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1 Introduction

Experiment design for open-loop identification
Optimal input design for system identification was an active area of research
in the 1970’s, with different quality measures of the identified model being
used for this optimal design [25, 33, 13]. The questions at that time addressed
open-loop identification and the objective functions that were minimized were
various measures of the parameter covariance matrix Pθ, where θ is the pa-
rameter vector of the model structure.

Let the “true system” be given by:

S : y(t) =

G0(z)
︷ ︸︸ ︷

G(z, θ0)u(t) +

v(t)
︷ ︸︸ ︷

H(z, θ0)e(t) (1)

for some unknown parameter vector θ0 ∈ Rk, where e(t) is white noise of vari-
ance σ2

e , whileG(z, θ0) andH(z, θ0) are stable discrete-time transfer functions,
with H(z, θ0) a monic and minimum-phase transfer function5. In the optimal
input design literature, it is assumed that this system is identified with a
model structure M = {G(z, θ), H(z, θ)}, θ ∈ Rk, that is able to represent
the true system; we shall call such structure a “full order model structure”.

When Prediction Error identification is used with a full order model struc-
ture, the estimated parameter vector θ̂N is known to converge, under mild
assumptions, to a Gaussian distribution:

(θ̂N − θ0)
N→∞−→ N(0, Pθ), (2)

where the asymptotic parameter covariance matrix Pθ can be estimated from
the data. Important examples of optimal design criteria developed in the

5 By monic is meant that H(z) = 1 +
P

∞

k=1 hkz−k.
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1970’s areD-optimal design which minimizes det(Pθ), E-optimal design which
minimizes λmax(Pθ), and L-optimal design which minimizes tr(WPθ), where
W is a nonnegative weighting matrix.

In open-loop identification, the dependence of the covariance matrix on
the input spectrum is made apparent by the following expression:

P−1
θ =

(
N

σ2
e

1

2π

∫ π

−π

Fu(ejω , θ0)Fu(ejω , θ0)
∗Φu(ω)dω

)

+

(

N
1

2π

∫ π

−π

Fe(e
jω , θ0)Fe(e

jω, θ0)
∗dω

)

(3)

Here, Fu(z, θ0) = ΛG(z,θ0)
H(z,θ0) , Fe(z, θ0) = ΛH (z,θ0)

H(z,θ0)
, ΛG(z, θ) = ∂G(z,θ)

∂θ
and

ΛH(z, θ) = ∂H(z,θ)
∂θ

. The formula shows that the data length N and the input
spectrum Φu(ω) appear linearly in the expression of the information matrix
P−1

θ , and that, for a given data length N , the input spectrum is the only
design quantity that can shape the parameter covariance matrix. Zarrop used
Tchebycheff system theory to parametrize the input spectrum in terms of
its so-called “trigonometric moments” with respect to the system [33]. These

trigonometric moments are defined as mk = 1
2πσ2

e

∫ π

−π

Φu(ω)
|H(ejω ,θ0)|2

cos(kω)dω.

The information matrix Mθ , P−1
θ can then be expressed as a finite linear

combination of these moments, m0,m1, . . . ,mn, which express the effect of
the filtered input spectrum Φu(ω) on that information matrix. The number n
depends on the degree of H(z, θ). These moments have to obey some positiv-
ity constraint in order for them to be generated by a genuine spectral density
function. The optimal input design problem can then be reformulated as a
constrained optimization problem in terms of these trigonometric moments.
Once the optimal moment sequence has been obtained, it is an easy step to
compute a corresponding quasistationary input signal u(t) that will match this
optimal moment sequence. A solution can always be obtained using multisines.
We refer the reader to [20, 13, 33, 14] for background material on Tchebycheff
systems, trigonometric moments, and their use in input design problems. One
should also note that another way of obtaining a finite parametrization of the
information matrix is to restrict the admissible input signals to those that
generate a finite dimensional parametrization of the spectrum Φu(ω), or to
approximate the input spectrum by a finite dimensional parametrization: see
e.g. [16].

The classical experiment design results of the 1970’s were limited to open-
loop identification with full order model structures, and they were based on
parameter covariance formulas. In the mid-eighties, Ljung and collaborators
produced bias and variance formulas [23, 32] directly for the transfer function
estimates, rather than for the parameter estimates which only serve as auxil-
iary variables in the representation of these transfer functions. The asymptotic
variance formulas were derived under the assumption that the model order
n tends to infinity in some appropriate way when the data length N tends
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to infinity. Thus, for the variance of the vector of transfer function estimates
G(z, θ̂N ), H(z, θ̂N), the following approximation was obtained in [23] under
an assumption of high model order:

Cov

(
G(ejω , θ̂N )

H(ejω, θ̂N )

)

∼= n

N
Φv(ω)

[
Φu(ω) Φue(ω)
Φeu(ω) σ2

]−1

(4)

where n is the model order, N is the number of data, Φu(ω) is the input
spectrum, Φv(ω) is the output disturbance spectrum, and Φue(ω) is the cross-
spectrum between u and e: see (1). When identification is performed in open
loop, we have Φue(ω) = 0. These variance formulas for the transfer function
estimates paved the way for the formulation of goal-oriented experiment de-
sign problems. In [23] a number of open-loop optimal input design problems
were formulated and solved.

Experiment design for closed-loop identification
The first closed-loop optimal design problems, including control-oriented prob-
lems, were formulated in [12]. In particular, it was shown in that paper that,
when the model is identified for the purpose of designing a minimum variance
controller, the optimal design is to perform the experiment in closed loop
with the minimum variance controller in the loop. These results were later
extended to other control design objectives in [15, 10]. The optimal design
criterion used in all these contributions was the average performance degra-
dation, namely the mean squared error between the output of the optimal
loop (i.e. the loop that would be obtained if the optimal controller, dependent
on the unknown true system, were applied to the system), and the output
of the achieved loop (i.e. the loop in which the controller obtained from the
estimated model is applied to the true system). The results were all based on
the transfer function variance formulas of [23], derived under the assumption
that the model order tends to infinity, and it was observed in recent years
that the use of these formulas for finite order models can sometimes lead to
erroneous conclusions. This observation triggered a revival of interest in opti-
mal design formulations based on variance expressions for finite order models.

Experiment design for robust control
Robust stability and robust performance criteria are typically expressed as
constraints on frequency weighted expressions of the variance of the transfer
function error, rather than as L2 performance criteria. For example, a robust
stability constraint is typically formulated as

V ar G(ejω , θ̂N ) ≤W−1(ejω) ∀ω (5)

where W (ejω) is a frequency weighting function that takes account of closed-
loop properties (e.g. robust stability condition). In order to formulate opti-
mal input design problems in terms of control-oriented quality measures on
G(ejω , θ̂N ) such as in (5), using the finite model order formula (3) rather than
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the asymptotic (in model order) variance formulas, several approaches can be
taken.

One commonly used approach to go from parameter covariance to transfer
function covariance is to use the following first order Taylor series approxima-
tion:

V ar G(ejω , θ̂N ) ≈ σ2
e

N

∂G∗(ejω, θ0)

∂θ
Pθ

∂G(ejω, θ0)

∂θ
(6)

This approach was adopted in [17] where it is shown that several useful H∞

design criteria can be reformulated as weighted trace optimal input design
problems subject to LMI constraints. A sensible open-loop optimal input de-
sign problem can then be formulated as follows:

min
Φu(ω)

tr[W (θ0)Pθ] subject to

∫ π

−π

Φu(ω)dω ≤ α, and Φu(ω) ≥ 0 ∀ω, (7)

where α is some positive constant. This is still a difficult, infinite dimensional
optimization problem. However, by the use of Schur complement, the problem
can be reformulated as a convex optimization problem under Linear Matrix
Inequality (LMI) constraints. The numerical solution of such problems became
possible in the nineties with the advent of interior point optimization methods
[26, 7]. The problem becomes finite dimensional if the input spectrum Φu(ω)
can be finitely parametrized. There are various ways of doing this, as noted
earlier.

Another approach to optimal input design for robust control is based on
the use of the ellipsoidal uncertainty set Uθ centred on θ̂N :

Uθ = {θ|(θ − θ̂N )TP−1
θ (θ − θ̂N ) < χ2}. (8)

It follows from the property (2) that the true parameter vector θ0 ∈ R
d belongs

to Uθ with probability α(d, χ2) = Pr(χ2(d) ≤ χ2), where χ2(d) denotes the
χ2 distribution with d degrees of freedom. The results in [3, 11], which connect
robust stability and robust performance measures directly to the ellipsoidal
uncertainty region Uθ, allow one to formulate experiment design problems for
robust control in terms of the minimization of some appropriate function of Uθ

(or of Pθ) without the need for the intermediate step of transfer function vari-
ance estimation, which typically requires both a Taylor series approximation
and/or a conservative step of overbounding of the uncertainty set.

The first open-loop optimal input design problem for robust control based
on the direct use of the uncertainty ellipsoid Uθ was formulated in [14]. The
robust stability measure minimized in that paper, with respect to the in-
put spectrum Φu(ω), was the worst-case ν-gap δWC(G(z, θ̂N ),D) between the

identified model G(z, θ̂N ) and all models in the Prediction Error uncertainty
set D , {G(z, θ)|θ ∈ Uθ}:

δWC(G(z, θ̂N ),D) = sup
θ∈Uθ

δν(G(z, θ̂N ), G(z, θ)) (9)
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where the ν-gap is defined in [31]. One of the merits of the worst-case ν-gap is
that it is directly related to the size of the set of its stabilizing controllers: the
smaller the worst-case ν-gap of the uncertainty set D, the larger is the set of
controllers that stabilize all models in D. The optimal input design problem
solved in [14] was

min
Φu

δWC(G(z, θ̂N ),D) subject to

∫ π

−π

Φu(ω)dω ≤ α, and Φu(ω) ≥ 0 ∀ω.
(10)

The solution proposed in [14] is based on Tchebycheff system theory (see
above); the optimal solution can always be obtained as a multisine.

Why do more work than is needed ?
The traditional approach to optimal input design, as exemplified by the prob-
lem formulations (7) or (10), has been to optimize some measure of the result-
ing uncertainty, subject to a constraint on the input signal power. However, in
an identification for robust control setting, one should not spend more effort
on the identification than what is needed for the design of a robust controller,
under the constraint that this controller must achieve stability and a prespec-
ified level of performance with all models in the uncertainty set. This idea has
led to the recent concept of “least costly identification for control”, which was
first proposed in [6]. Instead of minimizing some measure of the uncertainty
set, the objective is to deliver an uncertainty set that is just within the bounds
required by the robust control specifications, and to do so at the smallest pos-
sible cost. In [5] open-loop identification is considered and the cost is then
defined as the total input signal power. The idea of least costly (or minimum
energy) identification experiment for control has been further developed in an
open-loop framework in [18].

Here we present the formulation of this optimal experiment design objec-
tive in a closed-loop disturbance rejection setup, where no reference excitation
is applied in normal operation6. The identification cost is then defined as the
additional penalty that occurs in the control performance cost when an ex-
citation signal is added for the purposes of doing the identification. The full
technical details can be found in [4]. We first recall some basic results and
tools about Prediction Error identification for closed-loop systems.

2 Prediction Error Identification aspects

We consider the identification of the closed-loop system (1) using the full
order model structure M = {G(z, θ), H(z, θ)}, θ ∈ Rk. In addition, we

6 This setup is very reminiscent of M. Gevers’ first practical experience with ex-
periment design in a closed-loop disturbance rejection framework on the lakes of
Canberra, Australia in 1985, when he and Keith Glover had jointly bought their
first windsurfer and were identifying its dynamics.
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assume throughout the paper that the model structure is globally identifiable
at θ0 [24]. This means that θ0 is the only value of θ for which G(z, θ0) and
H(z, θ0) represent the true system. Conditions for global identifiability of the
commonly used model structures (ARX, ARMAX, BJ, etc) can be found in
Theorem 4.2 of [24]. Note that they do not strictly require that all polynomial
orders be known exactly.

This true system is assumed to be operated in closed loop with a controller
Cid :

C : u(t) = r(t) − Cid(z)y(t) (11)

to be replaced by a better controller: see Fig. 1. In normal operation, the
external excitation signal r(t) is assumed to be zero. The objective is to per-
form a closed-loop identification experiment in order to estimate a model that
must lead to a new robust controller with better performance. This is typically
achieved by applying an external excitation signal r, even though we shall see
that this is not always necessary. The closed-loop system can be written as:

y(t) = Sidv(t) +

yr(t)
︷ ︸︸ ︷

G0Sidr(t)

u(t) = −CidSidv(t) +

ur(t)
︷ ︸︸ ︷

Sidr(t)

(12)

with Sid = 1/(1+CidG0). Under normal operation, only the first terms (driven
by v) appear in the input and output signals. During an identification exper-
iment with an external excitation signal r, the controlled output and input
of the closed-loop system contain added contributions yr and ur due to the
excitation signal r(t); these are perturbations with respect to the normal op-
erating conditions.

G0

Cid

r(t) y(t)
+

−

u(t)

v(t)

+

+

Fig. 1. Block-diagram of the closed-loop system

Consider now that a model Ĝ(z) = G(z, θ̂N ), Ĥ(z) = H(z, θ̂N ) of the true
system is identified using a direct Prediction Error identification method on
the basis of N input-output data collected on the actual closed loop system
with the controller Cid in the loop. If an external excitation signal r(t) is
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applied during this identification experiment, we assume that it is a sample
taken from a quasi-stationary signal (see [24]) for which a power spectrum

Φr(ω) exists. The parameter vector estimate θ̂N is defined by:

θ̂N
∆
= arg min

θ

1

N

N∑

t=1

ǫ2(t, θ) (13)

where ǫ(t, θ)
∆
= H(z, θ)−1 (y(t) −G(z, θ)u(t)). Note that ǫ(t, θ) depends on the

chosen signal r(t) via (12).
We introduce the following cost function:

V̄ (θ) = Ēǫ2(t, θ) , lim
N→∞

1

N

N∑

t=1

Eǫ2(t, θ). (14)

As shown in [24], if the identification experiment is “informative enough”,

then θ̂N tends w.p.1 to a minimum of the cost function V̄ (θ); by our standing
assumption that the system is in the model set and that the model structure
is globally identifiable at θ0, this cost function has θ0 as its unique mini-
mum. The easiest and most common way to make a closed-loop experiment
informative enough is to choose a reference signal that is persistently excit-
ing of sufficient order (in closed-loop identification, the required order of the
excitation is related to the degree of the sensitivity function Sid); however,
a closed-loop experiment can also be informative enough even without any
external excitation, provided the controller Cid is sufficiently complex, i.e.
provided its degree is sufficient: see [28, 4].

In this paper, we shall assume throughout that the experimental conditions
are informative enough. Thus we make the following Standing Assumption.

Assumption 2.1 Consider the closed-loop identification experiment presented
above (see (12)-(13)). We assume that the system is in the model set, that the
model structure is globally identifiable at θ0, and that the experimental condi-
tions are informative enough so that the true parameter vector θ0 is the only
global minimum of the cost function V̄ (θ) of (14).

We observe that this assumption is restrictive only in its requirements on the
model structure. The requirements on the experimental conditions can always
be satisfied. Assumption 2.1 ensures that the uncertainty region constructed
around θ̂N contains θ0 (and not another minimum of V̄ (θ)) and that this
uncertainty region is not infinitely large.

When Assumption 2.1 holds, we have the following result.

Lemma 2.1 Consider the closed-loop identification experiment described abo-
ve (see (12)-(13)) together with Assumption 2.1. Then the identified parameter

vector θ̂N is asymptotically normally distributed around the true parameter
vector θ0, i.e. θ̂N−θ0 converges in distribution to N (0, Pθ), and the covariance
matrix Pθ has the following expression [24]:
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Pθ =
σ2

e

N

(
Ē
(
ψ(t, θ0)ψ(t, θ0)

T
))−1

(15)

with ψ(t, θ) = −∂ǫ(t,θ)
∂θ

.

The covariance matrix Pθ depends on the experimental conditions (i.e. the
data length N and the spectrum Φr(ω) used during the identification), as ev-
idenced by the following expression of P−1

θ , which is easily deduced from (12)
and (15):

P−1
θ = N

P−1

r (Φr(ω),θ0,σ2

e)
︷ ︸︸ ︷
(

1

σ2
e

1

2π

∫ π

−π

Fr(e
jω, θ0)Fr(e

jω , θ0)
∗Φr(ω)dω

)

+ N

P−1

v (θ0)
︷ ︸︸ ︷
(

1

2π

∫ π

−π

Fe(e
jω , θ0)Fe(e

jω , θ0)
∗dω

)

(16)

Here, Fr(z, θ0) = Sid
ΛG(z,θ0)
H(z,θ0) , Fe(z, θ0) = ΛH(z,θ0)

H(z,θ0) − CidSidΛG(z, θ0),

ΛG(z, θ) = ∂G(z,θ)
∂θ

and ΛH(z, θ) = ∂H(z,θ)
∂θ

. Note that P−1
θ is made up of

a part depending on Φr(ω) and a part which does not depend on Φr(ω). Both
parts are linear in N and both depend on the controller Cid. Note also that,
in the vector Fr, the entries corresponding to the parameters that are only
present in H(z, θ) are identically zero. The vector Fe has no identically zero
entries; Fe is made up of the sum of two components: one component pertains
to the parameters in H(z, θ) and one pertains to the parameters in G(z, θ).

Lemma 2.2 ([24]) Consider the closed-loop identification experiment de-
scribed above (see (12)-(13)) and assume that Assumption 2.1 holds. Then
P−1

θ is strictly positive definite: P−1
θ ≻ 0.

Using Lemmas 2.1 and 2.2, it is possible to define an uncertainty region
D(θ̂N , Pθ) around the identified model which contains the unknown true sys-
tem G(z, θ0) at any desired probability level β [2, 3]:

D(θ̂N , Pθ)=

{

G(z, θ)=
ZN(z)θ

1 + ZD(z)θ
|θ ∈ U={θ|(θ − θ̂N )TP−1

θ (θ − θ̂N) < χ}
}

(17)
where χ is a real constant dependent on the chosen probability level β and
ZN , ZD are row vectors containing powers of z−1 and zeros. The size of the
uncertainty region D(θ̂N , Pθ) is a function of the covariance matrix Pθ and
thus, by (16), a function of the design parameters N and Φr(ω) used during
the identification experiment.
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3 Control design objectives and control design method

As stated before, our aim is to replace the present controller Cid in the loop of
Fig. 1 by a new controller Ĉ(z) = C(G(z, θ̂N )) that has better performance.
We adopt the following control performance measure for a stable closed-loop
system [C G]:

J(G,C,Wl,Wr) = sup
ω
J̄(ω,G,C,Wl,Wr) (18)

where

J̄(ω,G,C,Wl,Wr) = σmax(Wl(e
jω)F (G(ejω), C(ejω))Wr(e

jω)) (19)

F (G,C)
∆
=

(
GC

1+GC
G

1+GC
C

1+GC
1

1+GC

)

Here σmax(A) denotes the largest singular value of A, and Wl(z), Wr(z) are
given diagonal filters which reflect the performance specifications that we want
to achieve with the true system. The performance measure (18) is quite gen-
eral: J(G,C,Wl,Wr) ≤ 1 ensures that the four entries of Wl(z)F (G,C)Wr(z)
have an H∞ norm smaller than one. Simpler H∞ criteria can be chosen as
special cases. A controller C will be deemed satisfactory for the system G0 if
[C G0] is stable and if J(G0, C,Wl,Wr) ≤ 1.

As mentioned in the introduction, we want to design the new controller
Ĉ = C(G(z, θ̂N )) using an identified model Ĝ = G(z, θ̂N) of G0. For this
purpose, we use a pre-selected nominal control design method.

Assumption 3.1 We have pre-selected a fixed nominal control design method
which maps the identified model G(z, θ̂N ) to one controller C(G(z, θ̂N )) which

stabilizes G(z, θ̂N ) and achieves with this model a nominal performance level

J(G(z, θ̂N ), C(G(z, θ̂N )),Wl(z),Wr(z)) ≤ γ < 1, (20)

where γ is a fixed scalar, strictly smaller than 1.

One possible control design choice that satisfies Assumption 3.1 is to choose
for C(G(z, θ̂N )) the central controller of the four-block H∞ control design
method with performance objective (20).

If Assumption 3.1 holds, then the controller Ĉ = C(G(z, θ̂N )) designed

from an identified model Ĝ = G(z, θ̂N) will achieve J(Ĝ, Ĉ,Wl,Wr) ≤ γ < 1.
When this controller Ĉ is applied to the true system G0, the achieved perfor-
mance will generically be poorer than the designed performance. However, by
choosing the design criterion (20) with γ < 1, we ensure that there is a whole

set of systems G(z) around G(z, θ̂N ) that are also stabilized by Ĉ and that

achieve J(G, Ĉ,Wl,Wr) ≤ 1. In the sequel, we will denote by Dadm(θ̂N ) the
largest set of systems G(z) having these properties.
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4 Demands on the identification experiment

Our objective is to determine the experimental conditions (N and Φr(ω)) of
the identification experiment on the loop [Cid G0] in such a way that the
model Ĝ, identified through this experiment, delivers a controller Ĉ which
stabilizes the unknown G0 and achieves J(G0, Ĉ,Wl,Wr) ≤ 1. Since G0 is

unknown but lies (with probability β) in the uncertainty region D(θ̂N , Pθ)
identified along with Ĝ, this performance constraint will be replaced by the
following checkable constraint7.

Constraint 4.1 The experimental conditions (N and Φr(ω)) of the identifi-
cation experiment on the loop [Cid G0] (see Section 2) must be such that the

identified model Ĝ = G(z, θ̂N ) and the identified uncertainty region D(θ̂N , Pθ)

have the property that J(G, Ĉ,Wl,Wr) ≤ 1 for all G(z) ∈ D(θ̂N , Pθ), where
Ĉ is the controller designed from Ĝ using the control design method presented
in Assumption 3.1.

Since J(G, Ĉ,Wl,Wr) ≤ 1 for all G(z) in the set Dadm(θ̂N ) defined in the

last paragraph of Section 3, Constraint 4.1 imposes that D(θ̂N , Pθ) is a subset

of this set Dadm(θ̂N ). We now discuss the requirements on the identification
design that will guarantee this.

Remember that Dadm(θ̂N ) is the largest set of systems G(z) around

G(z, θ̂N ) for which J(G, Ĉ,Wl,Wr) ≤ 1. By Assumption 2.1 and Lemma 2.2,

D(θ̂N , Pθ) ⊆ Dadm(θ̂N ) is always achievable if N and/or Φr(ω) are chosen
large enough: see (16). Moreover, we have the following trade-offs: the larger
N is chosen, the smaller Φr(ω) can be while still verifying Constraint 4.1; con-
versely, the larger Φr(ω) is chosen, the smaller N can be while still verifying
this constraint.

The sets Dadm(θ̂N ) and D(θ̂N , Pθ) are both a function of the parameter

vector θ̂N that we want to identify. Moreover, besides being a function of
Φr(ω) and N , Pθ is also a function of the unknown quantities θ0 and σ2

e .
Consequently, whatever the method we use to determine experimental condi-
tions Φr(ω) and N satisfying Constraint 4.1, it will need to be based on some

initial estimates θo,est, θ̂N,est and σ2
e,est of those unknown quantities. In this

context, we will state that Constraint 4.1 is satisfied for given N and Φr(ω)

when D(θ̂N,est, Pθ,est) ⊆ Dadm(θ̂N,est) where Pθ,est is computed using (16)
with θ0 and σ2

e replaced by θo,est and σ2
e,est. Note that, in the methods we

present in the sequel, we will not determine the set Dadm explicitly, but im-
plicitly (see Theorems 7.1 and 7.2).

7 If J(G, Ĉ, Wl, Wr) ≤ 1 with all G(z) ∈ D(θ̂N , Pθ), then, under mild assumptions,
Ĉ(z) = C(G(z, θ̂N )) also stabilizes all G ∈ D(θ̂N , Pθ).
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5 The cost of a closed-loop identification experiment

It is clear that many possible choices of experimental conditions allow one
to fulfill Constraint 4.1. Among those, we seek to determine an identification
experiment with the smallest possible cost. In this section, we give a precise
definition of the cost of an identification experiment in the context where
the closed-loop system operates with an acting controller Cid and with a
disturbance rejection performance objective.

As mentioned in Section 2, in normal operation the signals u(t) and y(t)
are given by:

y(t) = Sidv(t), u(t) = −CidSidv(t). (21)

By applying an external signal r(t) to the loop during the identification, we in-
troduce additional disturbances yr(t) and ur(t) on top of the normal operation
signals: see (12). Those disturbances represent the cost of the identification
experiment, since they entail a performance degradation. The ideal closed-
loop identification experiment would be one in which the normal operation
signals u(t) and y(t) are used for a certain length N without any external
excitation, i.e. with r(t) = 0. We show in Section 6 that such costless iden-
tification experiment can, in certain circumstances, lead to fulfillment of the
Constraint 4.1. We also show how to compute the minimum number Nmin of
measurements that are necessary to reach this objective.

In the cases where Constraint 4.1 can not be achieved with r(t) = 0, the
application of a nonzero external signal r(t) for a certain amount of time is
unavoidable, but we show how N and Φr(ω) can be chosen in order to achieve
Constraint 4.1 with minimal cost. This cost can be a function of either the
experiment time N , the power of the perturbations yr and ur, or a combina-
tion of both. In the sequel, we consider three different situations which are
representative of practical situations, and determine for each of them how we
can optimally choose the experimental conditions.

Situation 1. The cost of the identification is mainly determined by the du-
ration N of the identification experiment. Based on the trade-off discussed in
Section 4 between excitation power and duration of the experiment, the power
spectrum Φr(ω) of the to-be-applied signal r(t) is in this case chosen at each
frequency as large as the constraints on the actuators allow. For such fixed
Φr(ω), the optimal experiment time can subsequently be determined via an
optimization problem yielding the smallest identification time Nmin satisfying
Constraint 4.1.

Situation 2. Situation 2 is the converse situation: the cost of the identification
is mainly determined by the power of the perturbations yr(t) and ur(t) due to
the excitation signal r(t). Based on the same trade-off, the experiment time
N is in this case chosen as large as is allowed. For such fixed N , the optimal
power spectrum Φr(ω) can then be determined via an optimization problem
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whose objective is to minimize the following cost function Jr representing the
total disturbance power, subject to satisfaction of the Constraint 4.1:

Jr = αy

(
1

2π

∫ π

−π

Φyr
(ω) dω

)

+ αu

(
1

2π

∫ π

−π

Φur
(ω) dω

)

=
1

2π

∫ π

−π

(
αy|G0(e

jω)Sid(ejω)|2 + αu|Sid(e
jω)|2

)
Φr(ω) dω (22)

where αy and αu are scalars chosen by the designer to reflect the relative
importance of the costs due to each of the perturbation signals, and where
Φyr

(ω) and Φur
(ω) are the power spectra of these disturbance signals yr(t)

and ur(t).

Situation 3. Situation 3 is the situation where N and Φr(ω) are both im-
portant in the cost of the identification. In this situation, we can determine
the optimal spectrum Φr(ω) such as in Situation 2 for different values of the
length N . Since, for increasing values of N , the optimal cost function Jr de-
creases, such approach allows one to find the “optimal” combination for the
duration of the identification experiment and the induced disturbance on the
input and output signals.

6 Identification experiments without external excitation

In this section we examine the situation where Constraint 4.1 can be achieved
using an identification experiment on the closed loop [Cid G0] without any
external excitation signal r(t), i.e. using only the excitation due to the noise
v(t) (see (12) with r = 0). We have the following result.

Theorem 6.1 Consider a closed-loop identification experiment as presented
in Section 2 with r(t) = 0 and assume that Assumption 2.1 holds. Then,
Constraint 4.1 can always be verified by using for the identification a set of
input-output data (21) of sufficient length N .

Proof. When r = 0, expression (16) of P−1
θ becomes:

P−1
θ = NP−1

v (θ0). (23)

By Assumption 2.1 and Lemma 2.2, we have P−1
v (θ0) ≻ 0. Therefore, with

N sufficiently large, P−1
θ = NP−1

v (θ0) can be made such that D(θ̂N , Pθ) ⊆
Dadm(θ̂N ) for any set Dadm(θ̂N ) around G(z, θ̂N), which implies that Con-
straint 4.1 holds.

Theorem 6.1 shows that, if Assumption 2.1 holds with r = 0, the identifi-
cation leading to a new and satisfactory controller Ĉ for G0 can be achieved
without applying any external excitation: we just need to measure the input
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and output signal in normal operation for a sufficient amount of time. For
this theorem to be of practical use, we need to examine under what condi-
tions Assumption 2.1 holds when r = 0, and which smallest data length Nmin

is required for the robustness Constraint 4.1 to be satisfied when r = 0.
The computation of Nmin for the case r = 0 is a special case of the

computation of Nmin for a given reference excitation spectrum Φr(ω); it will
be presented in the next section. As for the first question, a necessary and
sufficient condition for Assumption 2.1 to hold is that ǫ(t, θ) = ǫ(t, θ0) =⇒
θ = θ0 [28]. In the case where r = 0, this condition specializes to the following
result.

Lemma 6.1 ([28]) Consider the closed-loop identification configuration of
Section 2 with r = 0. Then, Assumption 2.1 holds if and only if, for any θ,

H−1(z, θ)(1 + CidG(z, θ)) = H−1(z, θ0)(1 + CidG(z, θ0)) =⇒ θ = θ0. (24)

A necessary condition for this identifiability condition to hold, in the case
considered here of a linear time-invariant regulator Cid, is that the regulator
be sufficiently complex (i.e. of sufficiently high order): see Section 13.4 of
[24]. One can make this statement more precise by considering specific model
structures. This has been done in [28] (see Complement C10.1) for the case of
an ARMAX or ARX model structure, and in [4] for the case where an OE or
BJ model structure is used. The conditions are essentially degree constraints
on the structure of the controller Cid.

7 Least costly identification experiments for control

An identification experiment without external excitation may be impossible
for two reasons: i) the initial controller Cid, which is often not chosen by the
user, is of lower complexity than required, or ii) the data length required to
satisfy Constraint 4.1 (see Theorem 6.1) is unrealistic (e.g. Nmin corresponds
to one year of data). We now address the problem of computing the least costly
identification experiment for control, as has been defined by the problems
presented at the end of Section 4. Those problems involve the computation
under Constraint 4.1 of either the smallest data length for a given Φr(ω)
(Situation 1) or of the power spectrum Φr(ω) minimizing Jr for a given N
(Situations 2 and 3).

7.1 Shortest identification experiment for control with fixed Φr(ω)

The first experiment design problem can be formulated as follows.

Experiment Design Problem 1. Consider the closed-loop identification
experiment of Section 2. Consider also that the power spectrum Φr(ω) of the
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excitation signal r(t) is given. Determine then the smallest length N of an ex-
citation signal r(t) with power spectrum Φr(ω) that must be applied to [Cid G0]
in order to fulfill Constraint 4.1.

We show that this problem can be expressed as an LMI-based optimization
problem [7]. For this purpose, we first express the robust performance con-

straint J̄(ω,G, Ĉ,Wl,Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ) at one particular frequency ω
as an LMI, linear in P−1

θ . Note that, according to (18), J(G, Ĉ,Wl,Wr) ≤ 1

∀G ∈ D(θ̂N , Pθ) ⇐⇒ J̄(ω,G, Ĉ,Wl,Wr) ≤ 1 ∀ω and ∀G ∈ D(θ̂N , Pθ).

Proposition 7.1 Consider the controller Ĉ = C(G(z, θ̂N )) designed from

the model G(z, θ̂N) using the control design method presented in Assump-

tion 3.1. Consider also the set D(θ̂N , Pθ) defined in (17). Then Ĉ achieves

J̄(ω,G, Ĉ,Wl,Wr) ≤ 1 with all G in D(θ̂N , Pθ) if and only if ∃ τ(ω) > 0

(τ(ω) ∈ R) and a skew-symmetric matrix L(ω) ∈ R(k+1)×(k+1) (i.e. L(ω) =
−L(ω)T ) such that

τ (ω)E(ω, θ̂N ) −R(θ̂N) + j L(ω) ≤ 0 (25)

with j =
√
−1 and

R(θ̂N ) =

„

Ik

−θ̂T
N

«

P
−1
θ

„

Ik

−θ̂T
N

«T

+

„

0 0
0 −χ

«

E(ω, θ̂N) = Ω
∗(ejω)

„

I4 0
0 −1

«

Ω(ejω)

Ω(z) =

0

@

„

I2 ⊗

„

Wr

„

Ĉ

1

«««

Wl 0

0 1

1

A

0

@

ZN 0
ZD 1

ZD + ĈZN 1

1

A

The symbol ⊗ denotes the Kronecker product.

Proof. See [4].

The previous proposition shows that Constraint 4.1 can be replaced by
LMI’s at each frequency, linear in P−1

θ . Expression (16) shows that P−1
θ is

linear in the decision variable N of Experiment Design Problem 1. By com-
bining these two facts, it is easy to see that Experiment Design Problem 1
would be solvable exactly if P−1

θ was not a function of θ0 and σ2
e , and if

condition (25) was not a function of the to-be-identified θ̂N . This difficulty is
inherent to all experiment design problems [24] and is generally circumvented

by using a-priori estimates for those quantities: θo,est, σ
2
e,est and θ̂N,est. The

problem can then be solved using the LMI optimization problem of Theo-
rem 7.1 below. Note that θ̂N,est will often be chosen equal to θo,est.

Theorem 7.1 Consider the approximations θ0 ≈ θo,est, θ̂N ≈ θ̂N,est and
σ2

e ≈ σ2
e,est and the shorthand notations: P−1

r (Φr(ω)) = P−1
r (Φr(ω), θo,est, σ

2
e,est),
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P−1
v = P−1

v (θo,est) (see (16)) and E(ω) = E(ω, θ̂N,est) (see (25)). Then, the
minimum duration N which solves Experiment Design Problem 1 is the so-
lution (rounded up to the nearest integer) of the following LMI optimization
problem:

minN

under the constraint that ∃ a frequency function τ(ω) valued in R and a

frequency-dependent skew-symmetric matrix L(ω) valued in R(k+1)×(k+1) such
that

τ(ω)E(ω) −
(

Ik
−θ̂T

N,est

)
(
N (P−1

r (Φr(ω)) + P−1
v )
)
(

Ik
−θ̂T

N,est

)T

−
(

0 0
0 −χ

)

+ j L(ω) ≤ 0 ∀ω (26)

Proof. Direct consequence of Proposition 7.1 and the expression of P−1
θ

in (16).

Comment 1. Condition (26) must be considered at every frequency. This is
impossible in practice. The optimal N can nevertheless be approximated by
using a finite frequency grid. An exact but more cumbersome solution consists
of using the Kalman-Yakubovitch-Popov (KYP) lemma [27]; see [4] for details.

Comment 2. As stated in Section 6, the minimal data length for an identi-
fication experiment without external excitation can be determined via Theo-
rem 7.1 as well, by setting Φr(ω) = 0 in (26).

7.2 Least costly identification experiment with fixed data length

We now examine the second situation presented at the end of Section 4, in
which the data length N is fixed and one seeks to satisfy Constraint 4.1 with
a power spetrum Φr(ω) that minimizes the identification cost Jr defined in
(22). We restrict our search to signals whose power spectrum Φr(ω) can be
written as [22]:

Φr(ω) = Rr(0) + 2

m∑

i=1

Rr(i)cos(iω) ≥ 0 ∀ω (27)

where m is a positive integer selected by the user. The parameters Rr(i)
(i = 0...m) can be interpreted as the auto-correlation sequence of a signal that
has been generated by a white noise passing through an FIR filter of length
m + 1. If we select Rr(i) = σ2 Nc−i

Nc
and m = Nc, then Φr(ω) represents the

power spectrum of a Random Binary Signal with clock periodNc and maximal
amplitude σ. Such a parametrization can be very useful if the amplitude of
the time domain signal is constrained.
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An important property of the parametrization (27) is that P−1
θ and Jr

(see (16) and (22)) are affine functions of the design variablesRr(i) (i = 0...m),
as we show in the following two propositions. Note that other parametrizations
of Φr(ω) have the same property and could therefore also be considered here:
e.g. Φr(ω) =

∑m

i=1 Rr(i)δ(ω − ωi) corresponding to a multisine signal r(t)
[8], or Φr(ω) =

∑m
i=0 Rr(i)

(
Bi(e

jω) + B∗
i (ejω)

)
where Bi(e

jω) are preselected
basis functions [19].

Proposition 7.2 Consider the expression (16) of P−1
θ and let Φr(ω) be

parametrized by (27). Let M̃k(θ0) be the sequence of Markov parameters of
FrF

∗
r i.e. Fr(e

jω , θ0)Fr(e
jω , θ0)

∗ =
∑∞

k=−∞ M̃k(θ0)e
−jkω with Fr(z, θ0) as

defined in (16). Then, P−1
θ ∈ Rk×kcan be written as:

P−1
θ = M̄(θ0) +

m∑

i=0

Mi(θ0, σ
2
e) Rr(i)

where M̄(θ0) = NP−1
v (θ0), M0(θ0, σ

2
e) = N

σ2
e
M̃0(θ0), and Mi(θ0, σ

2
e) =

N
σ2

e
(M̃i(θ0) + M̃T

i (θ0)) for i = 1...m.

Proof. Direct consequence of Result 5.6 of [22] applied to the closed-loop
expression for P−1

θ as given in (16).

Proposition 7.3 Consider the cost function Jr defined in (22) and let Φr(ω)
be parametrized by (27). Then Jr can also be written as:

Jr = [αyc0(θ0) + αud0(θ0)]Rr(0) + 2

m∑

i=1

[αyci(θ0) + αudi(θ0)]Rr(i),

where the coefficients ci(θ0) and di(θ0) are the Markov parameters of G0G
∗
0SidS

∗
id

and SidS
∗
id respectively, i.e.

G0(e
jω)G0(e

jω)∗Sid(e
jω)Sid(ejω)∗ =

∞∑

k=−∞

ck(θ0)e
−jkω

and Sid(e
jω)Sid(ejω)∗ =

∑∞
k=−∞ dk(θ0)e

−jkω .

Proof. Direct consequence of Result 5.4 of [22] applied to yr(t) = G0Sidr(t)
and ur(t) = Sidr(t).

With the parametrization (27) for Φr(ω), the experiment design problem
corresponding to Situation 2 can then be formulated as follows.

Experiment Design Problem 2: Consider the closed-loop identification
experiment of Section 2 with a fixed number N of data. Determine the pa-
rameters Rr(i) (i = 0...m) of the spectrum Φr(ω) in (27) which minimize Jr,
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subject to satisfaction of the Constraint 4.1.

The experiment design problem described above would be solvable exactly,
using the results of Propositions 7.2, 7.3 and 7.1, if the parametrizations of
P−1

θ and Jr with respect to the design variables Rr(i) were not functions of
the unknown θ0 and σ2

e , and if condition (25) was not a function of the to-be-

identified θ̂N . This difficulty is again circumvented by using a-priori estimates
for those quantities: θo,est, σ

2
e,est and θ̂N,est. The solution is then obtained by

solving the LMI optimization problem described in Theorem 7.2 below.

Theorem 7.2 Consider Experiment Design Problem 2. Consider also the ap-

proximations θ0 ≈ θo,est, θ̂N ≈ θ̂N,est and σ2
e ≈ σ2

e,est and the shorthand no-

tations: ci = ci(θo,est), di = di(θo,est), M̄ = M̄(θo,est), Mi = Mi(θo,est, σ
2
e,est)

and E(ω) = E(ω, θ̂N,est). Then the auto-correlation sequence Rr(i) (i = 0...m)
which solves Experiment Design Problem 2 is the solution of the following LMI
optimization problem:

min
Rr(i)(i=0...m)

[αyc0 + αud0]Rr(0) + 2

m
X

i=1

[αyci + αudi]Rr(i)

under the constraint that there exists a symmetric matrix Q of appropriate
dimension, a frequency function τ(ω) valued in R and a frequency-dependent

skew-symmetric matrix L(ω) valued in R(k+1)×(k+1) such that

τ(ω)E(ejω) −
(

Ik
−θ̂T

N,est

)(

M̄ +

m∑

i=0

Mi Rr(i)

)(
Ik

−θ̂T
N,est

)T

−
(

0 0
0 −χ

)

+ j L(ω) ≤ 0 ∀ω (28)

and that

(
Q−ATQA CT −ATQB
C −BTQA D +DT −BTQB

)

≥ 0 (29)

with the following definitions of A,B,C,D:

A =

(
0 0

Im−1 0

)

B =
(
1 0 ... 0

)

C =
(
Rr(1) Rr(2) ... Rr(m)

)
D = Rr(0)

2

The optimal spectrum Φr(ω) can thereafter be computed using (27).

Proof. The existence of a symmetric matrix Q such that (29) holds is a nec-
essary and sufficient condition for Rr(0)+2

∑m
i=1Rr(i)cos(iω) to be positive

at each ω and thus for (27) to represent a spectrum, as shown in [22] via
the Positive Real Lemma. Consequently, the result in this theorem is a direct
consequence of Propositions 7.2, 7.3 and 7.1.
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Comment. Condition (28) must be considered at every frequency, which is
impossible in practice. The optimal Φr(ω) can nevertheless be approximated
by using a finite frequency grid. An exact but more cumbersome solution
consists of using the Kalman-Yakubovitch-Popov (KYP) lemma [27], as shown
in [4].

7.3 Dealing with the unknown quantities θ0, θ̂N and σ
2

e

Theorems 7.1 and 7.2 provide solutions to the optimal identification experi-
ment design problems defined above. However, these solutions require that an
approximation of θ0, θ̂N and σ2

e be used. If those approximations are not ac-
curate, this could lead to poor results. Here we present a procedure for dealing
with those unknown variables.

Let us first recall the problem setup. One wants to replace the existing
controller Cid, which operates on the true system, by a new controller via
a new identification of the true system. In order to design the experimental
conditions of this identification experiment, one needs reliable estimates of the
unknown quantities θ0, θ̂N and σ2

e . It is very often the case that estimates for
θ0 and σ2

e are already available, because the initial controller Cid has typically
been computed from an initial identified model. This initial identification typ-
ically delivers estimates not only of θ0 and σ2

e , but also of uncertainty regions
for those quantities. Moreover, it is also possible to deduce from this initial
identification a (truncated) Gaussian probability density function which de-
fines the likelihood of each element of these uncertainty regions. If this is not
possible, the density functions are then chosen uniform over the uncertainty
regions. The estimate, the uncertainty region, and the probability density
function of the to-be-identified θ̂N are typically chosen equal to those of θ0.

To summarize, from the initial identification, one can assume that q0 =
(

θT
0 θ̂T

N σ2
e

)T
lies in a set Q and that the likelihood of the event q = q0 is given

by a probability function p(q). Based on this information, one can robustify the
procedure that consists in adopting a unique and possibly poor estimate of q0
for the design of the experimental conditions by adopting instead an approach
based on randomized algorithms (see e.g. [30, 29]). We briefly describe such
approach.

In the case of Experiment Design Problem 1, one wants to determine the
smallest duration N for which the Constraint 4.1 is verified, whatever the
value of q0. For this specific problem, since one assumes that q0 lies in Q,
this is equivalent to computing an estimate8 N̂ of supq∈QNq where Nq is the
solution obtained by Theorem 7.1 with the approximation q. Considering Nq

as a function of q, this can be done [29] with accuracy ǫ and confidence9 δ
by generating n ≥ ln(δ−1)/ln((1 − ǫ)−1) estimates qj of q0 according to the

8 The exact computation is NP-hard.
9 This means that Pr(Pr(Nq > N̂) ≤ ǫ) ≥ 1 − δ.
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probability density function p(q), and by determining Nqj
for each of these

estimates qj using Theorem 7.1. The estimate N̂ of supq∈QNq is then given
by supqj (j=1...n)Nqj

.
In the case of Experiment Design Problem 2, the approach above can not

be considered since one determines the parameters Rr(i) (i = 0...m) of Φr(ω)
rather than Φr(ω) itself. The so-called scenario-approach can then be consid-
ered (see e.g. [30, Chapter 12]). This approach is also based on a randomized
algorithm which uses the probability density function p(q). The main differ-
ence between the two approaches is that, for Experiment Design Problem 1,
Theorem 7.1 is applied a fixed number of times for different estimates of q0
that are randomly generated with p(q); while for Experiment Design Problem
2, the optimization problem is solved only once but with several robust per-
formance constraints (28), each of them evaluated at a different estimate of
q0 randomly generated with p(q).10

8 Simulation results

In order to illustrate our results, we consider the following ARX system [21]
as the true system:

y(t) =
z−3B0(z)

A0(z)
u(t) +

1

A0(z)
e(t) (30)

with B0(z) = 0.10276 + 0.18123z−1, A0(z) = 1 − 1.99185z−1 + 2.20265z−2 −
1.84083z−3 + 0.89413z−4, and e(t) a realization of a white noise signal of
variance σ2

e = 0.5.
The control performance criterion J(G,C,Wl,Wr) focuses on the sensitiv-

ity function. It is defined as in (18) with the filters:

Wl(z) = diag (0,W (z)) Wr(z) = diag (0, 1) W (z) = 0.5165−0.4632z−1

1−0.999455z−1 .

The true system initially operates in closed loop with a controller Cid which
has been designed using an initial estimate of the true system θo,est =
(−1.9755, 2.1965,−1.8495, 0.8881, 0.0817, 0.172)T and the 4-block H∞ control
design method of [9] that satisfies Assumption 3.1:

Cid =
0.036249(z + 0.9244)(z2 − 1.951z + 1.101)

(z − 0.9995)(z2 − 1.002z + 0.3641)

× (z2 − 0.5109z + 0.8248)(z2 − 0.1828z + 0.9416)

(z2 − 1.279z + 0.835)(z2 − 0.1746z + 0.9229)
(31)

10 For each of these robust performance constraints (28), the frequency functions
τ (ω) and L(ω) are different.
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Fig. 2. Identification without external excitation, with N = 4901:
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Identification without external excitation. The complexity of the initial
controller Cid is sufficient for Assumption 2.1 to hold with r(t) = 0. Thus,
Constraint 4.1 can be verified with an identification experiment that uses
noise excitation only (see 21) provided the experiment is of sufficient length.
The minimal length required can then be determined using Theorem 7.1 with
Φr(ω) = 0 ∀ω. This theorem is applied here using the approximations θ0 ≈
θo,est and θ̂N ≈ θo,est (an estimate of σ2

e is not necessary since P−1
v (θ0) is not

a function of σ2
e). This delivers a minimal length Nmin = 4901.

In order to verify the validity of this result, we have measured 4901 samples
of the signals y(t) and u(t) obtained in normal operation on the loop [Cid G0]

and we have identified a model Ĝ = G(z, θ̂N) along with its uncertainty region

D(θ̂N , Pθ). From Ĝ, we have then designed a controller Ĉ using the method
of [9] and we have verified whether Ĉ achieves J(G, Ĉ,Wl,Wr) ≤ 1 with all

G in D(θ̂N , Pθ), or equivalently
∣
∣
∣

1
1+Ĉ(ejω)G(ejω)

∣
∣
∣ ≤ |W (ejω)|−1 for all G in

D(θ̂N , Pθ). This is indeed the case as can be seen in Figure 2. Moreover, we

also observe in Figure 2 that sup
G∈D(θ̂N ,Pθ)

∣
∣
∣

1
1+Ĉ(ejω)G(ejω)

∣
∣
∣ = |W (ejω)|−1 in

the low frequencies. Consequently, N = 4901 is indeed the smallest N for
which Constraint 4.1 holds with Φr(ω) = 0 ∀ω.

Sensitivity to the initial estimates. In our example, the initial estimate
θo,est chosen to approximate the unknown quantities θ0 and θ̂N has delivered
accurate results, as shown by Figure 2. This may not always be the case. Thus,
it is safer to compute the minimal data length N using the method proposed
in Section 7.3. We illustrate the application of this method to our example. In
order to generate multiple estimates of θ0 (which are then used to approximate

both the true θ0 and θ̂N ), we have used the information provided by the initial
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identification which had delivered θo,est. This was an open-loop identification
with Φu(ω) = 1 ∀ω and N = 500.11 Using the covariance matrix of θo,est, we
have randomly generated 46 parameter vectors θi (i = 1...46) around θo,est;
46 samples correspond to a confidence of 80%. For each of these estimates,
we have applied Theorem 7.1 and we have thus obtained 46 different lengths
Nθi

. A more robust choice of the length N is then (see Section 7.3):

maxθi
Nθi

= 5897

The standard deviation of these 46 Nθi
was 383.
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Fig. 3. Cost of the least costly experiment that satisfies Constraint 4.1 (circles)
and of the white noise experiment that satisfies the same constraint (crosses), for
different values of the data length.

Least costly identification with external excitation. For the same ex-
ample, we have also studied the effect of applying least costly excitation signals
r for a range of data lengths that were too short to lead to identifiability using
only the noise excitation. Thus, we have computed the optimal signal spectra
Φr(ω) resulting from Theorem 7.2 for data lenghts N ranging from 500 to
4,500 by steps of 500. For each of these data lenghts, we have then compared
the identification cost Jr resulting from the application of the optimal excita-
tion signal (when m = 10 in (27)) with the cost that would result by applying
a white noise reference excitation (i.e. m = 0 in (27)) with a variance that is
sufficient to satisfy the robust performance Constraint 4.1. The comparison
between the cost of the least costly experiment and the cost of a correspond-
ing identification experiment with white noise excitation is shown in Figure 3.
As can be seen from this figure, the use of an optimally designed excitation
signal r reduces the identification cost by a factor of 2 to 3 whatever the data
length. Similar comparisons leading to similar conclusions can be found for
the case of open-loop identification in [16].

11 This initial identification was too cheap to verify Constraint 4.1.
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9 Conclusions

We have presented a new paradigm for optimal experiment design in an iden-
tification for robust control context, where the objective is to design an identi-
fication experiment at the smallest possible cost. The identification cost must
be as small as possible while still delivering a model uncertainty set that just
meets the robust control performance constraints. The cost of the identifi-
cation experiment is expressed either as the experiment time, or in terms
of a measure of the deterioration of the closed-loop performance, during the
identification experiment, with respect to the closed-loop performance under
normal (non perturbed) operation. This paradigm was initially proposed in
[6], and subsequently elaborated upon and extended in a number of other pa-
pers [5, 19, 4]. The underlying theme of this new paradigm is “Why do more
(identification) work than is needed?”

One might wonder whether it pays to apply the heavy mathematical ma-
chinery required to compute optimal input designs, given that the optimal
solution necessarily depends on the unknown system, which means that a
preliminary model estimate must be obtained first before an approximately
optimal input signal can be computed. This is sometimes referred to as adap-
tive (or iterative) optimal input design. In [1] the benefits of optimal input
design for control have been demonstrated for two benchmark problems. In
both cases, significant savings are obtained by the application of a two-step
identification procedure, where the second step uses an optimally designed
input signal computed from a preliminary model estimate.

From a practical point of view, the cost of identification is an issue of
major importance. It is often estimated that 75% of the cost associated to
an advanced control project goes into model development. Even though the
definition of the cost used in the present work on “least costly identification
for control” does by no means cover all the practical costs of modelling, the
disruption caused to normal operation and the time required to arrive at a
satisfactory model are considered to be very significant elements of this total
modelling cost. These two costs are incorporated in the “least costly” criterion
developed in the present paper.
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