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Abstract. In this chapter we first review the changing role of the model in control
system design over the last fifty years. We then focus on the development, over
the last ten years, of the intense research activity and on the important progress
that has taken place on the interplay between modelling, identification and robust
control design. The major players of this interplay are presented; some key technical
difficulties are highlighted, as well as the solutions that have been obtained to
conquer them. We end the chapter by presenting the main insights that have been
gained by a decade of research on this challenging topic.

1 A not so brief historical perspective

There are many ways of describing the evolution of a field of science and
engineering over a period of half a century, and each such description is nec-
essarily biased, oversimplified and sketchy. But I have always learned at least
some new insight from such sketchy descriptions, whoever the author. Thus,
let me attempt to start with my own modest perspective on the evolution
of modelling, identification and control from the post-war period until the
present day?!.

Until about 1960, most of control design was based on model-free meth-
ods. This was the golden era of Bode and Nyquist plots, of Ziegler-Nichols
charts and lead/lag compensators, of root-locus techniques and other graph-
ical design methods.

From model-free to model-based control design

The introduction of the parametric state-space models by Kalman in 1960,
together with the solution of optimal control and optimal filtering problems
in a Linear Quadratic Gaussian framework [26,27] gave birth to a tremen-
dous development of model-based control design methods. Successful applica-
tions abounded, particularly in aerospace, where accurate models were readily
available.

From modelling to identification
The year 1965 can be seen as the founding year for parametric identification
with the publication of two milestone papers. The paper [23] sets the stage

1 And by post-war I refer to the second world war, and not what the old folks call
the ‘Great War’, as if a war could ever be great.
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for state space realization theory which will, 25 years later, be the major
stepping stone towards what is now called subspace identification. The pa-
per [5] proposes a Maximum Likelihood framework for the identification of
input-output (i.e. ARMAX) models that gave rise to the celebrated predic-
tion error framework that has since proven so successful. Undoubtedly — and
as is so often the case — the advent of identification theory was spurred by
a desire to extend the applicability of model-based control design to broader
and broader fields of applications, for which no reliable models could be ob-
tained, at least at a reasonable cost.

From the elusive true system to an approximate model

Most of the early work on identification theory was directed at developing
more and more sophisticated model sets and identification methods with the
elusive goal of converging to the “true system”, under the assumption that
the true system was in the model set. It is not until the eighties that the effort
shifted towards the goal of approximating the true system, and of character-
izing this approximation in terms of bias and variance error on the identified
models. Once it is recognized that the identified model is an approximates
the true system with some error, it makes sense to tune the identification
towards the objective for which the model is to be used. One of the main
contributions of L. Ljung’s book [30] was to introduce the engineering con-
cept of identification design, and to lay down some foundations for the formal
design of goal-oriented identification. However, the specific contributions to
control-oriented identification design were virtually nonexistant until 1990.

From certainty equivalence to robust control design

A consequence of the early faith that the true system could be modelled al-
most perfectly and of the development of more and more sophisticated model-
based control design methods was the application of the “certainty equiva-
lence principle” for control design. Whether the model had been obtained by
mathematical modelling or by identification from data, it was taken to repre-
sent the true system. It is as if the prevailing habits of adopting model-based
control design techniques had almost completely obliterated our grandfathers’
cautionary adoptions of gain and phase margins. There was an obvious need
to introduce a formal way of injecting stability and performance safeguards
in the model-based control design approaches. This is precisely what the ro-
bust control theory initiated in the eighties (see [40]) aimed at achieving: it
was an attempt to preserve the obvious advantages of model-based control
design while at the same time introducing robustness to model errors. Much
of the effort in the development of robust control theory had to do with vari-
ous ways of introducing model errors in the closed loop system configuration:
descriptions of additive, multiplicative, feedback errors, coprime factor per-
turbations, linear factor transformations flourished.
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From separate to synergistic design

It is not until the early nineties that the identification community and the
robust control community became aware of each other’s work. Much of the
successful robust control applications had been performed in situations where
modelling techniques were able to deliver a fairly accurate model on the ba-
sis of first principles, and where it was reasonable to assume a priori bounds
on the noise and modelling errors. Process control applications, in which
identification methods are often the only path to a reasonable model and
where these methods have also achieved many of their successes, were for
the most part outside this realm. As a result of the lack of communication
between these two research communities, the model uncertainty descriptions
on which robust control design methods had been based (frequency domain
descriptions, essentially) were very inconsistent with the tools delivered by
prediction error (PE) identification. As a matter of fact, PE identification
had very little to offer in terms of explicit quantification of the error in an
estimated transfer function. A fortiori, there was very little understanding
of the interplay between the experimental conditions under which identifi-
cation was performed and the adequacy of the resulting model (and model
error) for control design. The prevailing philosophy was “First estimate the
best possible model, then design the controller on the basis of this estimated
model and — possibly — of an estimate of the model error.” Since the main
stumbling block in applying robust control design techniques from identified
models was the unavailability of adequate uncertainty descriptions, much of
the early effort at combining identification with robust control theory went
in the development of novel identification techniques that would deliver the
kind of frequency domain uncertainty descriptions that the robust control
theory of the eighties required. The problem is that an identification method
whose sole merit is to deliver an error bound may well produce a nominal
model as well as an uncertainty set that are ill-suited for robust control design.

From model reduction to control-oriented low order models

Of course, there is no fundamental objection to first spending a significant
amount of effort in obtaining a very accurate model (including a model un-
certainty set) for the unknown system by modelling and/or identification
techniques, and then computing a robust controller from this model and its
uncertainty set. This would typically lead to a high order controller, which
can of course later be reduced. However, there are both practical and the-
oretical reasons for adopting an identification method that directly leads to
a low order model and an uncertainty set that are tuned for robust control
design. This will be one of the central themes of the present book.

A practical motivation is that there is no reason to waste enormous mod-
elling and/or identification efforts at obtaining a highly accurate and com-
plex model with fairly accurate error bounds if a simple model is obtained
with much less effort and leads to a controller that achieves similar perfor-
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mance with the same stability safeguards. Examples abound to illustrate that
extremely simple controllers, obtained from extremely simple models, often
achieve high performance on complex systems. One such example will be
presented for motivation in Subsection 3. A theoretical motivation is that, as
shown recently [25], a low order model for control design, obtained by model
reduction techniques from a high order model, will have higher variance error
than a low order model that has been identified directly for the purpose of
control design.

Thus, much of the research effort of the nineties has focused on estab-
lishing synergies between identification and robust control design methods.
These efforts have been directed at better matching the technical tools of
both theories: new identification techniques have been developed that pro-
duced the kind of frequency domain model uncertainty descriptions that are
prevalent in mainstream robust control theory, while new robust control anal-
ysis and design tools have been developed that are consistent with the para-
metric descriptions delivered by mainstream PE identification theory. More
importantly perhaps, important progress has been made at producing ro-
bust identification and control design procedures in which the experimental
conditions and the identification criterion are designed to match the control
performance criterion. Such matching must be achieved not only for the low
order nominal model (this is a design problem for the bias error distribution),
but also for the model uncertainty set (this is a design problem for the vari-
ance error distribution). The bias and variance error are affected by different
aspects of the experimental conditions and of the identification criterion.

From adaptive control to iterative control design

Dual control and adaptive control were two early attempts to address the
issue of parametric uncertainty and model-based control design in a syner-
gistic way. In dual control the parameter estimation and the control design
mechanism are obtained jointly as the result of a single but very complex op-
timization problem. In adaptive control, the parameter adjustment scheme is
subsidiary to the control objective. Both schemes were essentially developed
for the case where the structure of the true system is known, and where the
system is in the model set. The solution of the dual control problem proved
to be computationally intractable, even in the simplest cases. As for adap-
tive control, after convergent mechanisms had been devised for the ideal case
where the system is in the model set, attempts were made to robustify the
adaptive control algorithms in order to take account of some modest degree
of uncertainty. These attempts essentially consisted of introducing caution-
ary safeguards in the computation of the gain of the parameter adjustment
scheme; see e.g. [1] for a representative example of these efforts. The major
difficulty with adaptive control schemes is that the parameters of the feed-
back control system change at every sampling instant, making the closed-loop
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dynamics nonlinear and the stability analysis of these dynamics extremely
complex.

The study of the interplay between identification and control design, un-
dertaken by various groups around 1990, led to the formulation of identi-
fication criteria that were a function of the underlying control performance
criteria. As with all optimal experiment design results, the optimal solution is
a function of the unknown system, and the only practical way to approach this
optimal solution is then to attempt an iterative design. This was pointed out
by various authors (see e.g. [32] and will be illustrated later in this chapter.
In identification for control, this means that a succession of model updates
and controller updates are intertwined. Each new model is identified from
data obtained on the real plant on which the most recent controller is acting;
each new controller is in turn computed from this most recent model. Repre-
sentative examples of such iterative schemes, which first emerged in the early
nineties, can be found in [35,29,41].

A major difference between the iterative identification and control de-
sign schemes of the nineties and the earlier adaptive control schemes is that
in the former the model and controller are kept constant in between two
model and/or controller iterations. Thus, the closed loop system performs in
a batch-like mode, in which stationarity can be assumed — and hence asymp-
totic analysis can be applied — during the collection of each batch of data.
This removes one of the fundamental problems of adaptive control schemes,
namely the transient instability problem: see [3]. Nevertheless, it was shown in
[22] that, even with the simplest control performance criterion, such iterative
schemes are not guaranteed to converge to a minimum of the control per-
formance criterion over all models in the chosen restricted complexity model
set. This may cause the iterative parameter adjustment scheme to drift to a
controller parameter vector that makes the closed loop system unstable.

As a result, important work has been undertaken to introduce prior sta-
bility checks into the iterative identification and control schemes. This work,
which is still underway, has led to the inclusion of caution in the controller
adjustment so that, from a presently operating stabilizing controller and an
updated model, stability and/or performance improvement guarantees can
be established for the next controller [11,2].

In the work on iterative identification and control design, the focus has
been first on the formulation of control-oriented identification criteria, i.e.
the successive identification criteria are a function of the control performance
criteria. As a result, the succession of nominal models have a bias error dis-
tribution that are “tuned for control design”. This means that the (typically
low order) nominal models have a bias error that is small in the frequency
areas where it needs to be small for the design of a better controller, typicaly
around the present cross-over frequency. Recent work has focused on the de-
sign of a control-oriented distribution of the variance error of the identified
models, again leading to iterative designs [16,9]. The idea is that, since one
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can manipulate the shape of the model uncertainty set by the choice of the
experimental conditions under which the new model is identified, one should
attempt to obtain model uncertainty sets for which the class of controllers
achieving stability and the required performance with all models of that set
is as large as possible.

2 A typical scenario and its major players

During the extensive research of the last decade on the interplay between
identification and robust control, important progress has been made and
some key lessons have been learned. In this section we illustrate some of
the salient features of the interplay. First, we present the typical scenario to
which iterative identification and control design schemes are usually applied,
as well as the major players.

In many applications the system to be controlled is very complex and pos-
sibly nonlinear, and it would therefore require a complex dynamical model
to represent it with high fidelity. Any model-based control design procedure
would therefore lead to a complex or high order controller, since the com-
plexity of a model-based controller is of the same order as that of the system.
The practical situation, considered here, is where we want the to-be-designed
controller to be linear and of low order.

Since we want to focus on ideas and concepts, rather than on technically
complicated issues, and for the sake of simplicity, we shall assume that the
unknown true system can be represented with high fidelity by a single-input
single-output linear time-invariant system. Thus, we assume that there is an
unknown “true system” represented by

S 1y = Go(2)us + vy, (1)

where Gy(z) is a linear time-invariant causal operator, y is the measured
output, u is the control input, and v is noise, assumed to be quasistationary.

A typical situation is that we can perform experiments on this system with
the purpose of designing a feedback controller. Most often, the system is al-
ready under feedback control, and the task is to replace the present controller
by one that achieves better performance. This situation is representative of
very many practical industrial situations. We denote the present controller
by Cid:

up = Cig(2)[re — yil, (2)
where 7; is the reference excitation.

Using any set of N data collected on the unknown system, in open loop

or in closed loop, we can apply Prediction Error (PE) identification and
compute a model G,,,q of the unknown Gy.2 The model G,,0q4 is typically

2 One would also compute a noise model for v(t) in the form v(t) = Hpmoa(2)e(t),
with e(¢) white noise, but to keep things simple we shall only discuss here the
interplay between the input-output model and the controller.
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a low order approximation of the unknown Gg. Various validation methods
have also been developed for the estimation of an uncertainty set D around
Gmod, wWith the property that Gy € D with probability «, where « is any
desired level close to 1 (e.g. a = 0.95): see e.g. [18,19,8].

The traditional scenario in model-based robust control design was: Us-
ing the model Gpoqa and the uncertainty set D (if available), design a new
controller C(z) that achieves closed loop stability and meets the required per-
formance with all models in D, and hence with the unknown true system Gy.
For this scenario to be successful, a very accurate model G,,,q Was typically
required.

The present scenario based on the new insights gained on the interplay
between identification and robust control is: On the basis of the required per-
formance, of any knowledge of the unknown system, and of the performance
achieved with the present controller (if any), design a control-oriented iden-
tification experiment that produces a (new) Gmoq and a (new) uncertainty
set D; then design a new controller C(z) that achieves closed loop stability
and meets the required performance with all models in D, and hence with the
unknown true system Gg. If necessary, repeat this design procedure, possi-
bly with a more demanding performance criterion. In most versions of this
new scenario, one first computes a class of controllers C(G 04, D) which all
achieve the required performance with all models in D; the new controller C
is then chosen within this class in such a way as to have some additional nice
features (e.g. low complexity).

The goal of the new scenario is to achieve the same or better performance
based on models of lower complexity. In addition, the class of controllers C
that achieve the required performance is larger because the model uncertainty
set D is tuned towards that aim. All in all, the same or better performance is
achieved with a controller that is easier to compute and of lower complexity
than is possible with the traditional scenario.

The players within this (iterative) identification and robust control design
scenario are therefore:

the unknown plant Gy

the present controller C;q (if any)

the present model G (if any)

the identified model Giy04

the uncertainty set of models D around G4

the controller set C of controllers that achieve the prescribed performance
the new controller C € C

Except for the unknown plant, the identification and control designer has
some handle on all other players. It is the complexity of the interplay between
all these players that makes the problem so challenging and interesting. A
lot of progress has been accomplished and a lot of new insights gained, but
it is no wonder that it has taken a decade so far to understand and conquer
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all the stumbling blocks along the way.

3 Some important new insights

The study of the interplay between the different actors has led to some im-
portant new insights, and to significant progress on some key technical issues.

High performance control with low order models

Experience shows that simple models often lead to high performance con-
trollers on complex processes. To illustrate this point, let us mention the
modeling, identification and control application of the Philips Compact Disc
(CD) Player, taken from [12].
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Fig. 1. Amplitude of spectral estimate (—) and of parametric model (- -)

Following the track on a CD involves two control loops. A first permanent
magnet/coil system mounted on the radial arm positions the laser spot in the
direction orthogonal to the track. A second permanent magnet/coil system
controls an objective lens which focuses the laser spot on the disc. The control
system therefore consists of a 2-input/2-output system, with the spot position
errors (in both radial and focus directions) as the variables to be controlled,
and the currents applied to the magnet/coil actuators as the control variables.
The modeling of this system using finite element methods or its estimation
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using spectral analysis techniques would lead to a 2-input/2-output model
whose McMillan degree would be of the order of 150. However, by using
an identification for control design criterion, a 16-th order model has been
identified that leads to excellent control performance: see [12] for details.
A comparison between the spectral estimates and the identified models for
the 4 input-output channels is presented in Figure 1. The spectral estimates
have been obtained by taking 100 averages over 409,600 time samples. The
parametric models have been identified using 2,000 closed loop data samples.

A controller of degree 150, say, based on the full-order model obtained
by modelling techniques, would be practically useless. Instead, data-based
control-oriented identification led to an approximate (and simplified) model,
and to a reduced order controller that gave high performance.

The role of changing experimental conditions

It is now well recognized that one can find two plants whose Nyquist diagrams
are practically indistinguishable, and a controller for the two plants for which
the two closed-loop behaviours are enormously different. Thus the quality of
a plant model, in a closed-loop setting, can only be assessed in conjunction
with the controller with which it must operate. This was beautifully pointed
out in [36], where the following two principles were laid out.

Modelling Principle 1: arbitrarily small modelling errors can lead to ar-
bitrarily bad closed-loop performance. The higher the performance sought of
the controller, the more readily this phenomenon occurs. We illustrate this
with the following example. Consider the two transfer functions

1 1

Gi(s) = ST 1 and Ga(s) = 5+ 1)(0.1s + 1)

(3)

The left hand side of Figure 2 compares their open loop step responses,
while the right hand side compares the closed loop step responses with a
proportional feeback controller, for two different values of the constant gain:
C =1 and C = 100.

Modelling Principle 2: larger open loop modelling errors do not necessarily
lead to larger closed-loop modelling errors. Or stated otherwise, a very poor
open loop model may yield excellent matching in closed loop. To illustrate
this, we take the same plant G1(s) as above, and we now consider the model
Ga(s) = % Figure 3 illustrates that, even though G2 would be rejected by
any engineer as a model for GG, the behaviours of the plants G; and Ga,
in closed loop with a proportional controller of gain C' = 100 are almost
indistinguishable.

The issue is that models, and the task of finding them (by modelling
or identification), can only have their quality evaluated for a particular set
of experimental conditions. Changing from open-loop operation to closed-
loop operation with a specific controller is an obvious change of experimental
conditions; but so is any change of a controller.
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The need for iterative identification and control design

To illustrate the need for iterative design, we take the simplest possible con-
trol design objective: model reference control. Thus, consider the true system
(1) and suppose we have identified a model G(z) = G(z,0) of Gy from some
parametrized set of low order models {G(z,0)}. Consider a control law

up = C(2)[re — el
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and assume that our control design objective is to design C(z) such that the
closed loop transfer function from v; to y; is some prespecified S (z). Then,
given a model G(z), the controller C(z) is computed from?
1
1+ G(2)C(2)

Compare the real closed loop system of Figure 4 with the designed closed
loop system of Figure 5, with both loops driven by the same reference signal
Tt.

= S(2). (5)

Ut
Tt + Ut Yt
C > Go >
Fig. 4. Actual closed loop system
Tt + Uy 7
- c = G - U

Fig.5. Designed (or nominal) closed loop system

Now, staring at Figures 4 and 5, one observes that:
GO - 1 y w — C _— C ;
Mo TT G TT+GC™ T ITGC T 1+ G
) GC
Yt = ———=—T1. (6)
1+GC

The ‘control performance error’ is defined as the error between the actual
and the designed outputs:

GoC  GC
1+GoC 14+GC

1
1+ GoC vt (7)

Yt — Yo = T +

As observed in [4], this error can be rewritten as

Yt — e = S(2)[yr — G(2,0)wy]. (8)

3 We assume for simplicity here that a causal solution exists for C (2), since this is
not the focal point of our discussion.
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Equation (8) can be seen as an equality between a control performance error
on the left hand side (LHS) and a filtered identification prediction error (for
an output error model) on the right hand side (RHS). Thus, it appears that if
0 is obtained by minimizing the Mean Square of the RHS of (8), i.e. by closed
loop identification with a filter S(z), then this will minimize the Mean Square
control performance error. In other words, apparently there is a perfect match
between control error and identification error. However, the controller C(z)
is also a function of the model parameter vector 6 via (5). Since the data
collected on the real closed loop system of Figure 4 are a function of C(z),
they are also dependent on 6. Hence, a more suggestive and correct way to
write (8) is as follows:

yr — G = S(2)[y(0) — G(z, 0)us (0)]. (9)

Even though the RHS of (9) looks like a closed loop prediction error, it
cannot be minimized by standard identification techniques, because 6 appears
everywhere and not just in G(z, 6).

As a consequence, the approach suggested in most ‘identification for con-
trol’ schemes is to perform identification and control design steps in an iter-
ative way, whereby the i-th identification step is performed on filtered closed
loop data collected on the actual closed loop system with the (¢ — 1)-th con-
troller operating in the loop, i.e.

ye — e = S(z,0,-1) [y (i—1) — G(z,0)ue(0i-1))- (10)

Although other variants exist, a typical iterative scenario is therefore as fol-
lows:

Gl—>Cl—>ég—>02—>...—>éi—>ci—>éi+1—>Ci+1—>...

We refer the reader to [15], [7] and [38] for details and for a survey on such
iterative schemes.

An interesting question is whether by iteratively minimizing over 6 the
mean square of the prediction errors defined by (10), one will converge to the
minimum of

J(0) £ B{S(z,0)[y:(0) — G (2, 0)us(0)]}. (11)

This question was analyzed in [22], where it was shown that the iterative
identification and control schemes do not generically converge to the achiev-
able minimum (within the model/controller set) of the control performance
cost.

Despite this disappointing news from a theoretical point of view, the con-
cept of iterative identification and control design was rapidly adopted in
applications, in particular in process control applications. Representative ex-
amples can be found in [31,34,12,24,10]. One reason is that it is typical in
such applications that large numbers of closed loop data are flowing into the
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control computer, and it then makes a lot of sense to use these data to replace
the existing controller by one that achieves better performance. The practi-
cal impact of iterative closed loop identification and controller redesign has
been assessed in [28], where some interesting observations are made on the
distinction between this batch-like mode of operation and the more classical
theory and methods of adaptive control.

The need for cautious adjustments

As a result of the absence of convergence guarantees of the iterative schemes
to a minimum of the control performance criterion, the procedure may well
converge to a controller that makes the actual closed-loop system unsta-
ble. In addition, even in a situation where the procedure does converge to
a minimum of the cost criterion, nothing guarantees that along the way the
controller parameter vector will not take a transient value that destabilizes
the true system. In order to circumvent these difficulties, a lot of work has
been devoted to the search for prior stability guarantees that can be checked
before the new controller is implemented. The generic situation is as follows.

At some stage of the iterations a controller C;, that was computed from
a model G‘i, is operating on the true system Gg. This controller stabilizes G
and achieves with Gy a performance J(Go, C;). With data collected on the
closed loop system (Gp, C'), a new model éi—i—l is identified, from which a new
controller C; 1 is computed, which has a nominal performance J (Gi-i-l; Cit1).
Before the new controller is actually applied to the plant Gy, one would like to
have some prior guarantee that this new controller will stabilize and achieve
a better performance with Gy. In the last few years a significant amount
of work has addressed this problem, either from a robust stability point of
view, or from a robust performance point of view. Most of these results have
led to the need to introduce some “caution” in the iterations, in that some
measure of distance between the present and the new controller must be kept
small. The origin of this need for caution is to be found in the observations
made above about the role of the changing experimental conditions. As for
the technical nature of these results, let it suffice here to say that the bound
on the admissible change between two successive controllers is related to the
distances between the successive closed loop systems, and to their correspond-
ing performances. For details, see later chapters in this book or e.g. [33,11,2,6].

The benefits of closed-loop identification

One of the important lessons that has emerged from the study of the interplay
between identification and control is the benefit of closed-loop identification
when the model is to be used for control design. Until the late eighties, it
was commonly accepted within the identification community that closed-loop
identification was preferably to be avoided. Optimality of closed loop identifi-
cation was first shown in the ideal context of optimal experiment design with
full order models (i.e. where variance errors only are considered) [17,21,14],
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at least when the optimal controller contains a noise rejection objective . In
the more practical case of identification with reduced order models, it is the
required connection between the control performance criterion (obviously a
closed-loop criterion) and the identification criterion, as describes above, that
establishes the need for closed-loop identification.

This observation triggered an important new activity in the design of
special purpose closed-loop identification methods, the main goal pursued
by these new methods being to obtain a better handle on the bias error in
closed-loop identification [20,37,39,13]. From a practical point of view, the
newly discovered benefits of closed-loop identification methods and the de-
velopment of some of these special purpose methods came as welcome news
to process control engineers who had never really liked the idea of opening
the loop and applying special test signals to their systems in order to identify
them.
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