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Abstract

Optimal input design is an important step of the identification process in order to reduce the model variance. In this work

a D-optimal input design method for FIR-type nonlinear systems is presented. The optimization of the determinant of the

Fisher matrix is expressed as a convex optimization problem. The optimization is performed using an equivalent dispersion-

based criterion. This method is easy to implement and converges monotonically to the optimal solution. Without constraints,

the optimal design cannot be realized as a time sequence. By imposing that the design should lie in the subspace described by

a symmetric and non-overlapping basis, a realizable design is found. A graph-based method is implemented in order to find a

time sequence that realizes this optimal constrained design. These methods are illustrated on a numerical example of which

the results are thoroughly discussed.
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1 Introduction

The quality of system models obtained through identi-
fication largely depends on the experimental conditions
under which the measurement data was obtained. They
determine the Fisher Information matrix, of which al-
most all quality criterion are a function. Therefore, ex-
perimental design is an important step in the identifica-
tion process. One aspect of an experiment that can be
optimized is the input signal that is used to excite the
system.
For linear dynamic systems and nonlinear static systems
the problem of optimal input design is well understood
and well covered in literature [12,6,4]. For these systems
it has been shown that the input design problem can be
written as a convex optimization problem. As a result, a
vast set of optimization tools can be used to solve these
problems.
For linear dynamic systems with stationary signals op-
erating in open loop, the Fisher Information matrix is an
affine function of the input spectrum; with a few excep-
tions, the optimization is then performed by first com-
puting the optimal input spectrum, and then construct-
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ing an input signal that has this optimal input spec-
trum. A few results are available where the optimization
is performed directly with respect to the input signal in
time-domain, as will be done in this paper; see e.g. [1].
For nonlinear systems the problem is often non-convex
making global optimization more difficult, if not impos-
sible. The main difficulty lies in the fact that the in-
formation content of the experiment is not only depen-
dent on the second order moment of the input but also
on higher order moments [7]. Finding an optimal in-
put design method for the whole class of nonlinear sys-
tems seems therefore intractable. Here we shall present
a method that applies to a given class of nonlinear sys-
tems and where the design is performed directly with
respect to the time-domain input sequence.

1.1 System Class

The class of systems will be restricted to FIR-type non-
linear systems, meaning that the output at time t only
depends on the current input and at most n − 1 previ-
ous input samples, where n represents the length of the
system memory. Such systems are already covered in [9],
where the input design is formulated as a convex opti-
mization with respect to the probability density of sub-
sequences of length n.
A subclass of the finite memory nonlinear systems are
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Wiener systems consisting of a FIR filter followed by a
polynomial nonlinearity. The method presented in this
work was already illustrated for this subclass of systems
in [2]. Additionally, this subclass was also covered in [5],
where the optimal input in the class of random Gaussian
signals was obtained.

Fig. 1. FIR filter followed by a polynomial nonlinearity

1.2 Method

To transform the optimal input design to a convex op-
timization problem a special representation of the input
is needed. First we shall consider that the input u(t) can
only take a finite set of possible values: {u1, . . . , uA}.
Considering the system model, it is clear that the out-
put at time instance t only depends on the values of the
input at t and n− 1 previous instances. Therefore each
n-tuple (u(t−n+1), u(t−n+2), ..., u(t)), in which each
input takes one of the A possible values {u1, . . . , uA},
is considered to be an elementary design for the sys-
tem. There are An such elementary designs. The tuple
frequency vector indicates how many times each one of
these An tuples is present in the input sequence. The
optimization problem will be proven to be convex with
respect to the tuple frequency vector.
Instead of considering the general class of optimality
criteria, as was done in [9], we restrict ourselves to D-
optimal designs (meaning that the determinant of the
Fisher Information matrix is maximized). This allows
us to produce an algorithm used to perform the opti-
mization. We have opted for a dispersion-based method,
which was already successfully applied in the linear case
[8]. Advantages of this method are its intuitive interpre-
tation, straightforward implementation and monotonic
convergence to the global minimum.
However, the optimal tuple frequency vector may not
correspond to a realizable time sequence. To alleviate
this problem, constraints need to be incorporated into
the optimization problem. In order to do so, the tuple
frequency vector will be expressed as a convex combina-
tion of a special set of basis vectors, which allows us to
restrict the search space to the space of tuple frequency
vectors that can be realized as a time signal.
Once a realizable and optimal tuple frequency vector is
found, a time sequence satisfying this design needs to be
derived. To this end a graph-based method is used. Such
a method was already suggested in [9] and later elabo-
rated in [11]. In this work a similar graph-based method
is presented for deterministic input sequences.

1.3 Main Contributions

Because the problem statement and solution of this pa-
per show strong similarities with [9], [3] and [11], we want

to emphasize the main contributions of this work:

• Generalizing the dispersion-based optimization to
nonlinear FIR-type systems.

• Providing a method to add constraints to this
dispersion-based method.

• Discussing deterministic sequence generation and pro-
viding a graph-based generation algorithm.

• Illustrating the presented methods on a numerical ex-
ample.

1.4 Overview

The remainder of this paper is structured as follows.
Section 2 formalizes the optimal input design problem
for the considered class of systems. Section 3 shows how
the associated optimization problem can be solved based
on the dispersion function. In Section 4 the problem
of signal generation is considered, and a graph-based
method is proposed. Section 5 discusses how the con-
straints needed for signal generation can be incorporated
into the optimization. Section 6 illustrates the previous
methods on a numerical example. To conclude, Section
7 will summarize the obtained results.

2 Problem Statement

The goal of this paper is to find a D-optimal input of
some given lengthN for a nonlinear FIR-type system (as
defined in Assumption 1) with a known model structure,
and disturbed with independent Gaussian output noise.
A D-optimal input is an input sequence of length N for
which the determinant of the Fisher Information matrix
is maximal. For a large number of samples, the average
per sample covariance of the estimated parameter vector
is proportional to the inverse of the Fisher Information
matrix. When the parameters are identified which such
an input sequence, the volume of the uncertainty ellipse
in the parameter space is minimal [12]. The following
assumptions describe this problem formally.

Assumption 1 The considered system is a member of
the class of nonlinear FIR-type systems with memory
length n and which are differentiable with respect to the
parameters of the system. This model class was first de-
fined in [9].

y0(t, θ) = GNL(u0(t), u0(t− 1), .., u0(t− n+ 1), θ) (1)

where u0(t) is the noiseless input, y0(t, θ) is the noise-
less output, θ ∈ RNθ are the parameters of the model.
Notice that the output at time t only depends on the cur-
rent input sample and n− 1 previous input samples. Ad-
ditionally it is assumed that the system is identifiable
with respect to the parameters, meaning that there exists
an input sequence u(1), . . . , u(N) such that the outputs
{y0(t, θ), t = 1, . . . , N} and {y0(t, θ1), t = 1, . . . , N} of
the corresponding models (1) are identical only if θ1 = θ.
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Assumption 2 The class of inputs will be restricted to
deterministic time sequences with a length of N samples.
The amplitude can only take values from a finite, prede-
fined set of A values:

∀t : u(t) ∈ {u1, ..., uA} (2)

Remark 1 No direct constraints are imposed on the to-
tal power of the input. However, limiting the maximal
amplitude value and fixing the signal length restricts the
total power indirectly.

Assumption 3 The output y(t) of the true system is ob-
tained as the sum of a noise-free output y0(t, θ0) defined
by (1) with a “true” parameter vector θ0 and some addi-
tive independent identically distributed (i.i.d) Gaussian
noise e(t). The noise is also independent of the input sig-
nal u0.

u(t) = u0(t)
y(t) = y0(t, θ0) + e(t)

e(t)∼N(0,σ2)

Remark 2 The actual value of the variance does not
play a role because it only scales the Fisher information
matrix. This scaling will not alter the optimal input de-
sign.

Assumption 4 The estimator used to identify the
model parameters is unbiased and efficient, which as-
sures that the Cramer-Rao lower bound is reached.

Assumption 5 The D-optimality criterion is used,
which means that the optimal input sequence uopt of
length N corresponds to the sequence for which the
determinant of the information matrix M is maximal.

uopt = arg
u

max(det(M))

Given the noise assumption, M can be computed based
on the time domain data as (see [10]):

M =
1

σ2

�
∂y0
∂θ

�T �
∂y0
∂θ

�

where ∂y0

∂θ is a N × Nθ matrix containing the partial
derivatives of y, and V T stands for the transpose of V .

Remark 3 Due to the nonlinear parametrization of the
model structure, the determinant remains dependent on
the true model parameters. During the computation of the
optimal input, it will be assumed that the true parameters
of the system, θ0, are known. While this may seem in
contradiction with the final goal of system identification
it is a standard assumption in the field of optimal input
design [12].

3 Problem Solution

In order to solve the D-optimal input design problem, as
presented in the previous section, three important steps
will now be made. First, the concept of n-tuples and the
tuple frequency vector are formally introduced. Second,
it will be shown that the Fisher information matrix, cor-
responding to an input design as given by a tuple fre-
quency vector, can be written as a convex combination
with respect to the tuple frequencies; this property is the
key to solve the optimization problem efficiently. Third
and last, it will be shown how the problem can be solved
with a dispersion-based method similar to the one used
in the linear case, as described in [6,8].

3.1 Elementary Designs

Considering the systemmodel, it is clear that the output
at time instance t only depends on the values of the
input at t and n− 1 previous instances. Therefore each
n-tuple (u(t−n+1), u(t−n+2), ..., u(t)) is considered
to be an elementary design for the system. Because the
possible amplitude values of the input are discretized,
the number of elementary designs is finite.

Definition 1 An ordered set of n values drawn out of
the predefined set {u1, u2, ...uA} is called a n-tuple. In
totalAn different tuples can be defined. All possible tuples
will be stored in a multidimensional cell array called C ∈
{Rn}A

n

where each cell contains a n-tuple:

C(i1, i2, ..., in) = (ui1 , ui2 , ..., uin) (3)
∀i1, i2, ...in ∈ {1, 2, .., A}

Notation 1 Each index set (i1, ..., in) with i1, i2, ...in ∈
{1, 2, .., A} can be made to correspond to a unique integer
index k defined as follows:

k
∆
= i1 +

n�

k=2

(ik − 1) ·A(k−1) (4)

Notice that (in, in−1, ..., i1) is the representation of k
in base A, that k ranges from 1 to An, and that (4)
defines a one-to-one mapping between k and the index
set (i1, i2, ..., in). Thus, the mapping (4) establishes the
equivalence:

k ⇐⇒ (i1, i2, ..., in) (5)

In future we shall indistinctly use the notation
f(i1, i2, ..., in) or f(k) for a function f(.) of the index
set, where k and (i1, i2, ..., in) are related by (4).

Notation 2 Let (i1, i2, ..., in) denote the index set cor-
responding to k via the mapping (4); then c(k) will denote
the n-tuple (ui1 , ui2 , ..., uin) defined by (3).
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Definition 2 Given the set of discrete amplitudes
{u1, u2, ...uA}, each possible n-tuple is called an elemen-
tary design for a FIR-type system with memory length n.

Definition 3 The Fisher Information matrixMk corre-
sponding to the kth tuple will be called the kth elementary
Fisher matrix:

Mk(i, j) =
1

σ2
fi,j(c(k), θ) (6)

where the function fi,j(c(k), θ) corresponds to the product
of the partial derivatives of y0 with respect to the ith and
jth parameter when the input sequence is the n-tuple c(k)
defined in Notation 2.

For example, assume that A = 2 and n = 3 so that there
are 8 n-tuples and k ranges from 1 to 8. Then the 5th

elementary Fisher Information matrix, say, is defined by

M5(i, j) =
1

σ2

�
∂y0
∂θi

��
∂y0
∂θj

�
, i, j = 1, 2, 3

where these outputs are generated from the elementary
input sequence (u1, u1, u2), since k = 5 corresponds to
the index set (1, 1, 2).

3.2 Fisher Information and frequency vector

Now it will be shown that the Fisher information ma-
trix can be expressed as a convex combination of the el-
ementary Fisher matrices with the tuple frequencies as
coefficients. Under assumptions 3 and 5 the information
matrix obtained from a data sequence of length N can
be written as a sum over the time samples:

M(i, j) =
1

σ2

N�

t=1

fi,j(u(t− n+ 1), ..., u(t), θ) (7)

Remark 4 Notice that the first n−1 terms depend upon
samples which are not measured. Their value is set by
the initial conditions. It will be assumed that the signal is
periodic with period N . This allows us to determine the
values of these unknown samples.

Because the functions fi,j only depend on n successive
input values, the sum over time in (7) can be rearranged
as a sum over all possible tuples:

M(i, j) =
1

σ2

An�

k=1

ξN (k) · fi,j(c(k), θ)

=
An�

k=1

ξN (k)Mk(i, j) (8)

The weight ξN (k) indicates how often the n-tuple c(k)
occurs in the sequence u(t) and is therefore called the
tuple frequency.

Definition 4 The vector ξN (·) ∈ NAn
, containing the

number of times each n-tuple occurs in the input design
is called the tuple frequency vector of the design.

Remark 5 Given a time sequence u(t), the correspond-
ing tuple frequency vector can be obtained by counting the
number of times each tuple occurs in the signal u(t). The
tuples are counted as depicted in Fig.2. Notice that a sig-
nal with N samples contains N tuples, due to the assumed
periodicity of the signal (see Remark 4).

Fig. 2. Example of how the tuples are counted in the case

of a FIR-type system with n = 3 and two amplitude values

{u1, u2}. x represents an unknown sample which should be

resolved by the chosen initial conditions.

Definition 5 The tuple frequency vector divided by the
total number N of tuples in the design is called the nor-
malized tuple frequency vector ξ(·) ∈ RAn

+ . By construc-
tion the normalized tuple frequencies have the properties
of convex coefficients, meaning that their values range
from 0 to 1 and that their sum is exactly one:

∀k : ξ(k) = ξN (k)/N

ξ(k) ∈ [0, 1] and
An�

k=1

ξ(k) = 1 (9)

Rewriting equation (8) as a matrix equation, and nor-
malizing by the number of tuples N , allows us to rewrite
the normalized Fisher information matrix as a convex
combination of the elementary matrices with the nor-
malized tuple frequencies as convex coefficients:

M(ξN )

N
=

An�

k=1

ξ(k).Mk (10)

Notice that only the coefficients ξ(k) depend upon the
design. The elementary information matrices Mk are in-
dependent and can be computed a priori given the am-
plitude set A and the memory n of the FIR filter.

3.3 Dispersion Function

Computing an optimal experiment consists of finding
the vector ξ that maximizes the determinant of the nor-
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malized information matrix:

ξopt = arg
ξ

max(det(
M(ξ)

N
))

In the previous subsection it was shown that the nor-
malized Fisher information matrix can be rewritten as
a convex combination of known elementary information
matrices. We now show that this allows us to use a
dispersion-based method in order to perform the opti-
mization.
Instead of solving the optimization problem directly,
an equivalent problem is solved where the maximum of
an auxiliary function, called the dispersion function, is
minimized. The dispersion function, also called response
dispersion was introduced in the experiment design for
identification arena in [6].

Definition 6 With the notations introduced above, the
dispersion function v(., .) is defined as:

v(ξ, k) = trace(M(ξ)−1 ·Mk) (11)

where M(ξ) is the information matrix computed for the
given design ξ, and Mk is the information matrix corre-
sponding to the kth elementary design.

Some useful properties of the dispersion function are [6]:

• The maximal value of the dispersion can never be
smaller than the number of independent parameters
in the model Nθ.

• For any design ξ, the inner product
�An

k=1 v(ξ, k) · ξ(k)
equals the number of free parameters in the model.

• The dispersion function can also be interpreted as a
normalized variance of the estimated model.

Theorem 1 The following characterizations of an opti-
mal design are equivalent:

(1) ξopt maximizes det(M)
(2) ξopt minimizes maxkv(ξ, k)
(3) maxkv(ξopt, k) = Nθ

whereNθ is the number of independent parameters in the
model.
Proof: see [6] Chapter 6, page 147.

Theorem 1 states that the design that maximizes the
determinant of the Fisher matrix is the same design
that minimizes the maximum of the dispersion function.
Since a simple and efficient algorithm exists that solves
the latter problem, we shall adopt it for the computation
of our optimal experiment.

3.4 Optimization Algorithm

In [8] a simple and robust, monotonically converging al-
gorithm is presented, which finds the design that mini-
mizes the maximum of the dispersion function. This al-
gorithm can be summarized in four steps:

(1) Initialize with a uniform design: ξ(k) = 1/An

(2) Compute the dispersion function v(ξ, k) for the cur-
rent design using (11)

(3) Update the design in accordance with the disper-

sion function as follows ξnew(k) =
v(ξ,k)
An .ξold(k)

(4) Stopping criterion: if (maxkv(ξnew, k) − Nθ) is
smaller than a predefined threshold, the optimal
solution is assumed to be found; else go to step 2.

The stopping criterion is based on the third expression of
Theorem 1. The monotonic convergence of the algorithm
is proven in [13].

Remark 6 Notice that once a particular tuple frequency
ξ(k) becomes zero for some k, this frequency remains
zero for all subsequent iterations. Therefore, the compu-
tational speed of the algorithm can be improved by only
updating the nonzero frequencies. This avoids unneeded
evaluations of the dispersion function.

4 Signal Generation

The optimal tuple frequency vector ξN,opt can be inter-
preted as an experiment ofN measurements, where each
measurement consists of applying a single tuple to the
system andmeasuring the corresponding output sample.
A naive way to perform the optimal design is to con-
catenate all the tuples contained in ξN,opt (i.e. all the tu-
ples c(k) for which ξN,opt(k) �= 0), and only measure the
output samples which correspond to these tuples. This
means that a signal with nN samples is used at the in-
put, in order to collect N samples at the output. Clearly
this is not an efficient approach, since only N out of the
nN output samples are used for parameter estimation.
It would be better to generate a periodic input sequence
with a period length of N samples, containing the N
needed tuples. However, not every tuple frequency vector
has a corresponding input sequence of length N because
the n− 1 last inputs of tuple c(k) for which ξopt(k) �= 0
may not correspond to the n− 1 first inputs of another
tuple c(j) for which ξopt(j) �= 0. In order to derive con-
ditions on the tuple frequency vector which guarantee
the existence of at least one time sequence, a sequence
generation method will be introduced. This generation
method will correspond with a path through the associ-
ated graph of the tuple frequency vector.

Definition 7 Given a n-tuple, the right subtuple is de-
fined as the (n-1)-tuple obtained by removing the first el-
ement of the original n-tuple. The left subtuple is defined
as the (n-1)-tuple obtained by removing the last element
of the original n-tuple.

Definition 8 The graph associated with a tuple fre-
quency vector ξN (see Notation 1) is defined as follows:

• The graph contains An−1 nodes, each containing a dif-
ferent (n-1)-tuple
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• Each n-tuple corresponds to a directed edge connecting
its left and right subtuple. The edge starts in the left
subtuple and ends in the right.

• Each edge has a multiplicity which corresponds to the
tuple frequency ξN (i1, . . . , in) of its corresponding n-
tuple.

Example 1 Consider a FIR-type system with n = 3 and
two amplitude levels {u1, u2}. In total 2(3−1) different tu-
ples of length n-1 can be defined. So the associated graph
contains four nodes. Additionally 23 different tuples of
length n can be defined. This means that the graph con-
tains eight edges. For example, the edge corresponding to
the n-tuple u1u1u2 connects its left subtuple u1u1 with its
right subtuple u1u2. The multiplicity of the edge connect-
ing u1u1 with u1u2 equals its tuple frequency ξN (1, 1, 2);
it is a scalar weighting. If this reasoning is repeated for
every n-tuple, the graph in Fig.3 is obtained.

Fig. 3. Associated graph in the case of n = 3 and two am-

plitude values

If there exists a time sequence corresponding to the tuple
frequency vector ξN , then this sequence can be obtained
by the following steps:

(1) Construct the graph associated with the tuple fre-
quency vector ξN

(2) Find a path, starting from an arbitrary node, that
uses each edge exactly as many times as its multi-
plicity indicates. (see Appendix A for a path finding
algorithm)

(3) Add the amplitude values of the starting node to
the start of the sequence

(4) For every edge in the path, add the last amplitude
value of the corresponding n-tuple to the end of the
sequence.

From the above, it can be concluded that a time sequence
exists if there exists a path, starting from an arbitrary
node, that uses each edge exactly as many times as its
multiplicity indicates. This requires that the following
constraints on the tuple frequencies must be satisfied.

Theorem 2 A periodic time sequence exists that real-
izes a prescribed tuple frequency vector ξN only if that
frequency vector satisfies the following conditions:

∀i1, i2, ..., in−1 ∈ {1, ..., A}
A�

j=1

ξN (j, i1, ..., in−1) =
A�

j=1

ξN (i1, ..., in−1, j) (12)

or equivalently, using the scalar index k rather than the
vector index (i1, . . . , in), as defined in Notation 1:

∀m ∈ [1, . . . , An−1] :
A�

j=1

ξN (j + (m− 1)A) =
A�

j=1

ξN (m+ (j − 1)An−1) (13)

Proof: A time sequence has the correct frequency vector
ξN if a path can be constructed from the associated graph
whereby each edge is used exactly as many times as its
multiplicity indicates. In order for such a path to exist,
the sum of the multiplicities of the outgoing and incoming
edges needs to be equal in every node, where each node
is defined by a (n − 1) vector index (i1, . . . , in−1). This
is precisely the constraint (12). Now fix a (n − 1) tuple
(i1, . . . , in−1), and let m denote the scalar index for this
(n− 1) tuple, i.e.

m = i1 + (i2 − 1)A+ (i3 − 1)A2 + . . .+ (in−1 − 1)An−2

We now express the two indices of length n appearing in
(12) as a function of m:

(j, i1, . . . , in−1) = j + (i1 − 1)A+ (i2 − 1)A2

+ . . .+ (in−1 − 1)An−1

=mA−A+ j = j + (m− 1)A

With exactly the same procedure one gets

(i1, . . . , in−1, j) = m+ (j − 1)An−1

These conditions guarantee that the number of oc-
currences of a tuple that ends with a given (n − 1)
subtuple (ui1 , ui2 , ..., uin−1) in the time sequence equals
the number of occurrences of a tuple that starts with
(ui1 , ui2 , ..., uin−1).

Remark 7 In order to illustrate that the equations in
(12) are not sufficient conditions for the existence of a
realizable time sequence for a given a frequency vector,
consider a disconnected graph which satisfies the con-
straints. In such a graph there is no single path connect-
ing all the nodes, meaning there is also no corresponding
time sequence.
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To find a tuple frequency vector that can be realized
with a time sequence, these constraints should be taken
into account during the optimization.

Remark 8 In a stochastic framework, the tuple fre-
quency matrix can be considered as mutual discrete
probability distribution functions of the n stochastic vari-
ables. Imposing that the signal is stationary, will lead
to the same constraint as given in (12) [9]. The graph
described above can then be seen as a Markov chain used
to generate a realization of the tuple frequency matrix.

5 Constrained Optimization

In the previous section it was shown that a tuple fre-
quency vector can only be realized as a time sequence
if it meets the conditions (12). Therefore, these condi-
tions will be imposed during the optimization. This can
be done by adding constraints to the optimization prob-
lem, but unfortunately the dispersion-based algorithm
cannot handle constraints.
Alternatively, the search space of normalized tuple fre-
quency vectors will be restricted to a subspace of nor-
malized tuple frequency vectors that obey (12). This is
achieved by expressing a normalized tuple frequency vec-
tor as a convex combination of basis vectors that span
such a space.

∀k ∈ {1, 2, . . . , An} : ξγ(k) =
Nb�

j=1

γ(j).ξbj (k) (14)

with γ(j) ∈ [0, 1] and
Nb�

j=1

γ(j) = 1

where ξbj (k) are the mentioned basis vectors, a possible
choice of such vectors will be given below in Definition 9,
Nb is the number of basis vectors, γ(j) are the new con-
vex coefficients with respect to which the optimization
will be performed, and ξγ is the tuple frequency vector
corresponding to the coefficient vector γ.
Remember that the tuple frequency vectors ξγ do not
only have to obey the constraints expressed in (12) but
they must also obey the properties of convex coefficients
as stated in (9). These restrictions will translate into
special properties of the basis vectors ξbj . In the next
section a possible choice for the set basis vectors is given.

5.1 Non-overlapping Symmetric Basis

The basis vectors that exactly describe the space of re-
alizable tuple frequencies are unknown. Instead, a dif-
ferent set of basis vectors is used, of which the convex
combinations describe a subspace of the space of realiz-
able tuple frequencies.

Definition 9 A set of vectors [ξb1 , ξb2 , ..., ξbNb
] in RAn

is
called non-overlapping symmetric if they have the follow-
ing four properties:

(1) positivity constraint:
∀k, ∀j : ξbj (k) ≥ 0

(2) non-overlapping constraint:
∀k, ∃!j : ξbj (k) > 0

(3) unity sum constraint:

∀j :
�An

k=1 ξbj (k) = 1
(4) symmetry constraint:

∀j, ∀i1, ..., in, ∀p ∈ Perm1,2,...,n :
ξbj (i1, i2, ..., in) = ξbj (ip1 , ip2 , ..., ipn)

where Nb indicates the number of basis vectors,
Perm1,2,...,n stands for the set of all possible permuta-
tions of the symbols {1, 2, ..., n}, and ∃!j means ’there
exists only one’.

Remark 9 The first property guarantees that the tuple
frequencies are nonnegative. The second property guar-
antees that every tuple appears in only one basis vector,
thereby making these basis vectors linearly independent.
The third property makes sure that the sum of the tuple
frequencies is one. The first three properties are needed in
order to impose (9) on ξγ . The fourth property imposes
symmetry on the tuple frequency vector. This symmetry
constraint implies that the constraint (12) is satisfied.

Remark 10 The number of non-overlapping symmetric
basis vectors Nb equals the number of degrees of freedom
in a symmetric tensor of order n and dimensionality A.
For example if n = 2, Nb =

A(A+1)
2 , which correponds to

the degrees of freedom in a symmetric AxA matrix.

Example 2 In the case of n = 2 and two possible am-
plitude values (i.e. A = 2), the number of basis vectors
is Nb = 3. The non-overlapping symmetric basis is given
by the three frequency vectors below:

ξb1 =





1

0

0

0




, ξb2 =





0

0.5

0.5

0




, ξb3 =





0

0

0

1





It is easy to check that the four constraints are sat-
isfied. Note that the fourth constraint reduces here
to ξbj (1, 2) = ξbj (2, 1) for j = 1, 2, 3 or, equivalently
ξbj (2) = ξbj (3) when the unique index k of (4) is used
in lieu of (i1, i2).

5.2 Symmetric Elementary Designs

Assuming the use of a non-overlapping symmetric basis,
the expression of the normalized information matrix can
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be rewritten as a function of the weighting coefficients
γ(j) by substituting (14) into (10):

M

N
=

Nb�

j=1

γ(j)
An�

k=1

ξbj (k) ·Mk =
Nb�

j=1

γ(j) ·Mγ(j) (15)

where Mγ(j) =
�An

k=1 ξbj (k) ·Mk are the new elemen-
tary information matrices.
During the constrained optimization, the dispersion
function will be computed based on these Mγ(j). We
define:

vγ(ξγ , j)
∆
= trace(M(ξγ(k))

−1 ·Mγ(j)) (16)

where the subscript γ indicates that vγ is computed from
the elementary designs Mγ(j).
Notice that the values and dimensions of the dispersion
functions vγ(ξγ , j) and v(ξγ , k) are different. This is be-
cause the dispersion function vγ evaluates the quality
of the input design relative to the considered subspace
of input designs described by the elementary designs,
while v evaluates the quality relative to the full tuple
frequency space.

5.3 Optimization Algorithm

By introducing the new elementary information matri-
ces Mγ(j) and the dispersion function vγ , and as a re-
sult of the convex properties of the coefficients γ(j), the
dispersion-based algorithm described in Subsection 3.4
can be reused to find the γopt(j) for which the determi-
nant is maximal. Revisiting the 4-step algorithm leads
to:

(1) Initialize with a uniform design: γ(j) = 1/Nb

(2) Compute the dispersion function vγ(ξγ , j) for the
current design using (16)

(3) Update the design in accordance with the disper-

sion function as follows γnew(j) =
vγ(ξγ ,j)

Nb
.γold(j)

(4) Stopping criterion: if (maxjvγ(ξγnew , j) − Nθ) is
smaller than a predefined threshold, the optimal
solution is assumed to be found; else go to step 2.

6 Numerical Example

The methods above will now be illustrated on the follow-
ing numerical example which is a member of the subclass
discussed in subsection 1.1:

y(t) = c1w(t)
3 + c2w(t) + e(t)

w(t) = b1u(t) + b2u(t− 1)
u(t) ∈ [−1 : 2/9 : 1] and e(t) ∼ N(0, 1)

with b = (1; 3) and c = (1;−0.25). The value of a1
will be fixed in order to make the problem identifiable.
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Fig. 4. Results without constraints. Top, left: maximal dis-

persion as function of the iteration index Top, right: deter-

minant of the normalized information matrix function of the

iteration index. Bottom,left: normalized tuple frequencies.

Bottom,right: dispersion function of the optimal design.

The amplitude set contains 10 uniformly spaced values
between -1 and 1 (A=10). Because the system has a
memory length of two (n=2), 100 different tuples should
be considered.

6.1 Unconstrained optimization

First, the unconstrained optimization is performed. This
means that the normalized tuple frequencies ξ(k) are op-
timized with the dispersion-based optimization method
described in subsection 3.4. The results for 1000 itera-
tions are plotted in Fig.4. In each iteration step the dis-
persion function, normalized tuple frequency vector and
determinant of the normalized information matrix are
computed and stored.
The top plots represent the evolution of the maximum
dispersion and of the determinant of the Fisher informa-
tion matrix as a function of the iterations. They show
that the method successfully lowers the maximal value
of the dispersion and at the same time increases the de-
terminant of the information matrix. Note that in the
end the maximal dispersion reaches the value of 3, which
corresponds to the number of free parameters. This in-
dicates that the obtained solution is optimal (see Theo-
rem 1).
The optimal normalized tuple frequency vector at the
end of the iterations is depicted in the bottom left plot;
it only contains 6 entries that are different from zero.
This means that the optimal design is such that only 6
out of the 100 possible tuples are used to excite the sys-
tem. Each of them has the same frequency value. The
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tuple index tuple frequency

1 [-1;-1] 1/6

3 [-1;-10/18] 1/6

40 [-1/3,1] 1/6

61 [1/3;-1] 1/6

98 [1;10/18] 1/6

100 [1;1] 1/6

Table 1

Table containing the tuple index, tuples and normalized tu-

ple frequencies of the optimal unconstrained design ξopt.

Fig. 5. Associated graph of the optimal unconstrained design.

bottom right plot represents the value of the dispersion
function for each of the 100 tuples.
Table 1 shows the tuples of the optimal unconstrained
design and their corresponding normalized frequencies,
while Fig. 5 represents the associated graph. Two things
should be noted. First, the design does not obey the con-
straints (12). As a result, the tuple frequency vector can-
not be realized as a time sequence. Second, the graph is
disconnected, which means that not every node can be
reached from any other node.

6.2 Evolution of the Determinant

Now let us have a closer look at the evolution of the
determinant in Fig.4. For the first 10 to 20 iterations
there is a rapid increase in the determinant value. During
these iterations, the number of different tuples is reduced
drastically. After this rapid change, the evolution of the
determinant value becomes stable. Only the frequencies
of the remaining tuples are changed but the selection of
tuples stays the same. From this observation it can be
concluded that selecting the optimal subset of tuples is
more important for the quality of the design than finding
the optimal frequencies of the selected tuples.

6.3 Constrained optimization

Next, the optimization is performed using the non-
overlapping symmetric basis vectors obeying the con-
straints of Definition 9. This means that the optimiza-
tion is performed with respect to the coefficients γ(j) of
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Fig. 6. Results with constraints. Top, left: maximal disper-

sion. Top, right: determinant of the normalized information

matrix. Bottom,left: normalized tuple frequencies of the op-

timal design. Bottom,right: dispersion function at the end of

the iterations for each of the 55 tuples.

Fig. 7. Associated graph of the optimal constrained design.

(15) using the elementary information matrices Mγ(j).
Again 1000 iterations are taken which leads to the plots
in Fig.6. Due to the symmetry constraint, only Nb = 55
coefficients need to be considered; hence γ(j) in the
bottom right plot ranges from 1 to 55. The determinant
increases monotonically while the maximal value of
the dispersion max(vγ(γopt, j)) is driven to its minimal
value of 3. This indicates that the final design is optimal
in its subspace of constrained designs.
Table 2 shows the normalized tuple frequencies of the
optimal constrained design which contains eight differ-
ent tuples with different frequencies. As expected the
design is symmetric, meaning that the tuples [u1, u2]
and [u2, u1] have the same frequency. This allows to
concatenate the tuples without the need of unwanted
transition tuples. The same conclusion can be made
from the associated graph in Fig. 7.
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tuple index tuple frequency

1 [-1;-1] 0.15

4 [-1;-1/3] 0.13

10 [-1,1] 0.09

31 [-1/3;-1] 0.13

70 [1/3;1] 0.13

91 [1;-1] 0.09

97 [1;1/3] 0.13

100 [1;1] 0.15

Table 2

Table containing the tuple index, tuples and normalized tu-

ple frequencies of the optimal constrained design ξγopt .

Fig. 8. Maximal dispersion of the normalized information

matrix in the constrained case, computed for different ele-

mentary designs.

6.4 Computing the Dispersion

At first sight it seems contradictory that the optimal un-
constrained and constrained design have the same max-
imum dispersion but different determinant values. How-
ever, the dispersion of the constrained design vγ(ξγ , j)
and the dispersion of the unconstrained design v(ξ, k)
can not be compared directly, because they are based on
different elementary designs. In order to make a compar-
ison possible, the dispersion of the constrained solution
ξγ,opt is computed with respect to the elementary Fisher
matrices Mk.
The results are plotted in Fig.8. From the left plot it is
clear that the dispersion function v(ξγ) is larger than
vγ(ξγ) and v(ξ). This indicates that the constrained so-
lution is not optimal in the full tuple frequency space.
This is in accordance with the observation that the de-
terminant of the constrained design ξγopt is smaller than
the determinant of the unconstrained design ξopt. See
Table 6.6 for the exact determinant values.

6.5 Signal Generation

Both designs will now be translated into a time sequence
containing 100 tuples. During this process three approx-
imations are considered.

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

constrained design

sample index

u(
t)

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3
x 10−3 frequency error

tuple index k
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"(k
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Fig. 9. Input sequence with constraints. Top: time domain

signal; Bottom: difference in tuple frequency between opti-

mal design and time sequence.

• After denormalization, the values of ξN are rounded
to the nearest natural number.

• The unconstrained design needs additional transient
tuples because condition (12) is violated.

• The constrained design needs additional transient tu-
ples when the graph is disconnected.

All these approximations lead to a decrease in the de-
terminant of M and alter the total tuple count, making
the resulting time sequences suboptimal.
First, the time sequence for the constrained design is
generated. This can be done with the path finding al-
gorithm discussed in Appendix A. The resulting input
sequence can be found in the top plot of Fig 9. The
bottom plot depicts the difference in frequency between
the optimal normalized tuple frequency vector ξopt and
the generated time sequence. All errors are smaller than
10−2, meaning only rounding errors are present.
The algorithm of Appendix A can not be used for the
unconstrained design because the design does not sat-
isfy the constraints (12). Therefore, the design will be
slightly altered in order to find a time sequence which re-
alizes the unconstrained design as well as possible. The
graph of the altered design can be found in Fig. 10. No-
tice that the graph is no longer disconnected and satis-
fies the conditions in (12).
Now the path finding algorithm from Appendix A can
be applied. The results can be found in Fig.11. The gen-
erated sequence contains 104 samples due to roundoff er-
rors. If a sequence of exactly 100 samples is needed some
[1, 1] and [−1,−1] tuples could be removed. The positive
frequency errors reflect the change in tuple frequency
from the original tuples. The negative errors reflect the
addition of the dotted arrows to the design (see Fig.10).
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Fig. 10. Modified graph from the unconstrained design. Dot-

ted arrows were added and the tuple frequencies were renor-

malized.
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Fig. 11. Input sequence obtained from altered unconstrained

design. Top: time domain signal; Bottom: difference in tuple

frequency between optimal design and time sequence for the

denormalized frequency vector.

6.6 Comparing Designs

Table 3 summarizes the performance of all previous de-
signs. In order to remove the influence of the signal
length, the Fisher matrix is computed based on the nor-
malized tuple frequencies. As a reference for comparison,
the maximum determinant out of 1000 randomly gener-
ated signals is also added.
Both the constrained and unconstrained designs perform
two orders of magnitude better than the best randomly
generated design. Out of the optimized designs, the un-
constrained design has the highest determinant value.
When this design is altered and realized as a time se-
quence, a decrease in the determinant can be observed,
but the resulting sequence still outperforms the con-
strained design. Notice that there is no difference in de-

solution type det(Fi)

max random signal 9.51e+01

unconstrained design 1.83e+03

unconstrained sequence 1.37e+03

constrained design 1.17e+03

constrained sequence 1.17e+03

Table 3

Normalized determinants of all considered designs and there

corresponding time sequences

terminant value between the constrained design and its
corresponding time sequence.
From these observations it can be concluded that it is
meaningful to compute both the constrained and uncon-
strained design. If the unconstrained design can easily
be altered to a realizable design, without too much loss
in performance, it should be preferred. If not, the con-
strained design presents a valuable alternative, because
it can always be realized using the path finding algo-
rithm in Appendix A.

7 Conclusion

In this work a solution to the problem of D-optimal in-
put design for nonlinear FIR-type systems with an input
taking a finite set of possible values has been presented.
By expressing the optimization problem with respect to
the tuple frequency vector, instead of the time sequence
the problem became convex.
This convex problem was solved with an optimization
scheme based on the dispersion function. However, it
turned out that additional constraints are needed in or-
der to guarantee that the optimal design can be real-
ized as a time sequence. By imposing that the solution
should lie in the subspace described by a symmetric and
non-overlapping basis, a realizable solution was obtained
that is optimal in its subspace of constrained solutions.
In order to find a time sequence that realizes this opti-
mal constrained design, the associated graph was intro-
duced. It was shown that a path, using all edges in the
graph as many times as their multiplicity indicates, cor-
responds to a time sequence that realizes the design.
The methods presented in this paper were applied on a
simple numerical example. Comparing the realization of
the constrained design with the realizations of a random
and unconstrained design showed that the determinant
was highest for the unconstrained design.
However, it can not be guaranteed that this design is re-
alizable without a significant loss in determinant value.
Therefore, the constrained design is proposed as an at-
tractive alternative, because it can always be realized.
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A Appendix: Path Finding

In order to generate an optimal input sequence that re-
alizes the optimal tuple frequency vector, which meets
condition (12), a path needs to be found in its associ-
ated graph. This path has to use all edges in the graph
exactly as often as their multiplicity indicates.

A.1 Basic Concepts

Before the path finding algorithm can be explained, some
concepts of graph theory need to be introduced.

Definition 10 A path in the associated graph is an or-
dered set of nodes {n1, n2, ..nk}, in which each successive
pair of nodes {ni, ni+1} is connected by an edge starting
in ni and ending in ni+1. Each edge can not be used more
than its multiplicity indicates. The first node of the path
n1 is called the starting node, the last node of the path nk

is called the end node. k is called the length of the path.

Definition 11 A cycle in the associated graph is a path
for which the start and end node are the same. An open
cycle is the path that we get by omitting the end node
from a cycle. Two cycles are distinct if there is no cyclic
permutation that maps their corresponding open cycles.

Definition 12 An elementary cycle in the associated
graph is a cycle where all nodes are unique with the ex-
ception of the start and end node. Two elementary cycles
are overlapping if they contain at least one mutual node.

Theorem 3 If the tuple frequency vectors satisfy equa-
tion (12), then every edge is part of an elementary cycle.

PROOF: First, let us eliminate all elementary cycles
from the graph. This results in a graph with the same
nodes, but which only contains the edges that are not part
of an elementary cycle. Note that this remaining graph
still has to obey the constraints (12).
The theorem is now proved by contradiction. Assume that
there is at least one node which contains an outgoing and
incoming edge that is not part of an elementary cycle. It
should be noted that it is not possible that there is a node
that contains only one edge which is not part of an ele-
mentary cycle because this would violate (12).
These edges should be connected to another node. Con-
necting the edges to the same node is not possible be-
cause this would create an elementary cycle containing
one node; therefore the edges would not be present. It
must be concluded that the edges are connected to two
other nodes.
However, these connections imply that these other nodes
also have a pair of edges which are not part of an ele-
mentary cycle due to (12). As a result each connected
edge leads to a new edge that needs to be connected. Note
that these edges can not connect with a previously en-
countered node because doing so introduces an elemen-
tary cycle which is in contradiction with the removal of
all elementary cycles in the graph.
Because the number of nodes in the graph is finite, the
above process of connecting edges will lead to edges that
can no longer be connected to any node. This is in con-
tradiction with the definition of a graph, meaning that
the assumption that there are at least two edges which are
not part of an elementary cycle is false.
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A.2 Path Finding Algorithm

Based on the theorem above it can be concluded that
the wanted path consists of only elementary cycles. As a
result the following path finding algorithm is proposed.
First, all elementary cycles in each node are computed.
This can be done with a simple backtracking algorithm.
Duplicated cycles are omitted and the remaining dis-
tinct elementary cycles are sorted by length.
Next, all elementary cycles are combined into one path
by inserting the smaller elementary cycles into the
largest elementary cycle. This combined path defines
the optimal input sequence.
A special case may occur where not all elementary
cycles can be inserted into one path. In this case the
associated graph is disconnected and no optimal input
sequence exists. However, by finding a path for each
subgraph and putting these paths in succession, a sub-
optimal path can be found with minimum number of
unwanted transition tuples.
Pseudo code describing the algorithm can be found be-
low. The variable eC is the list of elementary cycles and
path is the current path. In the case of a disconnected
graph, path will contain the paths for each subgraph.

Algorithm 1 Path Finding

for k=1:length(node) do
eC = [eC, computeElementaryCycles(node(k))];

end for

eC = removeDuplicates(eC)
eC = sortOnLength(eC)
nrSubgraph = 1
path(nrSubgraph ) = eC(1)
eC = remove(eC(1),eC)

while not isempty(eC) do
while eC was changed do

for k=1:length(eC) do
if insertable(eC(k),path(nrSubgraph)) then

path(i)=Insert(eC(k),path(nrSubgraph))
eC=remove(eC(k),eC)

end if

end for

end while

if not isempty(eC) then
nrSubgraph = nrSubgraph +1

end if

end while
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