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Difference and Differential Riccati Equations: A 
Note on the Convergence to the Strong Solution 

Giuseppe De Nicolao and Michel Gevers 

Abstract-This note deals with the convergence of the solutions of the 
differential and difference Riccati equations to the strong solution of the 
corresponding ARE. Detectability only is required in the analysis and no 
assumption is made on the eigenvalues on the real imaginary axis (on the 
unit circle, in the discrete-time case). In particular, from our result, it 
follows that, under the sole assumption of detectability, a positive 
definite initial condition guarantees convergence to the strong solution, 
even in the presence of unreachable eigenvalues on the imaginary axis or 
on the unit circle. 

I. INTRODUCTION 

This note is devoted to the analysis of some convergence proper- 
ties of the solutions of the following equations of optimal filtering: 
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the continuous-time differential Riccati equation (RE) 
P ( t )  = A P ( t )  + P ( t ) A ’ + B B ’ - P ( t ) C ‘ C P ( t ) ,  

~ ( 0 )  = n o  (1.a) 

and the discrete-time difference Riccati equation (RE) 

P ( t  + 1)  = A P ( ~ )  A’ + BB’ - A P ( ~ ) c ‘ [ c P ( ~ ) c ’  + I ] - ’  

. CP( t )  A’ ,  P(0)  = no ( 1  .b) 

where A ,  B ,  C are constant real matrices and no is symmetric 
nonnegative definite. Any constant solution P ( t )  = P ,  t l t ,  of the 
RE satisfies the corresponding (continuous-time or discrete-time) 
algebraic Riccati equation (ARE) 

0 = A P  + PA’ + BB’ - P C C P  

P = APA’ + BB‘ - A P C [  CPC‘ + I ]  -’CPA’. 

( 2  4 
(2.b) 

In correspondence of a solution of the ARE, one can define the 
continuous-time closed-loop state-transition matrix 

F = A - P C C  
and its discrete-time counterpart 

F = A  - A P C ‘ [ C P ( t ) C ‘ + I ] - I C .  

In order to use the same statements in continuous- and discrete-time, 
the term stable (boundary) eigenvalues will be used to denote the 
eigenvalues in the open left-half plane (on the imaginary axis), in 
continuous-time, and the eigenvalues in the open unit disk (on the 
unit circle), in discrete-time. 

One of the main topics in the analysis of the Riccati equation is 
the study of the attractiveness properties of the solutions of the 
ARE: under which conditions does a solution of the RE asymptoti- 
cally converge to a solution of the ARE? The classical results, 
which require reachability and observability [ 11 or stabilizability and 
detectability [2], were extended [3], [4], to include the nonstabiliz- 
able case. In particular, in [4] a necessary and sufficient condition 
for convergence was established. However, such a condition was 
stated under two basic assumptions: the detectability of ( A ,  C) and 
the nonexistence of ( A ,  B)-unreachable boundary eigenvalues. This 
last hypothesis was partly relaxed in [5]-[7]. The convergence 
analysis in these latter works addresses the convergence to the 
strong solution, when the initial condition is positive semidefinite. In 
the presence of ( A ,  B)-unreachable boundary eigenvalues, how- 
ever, there is only one sufficient condition available for the conver- 
gence to the strong solution. Such a condition is stated in Theorem 1 
below. The purpose of this note is to provide a more general 
convergence condition (Theorem 2). Besides being of independent 
interest, this result could prove useful in extending the thorough 
analysis of [4] to the case with ( A ,  B)-unreachable boundary 
eigenvalues. As a significant corollary, detectability and a positive 
definite initial condition always guarantee the convergence to the 
strong solution, without any further assumption on the reachability 
of the boundary eigenvalues. 

The proofs are rather simple, being based on matrix manipula- 
tions and basic notions of linear algebra. The results are worked out 
for both the continuous- and discrete-time case. After the introduc- 
tion of the basic tools, Lemma 2 clarifies the effect of the presence 
of ( A ,  B)-unreachable eigenvalues on the structure of any solution 
of the ARE. Then, Lemma 2 together with some known conver- 
gence results is used to derive the main result of the note (Theorem 
3). Needless to say, the results extend by duality to the Riccati 
equations for the optimal control problem. 
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11. PRELJMINARIES 

In this section, some preliminary definitions and a lemma of [6] ,  
[8] are concisely recalled. 

Definition 1: An eigenvalue of A is said to be unobservable (of 
rank p )  if and only if there exist n-dimensional vectors y; # 0, 
i = 1,. . , p ,  yo = 0 such that 

Ay; = Ay, + y;_ 1 

c y ;  = 0 .  H 

As is well known, ( A ,  C) is detectable iff all the nonstable eigen- 
values of A are ( A ,  C)-observable. 

Definition 2: An eigenvalue of A is said to be ( A ,  B)-unreacha- 
ble (of rank p )  if and only if there exist n-dimensional vectors 
U, # 0, i = l;.., p ,  U, = 0 such that 

A'u; = xv; + U;-, 
B'u; = 0. H 

The subspace spanned by the vectors U; will be termed ( A ,  B)-un- 
reachable eigenspace associated with A. The sum of all the ( A ,  B ) -  
unreachable eigenspaces of A associated with boundary eigenvalues 
will be denoted by E( A ,  B ) .  

Definition 3: A real symmetric positive semidefinite solution P 
of the ARE is called strong if the eigenvalues of the corresponding 
closed-loop state-transition matrix are only stable or boundary 
eigenvalues. 

Lemma I :  Consider two RE'S with the same A ,  B ,  C matrices 
but possibly different initial conditions II, and n2. Then, II, L 112 
implies P l ( t )  2 P2(t) ,  t 2 0, where Pi(r) denotes the solution of 
the RE with initial condition P,(O) = II,. 

111. CONVERGENCE ANALYSIS 

Let Ps denote the strong solution of the ARE and P ( . )  the 
solution of the RE with initial condition P(0) = II,. The following 
two sufficient conditions for the convergence to the strong solution 
were proven in [5]-[7]. 

Theorem I :  Subject to 
i) ( A ,  C) is detectable, 
ii) II, 2 Ps, 

Theorem 2: Subject to 
i) ( A ,  C) is detectable, 
ii) A has no ( A ,  B)-unreachable boundary eigenvalue, 
iii) II, > 0, 

In order to extend these convergence results, we first have to 
prove a lemma that relates the structure of any solution of the ARE 
to the ( A ,  B)-unreachable eigenspaces associated with boundary 
eigenvalues. 

Lemma 2: Assume that ( A ,  C) is detectable and let P be any 
symmetric solution of the ARE. Then, N [  PI 2 E( A ,  B ) .  

Proof: Let A be an ( A ,  B)-unreachable boundary eigenvalue 
of A and consider the vectors U; in Definition 2. We proceed by 
induction. Suppose that Pus = 0 hold for s = i - 1. Now the proof 
divides into a continuous-time and a discrete-time branch. 

then lim,,,P(t) = Ps. 

then lim,,,P(t) = Ps. 

In continuous-time 

where UT denotes the transpose of the complex conjugate of U,. 

Then, the ARE (2.a) and uTBB'u; = 0 imply CPU; = 0. In view of 
(2.a), APu; + PA'u, = 0. Letting y = Pv;, it follows that Ay = 
- Ay and Cy = 0. Since - A is a boundary eigenvalue, in order not 
to contradict the detectability of ( A ,  C), we have that y = 0. 

In discrete-time 

U*(P - APA')u; = u T ( 1  - 1 A 1 2 ) P u ;  

+ u i*_ ,Pu , - ,  + UTPUj-1 + u ~ ~ l P u ,  = 0. 

In view of [9, theorem 2.51, CPA + I > 0. 
The ARE (2.b) and uTBB'u; = 0 imply CPA'u, = 0. Since 

A'u; = XV; + u ; - ~ ,  it turns out that CPU; = 0. In view of (2.b), 
PU; = APA'u;, from which Pu, = AAPu,. Letting y = Pu,, it 
follows that Ay = A-'y and Cy = 0. Then, since A - '  is a bound- 
ary eigenvalue, the detectability of ( A ,  C) entails y = 0. 

Without any loss of generality, one can always choose a basis 
such that the triple ( A ,  B ,  C) takes the following form: 

where the eigenvalues of the square matrix A,, are all and only the 
( A ,  @-unreachable boundary eigenvalues of A .  Such a basis will 
be called standard basis. In the standard basis, by Lemma 2, any 
solution P of the ARE takes the form 

P =  [;1 ;]. 
Matrix P , ,  turns out to be a solution of the reduced-order ARE 
characterized by the triple ( A , , ,  B , ,  C,) in place of the triple 
( A ,  B ,  C). Moreover, by exploiting the block-partitioned structure, 
it can be verified that, if P is a strong solution of the ARE, PI, is a 
strong solution of t_he reduced-order ARE. Finally, it is easy to see 
that, if N[II,] 2 E ( A ,  B ) ,  i.e., 

in the standard basis, then N [ P ( t ) ]  2 g ( A ,  B ) ,  t 2 0, where 
P ( . )  denotes the solution of the RE with initial condition P(0) = 
II,. This means that 

P I , (* )  being the solution of the reduced-order RE with initial 
condition P,,(O) = II,,. 

Now, after an auxiliary lemma, the main convergence result is 
provided. 

Lemma 3: Let n, 2 0 and z( A ,  B )  2 N[II,] ,  and let 

be the representation of II, in the standard basis wilh II,, > 0 and 
of the same dimension as A , , .  Then, there exists II,, > 0, of the 
same dimension as II , , , such that 

Proof: Let the vector [ x i  xi] '  be partitioned similarly to II, 
and denote 

x 'rI ,x hi" = min -. 
[ x :  X , # O ]  x;x, 

Since ,!?(A, B )  2 N[n,] ,  it follows that II,x = 0 only if-x, = 0. 
Therefore, and since II, 2 0, we have A,,,,, > 0. Define II,, = E I  
with 0 < E < kin. Now consider 

x ' p ,  - n,>x = x;(n, ,  - f i l , ) X 1  + 2x ;n1 ,x ,  + x;n22x, 

for some nonzero x .  

ll I 
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Case i): If x, = 0, then x’(II, - II,)x = x;II,,x, I O  be- 

Case ii): If x ,  # 0, then 
cause n, 2 0. 

x ’ ( n o  - f i o ) x  = x’n,x - E X i X ,  

2 Eminx;x, - E X i X ,  

= (Emin - E ) X ; X ,  > 0. 

Theorem 3: Subject to 
i) ( A ,  C) is detectable, 
ii) no 2 0: 
iii) & A ,  B )  2 N[II,], 

then lim,,,P(t) = Ps, where P ( . )  is the solution of the RE with 
initial condition P(0) = no and Ps is the strong solution of the 
ARE. 

Proof: In view of Lemma 3, it is always possible to find 
f i l l  > 0 such that in the standard basis 

Consider now the reduced-order RE associated with the triple 
( A , , , B , ,  C,). The pair ( A , , ,  C,) is detectable and A , ,  has no 
( A  , , , B,)-unreachable boundary eLgenvalue. Then, by Theorem 2, 
P I ] ( * )  converges to PIIS, where P l l ( t )  denotes th: solution of the 
reduced-order RE with initial condition P ,  ,(O) = II , , , and PI  is 
the strong solution of the corresponding reduced-order ARE. Note 
that 

Ps= [Pb’” 01. 
Therefore, _denoting by p (  .) the solution of the RE (1)  with initial 
condition P(0) = II,, P ( * )  converges to Ps. 
- It is also always possible to find fitsuch that fi, 2 II, and 
II, 2 Ps. Then, by Theorem 1, letting P ( * )  be the solution of the 
RE (l), with initial condition P(0) = fi,, p(.) converges to Ps. 

Finally, Lemma 1 entails that &t) I P ( t )  I P ( t ) ,  t 2 0, so 
that the thesis follows. 

Corollary: If ( A ,  C) is detectable and no > 0, then 1imt+- 

Theorem 3 improves on existing convergence results in that it 
handles systems having possibly unreachable boundary eigenvalues. 
If we restrict our attention to the class of detectable systems with no 
unreachable boundary eigenvalues, a necessary and sufficient condi- 
tion for convergence to the strong solution is already available [4]. 
A comparison of [4] with our Theorem 3 shows that, for detectable 
systems with a nonnegative no, condition iii) of Theorem 3 is only 
sufficient. In conclusion, the search for a necessary and sufficient 
condition for convergence to the strong solution in the case of 
detectable systems is still an open question. 

P ( t )  = Ps. H 
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Norm Based Robust Control of State-Constrained 
Discrete-Time Linear Systems 

Mario Sznaier 

Abstract-Most realistic control problems involve some type of con- 
straint. However, to date, all the algorithms that deal with constrained 
problems assume that the system is perfectly known. On the other hand, 
during the last decade a considerable amount of time has been spent in 
the robust control problem. However, in its present form, the robust 
control theory can address only the idealized situation of completely 
unconstrained problems. In this note we present a theoretical framework 
to analyze the stability properties of constrained discrete-time systems 
under the presence of uncertainty and we show that this formalism 
provides a unifying approach, including as a particular case the well- 
known technique of estimating robustness bounds from the solution of a 
Lyapunov equation. These results are applied to the problem of design- 
ing feedback controllers capable of stabilizing a family of systems, while 
at the same time satisfying state-space constraints. 

I. INTRODUCTION 

A large class of problems frequently encountered in practice 
involves the control of linear systems with states restricted to closed 
convex regions of space. Several methods have been proposed 
recently to deal with this class of problems (see 111 for a thorough 
discussion and several examples), but as a rule, all of these schemas 
assume exact knowledge of the dynamics involved (i.e., exact 
knowledge of the model). Such an assumption can be too restrictive, 
ruling out cases where good qualitative models of the plant are 
available but the numerical values of various parameters are un- 
known or even change during operation. On the other hand, during 
the last decade a considerable amount of time has been spent 
analyzing the question of whether some relevant quantitative proper- 
ties of a system (most notably asymptotic stability) are preserved 
under the presence of unknown perturbations. This research effort 
has led to procedures for designing controllers, termed “robust 
controllers, ” capable of achieving desirable properties under vari- 
ous classes of perturbations. However, these design procedures 
cannot accommodate directly time domain constraints, although 
some progress has been made recently in this direction [2]-[4]. 

Manuscript received March 6, 1990; revised November 16, 1990. Paper 

The author is with the Department of Electrical Engineering, University of 

IEEE Log Number 9107971, 

recommended by Associate Editor, A. L. Tits. 

Central Florida, Orlando, FL 32816-0450. 

0018-9286/92$03.00 0 1992 IEEE 


