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Abstract

The iterative method labelled Correlation-based Tuning (CbT) is considered in this paper for tuning linear time-invariant multivariable
controllers. The approach allows one to tune some elements of the controller transfer function matrix to satisfy the desired closed-loop
performance, while the other elements are tuned to mutually decouple the closed-loop outputs. Decoupling is achieved by decorrelating
a given reference with the non-corresponding outputs. The controllerparameters are calculated either by solving a correlation equation
(decorrelation procedure) or by minimizing a cross-correlation function (correlation reduction). In addition, the preferred way of exciting a
2×2 system for CbT is investigated via the accuracy of the estimated controller parameters. It is shown that simultaneous excitation of both
reference signals does not improve the accuracy of the estimated controller parameters compared to the case of sequential excitation. In
fact, one must choose between low experimental cost (simultaneous excitation) and better accuracy of the estimated parameters (sequential
excitation). The theoretical results are illustrated via three simulation studies.

Key words: Correlation-based tuning, data-based controller design, multivariable control, instrumental variables, decoupling, asymptotic
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1 Introduction

The essential ingredients of any control design procedure in-
clude the acquisition of process knowledge and its efficient
integration into the controller. Reliable models of industrial
plants are often difficult or impossible to obtain due to the
high complexity of the plants and/or the excessive cost of
modeling. On the other hand, the controllers designed on
the basis of reduced-order models might well lead to un-
satisfactory performance when applied to real plants due to
model mismatch.
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An alternative to model-based control design is to use the in-
formation collected on the plantdirectlyfor controller design
or controller update, i.e. without the intermediate step ofesti-
mating a plant model. This idea stems from the area of direct
adaptive control, in particular from self-tuning regulation
(STR) and model reference adaptive control (MRAC) [2].
Recently, several methods have appeared in the field of data-
driven controller tuning; these methods include controller
unfalsification [20,1], Simultaneous Perturbation Stochas-
tic Approximation control (SPSA) [24], Iterative Feedback
Tuning (IFT) [8] and Virtual Reference Feedback Tuning
(VRFT) [4]. An important issue in this research area regards
the way to cope with the noise that necessarily corrupts the
measurements and therefore also affects closed-loop perfor-
mance.

Recently, another controller tuning approach was proposed
in [11]. It is labelled Correlation-based Tuning (CbT) since
its underlying idea is inspired by the well-known correla-
tion approach in system identification [22]. The controller
parameters are tuned to decorrelate the closed-loop output
error between the designed and achieved closed-loop sys-
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tems from the external reference signal. Ideally, the resulting
closed-loop output error contains only the contribution ofthe
noise and thus perfect model-following can be achieved. It
is shown in [12] that the sensitivity functions of the achieved
closed-loop system tend asymptotically to those of the de-
sired closed-loop system. The analysis performed in [15]
shows that the CbT controller is asymptotically insensitive
to noise. One may argue that this insensitivity to noise im-
plies that CbT is not appropriate for disturbance rejection.
However, since the output sensitivity function of the re-
sulting closed-loop system approaches that of the desired
closed-loop system, it is possible to handle the disturbances
indirectly by imposing disturbance rejection specifications
on the desired output sensitivity function. An adaptation of
this approach to the disturbance rejection problem has been
treated in [15] in the situation where the disturbances can
be measured or where it is possible to inject a test signal in
closed-loop operation. A theoretical presentation of CbT is
given in [12].

CbT belongs to gradient-based methods and uses an iden-
tified model for computing the gradient of the underlying
criterion. Thus, it can-not be classified as a “model-free”
method. However, since a model is not used explicitly to
compute the controller, it is not “model-based” either. Con-
sidering that the controller parameters are computed directly
using closed-loop data, the approach can be considered as
“data-driven”.

A common approach to multivariable control is to proceed
in two steps: first a “decoupler” is designed to eliminate
process interactions, then a set of controllers is tuned for
the “diagonalized” plant to achieve specific performance ob-
jectives [21]. The design of decouplers and controllers us-
ing standard model-based methods may be very sensitive to
modeling errors and uncertainties. On the other hand, since
data-driven methods use data collected in closed-loop op-
eration, these data reflect the local behavior of the plant in
the vicinity of the present operating point (with the acting
controller). The use of the present closed loop system as an
“implicit model” for computing decouplers and controllers
is likely to improve the performance. However, the difficulty
with data-driven gradient-based methods is the computation
of the gradient of the criterion. Typically, the number of ex-
periments needed to estimate the gradient increases with the
number of plant inputsnu and outputsny. For example, the
IFT approach typically requiresnynu + 1 experiments for
each iteration of the controller parameter vector [7], even
though some efforts have been made recently to reduce the
number of experiments with this approach (for more details
see [5,6,10]).

The main contribution of this paper is to extend the CbT
method developed in [11,12,15] to the design of multivari-
able LTI decoupling controllers. For simplicity of presen-
tation, an equal number of inputs and outputs is assumed.
The off-diagonal elements of the controller transfer function
matrix are tuned to eliminate interaction between the con-
trolled outputs (in the sequel this will be called “diagonal-

ization of the closed-loop system”), while the elements on
the main diagonal are tuned to provide the desired closed-
loop performance. The fact that the decoupling is done in a
natural way by decorrelating a given reference from the non-
corresponding outputs without the need for additional exper-
iments makes CbT particularly appealing for tuning MIMO
controllers. The controllers on the main diagonal feature the
same characteristics as those for SISO systems. The parame-
ters of the decouplers and controllers are asymptotically not
affected by noise. A single experiment per iteration is suffi-
cient for tuning all controllers and decouplers regardlessof
the number of inputs and outputs since all reference inputs
can be excited simultaneously.

Two ways of computing the controller parameters can be
distinguished, depending on the complexity of the controller
with respect to the plant. When the controller structure is able
to perfectly decorrelate the closed-loop output error fromthe
reference signal, the controller parameters can be calculated
as the solution to a system of correlation equations. This
approach is called “decorrelation procedure”. When this is
not possible, the controller parameters are computed so as
to minimize a correlation criterion; this approach is labelled
“correlation reduction”. The features of these two variants
are discussed and compared in terms of applicability to prac-
tical control situations.

Our work shows that CbT offers a considerable advantage in
terms of decoupling compared to other data-driven control
design methods in which the controller parameters are cal-
culated by minimizing the norm of some error signal, such
as is done with the IFT or VRFT methods. Using the latter
methods, perfect decoupling cannot be achieved due to the
nature of the underlying criterion that introduces a trade-off
between the decoupling objective and the noise rejection ob-
jective. In contrast, the CbT criterion is asymptotically inde-
pendent of the noise so that the resulting controller satisfies
the decoupling specifications exactly, provided that it is of
appropriate order.

An additional contribution of this paper is to provide an anal-
ysis of the variance of the estimated controller parametersfor
two cases of excitation. The case where all reference signals
are excited simultaneously is compared to the case where
the elements of the reference signal vector are excited one-
by-one; the latter type of excitation will be called “sequen-
tial excitation”. Our analysis shows that, as a result of the
decoupling specifications, the simultaneous excitation ofall
references increases the variance of the estimated controller
parameters compared to the case of sequential excitation.

The remainder of the paper is organized as follows. Some
notations and the basic idea of the multivariable CbT ap-
proach are introduced in Section 2. Section 3 deals with the
tuning of multivariable LTI controllers by both the decor-
relation procedure and the correlation reduction procedure.
Simulation results are presented in Section 4, and conclud-
ing remarks are given in Section 5.
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Fig. 1. Achieved multivariable closed-loop system and its reference
modelMd

2 Preliminaries

2.1 System description and notations

For the sake of simplicity, and without loss of generality, it
is assumed that the plant has two inputs and two outputs.
Consider the block diagram of the model-following prob-
lem presented in Fig. 1. The upper part shows the achieved
closed-loop system with the unknown true plant whose out-
puts can be described by the following LTI multivariable
discrete-time model:

y(t) = G(q−1)u(t) + v(t) (1)

wherey(t) ∈ R2 denotes the outputs of the true plant at
time t, u(t) ∈ R2 the control signals,v(t) ∈ R2 the distur-
bances on the outputs, andG(q−1) ∈ R2×2 a transfer func-
tion matrix withq−1 being the backward-shift operator. It is
assumed thatv(t) is a zero-mean quasi-stationary stochastic
process.

The 2 × 2 controller transfer function matrixK(q−1, ρ) is
parameterized using the parameter vectorρ ∈ Rnρ , and
r(t) ∈ R2 represents external reference signals.

The(j, k) element of the controller transfer function matrix
is:

Kjk(q−1, ρ) =
Sjk(q−1, ρ)

Rjk(q−1, ρ)
j, k = 1, 2 (2)

where

Rjk(q−1, ρ) = 1 + r
(1)
jk q−1 + · · · + r

(nr)
jk q−nr

Sjk(q−1, ρ) = s
(0)
jk + s

(1)
jk q−1 + · · · + s

(ns−1)
jk q−ns+1 (3)

It is assumed, for simplicity of notation, that the four con-
trollersKjk(q−1, ρ), j = 1, 2, k = 1, 2 have the same num-
ber of poles and the same number of zeros. Moreover, it is
assumed that the controllers have no common parameters.
The controller parameter vectorρ can be written as follows:

ρT = [ρT
K11

, ρT
K12

, ρT
K21

, ρT
K22

] (4)

where

ρT
Kjk

= [r
(1)
jk , r

(2)
jk , . . . , r

(nr)
jk , s

(0)
jk , s

(1)
jk , . . . , s

(ns−1)
jk ] (5)

Thus,nρ = 4(nr + ns).

The lower part of Fig. 1 shows the reference modelMd defin-
ing the desired response of the closed-loop outputs,yd(t) to
the reference signalsr(t). In this paper, we consider that this
desired reference model is diagonal. It can be constructed,
for example, as the closed-loop system obtained from the
feedback interconnection of a modelG0 of the plantG and
a controllerK0:

Md
∆
=

(

Md11 0

0 Md22

)

= (I + G0K0)
−1G0K0. (6)

with I ∈ R2×2 being the identity matrix. It is therefore as-
sumed thatG0 andG are diagonalizable by output feedback.
Necessary and sufficient conditions for a linear multivari-
able system to be diagonalizable by output feedback can be
found in [25] and references therein.

The closed-loop response can be written as:

y(ρ, t) = T r(t) + Sv(t), (7)

and the control error is:

e(ρ, t) = r(t) − y(ρ, t) = S (r(t) − v(t)) , (8)

whereS denotes the output sensitivity function:

S = (I + GK)−1 (9)

andT the complementary sensitivity function:

T = (I + GK)−1GK. (10)

The closed-loop output error is defined as:

εoe(ρ, t) = y(ρ, t) − yd(t). (11)

Notational Remarks

The signals collected under closed-loop operation using the
controllerK(ρ) will carry the argumentρ. The elements of
signal vectors and transfer function matrices will carry the
position as a subscript. For example,yk(ρ, t) will denote the
kth component of the output vectory(ρ, t). In contrast, the
coefficients in numerator and denominator polynomials of
the controllersKjk(q−1, ρ) will carry the position as a su-
perscript: see (5). Furthermore, the backward-shift operator
q−1 will be omitted whenever appropriate.
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2.2 Multivariable correlation-based tuning

Consider the controller structure presented in Fig. 2. Since
the desired sensitivity functionsSd andTd are in diagonal
form, it is required thatGK be diagonal. Hence, the follow-
ing design specifications will be imposed on the elements
of K:

• The diagonal elementsKjj(ρ), j = 1, 2 of the controller
transfer matrixK(ρ) are tuned to provide satisfactory
tracking ofyd1(t) by y1(ρ, t) andyd2(t) by y2(ρ, t), re-
spectively.

• The off-diagonal elementsKjk(ρ), j 6= k, j, k = 1, 2
are tuned to be decouplers. That is, the controllerK12(ρ)
is tuned to eliminate the influence of the reference sig-
nal r2(t) on the outputy1(ρ, t). Hence, if the decoupler
K21(ρ) is tuned similarly, the mutual influences ofy1(ρ, t)
andy2(ρ, t) are suppressed.

Consider first the tuning of the decouplerK12(ρ). When
applying the controllerK0, defined in (6), to the true plant
excited by the reference signalr(t), the outputy1(ρ, t) con-
tains the contributions due to the reference signalsr1(t) and
r2(t) and the disturbancev(t). The reference signalsr1(t)
and r2(t) are mutually independent and uncorrelated with
v(t). Hence, the idea is to adjust the parameters ofK12(ρ)
to make the outputy1(ρ, t) uncorrelated with the reference
signalr2(t). The resulting decoupler providesy1(ρ, t) that
contains only the contributions due tov1(t) andr1(t), i.e.
the influence ofv2(t) andr2(t) on y1(ρ, t) is eliminated.

Consider next the tuning ofK11(ρ). Again, with K0 op-
erating in the loop, the observed closed-loop output error
εoe1(ρ, t) contains a contribution due to the disturbancev(t)
and another contribution stemming from the difference be-
tween G and G0 that, in turn, has two parts originating
from r1(t) and r2(t). The idea is to adjust the parameters
of K11(ρ) so as to makeεoe1(ρ, t) uncorrelated withr1(t).
Since the parameters ofK11(ρ) and K12(ρ) are tuned si-
multaneously, the effect of modeling errors excited byr2(t)
is eliminated by the decouplerK12(ρ). Hence, the resulting
controller compensates the effect of modeling errors to the
extent that the closed-loop errorεoe1(ρ, t) contains only the
disturbance filtered by the closed-loop system. This way, the
outputy1(ρ, t) will achieve the desired outputyd1(t).

A similar reasoning follows forK21(ρ) andK22(ρ) that are
related to the outputy2(ρ, t).

3 CbT for the decoupling of MIMO systems

Let the cross-correlation function be defined as follows:

F (ρ)
∆
=E

{

F̄ (ρ)
}

(12)

K11(ρ) - -

- -

-
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���

j+

+

j
+

+

K12(ρ)-

K22(ρ)-

Fig. 2. Multivariable2×2 controller. Signalse1(ρ, t) ande2(ρ, t)
are defined in (8).

whereE{·} is the mathematical expectation, and the vector
F̄ (ρ) ∈ Rnρ reads:

F̄T (ρ) =
[

f̄T
K11

(ρ), f̄T
K12

(ρ), f̄T
K21

(ρ), f̄T
K22

(ρ)
]

(13)

with

f̄Kjk
(ρ) =

1

N

N
∑

t=1

ζKjk
(ρ, t)EKjk

(ρ, t) (14)

whereN is the number of data andζKjk
(ρ, t) ∈ Rnζ the

vector of instrumental variables associated with the con-
troller Kjk(ρ). Note thatnζ = nr +ns, andnρ = 4nζ . The
componentf̄Kjk

(ρ) ∈ Rnζ corresponds to the controller
Kjk(ρ). The wayζKjk

(ρ, t) and the variableEKjk
(ρ, t) ∈ R

are constructed depends on whether the controllerKjk(ρ)
is a diagonal controller or an off-diagonal decoupler:

• j = k: Kjj(ρ) is tuned so as to reduce the correlation be-
tweenεoej(ρ, t) and rj(t). Taking into account the fact
that the tuning of the controllersKjj(ρ) and the decou-
plersKjk(ρ) is done simultaneously, the outputyj(ρ, t)
will, in the case of perfect decorrelation, followydj(t) up
to the effect of the disturbance. Thus, the vector of instru-
mental variablesζKjj

(ρ, t) should be chosen to be corre-
lated with the reference signalrj(t) and independent of
the disturbancevj(t). The variableEKjj

(ρ, t) is chosen
asεoej(ρ, t).

• j 6= k: To eliminate the influence ofrk(t) on yj(t), it is
sufficient to decorrelate these two signals, i.e.ζKjk

(ρ, t)
should be correlated withrk(t) andEKjk

(ρ, t) = yj(ρ, t).

Hence, the variableEKjk
(ρ, t) is constructed as follows:

EKjk
(ρ, t) =

{

εoej(ρ, t), j = k

yj(ρ, t), j 6= k
(15)

and the vectors of instrumental variablesζKjk
(ρ, t) for j = k

andj 6= k are both a function ofrk(t).

The parameters of the controller are computed either as the
values that make the cross-correlation function (12) equalto
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zero or by minimization of a norm of this function. Observe
that, in either case, the underlying criterion is nonlinearwith
respect to the controller parameters. Certain assumptions
that are needed for the convergence and variance analysis
are introduced next.

Assumptions

(i) The signals in the loop are bounded, i.e. the controllers
stabilize the closed-loop system at each iteration.
(ii) The reference signalsr(t) are persistently exciting of
sufficiently high order with respect to the number of con-
troller paramteres and are uncorrelated with the distur-
bancesv(t). Furthermore, the elements of the reference
signal vectorr(t) are assumed to be mutually indepen-
dent.
(iii) The decorrelating controllerK∗ exists and belongs
to the set of parameterized controllers (the corresponding
parameters will be denoted asρ∗).

3.1 Decorrelation procedure for MIMO systems

Under Assumption (iii), the parameters of the controller that
perfectly decorrelatesζKjk

(ρ, t) from EKjk
(ρ, t) are com-

puted as the solution to the following system of correlation
equations:

F (ρ) = 0 (16)

whereF (ρ) is defined by (12)-(14). A solution to (16) can be
found using an iterative stochastic approximation procedure,
for example the Robbins-Monro algorithm [19]:

ρi+1 = ρi − γiF̄ (ρi). (17)

where the sequence of positive numbersγi ∈ R is selected to

satisfy the following convergence conditions:
∞
∑

i=1

γi = ∞

and
∞
∑

i=1

γ2
i < ∞.

It is shown in [12] that, under Assumptions (i)-(iii) and as-
suming thatF (ρ) possesses continuous partial derivatives
of first and second order with respect toρ, this scheme con-
verges to a solution of the correlation equations (12), pro-
vided thatF (ρ) is monotonically increasing in the vicinity
of the solutionρ∗, i.e. the following condition holds:

Q(ρ∗) = E

{

∂F̄ (ρ)

∂ρ

∣

∣

∣

∣

ρ=ρ∗

}

> 0. (18)

The condition (18) is crucial for the convergence of the
algorithm (17) to a solution of (16). One way to satisfy this
condition is detailed in the next subsection.

3.1.1 Positive-definiteness ofQ(ρ∗)

We now investigate the structure ofQ(ρ). It follows from (4),
(13), (14) and (18) thatQ(ρ) ∈ Rnρ×nρ can be expressed
as:

Q(ρ) =

















QK11

K11
QK12

K11
QK21

K11
QK22

K11

QK11

K12
QK12

K12
QK21

K12
QK22

K12

QK11

K21
QK12

K21
QK21

K21
QK22

K21

QK11

K22
QK12

K22
QK21

K22
QK22

K22

















(19)

whereQ
Kjk

Kmn

∆
=E{∂f̄Kjk

(ρ)/∂ρKmn
} can be expressed as:

Q
Kjk

Kmn
= E

{

1

N

N
∑

t=1

∂ζKjk
(ρ, t)

∂ρKmn

EKjk
(ρ, t)

+
∂EKjk

(ρ, t)

∂ρKmn

ζT
Kjk

(ρ, t)

}

(20)

In the vicinity of the solution, the first term in (20) van-
ishes since the derivative of the instrumental variable vector
ζKjk

(ρ, t) is not correlated withEKjk
(ρ, t). Note also that:

∂EKjk
(ρ, t)

∂ρKmn

=
∂yj(ρ, t)

∂ρKmn

∀j, k. (21)

At the solutionρ∗, (7)-(10) lead to:

∂y(ρ, t)

∂ρ
(p)
Kmn

∣

∣

∣

∣

∣

ρ∗

Kmn

= S(ρ∗)G
∂K(ρ)

∂ρ
(p)
Kmn

∣

∣

∣

∣

∣

ρ∗

Kmn

e(ρ∗, t) (22)

wherep = 1, . . . , nr + ns. Considering that the subvectors
ρKmn

are independent and thatS is diagonal atρ∗, it follows
from (22) and the second equality in (8) that:

∂y(ρ, t)

∂ρ
(p)
Kmn

∣

∣

∣

∣

∣

ρ∗

Kmn

f∼ en(ρ∗, t)
f∼ rn(t), vn(t) (23)

where
f∼ denotes that the signal on the left-hand side of this

operator is a function of the right-hand side signal. Further-
more, according to the discussion leading to (15), one can
write:

ζKjk
(ρ, t)

f∼ rk(t). (24)

Using the relationships (23) and (24), the expression (20),
and the fact thatr1(t), r2(t), v1(t) andv2(t) are uncorre-
lated, it follows that

Q
Kjk

Kmn
= 0, k 6= n (25)

5



i.e. the matrixQ(ρ∗) takes the following form:

Q(ρ∗) =

















QK11

K11
0 QK21

K11
0

0 QK12

K12
0 QK22

K12

QK11

K21
0 QK21

K21
0

0 QK12

K22
0 QK22

K22

















(26)

where

Q
Kjk

Kmk

f∼ rk(t), vk(t). (27)

From (20) and (26), it is obvious that the choice of the
instrumental variablesζKjk

affects the positive definiteness
of Q(ρ∗). Hence, it is important to take this fact into account
when constructing the instrumental variables. This will be
investigated next.

Choice of Instrumental Variables

In the case of SISO systems, the typical choice for the instru-
mental variable vector is a noise-free estimate of the gradient
∂yj/∂ρKmn

, which guarantees the positive definiteness of
Q(ρ∗). However, in the case of MIMO systems, the choice
of ζKjk

(ρ, t) is less trivial since the aforementioned choice
ensures only the positive definiteness of the elements on the
principal diagonal ofQ(ρ∗).

It is clear from (24) that the instrumental variables shouldbe
chosen as signals obtained by filteringrk(t). Therefore, the
instrumental variables can be generated using the following
model structure:

ζKjk
(ρ, t) =

nh−1
∑

l=0

(

Fl(q
−1)rk(t)

)

hl
Kjk

(28)

wherenh denotes the model order,Fl(q
−1) is the lth ele-

ment of a set of stable basis transfer functions andhl
Kjk

the
corresponding weighting coefficient. The simplest choice for
these functions isFl(q

−1) = q−l. However, in order to re-
duce the model order, one can adopt

Fl(q
−1) =

1

1 − q−1ξl

(29)

where the polesξl are chosen so as to incorporate some a
priori information regarding the underlying dynamics [18].
Another possibility is to use orthonormal basis functions
such as Laguerre or Kautz functions. SinceζKjk

(ρ, t) and
consequentlyQ(ρ∗) are linear with respect to the parameters
hl

Kjk
, the problem of obtaining a positive definite matrix

Q(ρ∗) can be formulated as a convex feasibility problem and
solved using Linear Matrix Inequalities (LMIs) [3]. Hence,
once the basis functionsFl(q

−1) have been selected, the

choice of the instrumental variables specializes to finding
hl

Kjk
that makes

Q(ρ∗, hl
Kjk

) > 0. (30)

In this feasibility problem, it is necessary to evaluate
Q(ρ∗, hl

Kjk
) for different values ofhl

Kjk
. Plugging (20),

(21), (22) and (28) in (26), it is obvious thatQ(ρ∗, hl
Kjk

)

depends on the derivative
∂yj(ρ, t)

∂ρKmn

that is unknown. How-

ever, this derivative can be estimated using (22), where: (i)
the transfer function matrixS(ρ∗) is replaced bySd; (ii) the
unknown plantG is replaced by eitherG0 or an identified
modelĜ; (iii) the signale(ρ∗, t) is replaced by its estimate
ê(ρ∗, t) = Sdr(t).

In performing the experiments leading to the computation
of ζKjk

(ρ, t), EKjk
(ρ, t), f̄Kjk

(ρ) and F̄ (ρ) required for
the application of the Robbins-Monro algorithm (17) (see
(13), (14)), the following question then arises: Is it better to
excite all reference signals simultaneously or in a sequential
manner? This question is addressed in the next subsection,
where the accuracy of the parameter estimates aroundρ∗ is
investigated as a function of the external reference signals
r1(t) andr2(t).

3.1.2 Variance Analysis

The following theorem will be used.

Theorem 3.1 Assume that

(1) The iterative algorithm (17) converges toρ∗ almost
surely asi → ∞.

(2) The step sizeγi = α
i
, whereα is a positive constant.

(3) All eigenvalues of the matrixD = 1
2I − αQ(ρ∗) have

a negative real part.

Then, the sequence
√

i(ρi − ρ∗) converges asymptotically
in distribution to a zero-mean normal distribution with co-
variance

V = α2

∫

∞

0

eDx P eDT xdx (31)

where
P = lim

i→∞

E
{

F̄ (ρ∗)F̄T (ρ∗)
}

(32)

Proof. The proof can be found in [17]. 2

We now examine the structure of the matricesP , D andV
for our decorrelation procedure. Note that, atρ = ρ∗, (15)
reduces to:

EKjk
(ρ, t) =















Sjj(ρ
∗)vj(t), j = k

{Tjj(ρ
∗)rj(t)

+Sjj(ρ
∗)vj(t)} , j 6= k

(33)
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Considering thatr1(t), r2(t), v1(t) andv2(t) are indepen-
dent, and using (13), (14), (32) and (33), leads after straight-
forward but tedious calculations to:

P (ρ∗) =

















PK11

K11
0 0 0

0 PK12

K12
PK21

K12
0

0 PK12

K21
PK21

K21
0

0 0 0 PK22

K22

















(34)

where

P
Kjk

Kmn
= E

{

1

N2

N
∑

t=1

ζKjk
(ρ, t)EKjk

(ρ, t)

×
N
∑

s=1

ζT
Kmn

(ρ, s)EKmn
(ρ, s)

}

. (35)

Observe that the matrixD(ρ∗) = 1
2I−αQ(ρ∗) has the same

structure asQ(ρ∗) in (26). Due to (27), its elements satisfy:

D
Kjk

Kmk

f∼ rk(t), vk(t). (36)

Finally, note that the covariance matrixV can be partitioned
as:

V =

















V K11

K11
V K12

K11
V K21

K11
V K22

K11

V K11

K12
V K12

K12
V K21

K12
V K22

K12

V K11

K21
V K12

K21
V K21

K21
V K22

K21

V K11

K22
V K12

K22
V K21

K22
V K22

K22

















. (37)

Sequential vs. Simultaneous Excitation

We now consider two different cases of excitation: sequen-
tial and simultaneous excitation. In the case of sequentialex-
citation, the elements ofK(q−1, ρ) are tuned in two phases.
In the first phase, the closed-loop system is excited byr1(t)
while r2(t) is kept constant, and the parameters ofK11(ρ)
andK21(ρ) are tuned. In the second phase,r2(t) is excited
while r1(t) is kept constant, and the parameters ofK21(ρ)
andK22(ρ) are tuned. In the case of simultaneous excitation
by r1(t) andr2(t), all elements ofK(q−1, ρ) are tuned to-
gether. In the analysis that follows, these two cases are com-
pared in terms of the asymptotic accuracy of the parameters
of K11(ρ) andK21(ρ).

For clarity of notation, we distinguish between the following
two cases:

a) The closed-loop system is excited by a single reference
signal, sayr1(t); for simplicity, it is assumed that the other
reference signal,r2(t), is equal to zero; the corresponding

matrices and their elements will carry the subscript “a”,
for exampleV Kjk

a,Kmn
, j, k,m, n = 1, 2, or Da.

b) The closed-loop system is excited byr1(t) andr2(t) si-
multaneously; the corresponding matrices and their ele-
ments will carry the subscript “b”.

When onlyr1(t) is excited, it follows from (14) and (24) that
only the controllersK11(ρ) andK21(ρ) can be tuned. Hence,
our variance analysis will compare the variancesV K11

K11
and

V K21

K21
for that case of excitation byr1(t) only, with the cor-

responding variances obtained for the case of simultaneous
excitation. Furthermore, in order to enforce no signal path
from e2(t) to u1(t) andu2(t), K12(ρ) andK22(ρ) are set
to zero. This way, similarly to the case where the optimal
controllersK12(ρ

∗) andK22(ρ
∗) are used, there is no influ-

ence ofy2(t) andv2(t) ony1(t). Note, however, that it is not
possible to setK12(ρ) andK22(ρ) to zero when the MIMO
plant to be controlled is unstable. In this case, the tuning of
the controllerK(ρ) can only be performed by exciting both
components ofr(t) simultaneously.

Next, the following result can be established.

Theorem 3.2 Consider the tuning of the parametersρK11

and ρK21
of the controllersK11(ρ) and K21(ρ). Let the

componentsr1(t) and r2(t) be persistently exciting of suf-
ficient order and independent in the case of simultaneous
excitation. Then, the covariance matrices of the parameter
estimateŝρK11

and ρ̂K21
can only increase by addition of

the second excitationr2(t), i.e.

V K11

b,K11
≥ V K11

a,K11
and V K21

b,K21
≥ V K21

a,K21
(38)

Proof. For simplicity, letα in (31) be set to 1. Now, observe
that the matricesV , D andP are related by the following
Lyapunov equation [9]:

P + DV + V DT = 0. (39)

Due to the specific form ofD andP , this expression can be
partitioned into two separate block-equations, one of which
includes the variancesV K11

K11
andV K21

K21
as follows:

P̃ + D̃Ṽ + Ṽ D̃T = 0, (40)

where

P̃ =

(

PK11

K11
0

0 PK21

K21

)

, D̃ =

(

DK11

K11
DK21

K11

DK11

K21
DK21

K21

)

(41)

and

Ṽ =

(

V K11

K11
V K21

K11

V K11

K21
V K21

K21

)

. (42)
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Equation (36) indicates that̃D depends onr1(t) but not on
r2(t). Therefore,D̃ is identical for both cases of excitation,
i.e. D̃a = D̃b. Furthermore, since at the solution of (16) the
closed-loop system is perfectly decoupled, it follows from
(24), (33) and (35) thatPK11

K11
is also identical for both cases

of excitation. Let us now considerPK21

K21
. Replacing (24) and

(33) in (35) gives:

PK21

K21
= E

{

1

N2

N
∑

t=1

ζK21
(r1(t), ρ, t) {T22(ρ

∗)r2(t)

+ S22(ρ
∗)v2(t)} ×

N
∑

s=1

ζT
K21

(r1(t), ρ, s)

{T22(ρ
∗)r2(s) + S22(ρ

∗)v2(s)}} . (43)

It can be concluded from this expression that the contribution
of r2(t) to PK21

K21
is positive definite. This contribution will

be denoted as∆PK21

K21
. Therefore, one can write:

P̃b = P̃a +

(

0 0

0 ∆PK21

K21

)

∆
=P̃a + ∆P̃ (44)

where∆P̃ ≥ 0. Similarly, for the covariance matrices̃Va

andṼb, we haveṼb = Ṽa + ∆Ṽ , which leads to:

P̃b + D̃bṼb + ṼbD̃
T
b =

(

P̃a + ∆P̃
)

+ D̃b

(

Ṽa + ∆Ṽ
)

+
(

Ṽa + ∆Ṽ
)

D̃T
b =

∆P̃ + D̃b∆Ṽ + ∆Ṽ D̃T
b = 0 (45)

The last equality can be written more illustratively as:

∆Ṽ =

∫

∞

0

eD̃bx ∆P̃ eD̃T
b xdx. (46)

It is obvious that if∆P̃ ≥ 0 then∆Ṽ ≥ 0 [27]. The inequal-
ities (38) follow from the fact that any principal submatrix
of a positive semi-definite matrix is positive semi-definite. 2

Theorem 3.2 states that the presence of the componentr2(t)
does not improve the accuracy of the parameters related to
the controllersK11(ρ) andK21(ρ). In fact, the accuracy can
only be reduced. This result is rather interesting taking into
account the work of the same authors where, in the case
of direct closed-loop identification using prediction error
methods, it was shown that the addition ofr2(t) could only
improve the variance of the estimated parameters [16].

Remarks:

• This result can be explained intuitively as follows. Con-
sider the instrumental variable method in the field of sys-
tem identification. The expression for the variance of the
parameter estimates reads [23]:

PIV = R−1
IV PCR−T

IV (47)

with

PC = σ2E
{

[H(q−1)ζ(t)][H(q−1)ζ(t)T ]
}

(48)

and
RIV = E

{

ζ(t)ϕ̃T (t)
}

.

Hereϕ̃(t) denotes the noise-free estimate of the regressor
vectorϕ(t), H(q−1) a noise model, andσ2 the variance
of the zero-mean noise. Considering that the instrumen-
tal variables are filtered versions of the excitation signal,
one can conclude that the power of the excitation signal
has two opposite effects on the variance of the parame-
ter estimates. An increase in the power of the excitation
signal implies (i) an increase inPC via ζ(t), which in
turn increases the variancePIV , and (ii) an increase of
the modulus ofRIV via ζ(t) and ϕ̃(t), which decreases
the variancePIV sinceRIV enters as an inverse quadratic
form in the expression ofPIV . In the case of a zero-mean
white noise excitation, the overall effect is that the vari-
ancePIV decreases as the variance of the excitation signal
increases. For more details, the reader is referred to [23].
On the other hand, one can observe from (43) and (44) that
r2(t) affects∆P̃ the same way it affectsPC in (48) via
ζ(t). It is also clear that the effect of∆P̃ on the variance
of the controller parameters∆Ṽ in (46) is similar to that
of PC onPIV in (47). However, due to the decoupling of
the outputsy1(t) andy2(t), D̃b in (46) is insensitive to the
changes inr2(t). Hence, only the first effect mentioned
above is present, i.e. the presence ofr2(t) increases the
variance of the estimated controller parameters.

• A comparison of simultaneous and sequential excitations
shows thatr2(t) acts as an additional disturbance for the
tuning of the decouplerK21(ρ). That is, the addition of
this reference deteriorates the signal-to-noise ratio forthe
estimation ofK21(ρ) and, by cross-correlation, influences
negatively the variances of the other elements of the con-
troller transfer function.

• For systems whereMd is not diagonal, i.e. decoupling is
not part of the control design specifications, both effects
of the power of the excitation signals on the variance of
the parameter estimates are present.

This section has presented a variance analysis for the pa-
rameters of a multivariable controller tuned using the CbT
approach. Two cases of excitation have been considered for
2×2 systems. This analysis indicates that the addition of the
second reference signal can worsen the variance of the esti-
mated controller parameters. Of course, it is a user’s choice
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to excite the elements ofr(t) simultaneously or sequentially.
Simultaneous excitation provides significantly smaller ex-
perimental cost. Sequential excitation, on the other hand,
implies two experiments per iteration but provides more ac-
curate controller parameters.

3.2 Correlation reduction for MIMO systems

When a restricted complexity controller is used, it is not
guaranteed that, at the solutionρ∗ of (16), the variable
EKjk

(ρ∗, t) is completely decorrelated from all past refer-
ence signals. For example, when only one parameter per con-
troller Kjk is tuned,F (ρ) represents the cross-correlation
betweenEKjk

(ρ, t) and r(t − 1). That is, at the solution
of (16) these signals are decorrelated only for the delay of
1, and not necessarily for other delays. In other words, the
resulting controller does not really decorrelateEKjk

(ρ∗, t)
andr(t). One possibility around this problem is to increase
the order of the controller. However, if the controller order
is too high, this will induce pole-zero cancellations in the
controller transfer functions, which, in turn, will lead tonu-
merical problems in the algorithm. A more elegant solution
would be to adopt a FIR controller structure. This way, even
in the case when the controller order is overestimated, there
are no numerical problems.

To circumvent these difficulties, the controller parameters
can be computed by minimizing the following correlation
criterion:

J(ρ) = FT (ρ)F (ρ) (49)

with the cross-correlation functionF (ρ) defined by (12)-
(14). The variablesEKjk

(ρ, t) are chosen as in (15). Assum-
ing that the reference signals are known in advance, the in-
strumental variables vector is chosen as a shifted version of
the reference signalrk(t):

ζT
Kjk

(t) = [rk(t + nz), . . . , rk(t), . . . , rk(t − nz)] (50)

with nz sufficiently large with respect to the number of con-
troller parameters, i.e.2nz + 1 ≥ nr + ns. Observe that,
with this choice of instrumental variables, the number of
equations is larger than the number of controller parame-
ters, i.e. the cross-correlation betweenEKjk

(ρ, t) and r(t)
is computed for2nz + 1 delays. This way, the underlying
system of cross-correlation equations is a better measure of
the cross-correlation betweenEKjk

(ρ, t) andr(t) and, at the
same time, it is independent of the controller order.

Remark: For the decorrelation procedure, the instrumental
variables were chosen so as to ensure positive-definitenessof
Q(ρ∗). In contrast here, the required condition on positive-

definiteness of∂J(ρ)
∂ρ

∣

∣

∣

ρ=ρ∗

is automatically satisfied because

J(ρ) is a quadratic criterion. Hence, the task of choosing the
instrumental variables with this method is much simpler.

3.2.1 Frequency-domain analysis

In this section, the properties of the achieved closed-loop
system are investigated by frequency-domain analysis of the
criterion (49). It follows from (12)-(14) and (49) that this
criterion can be expressed as:

J(ρ) =

2
∑

j=1

2
∑

k=1

E
{

f̄T
Kjk

}

E
{

f̄Kjk

}

(51)

By substituting (50) in (14), (51) becomes

J(ρ) =

2
∑

j=1

2
∑

k=1

τ=nz
∑

τ=−nz

R2
Kjk

(τ) (52)

where the cross-correlationRKjk
(τ) is defined as:

RKjk
(τ) = E

{

EKjk
(ρ, t)rk(t − τ)

}

. (53)

Applying Parseval’s formula to (52) and lettingnz go to
infinity leads to:

lim
nz→∞

J(ρ) =

2
∑

j=1

2
∑

k=1

1

2π

∫ π

−π

∣

∣Bjk(ejω)
∣

∣

2
Φ2

rj
(ω)dω

(54)
where

Bjk(ejω) = Tjk(ejω, ρ) − Mdjk(ejω). (55)

Now, from (54) and (55), the following observations can be
made:

• Criterion (49) is asymptotically unaffected by noise.
• The weighted discrepancy between the achievedT and

the desiredMd sensitivity functions is minimized, with
the weight being the square of the reference signal power.
The discrepancy will be small at frequencies where the
reference signal power is large.

• Ideally, Bjk(ejω) = 0. Since the desired sensitivity
function Md is diagonal, diagonal controllers provide
Tjj(e

jω, ρ) = Mdjj(e
jω) and the off-diagonal decouplers

provideTjk(ejω, ρ) = 0, j 6= k.

Having analyzed the basic properties of (49), the next sub-
section presents a method for minimizing this criterion.

3.2.2 Minimization of an upper bound of the criterion

Minimization of criterion (49) is intractable since it involves
the product of expectations that are unknown. Therefore, we
define the following criterion:

Ju(ρ) = E
{

F̄T (ρ)F̄ (ρ)
}

(56)
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which can be minimized using the stochastic approximation
method. It can be shown thatJ(ρ) ≤ Ju(ρ), i.e. by mini-
mizing (56) one minimizes an upper bound of (49) [12].

A local minimum of (56) can be found as the solution of:

J ′

u(ρ) = E

{

∂F̄ (ρ)

∂ρ
F̄ (ρ)

}

= 0 (57)

which can be obtained using the following iterative formula
[19]:

ρi+1 = ρi − γi

∂F̄ (ρ)

∂ρ

∣

∣

∣

∣

ρi

F̄ (ρi) (58)

Under Assumptions (i)-(ii), this scheme converges to a local
minimum of the criterion as the number of iterations goes to
infinity, provided that an unbiased estimate of the gradient
∂F̄ (ρ)

∂ρ

∣

∣

∣

ρi

is available. However, obtaining an unbiased esti-

mate of this gradient for MIMO systems can be very costly
[7]. In this work, the gradient is computed using an identi-
fied MIMO model, which requires only one closed-loop ex-
periment regardless of the number of inputs and outputs. It
is clear that the existence of an unbiased model of the plant
Ĝ would guarantee the convergence of the CbT algorithm.
However, an unbiased model̂G is very difficult to obtain.
Instead of identifying a complex unbiased model, it is pro-
posed here to identify, at each iteration, a low-order model
that accurately reflects the local behavior of the plant in the
vicinity of the current operating point (with the current pa-
rameter valueρi).

3.3 Implementation aspects

We have presented both the decorrelation procedure and the
correlation reduction for the tuning of decoupling controllers
for MIMO systems. Here we compare these two approaches
in terms of their applicability for solving practical control
situations.

The stochastic approximation algorithm used in the decor-
relation procedure presented in Section 3.1 converges toρ∗,
under fairly weak conditions. However, the convergence rate
could be too slow for industrial applications. If one can col-
lect a large number of data, the influence of the noise on
F̄ (ρi) is reduced considerably, and the Newton-Raphson al-
gorithm can be used to compute the controller parameters:

ρi+1 = ρi − ˆ̄Q−1(ρi)F̄ (ρi) (59)

where the elements of the matrix̄̂Q(ρi) =

(

∂ ˆ̄F (ρ)
∂ρ

∣

∣

∣

ρi

)

are:

ˆ̄Q
Kjk

Kmn
(ρi) =

1

N

N
∑

t=1

∂ŷj(ρi, t)

∂ρKmn

ζT
Kjk

(t). (60)

The derivatives∂ŷj(ρi,t)
∂ρKmn

can be estimated using (22), where
the transfer function matrixG is typically unknown but can
be identified and replaced by its estimatêG. Finally, the
estimateŜ(ρi) is calculated usinĝG and the current value
of the controllerK(ρi).

Similarly, for the correlation reduction method withN suf-
ficiently large, the criterion (56) can be considered as deter-
ministic and minimized using the much faster Gauss-Newton
algorithm:

ρi+1 = ρi − HF (ρi)
−1 ˆ̄Q(ρi)F̄ (ρi) (61)

whereHF (ρi) is chosen as:

HF (ρi) = ˆ̄Q(ρi)
(

ˆ̄Q(ρi)
)T

. (62)

Observe that the Jacobian estimateˆ̄Q(ρi) is asymptotically
unaffected by noise since the noisy part of∂ŷj(ρi,t)

∂ρKmn
is not

correlated withζT
Kjk

(t). However, it is sensitive to modelling
errors.

For the decorrelation procedure, an inaccurate estimate of
the Jacobian will not prevent the controller parameter vector
from converging toρ∗ but will affect the convergence speed.
In contrast, in the case of correlation reduction, the iteration
will stagnate once the residual||ρi−ρ∗|| of (61) is roughly of
the same size as the error in the gradient. For more details on
these two iterative methods, the reader is referred to Chapter
5.4 in [13] and Chapter 2.3.1 in [14], respectively.

The above discussion suggests that it is preferable to use
the decorrelation procedure for controller tuning. However,
the generation of the instrumental variables is much more
involved with the decorrelation procedure than with cor-
relation reduction. Another advantage of the correlation-
reduction method is that the criterion better reflects the
amount of correlation between two signals and, further-
more, it can be applied to the tuning of restricted-complexity
controllers. The overall conclusion is that the correlation-
reduction method is more suited to industrial applications
due to its simplicity of implementation and the fact that it
is applicable to a broader range of applications.

4 Simulation Studies

Three simulation studies are presented in this section. In the
first study, the sequential and simultaneous excitations are
compared in terms of accuracy of both the estimated con-
troller parameters and the estimated controller transfer func-
tions. The second study investigates the basic features of the
decorrelation procedure and correlation-reduction method,
while the third study compares the correlation-reduction
method to IFT for MIMO systems.
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4.1 Sequential vs. simultaneous excitation

Consider the following discrete-time multivariable plant:

G(q−1) =

(

0.09516q−1

1−0.9048q−1

0.03807q−1

1−0.9048q−1

−0.02974q−1

1−0.9048q−1

0.04758q−1

1−0.9048q−1

)

(63)

and let the initial controller for this plant be:

K0 =

(

1−0.99q−1

1−q−1

0.1−0.099q−1

1−q−1

− 1−0.99q−1

1−q−1

1−0.99q−1

1−q−1

)

(64)

The parametrized controllerK(ρ) has the same struc-
ture as K0; each of the elementsKij has an integra-
tor and a first degree numerator with 2 free parame-
ters. The vector of tuned parameters, defined in (2)-(5), is
ρ = [s

(0)
11 , s

(1)
11 , s

(0)
12 , s

(1)
12 , s

(0)
21 , s

(1)
21 , s

(0)
22 , s

(1)
22 ]T . The numer-

ator coefficients of the controllersKjj , j = 1, 2 are tuned
to provide the desired closed-loop response with a natural
frequency of3rad/s and damping factor of 0.7, while the
numerator coefficients ofKjk, j 6= k are tuned for decou-
pling. The corresponding reference model reads:

Md1
=

(

0.1148q−1
−0.0942q−2

1−1.79q−1+0.8106q−2 0

0 0.1148q−1
−0.0942q−2

1−1.79q−1+0.8106q−2

)

(65)

The instrumental variables for the decorrelation procedure
are computed using the following Laguerre basis functions:

Fl(q
−1) =

(

√

1 − ξ2

1 − ξq−1

)

(

q−1 − ξ

1 − ξq−1

)l

(66)

where ξ = 0.895 is chosen to approximately reflect the
closed-loop dynamics, and the model order isl = 2. The
weighting coefficientshl

Kjk
are obtained by solving the fea-

sibility problem
Q̂(ρ∗, hl

Kjk
) > I (67)

where Q̂(ρ∗, hl
Kjk

) is estimated as explained in Section
3.1.1. The identity matrixI on the right-hand side of in-
equality (67) is used (instead of0) to ensure the positive
definiteness ofQ(ρ∗, hl

Kjk
) with a safety margin, to com-

pensate for possible differences betweenQ(ρ∗, hl
Kjk

) and its

estimateQ̂(ρ∗, hl
Kjk

). The following values for the coeffi-

cientshl
Kjk

are obtained using Matlab LMI Control Toolbox:
h0

K11
= 200.0328, h1

K11
= −5.5225, h0

K12
= 107.4611,

h1
K12

= −352.1068, h0
K21

= 226.8947, h1
K21

= −85.2721,
h0

K22
= 234.8072 andh1

K22
= −371.1253.

As stated in Section 3.3, the convergence rate of the Robbins-
Monro scheme is too slow to be applicable in many prac-
tical control problems. Therefore, a comparison of the two

excitation methods by a Monte-Carlo simulation would ne-
cessitate an unreasonably large number of iterations. To cir-
cumvent this problem, the iterative scheme (17) has been
modified as follows:

ρi+1 = ρi − γiHcF̄ (ρi). (68)

whereγi = 1/i andHc is a matrix computed in the following
way. In the few first (say 5) iterations,Hc is computed as the
inverse of the Jacobian estimate, i.e.Hc = Q̄−1(ρi). Then,
Hc is fixed toHc = Q̄−1(ρ5). This modification allows the
iterative scheme (68) to converge rapidly toρ∗. Observe that
with this modification, the expression (31) changes to

V = α2

∫

∞

0

eDx Hc P HT
c eDT xdx (69)

with

D =
1

2
I − αHcQ(ρ∗) (70)

Considering thatHc is close toQ−1(ρ∗) after the few first
iterations, i.e.Hc ≈ Q−1(ρ∗), (70) can be rewritten asD ≈
( 1
2 − α)I. SinceHc and D are constant in the remaining

iterations, and thus not dependent on the excitation signals,
the results of Theorem 3.2 apply.

To compare the two excitation methods 100 Monte-Carlo
simulation runs are performed. For each simulation run, the
tuning is carried out in 9 iterations. The output of the plant
is perturbed in each run by a different realization of a zero-
mean, stationary, white Gaussian sequencev(t) with the
variance0.01I. The signalsr1(t), r2(t), v1(t) andv2(t) are
chosen mutually independent so as to satisfy the assumption
of Theorem 3.2.

When the closed-loop system is excited sequentially, the
asymptotic variances of the elements ofρ are:

var(ρa) = (0.001156 0.001180 0.004627 0.004810

0.003225 0.003340 0.019222 0.020984)

Whenr1(t) andr2(t) are excited simultaneously, the asymp-
totic variances ofρ are:

var(ρb) = (0.004941 0.005203 0.007360 0.006754

0.014510 0.014935 0.030024 0.031664)

The Monte-Carlo simulations confirm the results of Section
3.1.2. Indeed, the variances of the controller parameters are
larger in the case of simultaneous excitation than in the case
of sequential excitation. However, note that for sequential
excitation two experiments per iteration are required, while
a single experiment per iteration is sufficient in the case of
simultaneous excitation.

4.2 Decorrelation procedure vs. correlation reduction

The same simulation example is used to compare the two
CbT methods.The controller parameters are computed using
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Fig. 3. Decorrelation procedure. Reference signals (dash-dot) and
desired responses (dotted). Achieved responses: the initial con-
troller (dashed) and final controller obtained by decorrelation pro-
cedure (solid). The references are changed in a step-like manner
at 0 and 2.5s (forr1) and 5s (forr2).

Table 1
Comparison of CbT variants.|F (ρi)|2 denotes the 2-norm of
F (ρi), while SSOE indicates the sum of squares of the output
error.

Iter- Decorrelation Procedure Correlation Reduction

ation |F (ρi)|2 SSOE Ju(ρi) SSOE

i = 0 7817.09 38.2165 141.3941 38.2165

i = 6 88.8512 3.3985 1.8310 3.4188

(59)-(60) for the decorrelation procedure, and (61)-(62) for
correlation reduction. The tuning is carried out in 6 itera-
tions, with one experiment per iteration where each experi-
ment is performed with a different noise realization. The re-
sulting responses obtained with the initial controller (dashed
line) and the controller tuned using the decorrelation proce-
dure (solid line) are shown in Fig. 3. With the tuned con-
troller, the desired response (dotted line) can be followedup
to the effect of the noise. Note also that the resulting closed-
loop system is diagonalized. The responses obtained with
the controller tuned by correlation reduction are very simi-
lar to those in Fig. 3 and are not shown here. The results are
summarized in Table 1. Note that the correlation measures
are reduced in both cases by99%, while the sum of squares
of the output error is reduced by91%.

4.3 Correlation-reduction CbT vs. IFT

For this comparison, our simultation considers the tuning
of a multivariable PI controller for a LV100 gas turbine en-
gine [26]. The simulation conditions are taken from [7]. The
plant is represented by a continuous-time state-space model
with five states, two inputs and two outputs. The model is
discretized using Tustin’s approximation with the sampling
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Fig. 4. Correlation-reduction CbT: Closed-loop responses in a
noisy environment. Reference signals (dash-dot), desired responses
(dotted), achieved responses with the initial controller (dashed)
and final controller (solid). The references are changed in a step–
like manner at 0 and 5s (forr1) and 10s (forr2).
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Fig. 5. Correlation-reduction CbT vs. IFT controller in a noise-free
context. Reference signals (dash-dot), desired responses (dotted),
closed-loop response with the CbT controller (solid) and IFT con-
troller (dashed).

period Ts = 0.1s. Each experiment is performed with a
different realization of the measurement noisev(t), which
is generated as a zero-mean, stationary, white Gaussian se-
quence with variance0.0025I.

The initial controllerK0 given in (64) is used. The responses
obtained with this controller are plotted in Fig. 4 (dashed
line). Eight numerator coefficients are tuned (two for each
transfer function element), while the denominators are again
kept fixed at1 − q−1. The following reference model is
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specified:

Md2
=

(

0.4q−1

1−0.6q−1 0

0 0.4q−1

1−0.6q−1

)

(71)

and the controller parameters are calculated according to
(61).

A discrete-time state-space model with three states is iden-
tified in closed loop, using Matlab System Identification
Toolbox, to compute the estimatêG. After eight iterations,
this procedure provides the closed-loop response shown in
Fig. 4. A comparison with the desired response (dotted line)
shows that the two curves are nearly superposed except for
the effect of the noise. In addition, changes in the reference
signalsr1(t) andr2(t) do not induce any visible change on
the outputsy2(t) andy1(t), respectively. In other words, the
closed-loop system is almost fully diagonalized. The value
of the tuning criterion is reduced by more than 99%. The
resulting CbT controller is:

KCbT =

(

0.3636−0.09866q−1

1−q−1

0.3653−0.2691q−1

1−q−1

18.69−18.16q−1

1−q−1

−3.453+2.652q−1

1−q−1

)

(72)

For this problem, [7] provided the IFT controller

KIFT =

(

0.248−0.03q−1

1−q−1

0.38−0.199q−1

1−q−1

16.47−15.91q−1

1−q−1

0.063+0.054q−1

1−q−1

)

. (73)

To compare it with the CbT controller designed above, an ex-
periment is performed with the same simulation conditions.
The observedSSOE with the CbT controller is 0.0050,
while that with the IFT controller is 0.0082. Since IFT con-
tains a noise-rejection objective1 while CbT does not, one
would expect IFT to perform better in a noisy situation. How-
ever, theSSOE obtained with CbT is smaller. The IFT con-
troller did not succeed in (i) fully decoupling the closed-loop
system, and (ii) completely satisfying the model-following
specification. This indicates that the IFT algorithm may have
converged to a local minimum. To illustrate this, an addi-
tional experiment without noise is performed. The results
are shown in Fig. 5. The closed-loop response obtained with
the CbT controller follows almost perfectly the desired re-
sponse. In contrast, the closed-loop response obtained with
the IFT controller shows some discrepancy in the last 5 sec-
onds of the response. In addition, the influence of the change

1 Note that IFT minimizes the sum of squares of the output error:

SSOE =
1

N

N
∑

t=1

ε
T

oe(ρ, t)εoe(ρ, t). (74)

in the reference signalr1(t) at the instants 0s and 5s is vis-
ible ony2(t).

In terms of experimental cost, the IFT controller is obtained
after 6 iterations (and a total of 30 experiments) compared
to 8 iterations (and a total of 8 experiments) for the CbT
controller.

5 Conclusions

This paper has considered the use of the correlation-based
approach for tuning decoupling linear multivariable con-
trollers. The parameters are tuned by either solving a correla-
tion equation or minimizing the square of a cross-correlation
function. The diagonal controllers attempt to fulfill the de-
sired output specifications, while the off-diagonal controllers
aim at decoupling. In contrast to the approaches where de-
couplers and diagonal controllers are designed sequentially,
the design of decouplers and controllers is donesimultane-
ouslyhere. The tuning of all decouplers and controllers is
achieved by performing a single experiment per iteration re-
gardless of the number of inputs and outputs, since all ref-
erence signals can be excited simultaneously. This feature
represents an advantage over some other data-driven meth-
ods such as IFT, where the required number of experiments
per iteration increases with the number of inputs and out-
puts. In addition, perfect decoupling can be achieved using
CbT while, in the case of data-driven control design methods
that minimize a norm of the error signal, there is a trade-off
between satisfying the decoupling specifications and noise
rejection.

The variance of the estimated controller parameters has been
compared for the two cases of simultaneous and sequential
excitations. This analysis shows that, due to the fact that
decoupling is imposed as a design criterion, simultaneous
excitation of all references has a negative effect on the vari-
ance of the estimated controller parameters. More accurate
estimates require require thatny experiments per iteration
be performed. In fact, one must choose between low exper-
imental cost (simultaneous excitation) and better accuracy
of the estimated parameters (sequential excitation). Simu-
lation results illustrate the features and applicability of this
controller tuning method for LTI MIMO systems.
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[11] A. Karimi, L. Mi škovíc, and D. Bonvin. Iterative correlation-based
controller tuning with application to a magnetic suspensionsystem.
Control Engineering Practice, 11(9):1069–1078, 2003.
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