simultaneous
excitation. Then, the covariance matrices of the parameter
estimatesk,, and px,, can only increase by addition of
the second excitation; (), i.e.

VK11 > VK11

K21 Ko
b,K11 = "a,K11 and Vb,Kzl = Va,Kzl (38)

Proof. For simplicity, leta in (31) be set to 1. Now, observe
that the matrice$’, D and P are related by the following
Lyapunov equation [9]:

P+ DV +VDT =0. (39)
Due to the specific form ab and P, this expression can be
partitioned into two separate block-equations, one of tvhic
includes the variancel,” !t and V22" as follows:

pared in terms of the asymptotic accuracy of the parameters

of Kll(p) anngl(p).

For clarity of notation, we distinguish between the follagi
two cases:

a) The closed-loop system is excited by a single reference

signal, say- (¢); for simplicity, it is assumed that the other
reference signat (), is equal to zero; the corresponding

P+ DV +VDT =0, (40)
where
K K K
5 _ Pk g P Dyt Dyt (a1)
0 P2 Dyt D2
and
K4 K
 — Vi Via ) (42)
v v



Equation (36) indNicates thdd depends om(t) but not on
ro(t). Therefore,D is identical for both cases of excitation,

Remarks:

i.e. Da — Db- Furthermore, since at the solution of (16) the e This result can be eXplained IntUItlvely as follows. Con-

closed-loop system is perfectly decoupled, it follows from
(24), (33) and (35) thanfl '! is also identical for both cases

of excitation. Let us now considé??jll. Replacing (24) and
(33) in (35) gives:

N
PII((;: =E {]\12 Z <K21 (Tl (t)v P t) {/T22 (p*)TQ (t)
t=1

N
+ Saa(p*)v2(t)} X D iy (r1(8), s 5)
s=1

{T22(p")r2(s) + S22(p*)va(s)}} - (43)

It can be concluded from this expression that the contidouti
of r(t) to Pf;f is positive definite. This contribution will
be denoted a&PII{{;. Therefore, one can write:

0 O - -
+ SEP,+AP  (44)
0 APg?

whe[eAf’ > 0. Similarly, for the covariance matricd§,
andV;, we haveV;, = V, + AV, which leads to:

Pb'i‘Dbe-i-%Dg =
(Pu+AP) + Dy (Vo AV) + (Va+ A7) DI =
AP + DyAV + AVD] =0 (45)

The last equality can be written more illustratively as:
AV = / eDve AP Dz gy, (46)
0

Itis obvious that ifAP > 0 thenAV > 0[27]. The inequal-
ities (38) follow from the fact that any principal submatrix

of a positive semi-definite matrix is positive semi-definite °

Theorem 3.2 states that the presence of the compepént

does not improve the accuracy of the parameters related to
the controllerss1;1 (p) and K21 (p). In fact, the accuracy can
only be reduced. This result is rather interesting takirig in

sider the instrumental variable method in the field of sys-
tem identification. The expression for the variance of the
parameter estimates reads [23]:

Prv = Ry PoRyyF 47)

with

Pe = o®E{[H(gYCOIHEG YO} (48)

and

Ry = E{C()@" ()} -
Here(t) denotes the noise-free estimate of the regressor
vector(t), H(q~!) a noise model, and? the variance
of the zero-mean noise. Considering that the instrumen-
tal variables are filtered versions of the excitation signal
one can conclude that the power of the excitation signal
has two opposite effects on the variance of the parame-
ter estimates. An increase in the power of the excitation
signal implies (i) an increase i via ((t), which in
turn increases the variandgy, and (ii) an increase of
the modulus ofRy via () and ¢(t), which decreases
the variance’;y sinceR;y enters as an inverse quadratic
form in the expression aP;y . In the case of a zero-mean
white noise excitation, the overall effect is that the vari-
anceP;y decreases as the variance of the excitation signal
increases. For more details, the reader is referred to [23].
On the other hand, one can observe from (43) and (44) that
ro(t) affectsAP the same way it affect®- in (48) via

C(t). Itis also clear that the effect df P on the variance

of the controller parameter&V in (46) is similar to that

of Po on Pyy in (47). However, due to the decoupling of
the outputsy, (t) andy(t), Dy in (46) is insensitive to the
changes in2(t). Hence, only the first effect mentioned
above is present, i.e. the presence ) increases the
variance of the estimated controller parameters.

A comparison of simultaneous and sequential excitations
shows that (¢) acts as an additional disturbance for the
tuning of the decoupleKy; (p). That is, the addition of
this reference deteriorates the signal-to-noise ratidhfer
estimation ofi5; (p) and, by cross-correlation, influences
negatively the variances of the other elements of the con-
troller transfer function.

For systems wheré/; is not diagonal, i.e. decoupling is
not part of the control design specifications, both effects
of the power of the excitation signals on the variance of
the parameter estimates are present.

This section has presented a variance analysis for the pa-
rameters of a multivariable controller tuned using the CbT

account the work of the same authors where, in the caseapproach. Two cases of excitation have been considered for
of direct closed-loop identification using prediction @rro 2 x 2 systems. This analysis indicates that the addition of the

methods, it was shown that the additionreft) could only
improve the variance of the estimated parameters [16].

second reference signal can worsen the variance of the esti-
mated controller parameters. Of course, it is a user’s ehoic



to excite the elements oft¢) simultaneously or sequentially.  3.2.1 Frequency-domain analysis

Simultaneous excitation provides significantly smaller ex

perimental cost. Sequential excitation, on the other hand, In this section, the properties of the achieved closed-loop

implies two experiments per iteration but provides more ac- system are investigated by frequency-domain analysiseof th

curate controller parameters. criterion (49). It follows from (12)-(14) and (49) that this
criterion can be expressed as:

3.2 Caorrelation reduction for MIMO systems 2 2
Jo) =S B{fk, J E{fx,} (D)
When a restricted complexity controller is used, it is not J
guaranteed that, at the solutigrf of (16), the variable L )
Ex,,(p", 1) is completely decorrelated from all past refer- BY substituting (50) in (14), (51) becomes
ence signals. For example, when only one parameter per con- )
troller K, is tuned,F'(p) represents the cross-correlation

betweenj‘c"Kjk(p,t) andr(t — 1). That is, at the solution J(p) = ZZ Z R%(jk(T) (52)
of (16) these signals are decorrelated only for the delay of J=lk=17=-n.

1, and not necessarily for other delays. In other words, the

resulting controller does not really decorreldtg,, (p*,t) where the cross-correlatioRx , () is defined as:
andr(t). One possibility around this problem is to increase

the order of the controller. However, if the controller arde Ry, (1) = E{&k,, (p, t)ri(t —7)} . (53)
is too high, this will induce pole-zero cancellations in the

controller transfer functions, which, in turn, will lead hoi- Applying Parseval’'s formula to (52) and letting. go to
merical problems in the algorithm. A more elegant solution infinity leads to:

would be to adopt a FIR controller structure. This way, even

in the case when the controller order is overestimatedether

2 2 T
are no numerical problems. lim J(p) = Y i/ 1B (e7) | ®7 (w)dw

Il
-
=~
Il
e

n,—00 £ 2
j=1k=1

To circumvent these difficulties, the controller parameter (54)
can be computed by minimizing the following correlation Wwhere
criterion:

T(p) = F"(p)F(p) (49) Bin(e’) = Ti(e?, p) = My (). (55)

with the cross-correlation functiof’(p) defined by (12)-

(14). The variableg;, (p, t) are chosen as in (15). ASSum- Nqu, from (54) and (55), the following observations can be
ing that the reference signals are known in advance, the in-5de:

strumental variables vector is chosen as a shifted verdion o

the reference signai (¢): e Criterion (49) is asymptotically unaffected by noise.

e The weighted discrepancy between the achieyednd
o (@) =[re(t+n),....me(@®),...,7(t —n2)]  (50) the desiredM; sensitivity functions is minimized, with
! the weight being the square of the reference signal power.
The discrepancy will be small at frequencies where the

with n, sufficiently large with respect to the number of con- reference signal power is large.

troller parameters, i.€n. + 1 > n, + n,. Observe that, | Ideally, B;.(e/%) — : : e

. ) ; ; ; , Bjk(e?*) = 0. Since the desired sensitivity
with t.h's ch0||ce of n;}strurgental v§r|ab]1es, the”number of function M, is diagonal, diagonal controllers provide
equations is larger than the number of controller parame- T.;(¢7°, p) = My;(e7*) and the off-diagonal decouplers
ters, i.e. the cross-correlation betweggn,, (p,t) andr(t) ovideT (el o) — 0. 7 £ k
is computed for2n, + 1 delays. This way, the underlying provideZ;i(e’*, p) =0, j # k.
system of cross-correlation equations is a better meagure o
the cross-correlation betweér ,, (p, t) andr(t) and, at the
same time, it is independent of the controller order.

Having analyzed the basic properties of (49), the next sub-
section presents a method for minimizing this criterion.

Remark: For the decorrelation procedure, the instrumental 3-2-2 Minimization of an upper bound of the criterion

variables were chosen so as to ensure positive-definitefiess =~ | o . . .
Q(p*). In contrast here, the required condition on positive- Minimization of criterion (49) is intractable since it inves
the product of expectations that are unknown. Therefore, we

definiteness oP‘é—(pp) . is automatically satisfied because yefine the following criterion:
J(p) is a quadratic criterion. Hence, the task of choosing the -
instrumental variables with this method is much simpler. Ju(p) = E{F"(p)F(p)} (56)



which can be minimized using the stochastic approximation The derivatives")g;f(i’” can be estimated using (22), where
method. It can be shown thal(p) < Ju(p), i.e. by mini-  the transfer function matrig is typically unknown but can
mizing (56) one minimizes an upper bound of (49) [12]. ¢ jgentified and replaced by its estimade Finally, the

- , estimateS‘(pi) is calculated using and the current value
A local minimum of (56) can be found as the solution of: ¢ the controllerk (p;).

IF (p) = Similarly, for the correlation reduction method witth suf-

4 _ _ ]

Tulp) = B { dp Flo)p =0 (57) ficiently large, the criterion (56) can be considered asrdete
ministic and minimized using the much faster Gauss-Newton

which can be obtained using the following iterative formula algorithm:

[19]: B
F(p)

i1 =p; — H i_lgil*:‘i 61
pivt = pi =% 5 = Pit1 = P Fpi)~ Qpi) F(pi) (61)

whereHr(p;) is chosen as:

F(Pz‘) (58)
Pi
Under Assumptions (i)-(ii), this scheme converges to alloca
minimum of the criterion as the number of iterations goes to . R T
infinity, provided that an unbiased estimate of the gradient Hr(pi) = Q(ps) (Q(pﬁ) . (62)

ag—ff’) is available. However, obtaining an unbiased esti-

mate ()pfthis gradient for MIMO systems can be very costly .

[7]. In this work, the gradient is computed using an identi- Observe that the Jacobian estiméip;) is asymptotically
fied MIMO model, which requires only one closed-loop ex- unaffected by noise since the noisy partagf" (ri:st) is not
periment regardless of the number of inputs and outputs. It rrelated withcZ. (). However. it N itivpKtmnm dellin
is clear that the existence of an unbiased model of the plantg?rofsa ed witly, (t). However, itis sensitive to modelling

G would guarantee the convergence of the CbT algorithm.

However, an unbiased modél is very difficult to obtain.  For the decorrelation procedure, an inaccurate estimate of
Instead of identifying a complex unbiased model, it is pro- the jacobian will not prevent the controller parameterarect
posed here to identify, at each iteration, a low-order model ,om converging tg* but will affect the convergence speed.
that accurately reflects the local behavior of the plant& th | contrast, in the case of correlation reduction, the fiera
vicinity of the current operating point (with the currentpa  \yjj stagnate once the residugb; — p*|| of (61) is roughly of
rameter valug;). the same size as the error in the gradient. For more details on
these two iterative methods, the reader is referred to @hapt
3.3 Implementation aspects 5.4 in [13] and Chapter 2.3.1 in [14], respectively.

) The above discussion suggests that it is preferable to use
We have presented both the decorrelation procedure and thee gecorrelation procedure for controller tuning. Howeve
correlation reduction for the tuning of decoupling cone e generation of the instrumental variables is much more
for MIMO systems. Here we compare these two approachesingjved with the decorrelation procedure than with cor-
in terms of their applicability for solving practical contr  g|ation reduction. Another advantage of the correlation-
situations. reduction method is that the criterion better reflects the

amount of correlation between two signals and, further-

The stochastic approximation algorithm used in the decor- more, it can be applied to the tuning of restricted-compyexi
relation procedure presented in Section 3.1 convergg$,to  controllers. The overall conclusion is that the correfatio
under fairly weak conditions. However, the convergence rat reduction method is more suited to industrial applications
could be too slow for industrial applications. If one can-col due to its simplicity of implementation and the fact that it
lect a large number of data, the influence of the noise on s applicable to a broader range of applications.
F(p;) is reduced considerably, and the Newton-Raphson al-

gorithm can be used to compute the controller parameters: i ) i
4 Simulation Studies

—1 =
pir1 = pi = Q7 (p1) F(pi) (59) Three simulation studies are presented in this sectiomen t
first study, the sequential and simultaneous excitatioas ar
) are: compared in terms of accuracy of both the estimated con-
troller parameters and the estimated controller transige-f
tions. The second study investigates the basic featuré®of t
N A decorrelation procedure and correlation-reduction nestho
ZMQ@ (t). (60) while the third study compares the correlation-reduction
opr,,, " method to IFT for MIMO systems.

where the elements of the mat@(pi) = (a@;p)

i

AR 1
Ko (P1) = N
t=1

10



4.1 Sequential vs. simultaneous excitation

Consider the following discrete-time multivariable plant

Glg ") = < ) (63)

and let the initial controller for this plant be:

0.09516¢~ %  0.03807¢ %
1-0.9048¢— T 1—0.9048¢ !
—0.02974¢~'  0.04758¢ !
1—0.9048¢— T 1—0.9048¢ 1

1-0.99¢~'  0.1-0.099¢"*
—1 —1
Ky = I=q 1=q 4
0 1-0.99¢71  1-0.99¢7* (64)
1—q—1 1—q—1

The parametrized controllek (p) has the same struc-
ture as Ky; each of the elementd(;; has an integra-
tor and a first degree numerator with 2 free parame-

ters. The vector of tuned parameters, defined in (2)-(5), is

0) (1) (0) (1) (0) (1) (0) (1
p =[50, 57,51, 815,580 55, 58, 55817 The numer-

ator coefficients of the controllers’;;,j = 1,2 are tuned

excitation methods by a Monte-Carlo simulation would ne-
cessitate an unreasonably large number of iterations.ro ci
cumvent this problem, the iterative scheme (17) has been
modified as follows:

pi+1 = pi — Vil F(pi). (68)
wherey; = 1/iandH.. is a matrix computed in the following
way. In the few first (say 5) iterationg]. is computed as the
inverse of the Jacobian estimate, ii&. = Q' (p;). Then,
H. is fixed to H. = Q~*(ps). This modification allows the
iterative scheme (68) to converge rapidlyto Observe that
with this modification, the expression (31) changes to

V=a? / eP*H. PHT P " dy (69)
0

with )
D= 51 —aH.Q(p") (70)

Considering thaf, is close toQ~!(p*) after the few first

to provide the desired closed-loop response with a naturaliterations, i.e H. ~ Q~'(p*), (70) can be rewritten ab ~

frequency of3rad/s and damping factor of 0.7, while the
numerator coefficients ok, j # k are tuned for decou-
pling. The corresponding reference model reads:

My, = ( > (65)

The instrumental variables for the decorrelation procedur
are computed using the following Laguerre basis functions:

) (Eas) e

1—¢&q!
where ¢ = 0.895 is chosen to approximately reflect the
closed-loop dynamics, and the model ordel is 2. The
weighting coefficient%(jk are obtained by solving the fea-

sibility problem

0.1148¢ *—0.0942¢ 2 0
1—1.79¢— 140.8106q 2
0 0.1148¢~*—0.0942¢ 2

1-1.79¢—140.8106¢—2

Filgh) = (

Q" b)) > 1 (67)

where Q(p*,thjk) is estimated as explained in Section
3.1.1. The identity matrixX on the right-hand side of in-

equality (67) is used (instead 6) to ensure the positive
definiteness of)(p*, thj ) with a safety margin, to com-

k
pensate for possible differences betw€xp*, hﬁKjk) and its
estimateQ(p*, i ). The following values for the coeffi-
cientshﬁKjk are obtained using Matlab LMI Control Toolbox:
hY%,, = 200.0328, h}, = —5.5225, h% = 107.4611,
hi,, = —352.1068, h = 226.8947, hi = —85.2721,
hY,, = 234.8072 andhj, = —371.1253.

(3 — a)I. SinceH. and D are constant in the remaining
iterations, and thus not dependent on the excitation ssgnal
the results of Theorem 3.2 apply.

To compare the two excitation methods 100 Monte-Carlo
simulation runs are performed. For each simulation run, the
tuning is carried out in 9 iterations. The output of the plant
is perturbed in each run by a different realization of a zero-
mean, stationary, white Gaussian sequen@g with the
variance0.017. The signals- (t), r2(t), v1 (¢t) andwvy(t) are
chosen mutually independent so as to satisfy the assumption
of Theorem 3.2.

When the closed-loop system is excited sequentially, the
asymptotic variances of the elementspcdire:

var(pg) = (0.001156 0.001180 0.004627 0.004810
0.003225 0.003340 0.019222 0.020984)

Whenr (t) andrs (t) are excited simultaneously, the asymp-
totic variances op are:

var(py) = (0.004941 0.005203 0.007360 0.006754
0.014510 0.014935 0.030024 0.031664)

The Monte-Carlo simulations confirm the results of Section
3.1.2. Indeed, the variances of the controller parameters a
larger in the case of simultaneous excitation than in the cas
of sequential excitation. However, note that for sequéntia
excitation two experiments per iteration are required,levhi
a single experiment per iteration is sufficient in the case of
simultaneous excitation.

4.2 Decorrelation procedure vs. correlation reduction

As stated in Section 3.3, the convergence rate of the Robbins
Monro scheme is too slow to be applicable in many prac- The same simulation example is used to compare the two
tical control problems. Therefore, a comparison of the two CbT methods.The controller parameters are computed using

11
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Fig. 3.D lati d Ref ianals (dash-dot dFig. 4. Correlation-reduction CbT: Closed-loop responses in a
9. 5. Decorrelation procedure. Reterence sngna§ (dash-dot) an noisy environment. Reference signals (dash-dot), desired respons

?eﬁ'red dreipcénses d (quttled)' tA(iIhlevi(tj _resg)%nsgs. thel"g.'t'al Con'(dotted), achieved responses with the initial controller (dashed)
crg dﬁ:e( (22"3) )_?Qe rler}grgr?gersoa?crsochghnee d i?/\ ae(s:?err?liiielorr:wg;%_e rand final controller (solid). The references are changed in a step—
at 0 and 2.5 '(th) and 5s (forrs). 9 P like manner at 0 and 5s (for;) and 10s (forrs).

Table 1
Comparison of CbT variants.F'(p;)|. denotes the 2-norm of 15 _CbTvs. IFT controller
F(ps:), while SSOE indicates the sum of squares of the output '
error. 1 7 A— |
Iter- | Decorrelation Procedure Correlation Reduction g oslf it i
ation | |[F(pi)l2 | SSOE Ju(pi) | SSOE 3 O‘ AN e
i=0| 7817.09 38.2165 141.3941| 38.2165
_05 I L
i=26 | 88.8512 3.3985 1.8310 3.4188 0 5 10 15
(59)-(60) for the decorrelation procedure, and (61)-(@R) f ! [FaEEEh
correlation reduction. The tuning is carried out in 6 itera- i
tions, with one experiment per iteration where each experi- 2 03¢ j,’ i
ment is performed with a different noise realization. There £ ) I
sulting responses obtained with the initial controllersfaed © o= - ’
line) and the controller tuned using the decorrelation @roc
dure (solid line) are shown in Fig. 3. With the tuned con- 05, 5 10 15
troller, the desired response (dotted line) can be followgd Time [s]

to the effect of the noise. Note also that the resulting dese ) ) ) )
Fig. 5. Correlation-reduction CbT vs. IFT controller in a noise-free

loop system is diagonalized. The responses obtained with
P sy g P context. Reference signals (dash-dot), desired responses (dotted)

the controller tuned by correlation reduction are very simi ) -
lar to those in Fig. 3 a)n/d are not shown here. The regults areclolfedzgoop;]rzﬁponse with the CbT controller (solid) and IFT con-
i : troller (dashed).

summarized in Table 1. Note that the correlation measures

are reduced in both cases #9%, while the sum of squares

of the output error is reduced 8 %. period Ty, = 0.1s. Each experiment is performed with a
different realization of the measurement noigé), which

is generated as a zero-mean, stationary, white Gaussian se-

4.3 Correlation-reduction CbT vs. IFT : )
quence with variance.00251.

For this comparison, our simultation considers the tuning

of a multivariable PI controller for a LV100 gas turbine en- The initial controllerk, given in (64) is used. The responses
gine [26]. The simulation conditions are taken from [7]. The obtained with this controller are plotted in Fig. 4 (dashed
plant is represented by a continuous-time state-spacelmodeline). Eight numerator coefficients are tuned (two for each
with five states, two inputs and two outputs. The model is transfer function element), while the denominators arénaga
discretized using Tustin’s approximation with the samplin  kept fixed atl — ¢—!. The following reference model is

12



specified: in the reference signa# (¢) at the instants Os and 5s is vis-

ible onys(t).
0.4q~* 0
My, = | 170007 . (71) In terms of experimental cost, the IFT controller is obtdine
0 196‘# after 6 iterations (and a total of 30 experiments) compared

to 8 iterations (and a total of 8 experiments) for the CbT

and the controller parameters are calculated according tocontroller.
(61).
. . . . 5 Conclusions

A discrete-time state-space model with three states is iden
tified in closed loop, using Matlab System ldentification ) ) )
Toolbox, to compute the estimaté. After eight iterations This papherf has cpnsu;ered tf|1_e uTe of the ?c')rrellaglon—based

. ' : _ ' . approach for tuning decoupling linear multivariable con-
B e iy Tlers. Th paameters areund b e soving a e
shows that the two curves are nearly superposed except fo%:?:cﬁgﬁaq'%gOdrierPglglr:r':lllz(lzr:)gng]oellZ?sugr[?ecr)r:;i:)o?jfﬁlogl:-mgle
the effect of the noise. In addition, changes in the referenc . output specifications, while the off-diagonal col
signalsry (t) andry(t) do not induce any visible change on

the outputsys (£) andys (1), respectively. In other words, the aim at decoupling. In contrast to the approaches where de-
closed-loop system is almost fully diagonalized. The value couplers and diagonal controllers are designed sequigntial

. Lo 2T the design of decouplers and controllers is dseimeultane-
0,
?;;SE;;”&%QI.%rgﬁtrr'glrre'rsisr_educed by more than 99%. The ously here. The tuning of all decouplers and controllers is

achieved by performing a single experiment per iteratien re
2636—0.008660—1  0.365" 1 gardless of the number of inputs and outputs, since all ref-

0.3636-0.09866¢ _ 0.3653-0.2691¢ erence signals can be excited simultaneously. This feature
Kovr = (72)

1—q~1! 1—q~! .
18.69—18.16¢~"  —3.453+2.652¢ " represents an advantage over some other data-driven meth-
1—¢~1 1—q~! ods such as IFT, where the required number of experiments
per iteration increases with the number of inputs and out-
puts. In addition, perfect decoupling can be achieved using

For this problem, [7] provided the IFT controller CbT while, in the case of data-driven control design methods
that minimize a norm of the error signal, there is a trade-off
0.248—0.03¢"1  0.38—0.199¢! between satisfying the decoupling specifications and noise
—g—1 —_q—1 H H
Kirr = ( 16.4L71—1q5.911f1 o.0631+0q.054¢f1 ) (73) rejection.
1—q—1 1—q—1

The variance of the estimated controller parameters has bee

To compare it with the CbT controller designed above, an ex- compared for the two cases of simultaneous and sequential
periment is performed with the same simulation conditions. €Xcitations. This analysis shows that, due to the fact that
The observedSSOE with the CbT controller is 0.0050, decoupling is imposed as a design criterion, simultaneous
while that with the IFT controller is 0.0082. Since IFT con- €xcitation of all references has a negative effect on thie var
tains a noise-rejection objectiVewhile CbT does not, one  ance of the estimated controller parameters. More accurate
would expect IFT to perform better in a noisy situation. How- €stimates require require thaf, experiments per iteration
ever, theSSOE obtained with CbT is smaller. The IFT con-  be performed. In fact, one must choose between low exper-
troller did not succeed in (i) fully decoupling the closexbp imental cost (simultaneous excitation) and better acgurac
system, and (i) completely satisfying the model-follogin ~ ©Of the estimated parameters (sequential excitation). Simu
specification. This indicates that the IFT algorithm mayehav  lation results illustrate the features and applicabilityros
converged to a local minimum. To illustrate this, an addi- controller tuning method for LTI MIMO systems.

tional experiment without noise is performed. The results
are shown in Fig. 5. The closed-loop response obtained with
the CbT controller follows almost perfectly the desired re-
sponse. In contrast, the closed-loop response obtaindéd wit
the IFT Contro”er ShOWS some dlscrepancy |n the |ast 5 sec- [l] T. Agnolonl and E. Mosca. Controller falsification basmul multlple

i ; models. International Journal of Adaptive Control and Signal
onds of the response. In addition, the influence of the change Processing 17:163-177. 2003,

PR . [2] K.J.Astrom and B. WittenmarkAdaptive Contral Addison-Wesley,
Note that IFT minimizes the sum of squares of the output error: 1989.
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