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Abstract—Using the dual Youla parametrizations of controller-
based coprime factor plant perturbations and plant-based
coprime factor controller perturbations, we study the LQG
plant-controller continuity question. Indeed, we show that it is
possible to calculate a new optimal LQG controller from a pre-
vious one when the plant is slightly changed, and to quantify the
change in the controller as a function of the change in the plant.
In addition, we compute the degradation in the achieved LQG
cost when the LQG controller is computed on the basis of
a perturbation of the real plant. As a by-product, we characterize
the set of all plants that have the same optimal LQG controller.
( 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction
Our motivation for this paper originates from the recent
schemes for iterative identification and control design, in which
models and model-based controllers are successively updated on
the basis of new data collected on the real plant operating in
feedback with the most recent controller: see Lee et al. (1992)
Schrama (1992) and Zang et al. (1995) for a representative
sample of these iterative design schemes and Gevers (1993) for
a tutorial presentation of the ideas. An implicit but unproven
assumption underlying these schemes is that a small change in
the plant model should result in a small change in the controller,
and hence a small change in the actual closed-loop system. This
in turn should result in a slightly modified identified plant model.

Our main contribution in this paper is to shed some light on
this continuity question in the case of a Linear Quadratic Gaus-
sian (LQG) control criterion. In this paper, we have opted for an
approach that uses the dual Youla parametrizations of control-
ler-based coprime factor plant perturbations and plant-based
coprime factor controller perturbations. This approach is moti-
vated by the fact that in many of the iterative identification and
control schemes presented in the literature, the identification
step is performed using the identification method developed in
(Hansen, 1989) in view of closed-loop experiment design. In that
method, the dual Youla parametrization is used to parametrize
the unknown plant, and the closed-loop identification is reduced
to an open loop identification of the Youla parameter. By using
a Youla parametrization-based approach for the minimization
of the control criterion, we embed the identification and control
steps in a uniform framework in which the controller and the
model are computed as a perturbation of, respectively, the
previous controller and the previous model.

In the sequel, the following concepts are used extensively.
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Proposition 1.1 (Vidyasagar, 1985). Suppose P
0

and C
0

have
fractional representations P

0
"N

P
D~1

P
and C

0
"N

C
D~1

C
,

where N
P
, D

P
, N

C
, D

C
belong to S, the ring of proper stable

transfer functions. Assume that the following Bezout equation
holds:

N
C
N

P
#D

C
D

P
"1. (1)

For any arbitrary stable (linear) operator S, define

N
S
"N

C
!D

P
S, D

S
"D

C
#N

P
S. (2)

1. Then C(S)"N
S
D~1

S
is a stabilizing controller for

P
0
"N

P
D~1

P
.

2. Any controller that stabilizes P
0

has a fractional representa-
tion (2) for some S3S. The dual result is as follows. For any
arbitrary stable (linear) operator Q, define

N
Q
"N

P
!QD

C
, D

Q
"D

P
#QN

C
. (3)

1. Then P(Q)"N
Q

D~1
Q

is stabilized by C
0
"N

C
D~1

C
.

2. Any plant stabilized by C
0

has a fractional representation (3)
for some Q3S.

Our basic one-degree-of-freedom control loop is that of
Fig. 1 and our control design criterion is the following regula-
tion LQG index (expressed here in discrete time):

J
LQG

" lim
N?=

1

N
EG

N
+
t/1

(y2
t
#ju2

t
)H , (4)

where y
t
is the plant output, u

t
is the control signal. The distur-

bance signal v
t
is assumed zero mean stationary with spectral

density function /
v
. In the sequel, we consider a disturbance

rejection problem, i.e. r
t
"0.

We now summarize a solution of the minimization problem
(4) using the Youla parametrization. This solution borrows from
a collection of results from (Desoer et al., 1980; Francis, 1982;
Vidyasagar et al., 1982; Youla et al., 1976). Note that a more
elegant solution is obtained using a standard plant approach; we
refer to (Francis, 1982) for further details.

Let P
0

and C
0

be as described in Proposition 1.1. Replace
C

0
in Fig. 1 by an arbitrary controller C (S) defined in Proposi-

tion (1.1). For this (P
0
, C (S)) configuration we have

y
t
"(D

C
#N

P
S)D

P
v
t
, u

t
"(N

C
!SD

P
) D

P
v
t
.

Using Parseval’s theorem, we obtain the following expression
for equation (4):

J
LQG

"

1

2n P duMDD
C
#N

P
SD2#j DN

C
!D

P
SD2N DD

P
D2/

v
. (5)

It is standard that a stable minimizing S can be found analyti-
cally by means of spectral factorizations and projections, i.e. by
taking stable parts. Indeed, by completing the square, the LQG
control criterion can be rewritten as

J
LQG

"EAS#A~*BE2
2
#

1

2n P duMC!(A*A)~1B*BN (6)
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Fig. 1. One degree of freedom control loop.

with
AA*"[DN

P
D2#j DD

P
D2] DD

P
D2/

v
, (7)
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P
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C
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C
] DD
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v
, (8)

C"[DD
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D2] DD
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v
, (9)

where A is minimum phase, stable and of relative degree zero.
The minimizing S is clearly given by S

015
"!A~1[A~*B]

45
where [ ]

45
denotes the stable part. Note that the constant term

in the partial fraction expansion of A~*B must be so par-
titioned between [A~*B]

6/45
and [A~*B]

45
that [A~*B]

6/45
has z"0 as a zero. The preceding remark is used extensively in
Section 3. We refer the reader to Vidyasagar (1985) for more
details. The optimal control cost is

J015
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"
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2n P duGD [A~*B]
6/45

D2#
j

DN
P
D2#j DD

P
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DD
P
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If C
0

is the optimal controller for P
0
, then S

015
"0 minimizes

J
LQG

over all S3S.
Using the Youla parametrizations and the LQG control de-

sign criterion (4), we solve the following problems. Here,
C

0
denotes the optimal (and hence stabilizing) controller for P

0
.

1. Assume that the optimal LQG controller C
0

for a plant P
0

is
known and consider a new plant P

1
that is stabilized by

C
0
and that is obtained by a perturbation of size Q away from

P
0
. We then compute the optimal LQG controller C

1
for

P
1

as a perturbation of size S1 away from C
0
, where S1 is

computed from P
0
, C

0
and Q. This allows us to relate the size

of a change Q in the plant to the size of the corresponding
change S1 in the optimal LQG controller. We are especially
interested in the simple formula resulting when Q is small
where the size of Q is measured using either the H

=
or the

H
2

norm. Here, P
0

and P
1

could be seen as two successive
plant models in an iterative design scheme, with C

0
and

C
1

the corresponding optimal controllers. Alternatively,
P
0

could also be the true plant, with P
1

a model that is close
to it.

2. Under the same assumptions, we compute the increase in the
LQG cost (i.e. the performance degradation) that results from
applying the controller C

1
, optimal for P

1
, to the initial plant

P
0
. This increase is expressed as a function of the size of the

perturbation Q of P
1

away from P
0
. Again, our main focus is

on small Q. The question addressed here is how much LQG
cost increase is incurred by applying to the real plant P

0
, say,

an optimal controller C
1

computed on the basis of a plant
model P

1
that is close to P

0
.

3. As a by-product, we characterize the set of all plants P
1

that
have the same optimal LQG controller, C

0
, as the original

plant P
0
, i.e. we characterize the set of perturbations Q that

are such that the Youla parameter S1 is zero over the fre-
quency axis.

The outline of our paper is as follows. In Section 2 we
compute how much change is induced in a controller by
a change in a plant model, while in Section 3 we characterize the
set of all plants that have the same optimal LQG controller. In
Section 4 we express the degradation in the LQG cost that
results from computing the LQG controller on the basis of
a model that is a perturbed version of the actual plant. The
validity of the theoretical results is checked in Section 5. We
conclude in Section 6.

2. Plant and corresponding controller perturbations
In this section we examine the change that results in an

optimal LQG controller when a plant model is changed from
some initial model P

0
to a model P

1
that is expressed as a con-

troller-based perturbation of P
0
. Consider first a plant model

P
0

and its corresponding optimal controller C
0
, both factorized

as before. Let now P
1

be some plant that is stabilized by C
0
. It is

obvious that P
1

is contained in the set

P"MP
1
(Q)"(N

P
!QD

C
) (D

P
#QN

C
)~1 with Q3SN, (11)

of all models stabilized by C
0
. The set of all controllers stabiliz-

ing a given P
1
(Q)3P is then given by

CM "MC
1
(S1 , Q)"[N

C1
(S1 , Q)][D

C1
(S1 , Q)]~1 with S1 , Q3SN

(12)

where N
C1

(S1 , Q)"N
C
!S1 (D

P
#QN

C
) and D

C1
(S1 , Q)"D

C
#

S1 (N
P
!QD

C
). Let C

1
be any controller in the set CM . Using

Parseval’s relation, we get the following LQG index:
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(P
1
, /
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1
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1

2n PduMDD
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P
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C
Q )S1 D2.

#j DN
C
!(D

P
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C
Q)S1 D2NDD

P
#QN

C
D2/

v1 .

(13)

2.1. Computation of S1
015

as a function of Q. In this subsection, we
characterize the optimal controller C015

1
, i.e. we compute S1

015
that

minimizes J
LQG

and express it as a function of Q and the coprime
factorizations of the plant P

0
and its corresponding optimal

controller C
0
. Thus, S1

015
, which expresses C015

1
as a perturbation

of C
0
, is to be defined as a function of Q, which expresses P

1
as

a perturbation of P
0
.

Recall that A and B, related to the plant P
0

and its optimal
controller C

0
, are given by

AA*"[DN
P
D2#j DD

P
D2]DD

P
D2/

v
and

B"[N*
P
D

C
!jD*

P
N

C
]DD

P
D2 /

v
.

Two situations can occur when the system is perturbed: either
the perturbation influences only the plant model, and the noise
model remains unchanged or both the plant model and the noise
model are influenced. We consider the case where /

v1
varies with

Q in such a way that DD
P
#QN

C
D2/

v1
(Q) is independent of Q, i.e.

DD
P
#QN

C
D2/

v1
(Q)"DD

P
D2 /

v1
(0) "DD

P
D2 /

v
. (14)

This is typical of an ARMAX model structure, i.e. equation (14)
makes sure that the perturbed system (P

1
, /

v1
) remains an

ARMAX system if the original system (P
0
, /

v
) is an ARMAX

system. By an ARMAX model structure, we mean an auto-
regressive moving-average model structure with exogeneous in-
put. Note that the case /

v1
(Q)"/

v
which is typical of an output

error (OE) model structure leads to derivations that are more
involved. We are now in a position to calculate the perturbed
version of B,

BM "[(N*
P
!Q*D*

C
)D

C
!j(D*

P
#Q*N*

C
)N

C
]DD

P
D2 /

v
.

"B!Q*[DD
C
D2#j DN

C
D2]DD

P
D2 /

v
. (15)

There will be a corresponding change from A to AM , i.e.

AMAM *"[DN
P
!QD

C
D2#j DD

P
#QN

C
D2]DD

P
D2/

v
. (16)

The minimizing Youla parameter S1
015

is given by

S1
015

"!AM ~1[AM ~*BM ]
45

"AM ~1[AM ~*Q*[DD
C
D2#j DN

C
D2]DD

P
D2/

v
]
45

(17)

because B is unstable by optimality of C
0

and AM ~* is unstable
by definition.

2.2. A continuity question. In this subsection, we investigate the
continuity properties of LQG controllers with respect to plant
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perturbations, i.e. we deal with small perturbations Q where the
size of Q is measured using either the H

=
or the H

2
norm. The

operators we deal with are the spectral factorization operator
and the projection operator, i.e. taking stable parts. These oper-
ators are closely related (at least in the scalar case) and their
continuity properties have been studied extensively in the litera-
ture. Indeed, it has been shown that the spectral factorization
operator and the projection operator are continuous with re-
spect to the ¸

2
norm. In contrast, both operators are discontinu-

ous with respect to the ¸
=

norm, i.e. small H
=

perturbations in
Q can lead to arbitrarily large H

=
perturbations in S1

015
. We refer

the reader to Anderson (1985) and Anderson and Green (1988).
However, the continuity property with respect to the H

=
norm

can be recovered if the perturbed system satisfies any one of the
following conditions:

G
it has bounded derivative,
its McMillan degree is bounded or

it has a prescribed degree of stability p'0.

(18)

The reader is, respectively, referred to Anderson (1985), Ander-
son and Green (1988) and De Bruyne et al. (1995).

It now follows that

AM"A#o (Q) N AM ~1QKA~1Q#o (Q2). (19)

Therefore, we can conclude that up to first order approxima-
tions

S1
015

KA~1[A~*Q* [DD
C
D2#j DN

C
D2]DD

P
D2/

v
]
45
. (20)

We conclude that if P
1

is expressed as a controller-based
perturbation of P

0
for some perturbation Q with EQE sufficiently

small, then the optimal controller C
1

for P
1

can be expressed as
a plant-based perturbation of C

0
optimal for P

0
for some per-

turbation S1
015

(Q) with ES1
015

(Q)E small computed from equation
(17). Here E . E denotes either the H

=
or the H

2
norm. Recall that

the restrictions (18) apply if the size of Q is measured using the
H

=
norm.

3. Parametrization of all plants that have the same ¸QG or M»

controller as P
0

In this section, we characterize the set of all plants (P
1
,/

v1
)

that admit the same optimal controller, C
0
, as (P

0
, /

v
).

Note that the so called ‘‘inverse optimal control problem’’ is
closely related to the problem that is examined in this section.
This problem considers whether there exists an optimal control
criterion for which a given controller C

0
has the property that it

is the optimal control law associated with a given plant P
0
. One

of many relevant references is given in Fuji and Narazaki (1984).
Recall that /

v1
is subject to equation (14). This set is paramet-

rized by all Q3S that have S1 "0, i.e. that solve

[AM ~*Q*[DD
C
D2#j DN

C
D2] DD

P
D2/

v
]
45
"0. (21)

Equation (21) is a very implicit characterization, not self-evi-
dently allowing any nonzero solutions. In the next subsections,
we will display a nontrivial solution set more explicitly. From
equation (13) and by optimality of C

0
for P

1
, i.e. the fact that

Q3S solves equation (21) and S1
015

"0, we observe that the
control cost that is associated with the pair (P

1
, C

0
) is now

independent of Q, i.e.

J
LQG

(P
1
, C

0
)"J

LQG
(P

0
, C

0
)

"

1

2n PduMDD
C
D2#j DN

C
D2N DD

P
D2/

v
.

Let us specialize our results to the case where the plant is
described by an ARMAX model

A (z) y
t
"B(z) u

t
#C(z) e

t
, (22)

where e
t
is white noise of zero mean and unit variance, A(z) , B(z)

and C(z) are polynomials in z of degree n, n!d and n, respec-
tively, that have no common factor, with A (z) , B(z) coprime,
d51, and C(z) having all its zeros inside the unit circle. Note
that this system has a delay d. Equation (20) is normalized so
that the leading coefficients of the polynomials A (z) and C (z) are

unity, i.e. A (z) and C(z) are monic. B(z) can be factorized as
B(z)"B

~
(z) B

`
(z) where B

`
(z) has all its zeros strictly inside the

unit circle and B
~

(z) is monic and has all its zeros on or outside
the unit circle.

3.1. ¹he ¸QG disturbance rejection problem. The spectral fac-
torization solution method for the infinite horizon LQG regula-
tion problem consists in first computing the stable minimum
phase spectral factor G(z) of

G(z) G*(z)"jA(z) A*(z)#zdB(z)B*(z). (23)

It can be shown that if degA'degB then there always exists
a unique polynomial G (z) with degG(z)"n and positive coeffi-
cient of the highest degree term. The next step consists in solving
the following Bezout equation for the polynomials X (z) and
½(z):

G (z) C(z)"A (z)X(z)#B(z)½(z). (24)

A unique solution pair is obtained by finding the polynomials
X(z), ½(z) such that

G* (z)» (z)"X*(z)B(z)!j½* (z)A (z) (25)
and

A*(z)»(z)"C*(z)B(z)!½*(z)G (z) (26)

hold with degV(z)(n. Here X*(z)"znX(z~1 ) and Y*(z)"
zn½(z~1 ). The resulting optimal controller is

u
t
"!

½(z)

X(z)
y
t
. (27)

We refer the reader to Aström and Wittenmark (1990) for further
details.

Proposition 3.1. Consider some ARMAX system (A, B, C) and
its optimal LQG controller C

0
with their respective fractional

representations

N
P
"

B(z)

G(z)
, D

P
"

A(z)

G(z)
, N

C
"

½(z)

C(z)
, D

C
"

X(z)

C(z)
(28)

where G, X and ½ are determined from A, B, C via equations
(23) and (24). Let

P
1
"(N

P
!QD

C
) (D

P
#QN

C
)~1 (29)

be a perturbation of P
0

and consider the noise spectrum

/
v1
"

DD
P
D2 /

v
DD

P
#QN

C
D2

(30)

with
Q"G*Q

1
(31)

where Q
1

is any element of S that has relative degree at least
n#1. Then, for fixed j, any system (P

1
, /

v1
) with Q defined as in

equation (31) has the same optimal LQG controller,
C

0
"N

C
D~1

C
, as the unperturbed system (P

0
, /

v
). Also, for fixed

j, any ARMAX system (P
1
, /

v1
) that has optimal LQG control-

ler C
0
"N

C
D~1

C
can be expressed as equations (29) and (30), for

some Q defined in equation (31).

Proof. Note that the fractional representations (28) fulfill the
Bezout identity (1), and that each transfer function is stable and
proper. Also, the choice (30) assures that assumption (14) is
satisfied. The first term in equation (15) is given by

B(z)"C
zdB*X!A*½

G*C D K
C

G K
2
"C

zlG»*

G*C D K
C

G K
2
"

zl»*C*

G*G*
,

where » (z) is defined by equation (25) and l"n!deg»51.
Since AM has relative degree zero and is unstable by definition,
we have [AM ~1B]

45
"0. The second term in equation (15) is

!Q* [DD
C
D2#j DN

C
D2] DD

P
D2 /

v
"!Q*

DXD2#j D½D2
DCD2

DAD2
DGD2

DCD2
DAD2

"!Q*
DXD2#j D½D2

GG*
)
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The choice (31) ensures that Q has relative degree at least 1. It
now follows that the second term in equation (15) is unstable
and has a zero at z"0. This implies that [AM ~*BM ]

45
"0, i.e. we

have that S1
015

"0. K

3.2. ¹he minimum variance disturbance rejection problem. The
minimum variance (MV) disturbance rejection control law is
given by

u
t
"!

K(z)

B
`

(z)F(z)
y
t
, (32)

where K(z) and F(z) are polynomials that satisfy the Bezout
equation

zd~1C(z)B*
~

(z)"A (z)F(z)#B
~

(z)K(z) (33)

in which the polynomial F(z) has the degree d#degB
~
!1 and

deg k(n. We refer the reader to Aström and Wittenmark
(1990).

Proposition 3.2. Consider some ARMAX system (A, B, C) and
its optimal MV controller C

0
with their respective fractional

representations

N
P
"

B(z)

C(z)
, D

P
"

A(z)

C(z)
,

N
C
"

K(z)

zd~1 B
`

(z)B*
~

(z)
, D

C
"

F(z)

zd~1B*
~

(z)
, (34)

where F and K are determined using equation (33). Let

P
1
"(N

P
!QD

C
) (D

P
#QN

C
)~1 (35)

be a perturbation of P
0

and consider the noise spectrum

/
v1
"

DD
P
D2/

v
DD

P
#QN

C
D2

(36)

with
Q"B

~
Q

1
, (37)

where Q
1

is any element of S that has relative degree at least
d#degB

~
. Then any system (P

1
, /

v1
) with Q defined as in

equation (37) has the same optimal MV controller,
C

0
"D~1

C
N

C
, as the unperturbed system (P

0
, /

v
). Also, any

ARMAX system (P
1
, /

v1
) that has optimal MV controller

C
0
"N

C
D~1

C
can be expressed as equations (35) and (36) for

some Q defined in equation (37).

Proof. Note that the fractional representations (24) fulfill the
Bezout identity (1) and that each transfer function is stable and
proper. Also, the choice (36) assures that assumption (14) is
satisfied. The first term in equation (15) is given by

B(z)"[N*
P
D

C
!jD*

P
N

C
] DD

P
D2/

v
"

zdB* (z)

C* (z)

F(z)

zd~1B*
~

(z)

"

zB*
`

(z)F(z)

C*(z)
)

We have [AM ~1B]
45
"0. The second term in equation (15) is

!Q* DD
C
D2 DD

P
D2 /

v
"!Q*

DFD2
zd~1B*

~
B

~

)

The choice (27) ensures that Q has relative degree at least d. It
now follows that the second term in equation (15) is unstable
and has a zero at z"0. This implies that [AM ~*B]"0, i.e. we
have that SM

015
"0. K

4. Plant and corresponding control cost perturbations
Let P

0
"N

P
D~1

P
be the real plant and C

0
"N

C
D~1

C
its opti-

mal controller. Let us consider a model P
1

contained in the set
P defined in equation (11), i.e. P

1
is a perturbation of P

0
also

stabilized by C
0
. If C

1
is the optimal controller for P

1
, one can

try to find out how this controller performs on the real plant P
0
.

One way to do that is to compare the optimal loop (P
0
, C

0
) and

the achieved loop (P
0
, C

1
) by examining the respective costs.

Note that we could equivalently compare the optimal loop
(P

0
, C

0
) and the achieved loop (P

1
, C

0
). This amounts to find

out how the original controller C
0

performs on the perturbed
plant P

1
.

The controller C
1

belongs to the set CM defined in equation
(12). The expression for the achieved cost is now easily derived:

J
LQG

(P
0
, C

1
)

"

1

2n P duG
DD

C1
(SM , Q)D2#j DN

C1
(SM , Q)D2

D1!QSM D2 H DD
P
D2/

v
.

Since C
1

is optimal for P
1
, SM is equal to SM

015
. If we assume that

EQE is small, then we have shown in the previous section that
(under reasonable conditions if the H

=
norm is used) ESM

015
E is

small which implies in turn that EQSM
015

E is small. Again, E ) E
denotes either the H

=
norm or the H

2
norm.

Dropping second-order terms, we obtain the following
approximate expression for the achieved cost:

J
LQC

(P
0
, C

1
)K

1

2n P du MDD
C
#N

P
SM D2

#j DN
C
!D

P
SM
015

D2NDD
P
D2/

v
.

By expanding the integrand, the following approximate expres-
sion for the cost is obtained:

J
LQG

(P
0
, C

1
)KJ (P

0
, C

0
)#

1

2n P duMB*SM
015

(Q)#BSM *
015

(Q)N

#EASM
015

(Q)E2
2

, (38)

where A and B were defined earlier for the pair (P
0
, C

0
). This

shows that the increase in the control cost that results from
applying the controller C

1
, optimal for P

1
, to the initial plant

P
0

is small provided that the perturbation Q away from P
0

is
small in the H

2
sense.

5. Numerical illustration
To illustrate the theoretical results of Section 3, let us take an

ARMAX system described by equation (22) with A(z)"z,
B(z)"b, C(z)"z#h. The optimal LQG controller (27) is
given by

u
t
"!

bhz

(b2#j)z#jh
y
t

(39)

and the plant and controller factorizations are given by
equation (28) with

G(z)"Jb2#j z, X (z)"
(b2#j) z#jh

Jb2#j
,

½(z)"
bhz

Jb2#j
)

Take Q"Jb2#j Q
1

where Q3S has relative degree 2. Then,
for fixed j, any ARMAX system (P

1
, /

v1
) that has optimal LQG

controller (39) can be expressed as

P
1
(Q)"

b/z!Q [(b2#j)z#jh]/(z#h)

1#Q bhz/(z#h)
,

/
v1

(Q)"
D (z#h)/z D2

D1#Q bhz/(z#h) D2
)

6. Conclusions
In this paper, we have used a Youla-parametrization-based

approach to compute an infinite horizon LQG controller from
a stabilizing controller using coprime factorizations in order to
show that, under reasonable conditions if the size of Q is meas-
ured using the H

=
norm, a small coprime factor perturbation
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away from a given plant will produce a small coprime factor
perturbation away from the optimal controller corresponding to
that plant. Also, the increase in the LQG cost that results from
applying the perturbed controller to the real plant will be small
as long as the plant/model perturbation is small in the H

2
sense.

As a by-product, we have characterized the set of all plants that
have the same optimal LQG controller.
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