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Abstract. In this chapter we first review the

1 Introduction

This chapter focuses on the interplay between the design of the identifica-
tion criterion and of the validation procedure, and the robust stability and
performance of the resulting controller. The chapter elaborates on the basic
ideas presented in Chapter ??, as well as on the basic robust analysis tools
presented in Chapter ??. We shall restrict our presentation to the identifica-
tion and validation of parametric model sets and - except stated otherwise -
to least squares prediction error identification criteria.

For the sake of making our message as clear as possible, and even though
this terminology is not universally accepted, we shall introduce the following
distinction between identification and validation. We shall in this chapter call
identification the task of constructing a nominal model Gmod. For a given data
set, collected under specific experimental conditions, this nominal model is
the direct result of the chosen model set and of the identification criterion.
We shall call validation the task of constructing an uncertainty set D that
contains the true system, perhaps at a certain probability level α. Very often,
the construction of this uncertainty set D is also the result of a prediction
error identification experiment. Thus, a single identification experiment could
be used to construct both a nominal model Gmod and a validated uncertainty
set D. However, in identification for control one often wants to work with a
low order model Gmod for control design. In such case there are good reasons
to distinguish between

• an “identification” experiment for the construction of a control oriented
nominal model; this is typically achieved by an identification step with
a low order model structure, control-oriented experimental conditions
and/or a control-oriented criterion;

• a “validation” experiment for the construction of a control oriented un-
certainty set; this can be achieved by an identification step with a full
order model structure, control-oriented experimental conditions and/or
a control-oriented criterion.
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First let us recall the main motivation for studying this interplay between
identification/validation and robust control, as well as the change in strategy
that has been made possible by the new insights gained on this interplay. As
explained in Chapter ?? the traditional strategy in model-based robust con-
trol design was to first identify the best possible model Gmod and construct
the most reliable uncertainty set D around Gmod on the basis of prior infor-
mation and available data, and to then design a controller C that achieves
closed loop stability and meets the required performance with all models in
D, and hence with the unknown true system G0. For this scenario to be
successful, a very accurate (and hence complex) model Gmod was typically
required. This not only requires an important investment in identification
and/or modelling; it also leads to unnecessarily complex controllers.

The main lesson learned from ten years of research on the interplay be-
tween identification/validation and robust control is that one can design low
order model-based controllers that achieve high performance on the actual
system. These low order controllers are based on low order (and hence bi-
ased) models whose bias error has been tuned for robust control. They are
selected from a class of controllers C that achieve robust stability and robust
performance with all models in an uncertainty set D whose shape has been
tuned for robust control.

As a result, the present scenario for model-based control design resulting
from these new insights can be described as follows: On the basis of the
required performance, of any knowledge of the unknown system, and of the
performance achieved with the present controller (if any), design a control-
oriented identification experiment to compute a low order model Gmod and an
uncertainty set D; then design a new controller C that achieves closed loop
stability and meets the required performance with all models in D, and hence
with the unknown true system G0. If necessary, repeat this design procedure,
possibly with a more demanding performance criterion. In most versions of
this new scenario, one first computes a class of controllers C(Gmod,D) which
all achieve the required performance with all models in D; the new controller
C is then chosen within this class in such a way as to have some additional
nice features (e.g. low complexity).

The goal of the new scenario is to achieve the same or better performance
based on models of lower complexity. The class of controllers C that achieve
the required performance is larger because the model uncertainty set D is
tuned towards that aim. All in all, the same or better performance is achieved
with a controller that is easier to compute and of lower complexity than is
possible with the traditional scenario.

In terms of the global design procedure, the main distinction between the
traditional concept of robust control design and the new one is that, in the
new scenario, the identification and validation steps have become part of the
global control design procedure, whereas in the traditional scenario the con-
trol performance specifications played no role in the identification/validation
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step. In highlighting the distinction between the identification part of the
design, which determines the nominal model Gmod, and the validation part
of the design, which determines the validated uncertainty set D, we also want
to stress that the identification step focuses on the bias error distribution of
the nominal model Gmod, whereas the validation step focuses on the variance
error distribution.

The early work on the interplay between identification and robust control
addressed almost exclusively the question of the nominal model. The question
was: how should the bias error of the nominal model be tuned so that the
resulting controller based on this nominal model Gmod stabilizes the unknown
true system and achieves with this system a closed loop performance that is
close to the nominal closed loop performance? In a nutshell, the answer to
that question is that the nominal closed loop system (Gmod, C) and the actual
closed loop system (G0, C) must be “close”, where the closeness is measured
in a norm that is determined by the control performance criterion. A key
point here is that the controller C is the to-be-designed controller, which itself
depends on the model Gmod. This is what makes the problem difficult and
results in the need for an iterative approach, in which a sequence of models
and controllers are computed, achieving higher and higher performance. The
difficulty, as already mentioned in Chapter ??, is that this procedure is not
guaranteed to converge: higher performance may be achieved at the cost of
lower stability margins, eventually leading to instability. Thus, such schemes
must include safety checks to guarantee stability. These safety checks take
the form of bounds on a measure of the distance between two successive
controllers. They will be dsecribed in Section 4.

Even though a lot of progress has been made all through the nineties
on the development of new methods for computing uncertainty bounds on
identified models, much of this work was developed independently of the
control objective. Thus, the uncertainty bounds developed in this work are
not “control-oriented”, in that their construction does not take account of
the interplay between the validated set of models D and the set of controllers
C that achieve the required control performance with all models in D.

One reason for the paucity of results on this aspect of the synergistic de-
sign problem is the difficulty of the problem. It is already hard to understand
the interplay between the true system G0, the present controller Cid (if any),
the model Gmod, the designed controller C, the nominal performance J̄nom

and the achieved performance J̄ach, and to derive from this understanding
the qualities that the model must possess for the nominal performance of the
loop (Gmod, C) to be close to the achieved performance of the loop (G0, C).
It is much harder to understand the interplay between the true system G0,
the present controller Cid (if any), the set of validated models D, and the
set of admissible controllers C for which the worst case performance with all
models in the validated set D is acceptable.
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Another reason is that, even if the interplay between validation and robust
control were well understood, there would not be a unanimously accepted way
of formulating a “validation for robust control” problem. In this chapter, we
will review two reasonable formulations of such problem, but we are fully
aware that, as the insight and the technical tools evolve, better formulations
will almost certainly eventuate.

The contents of this chapter is as follows. In Section 2 we first present
the identification/control setup, and we introduce some basic concepts from
robust optimal control. Section 3 will focus on the interplay between true
system, nominal model, achieved performance and nominal performanc. This
will lead to the formulation of control-oriented identification criteria, which
have consequences on the shaping of the bias error distribution. In Section 4,
we shall explain the need for caution in iterative model-based robust con-
trol design, and we shall show how such cautious steps can be implemented.
Section 5 will discuss the connection between the model uncertainty set and
the corresponding controller set. Two approaches will be discussed: one be-
longs to the realm of optimal experiment design with full order models, the
other belongs to the realm of robust experiment design. We end up with some
conclusions in Section ??.

2 The identification/control setup and some basic
formulae

For simplicity we shall consider in this chapter only single input single output
(SISO) linear time-invariant (LTI) systems, and we shall limit our presenta-
tion to one-degree-of-freedom controllers. The “true system” is assumed to
be represented by

S : yt = G0(z)ut + vt, (1)

where G0(z) is a linear time-invariant causal operator, y is the measured
output, u is the control input, and v is noise, assumed to be quasistationary.

The control law is represented by:

ut = C(z)[rt − yt] + dt, (2)

where rt is the reference excitation and dt is a possible disturbance acting on
the system. The signal dt can also be seen as an error between the computed
control action and the actually applied control action.

Our generic feedback loop can thus be represented as in Figure 1. The
equations of this closed loop system can be written as:

yt =
GC

1 + GC
rt +

G

1 + GC
dt +

1
1 + GC

vt, (3)

ut =
C

1 + GC
rt +

1
1 + GC

dt − C

1 + GC
vt, (4)
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Fig. 1. The generic feedback configuration

In analysing the identification/control interplay, it will be useful to con-
sider - and compare - the following special cases of this feedback configuration.

• Assume that, at the time of designing a new controller C, the true system
G0 is already under feedback control with a controller denoted Cid. We
then consider the current feedback system (G0, Cid), on which data are
typically collected in order to identify a new model Gmod for the design
of a new controller C.

• With G = Ginit, vt = v̂t and C = Cid we have, correspondingly, the
current design loop (Ginit, Cid). Here Ginit is the present model of G0

if available, while v̂t = Hinitet, with et white noise, is the present noise
model if available.

• With G = Gmod, the newly identified model I/O model, and vt = v̂t =
Hmodet, the newly identified noise model if any, we have the nominal
closed loop system (Gmod, C), where C is the new controller designed
from Gmod.

• The new controller C, designed from Gmod is applied to the true system
G0, thus generating the achieved closed loop system (G0, C). If the de-
sign is robust, then the performance of this achieved closed loop system
(G0, C) must be reasonaly close to that of the nominal closed loop system
(Gmod, C).

For the analysis of both the stability and the performance of this closed
loop system (G C), a key role is played by the closed loop transfer function
matrix T (G, C) defined as follows:

T (G, C) =
(

T11 T12

T21 T22

)
=

( GC
1+GC

G
1+GC

C
1+GC

1
1+GC

)
. (5)

It is the transfer function matrix from the external signals r and d to the
loop signals y and u.

The closed loop system (G, C) is stable (or “internally stable”) if all four
transfer functions in T (G, C) are stable. This notion of stability guarantees
that there are no unstable pole-zero cancellations in any of the paths from
the external signals r, d, v to the internal signals y, u in the feedback system
of Figure 1. This can be conveniently expressed in mathematical terms using
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the generalized stability margin b(G, C) introduced by Vinnicombe [12]: see
Chapter ??.

The generalized stability margin of the closed loop system (G, C) is de-
fined as

bGC =




‖T (G, C)‖−1∞ if [G C] is stable

0 otherwise.
(6)

Note that this generalized stability margin takes its values between 0 and
1; the higher this value, the better the stability margin. It is also important
to note that, for a given plant G, and whatever the linear controller, the
generalized stability margin has a maximum value bopt(G) (see e.g. [16]) given
by

bopt(G) = sup
C

b(G, C) =
√

1− ‖ [N M ] ‖2
H , (7)

where ‖ A ‖H is the Hankel norm of the operator A and {N, M} is the
normalized coprime factorization of G; see e.g. [17] for the definitions of these
concepts.

As for the performance of the closed loop system (G, C), most of the
commonly used performance criteria are defined from the following general
frequency function:

J(G, C, Wl, Wr, ω) = σ1




Wl︷ ︸︸ ︷(
Wl1 0
0 Wl2

)
T (G(ejω), C(ejω))

Wr︷ ︸︸ ︷(
Wr1 0
0 Wr2

)

(8)

where Wl1(ejω), Wl2(ejω) and Wr1(ejω), Wr2(ejω) are frequency weights that
allow one to define specific performance levels, and where σ1(A) denotes the
largest singular value of A.

The frequency function J(G, C, Wl, Wr, ω) defines a template. Any func-
tion that is derived from J can of course also be handled. Thus, a typical
optimal control problem formulation is

C∗ = arg min
C

||J(G, C, Wl, Wr, ω)||, (9)

where || || denotes a suitable norm. See, for example, [5] where
‖ WlT (G, C)Wr ‖∞ is used. The corresponding optimal cost will be denoted

J̄(G, C∗) = ‖ WlT (G, C∗)Wr ‖ . (10)

The choice of a diagonal structure for Wl and Wr is no loss of generality,
since the four transfer functions in T (G, C) can all be weighted differently.
For example, a common choice for the performance measure of a closed loop
system is the shape of the modulus of the frequency response of one or several
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of the four transfer functions defined in (5) (see [14]) or the ∞-norm of a
frequency weighted version of one of these four transfer functions.

The optimal control problem formulation defined by (9) produces a con-
troller C∗ that is optimal, with respect to the control objective, for a specific
system G that is assumed known. The controller C∗ that is optimal for G
may yield very poor performance with a system G0 that is very close to G;
worse still, it could destabilize G0. This point was put very strongly in the
much studied Schrama example [10].

The whole paradigm of robust optimal control is to formulate control
design objectives that deliver a controller which has a guaranteed level of
performance with all systems in a given uncertainty setD. For the formulation
of such problems, one defines a worst case performance function. Thus (8) is
replaced by

JWC(D, C, Wl, Wr, ω) = (11)

max
G(z)∈D

σ1




Wl︷ ︸︸ ︷(
Wl1 0
0 Wl2

)
T (G(ejω), C(ejω))

Wr︷ ︸︸ ︷(
Wr1 0
0 Wr2

)

 .

A robust optimal control problem can then be formulated as

C∗ = arg min
C

||JWC(D, C, Wl, Wr, ω)||, (12)

where || || denotes a suitable norm. The corresponding optimal worst case
cost is then denoted by

J̄WC(D, C∗) = ||JWC(D, C∗, Wl, Wr, ω)||. (13)

We now show that the formulation of optimal control problems in the form
of (9), based on a unique model G (rather than a set D), results in optimal
controllers that already possess an inherent stability robustness property.
This is a feature of a control problem formulation that is based on the whole
2 × 2 transfer function T (G, C) rather than on one only of its elements. As
already stressed in Chapter ?? (Chapter Astrom1), the main difference is
that such control problem formulation is based on more than just the loop
gain L = GC.

Suppose that a model Gmod = Nmod

Dmod
of a plant is given, where the stable

causal transfer functions Nmod and Dmod are the normalized coprime factors
of Gmod: see Chapter ??. Then, from a robust stability point of view, it makes
sense to design a controller C that minimizes ||T (Gmod, C)||∞. Indeed, as
explained in Chapter ??, the optimizing controller C∗ maximizes the stability
robustness to errors in the coprime factors Nmod and Dmod of the model
Gmod. More precisely, let

C∗ = arg min ||T (Gmod, C)||∞ (14)
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and let γ∗ = ||T (Gmod, C
∗)||∞. Then the closed loop systems (Gmod +

∆G, C∗) are stable for all systems Gmod + ∆G = Nmod+∆N
Dmod+∆D such that

||
(

∆N
∆D

)
||∞ <

1
γ∗ . (15)

Thus we observe that the maximization, with respect to a controller C,
of the stability robustness to coprime factor uncertainty on a nominal model
Gmod = Nmod

Dmod
can be formulated as the maximization of a specific version of

the performance criterion defined in (9), with Wl = Wr = I.

3 A control-oriented nominal model

In this section we show how the control performance objective leads to the
design of a control-oriented identification criterion, whose minimization de-
livers a control-oriented nominal model. As explained in the introduction
of this chapter (see also Chapter ?? Chapter Gevers1), we assume that
the model set used for identification is a restricted complexity model set
{G(z, θ)} parametrized by some parameter vector θ, i.e. there is no θ0 such
that G0(z) = G(z, θ0). As a result, the model obtained by identification,

Gmod
4
= G(z, θ̂), is necessarily biased, and the focal point of the discussion in

this section is therefore on the control-oriented shaping of the bias distribu-
tion of G(z, θ̂).

The problem can be formulated as follows. Since we shall construct our
controller C on the basis of a model Gmod that is biased (i.e. necessarily
wrong), how should we formulate the criterion in such a way that the fre-
quency distribution of these bias errors has the smallest possible impact on
the closed loop performance degradation, while at the same time guaranteeing
stability of the achieved closed loop system (G0, C). By performance degra-
dation we mean the difference between the performance of the nominal closed
loop system (Gmod, C) and the performance of the actual closed loop system
(G0, C).

Recall first that, if we knew the true system G0, we would compute the
optimal controller as the solution of

C∗ = arg min
C

‖ WlT (G0, C)Wr ‖, (16)

where || || denotes some suitable norm, such as the H∞ norm or the H2

norm for example. Now one can write:

WlT (G0, C)Wr = WlT (Gmod, C)Wr +Wl[T (G0, C)−T (Gmod, C)]Wr(17)

By applying the triangle inequality, Schrama showed that one can then
squeeze the achieved cost ‖ WlT (G0, C)Wr ‖ between the following lower and
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upper bounds [10]:

| ‖ WlT (Gmod, C)Wr ‖ − ‖ Wl[T (G0, C) − T (Gmod, C)]Wr ‖ |
≤ ||WlT (G0, C)Wr ||
≤‖ WlT (Gmod, C)Wr ‖ + ‖ Wl[T (G0, C) − T (Gmod, C)]Wr ‖ . (18)

As stated above, the ideal (but elusive) goal would be to compute the con-
troller that minimizes the control performance objective J̄ach(G0, C) on the
actual system. Since G0 is unknown, this is replaced by a model-based con-
trol design, where one computes the controller C∗ that minimizes the nominal
performance objective:

C∗ = arg min
C

‖ WlT (Gmod, C)Wr ‖ . (19)

This results in the nominal cost J̄nom(Gmod, C
∗).

The double triangle inequality (18) shows that the achieved cost J̄ach(G0, C
∗)

will be close to the nominal cost J̄nom(Gmod, C
∗) if the performance degra-

dation term

J̄pr =‖ Wl[T (G0, C
∗) − T (Gmod, C

∗)]Wr ‖ (20)

is small. This observation is at the basis of all “identification for control”
schemes developed in the early part of the nineties. It shows that what mat-
ters for a model Gmod to be tuned for control design is that the closed loop
transfer functions T (G0, C

∗) and T (Gmod, C
∗) must be close to one another

in a norm that is entirely determined by the control performance objective.
Indeed, the way in which T (G0, C

∗) and T (Gmod, C
∗) must be close is exactly

determined by the requirement that J̄pr must be small; this term has often
been called the performance robustness term: see e.g. [6]. If an H∞ norm is
chosen for the control performance objective, then a model Gmod that is tuned
for control design is one for which ‖ Wl[T (G0, C

∗) − T (Gmod, C
∗)]Wr ‖∞ is

minimized; if an H2 norm is used in the control objective, then a good model
for control should minimize ‖ Wl[T (G0, C

∗) − T (Gmod, C
∗)]Wr ‖2.

Important observations
The statements made above on the basis of the double triangle inequality
require that some important observations and cautionary notes be made.

1. We note that the estimated plant model, Gmod, and the controller, C∗,
both influence the two terms J̄nom and J̄pr. Thus, ideally, one should
minimize the two terms jointly over the class of admissible plant mod-
els and admissible controllers. This is an impossible task in the case of
restricted complexity models.1

1 In dual control the achieved criterion is minimized jointly over the parametrized
set of plant models and corresponding controllers, but the model set is assumed
to contain the true system, and the minimization leads to a tractable solution
only for the very simple minimum variance control criterion: see [3].



10 Michel Gevers

2. On the other hand, minimizing the nominal criterion J̄nom(Gmod, C) with
respect to the controller for a given model Gmod is a classical control de-
sign task, whereas minimizing J̄pr(G, C) with respect to a model G for
a given controller C was shown to be achievable by closed loop identifi-
cation. Therefore, an obvious suboptimal strategy is to make J̄nom small
by controller design for a given plant model, and to keep J̄pr small by
identification design for a given controller. Since J̄nom depends on the
estimated plant model, and J̄pr depends on the designed controller, this
strategy can only be applied in an iterative manner, using a succession
of local controller designs and local identification designs:2

min
C

J̄(Gi
mod, C) −→ Ci+1

min
G(θ)∈M

J̄pr(G(θ), Ci) −→ Gi+1
mod. (21)

This idea is at the heart of the iterative identification/controller design
methods developed in the early and mid-nineties [10,11,8,15].

3. One important technical problem raised by these iterative identification
and control schemes is that the reasoning developed on the basis of the
double triangle equality assumes that the controller C is identical in all
expressions. However, in the iterative schemes, Gmod is obtained by min-
imizing ‖ Wl[T (G0, Ci) − T (Gmod, Ci)]Wr ‖ where Ci is the presently
operating controller, while the new controller Ci+1 = C∗ is computed
from this new model Gmod. Hence, the controller Ci that appears in
the nominal performance term ‖ WlT (Gmod, Ci)Wr ‖ of the triangle
inequality (18) is not the same as the controller Ci+1 that appears in
the robust performance term ‖ Wl[T (G0, Ci+1) − T (Gmod, Ci+1)]Wr ‖ .
Thus, for the reasoning to apply, it is required that ‖ Wl[T (G0, Ci+1) −
T (Gmod, Ci+1)]Wr ‖ is very close to ‖ Wl[T (G0, Ci)−T (Gmod, Ci)]Wr ‖ .
This technical problem has generated a lot of further research, whose
main result has been to introduce “caution” in the controller adjustment
from Ci to Ci+1 in such a way as to make these two quantities close to
one another. A key technical tool for establishing robust stability and
robust performance guarantees using caution has been the ν-gap metric
introduced by Vinnicombe [12], already presented in Chapter ?? (Chap-
ter Astrom1), and its related robust stability and robust performance
results. The most obvious use of the ν-gap is to measure a distance be-
tween two plants, say G0 and Gmod, and to establish stabilization of G0

by some controller C based on stabilization of Gmod by C and a bound
on the distance δν(G0, Gmod) between the two systems. However, by du-
ality, the ν-gap can also be used to measure the distance between two
successive controllers, say Ci and Ci+1, and to establish stabilization of

2 The term ‘local’ refers to the fact that, at each iteration, the controller design
(resp. the identification design) is performed on the basis of some present (i.e.
local) plant model (resp. presently operating (i.e. local)) controller.
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G0 by Ci+1 on the basis of stabilization of G0 by Ci and a bound on the
distance δν(Ci+1, Ci) between the two controllers. In the next section, we
shall present some of these technical results and explain how they can be
used to obtain prior stability guarantees when moving between successive
controllers.

Before we conclude this section, we comment on the identification part of
the iterative schemes. These have been formulated above as

Gmod = arg min
G∈M

‖ Wl[T (G0, Ci) − T (G, Ci)]Wr ‖, (22)

where M = {G(z, θ), θ ∈ Dθ} is a model set chosen by the user, typically a
reduced order model set. Whatever the specific norm that is used, this is not a
standard identification criterion. As it turns out, it has been shown that such
criterion can be minimized by closed loop identification, with the controller
Ci operating on the actual system. Several schemes have been proposed, for
different specific choices of norm: see ...

The fact that the identification for control criteria, in iterative identifica-
tion and control, turned out to be closed loop criteria with the most recent
controller in the loop, was of course of major practical significance and ex-
plains why these schemes were quickly adopted in industry. For a process
control engineer, it is indeed a lot more appealing to collect identification
data under normal operating conditions than to have to perform special iden-
tification experiments, or worse still open the loop.

4 Caution in iterative design

We first present some results, based on the Vinnicombe ν-gap, that form the
basis for many of the stability robustness guarantees that can be achieved in
iterative identification and robust control design.

Proposition 1 [13]
Consider a plant G and two controllers C1 and C2, with C1 stabilizing G.
Then

(i) (G, C2) is stable for all controllers C2 satisfying δν(C1, C2) ≤ β if and
only if b(G, C1) > β.

(ii) If δν(C2, C1) < 1 then

arcsin b(G, C2) ≥ arcsin b(G, C1) − arcsin δν(C1, C2), (23)

and

δν(C1, C2) ≤ ‖T (G, C1) − T (G, C2)‖∞ ≤ δν(C1, C2)
b(G, C1)b(G, C2)

(24)

=
δν(C1, C2)
b(G, C1)

‖T (G, C2)‖∞
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The importance of Part (i) of the Proposition 1 is that it provides a sufficient
condition on a new controller, C2, that guarantees its stabilization of the
plant G:

δν(C2, C1) < b(G, C1). (25)

The norm ‖T (G, C)‖∞ = b−1(G, C) is one measure of the closed-loop perfor-
mance of the (G, C) loop. One upshot of these results is the intuitive property
that a well-behaved controller, as measured by a small ‖T (G, C)‖∞, provides
greater scope for variation before striking stability or performance guarantee
barriers. The following proposition is the exact dual of Proposition 1.

Proposition 2
Consider the plants G1 and G2, and a controller C stabilizing G1. Then

(i) (G2, C) is stable for all plants G2 satisfying δν(G1, G2) ≤ β if and only
if b(G1, C) > β.

(ii) If δν(G1, G2) < 1 then

arcsin b(G2, C) ≥ arcsin b(G1, C) − arcsin δν(G1, G2), (26)

and

δν(G1, G2) ≤ ‖T (G1, C) − T (G2, C)‖∞ ≤ δν(G1, G2)
b(G1, C)b(G2, C)

(27)

=
δν(G1, G2)
b(G1, C)

‖T (G2, C)‖∞
We also have the following result, derived in [1].

Proposition 3
Consider two stable closed loop systems (G1, C) and (G2, C). Then

|b(G1, C) − b(G2, C)| ≤ δν(G1, G2). (28)

Hence

|b(G1, C) − b(G2, C)| ≤ δν(G1, G2) ≤ ‖T (G1, C) − T (G2, C)‖∞
≤ δν(G1, G2)

b(G1, C)b(G2, C)
. (29)

Expression (29) shows that the distance between the stability measures b(G1, C)
and b(G2, C) is always smaller than the distance between the closed loop
transfer functions T (G1, C) and T (G2, C), measured in H∞ norm. We have
shown in Section 3 that, in identification for control, one computes the new
model by minimizing some norm of ‖ T (G0, C) − T (G, C) ‖, where C is the
presently operating controller. If the ∞ norm is used, this implies that the
stability margin of the new nominal closed loop system (Gmod, C) will be
close to the stability margin of the actual closed loop system (G0, C). We
shall see that this is a key feature that will allow us to obtain prior stability
guarantees.
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4.1 Cautious controller adjustment

Consider now that, at some stage of an iterative model/controller design, we
have arrived at a controller Ci that stabilizes both the true plant G0 and
the present model Gi, and that we have computed a new model Gi+1 by
minimizing some norm of ‖ G0 −Gi+1 ‖ over a given model set. Assume also
that Gi+1 is stabilized by the present controller Ci; we shall see later how
this can be guaranteed. We also consider that our control objective takes the
generic form described in Section 2:

C∗ = arg min
C

J̄(Gi+1, C) where (30)

J̄(Gi+1, C) = ‖ WlT (Gi+1, C)Wr ‖ . (31)

Assume now that we have an accurate estimate b̂(G0, Ci) of the stability
margin b(G0, Ci) of the present closed loop system, i.e. such that

|b̂(G0, Ci) − b(G0, Ci)| ≤ ε, (32)

⇒ b(G0, Ci) > b̂(G0, Ci) − ε = kb̂(G0, Ci) for some k ∈ (0, 1). (33)

Then any controller Ci+1 such that

δν(Ci+1, Ci) < kb̂(G0, Ci) (34)

is guaranteed to stabilize the true plant G0, since Ci stabilizes G0. Thus, the
new controller Ci+1 stabilizes the true plant if the adjustment from Ci to
Ci+1 is small enough, as expressed by the constraint (34).

4.2 Estimation of a bound on b(G0, Ci)

There are several ways of estimating the stability margin b(G0, Ci) together
with a bound on its estimation error. One way is to compute a direct estimate
of ‖ T (G0, Ci) ‖∞= b−1(G0, Ci) from measurements on the actual closed
loop system (G0, Ci): see [4], where the selection of appropriate external
excitation signals for this task is also discussed. The inverse of the estimate
of ‖ T (G0, Ci) ‖∞ is then used as the estimate b̂(G0, Ci) in (33), and a safety
factor k ∈ (0, 1) is introduced to account for the estimation error on b̂(G0, Ci).

An alternative way is to use an H∞ identification method for the estima-
tion of Gi+1 from measurements obtained on the actual closed loop system
(G0, Ci): see e.g. [7,9]. These methods also deliver a bound on the ∞-norm
error, i.e. they deliver a number ε such that

‖ T (G0, Ci) − T (Gi+1, Ci) ‖∞≤ ε. (35)

By Proposition 3 it then follows that

|b(G0, Ci) − b(Gi+1, Ci)| ≤ ε, (36)
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⇒ b(G0, Ci) > b(Gi+1, Ci) − ε = kb(Gi+1, Ci) for some k ∈ (0, 1). (37)

Observe that b(Gi+1, Ci) is known, since Gi+1 and Ci are known. One can
thus use b̂(G0, Ci) = b(Gi+1, Ci) as an estimate of b(G0, Ci) in (33), with
an error bounded by ε, which can again be accounted for by a safety factor
k ∈ (0, 1).

To summarize, if Gi+1 is a new model obtained from closed loop data on
the present (G0, Ci) loop such that Gi+1 is stabilized by the present Ci and
such that (35) holds, then any controller Ci+1 such that

δν(Ci+1, Ci) < kb(Gi+1, Ci), (38)

with k defined as in (37), is guaranteed to stabilize the true plant G0.

4.3 Construction of a stabilizing controller

The condition (34) defines a set of controllers {Ci+1} that are guaranteed
to stabilize G0, but it says nothing about how to construct such controllers.
In addition, most of the controllers in that set may not achieve a good per-
formance with G0. We now present a procedure for the construction of con-
trollers that satisfy the stability condition (34) and at the same time achieve
better performance than was achieved with the previous controller Ci.

Consider the presently operating controller Ci which stabilizes both the
unknown plant G0 and the new model Gi+1. Suppose that we are given a
known bound on the differences between the closed loop transfer matrices

‖T (G0, Ci) − T (Gi+1, Ci)‖∞ ≤ ε. (39)

Let Ci = UiV
−1
i be a right coprime factorization of Ci, with Ui and Vi stable

proper transfer functions and, similarly, let Gi+1 = Ni+1D
−1
i+1 be a right

coprime factorization of the new model Gi+1. Then the set of all controllers
Ci+1 that stabilize the model Gi+1 and which also stabilize all G0 satisfying
the condition (39) is given by

C = (40)
{C(Q) : C(Q) = (Ui − Di+1Q)(Vi + Ni+1Q)−1, Q ∈ RH∞, ‖ Q ‖≤ ε−1}.

Here Q also belongs to the set of stable proper transfer functions. This result
was established in [4]. Observe that, without the constraint on the norm of
Q (i.e. ‖ Q ‖≤ ε−1), the set C is the set of all controllers stabilizing the new
model Gi+1. By imposing the additional constraint on ‖ Q ‖, we are limiting
the distance between the old controller Ci and the new controller Ci+1, which
is what guarantees the stabilization of the true plant G0.

Now consider that the control objective J̄(Gi+1, C) of (30) depends in a
convex manner on Q, as is the case in H2 and H∞ optimal control problems,
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and let C∗
i+1 = C(Q∗) be the solution of the unconstrained optimization

problem:

C∗
i+1 = C(Q∗) = arg min

Q
J̄(Gi+1, C(Q)). (41)

If ‖ Q∗ ‖≤ ε−1, we can take Ci+1 = C∗
i+1 = C(Q∗). Otherwise, consider the

set:

C(αQ∗) = (Ui − αDQ∗)(Vi + αNQ∗)−1}, for α ∈ [0, 1]. (42)

All controllers in that set stabilize Gi+1. The value α = 0 corresponds to the
present controller Ci, while α = 1 corresponds to C∗

i+1 = C(Q∗) which is not
guaranteed to stabilize G0. Let α∗ be the largest value for which ‖ αQ∗ ‖<
ε−1. Then the controller Ci+1 = C(α∗Q∗) is guaranteed to stabilize G0 and,
in addition, we have [2]:

J̄(Gi+1, C(Q∗)) ≤ J̄(Gi+1, C(α∗Q∗)) < J̄(Gi+1, Ci) (43)

4.4 Cautious model adjustment

We have seen above that one of the ways of imposing a cautious controller ad-
justment, in order to guarantee closed loop stability of the loop (G0, Ci+1), is
to limit the controller movement with respect to the nominal stability margin
b(Gi+1, Ci): see (38). This of course requires that the nominal loop formed
of the present controller and the new model is stable. A convenient way to
ensure that the identified model Gi+1 is stabilized by the present controller
is to parametrize the model set in the dual Youla parametrization as follows.

Proposition 4
Consider the present controller Ci that stabilizes both the true system G0

and the present model Gi.
Let Ci = UiV

−1
i be a right coprime factorization of Ci, with Ui and Vi

stable proper transfer functions and, similarly, let Gi = NiD
−1
i be a right

coprime factorization of the present model Gi. Then the set of all models
Gi+1 that are stabilized by the controller Ci is given by

M = {G(R) : G(R) = (Ni − ViR)(Di + UiR)−1, R ∈ RH∞. (44)

The subset of such models that also satisfies the condition

‖T (Gi, Ci) − T (Gi+1, Ci)‖∞ ≤ ε (45)

is given by

M = (46)
{G(R) : G(R) = (Ni − ViR)(Di + UiR)−1, R ∈ RH∞, ‖ R ‖≤ ε−1}.
Thus, not only can one perform the identification in such a way that the

new model is stabilized by the present controller Ci, but one can also impose
that the new nominal closed loop system (Gi+1, Ci) is close to the old one,
(Gi, Ci), in the sense of the condition (45).
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5 Model validation for robust control design
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