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Abstract

In this paper, we present gradient expressions for a closed-loop parametric identi"cation scheme. The method is based on the
minimization of a standard identi"cation criterion and a parametrization that is tailored to the closed-loop con"guration. It is shown
that for both linear and nonlinear plants and controllers, the gradient signals can be computed exactly. ( 1999 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In recent years, several new methods for the identi"ca-
tion of approximate models of an open-loop plant on the
basis of closed-loop data have been presented. This line
of research follows from the fact that in reality, i.e. on
many industrial processes, the data need to be collected
in closed-loop either because the plant is unstable or
because operating constraints do not allow one to open
the control loop. Also there might be situations where it
is wiser to identify the plant in closed-loop so that the
identi"ed model would capture the dynamical character-
istics that are important for control design. We refer the
reader to Gevers (1993) and Van den Hof (1997) for a
discussion of this problem in the linear case.

Several methods have been proposed for the closed-
loop identi"cation of linear systems: see Van den
Hof (1997) for a survey. One such method, "rst suggested
by Ljung (1987) as an exercise in his textbook, and whose
properties have been studied intensively recently in a

linear framework, is a method based on a `tailor-made
parametrizationa: see Egardt (1997), Landau and Karimi
(1997), Ljung (1987, 1997) and Van Donkelaar and Van
den Hof (1996). The method uses knowledge of the con-
troller; it minimizes an error between the closed-loop
transfer functions of the true closed-loop and the model
closed-loop, using a parametric model of the open-loop
model only. The main result of Van Donkelaar and Van
den Hof (1996) is to show that, provided the model order
is higher than the order of the controller, the parameter
set is connected. Their paper also provides consistency
results and gradient expressions. The reference of SjoK berg
et al. (1995) is an excellent survey for nonlinear identi"ca-
tion techniques.

In this note we use the same closed-loop matching
criterion as in Van Donkelaar and Van den Hof (1996)
with a tailor-made parametrization, but we extend the
results to the case of nonlinear systems and/or systems
with nonlinear controllers. Our contribution is to show
how the gradient of the identi"cation criterion with re-
spect to the model parameters can be computed in this
nonlinear framework.

The ideas in this paper heavily rely on data-driven
model-free control design methods that have recently
been proposed in De Bruyne, Anderson, Gevers and
Linard (1997), Hjalmarsson, Gevers, Gunnarsson and
Lequin (1998) and SjoK berg and Agarwal (1996). Indeed,
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Fig. 1. The actual loop. Fig. 2. The simulation loop.

our solution method for the minimization of the closed-
loop identi"cation criterion w.r.t. the open-loop model
parameters is dual to the method used in Hjalmarsson
et al. (1998) for the optimization of the control perfor-
mance criterion w.r.t. the controller parameters.

The organization of the paper is as follows. In Section 2,
we describe the problem at hand. In Section 3 we present
expressions of the gradient signals. We conclude in
Section 4.

2. General problem setting

For ease of notation, we will omit the time argument of
the signals. Let us assume that the true system is the
single-input}single-output (SISO) nonlinear time-invari-
ant system described by

S:y"P
0
(u, v), (2.1)

where P
0
is an unknown causal nonlinear operator. The

restriction to scalar plants is inessential, but notationally
convenient. Here u is the control input signal, y is the
achieved output signal and v is a process disturbance
signal which is assumed to be generated by "ltering of
a white noise sequence using a stable linear "lter. Note
that the disturbance signal v is allowed to enter the
system nonlinearly. The input signal is determined ac-
cording to a known controller

C : u"C(r, y), (2.2)

where r is an external reference which is assumed to be
quasi-stationary and uncorrelated with v. The controller
C is a causal nonlinear operator of both r and y. The
closed-loop operator from measured reference signal r to
measured output signal y, as de"ned in Fig. 1, can be
written as follows:

y"¹
0
(r, v). (2.3)

We require that the closed-loop system is bounded-in-
put}bounded-output (BIBO) stable. In the sequel we
often make use of linearizations of some nonlinear oper-
ators around their operating trajectories. We therefore
make the following assumption.

Assumption 1. The plant, the controller and all closed-loop
operators are smooth functions of the reference signal, the
input signal, the output signal and the disturbance signal.
This means that if the closed-loop operator is linearized

around any (stable) trajectory, the resulting linear system is
BIBO stable.

We refer the reader to Desoer and Vidyasagar (1975)
for more details on such smoothness assumptions and
a full treatment of the linearization problem. The basic
idea is that the closed-loop operator from the reference
signal r to the output signal y is identi"ed using a
parametrized output predictor

y(h)"¹(h, r), (2.4)

obtained from the feedback interconnection of an open-
loop plant model

M : y(h)"P(h, u) (2.5)

for P
0
, parametrized by a vector h3DhLRn where Dh is

some prescribed domain, and the possibly nonlinear con-
troller C in (2.2).

Assumption 2. The output predictor (2.4) or, equivalently,
the loop in Fig. 2 has the BIBO and smoothness properties
of the true closed-loop system, for all values of h3Dh; see
Assumption 1.

Note that it is not assumed that the true system (even
without noise) is in the model set.

Suppose that a data set Mr, yN has been collected on the
actual system of Fig. 1. The problem that is addressed in
this paper is that of selecting the model for P

0
in (2.5) that

best explains this data set in a closed-loop sense.
We make use of the identi"cation criterion

<
N
(h)"

1

2N

N
+
t/1

[¸(y!y(h))]2. (2.6)

Here ¸ can be any causal BIBO stable design operator.
Besides the intuitively reasonable aspect of (2.6), it is
shown in Ljung (1987), SoK derstroK m and Stoica (1989),
Van Donkelaar and Van den Hof (1996) that this cri-
terion allows a consistent identi"cation of a linear plant
under linear feedback, when the input}output dynamics
are in the model set. This result does not generalize when
both the plant and the controller are allowed to be
nonlinear; this is further investigated in De Bruyne et al.,
(1998). In any case, the linear consistency result adds
greater weight to the selection of the identi"cation cri-
terion (2.6). We also refer the reader to Gevers, Ljung and
Van den Hof (1997) for variance considerations in the
linear case.
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Fig. 3. Generation of u@hj(h) and y@hj(h) in the nonlinear case.

Note that, provided the input signal u is measured, the
generalization to the nonstandard identi"cation criterion

V
N
(h)"

1

2N

N
+
t/1

M[¸
y
(y!y(h))]2#j[¸

u
(u!u(h))]2N,

is straightforward. Again, ¸
y

and ¸
u

are causal BIBO
stable design operators.

The preceding parameter estimation problem is typi-
cally solved using gradient search techniques such as
Gauss Newton; we refer the reader to Ljung (1987) for
a discussion on initial estimates, convergence, local min-
ima, etc. We refer to Van Donkelaar and Van den Hof
(1996) for a discussion on the connectedness of the set of
all models (2.5) stabilized by the controller (2.2) in the
linear case. To minimize (2.6) with respect to the model
parameter vector h, it is standard that one can iteratively
seek a solution for h to

<@
N
(h)"!

1

N

N
+
t/1

[(y!y(h))y@(h)]"0, (2.7)

by taking steps in the negative gradient direction

h[i#1]"h[i]!c
i
R~1

i
<@

N
(h[i]), (2.8)

where<@
N
(h) and y@(h), respectively, denote the gradient of

<
N
(h) and y(h) with respect to h, and where R

i
is some

appropriate positive-de"nite matrix, typically an esti-
mate of the Hessian of <

N
. The update equation (2.8) is

a batch mode type of adjustment.

Assumption 3. The stability of the predictor is preserved
during the iterations.

This is a very reasonable assumption since the step size
c
i
can be used e!ectively to control how much the model

is allowed to change per iteration; the identi"ed model is
therefore stabilized by the known controller.

The key technical step in this iterative algorithm is the
computation of the gradient y@(h). Our contribution here
is to show that this gradient computation can be per-
formed by feeding the signal u(h) in Fig. 2 as the input of
a closed-loop simulation system.

3. Gradient expressions

It follows from (2.2) and (2.5) that the closed-loop
model is described by

y(h)"P(h, u(h)), u(h)"C(r, y(h)). (3.1)

As a tool for obtaining the gradient of<
N

w.r.t. h, we seek
the gradients of u (h) and y (h) w.r.t. h

j
. If one of the

parameter vector entries, say h
j
, is perturbed by a small

dh
j
, we obtain

u(h
1
,2, h

j
#dh

j
,2, h

n
)

"C(r, y(h
1
,2, h

j
#dh

j
,2, h

n
))

KC(r, y(h)#y@hj(h)dh
j
)

KC(r, y(h))#LC
y
(r, y(h))y@hj(h)dh

j

" u(h)#LC
y
(r, y(h))y@hj(h) dh

j
, (3.2)

where LC
y
(r, y(h)) is the linearization of C in response to

a perturbation in y around the trajectory produced by
r and by y(h), i.e. the trajectory around which C is
linearized depends on h. The derivative of y(h) w.r.t. h

j
is

denoted y@hj(h) and it is the jth component of the vector
y@(h). It is straightforward to see that (3.2) yields

u@hj(h)"LC
y
(r, y(h))y@hj(h), (3.3)

where u@hj(h) is de"ned in a similar fashion as y@hj(h). A sim-
ilar reasoning yields

y@hj(h)"P@hj(h, u(h))#LP
u
(h, u(h)) u@hj(h), (3.4)
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Fig. 4. Alternative implementation of Fig. 3.

where LP
u
(h, u(h)) is the linearization of P(h) in response

to a perturbation in u around the trajectory produced by
u(h). The partial derivative of P(h) w.r.t. h

j
is denoted by

P@hj(h, u(h)). It can easily be obtained since P(h) has
a known structure.

In the nonlinear case, there are no compact expres-
sions for the gradient signals like the ones derived at the
end of the section for the linear case; see (3.12) and (3.13)
below. Indeed, the exact gradient signals can be obtained
by feeding the signal u(h) generated in the loop of Fig. 2,
"ltered through P@hj(h, u(h)), as input of the (linear time-
varying) linearized closed-loop system of Fig. 3. The
stability of the lower loop follows from the smoothness
assumption on the nonlinear closed-loop operator
(Assumption 2) and the stability of the simulation loop
at each iteration (Assumption 3). These two assumptions
are equivalent to a small signal BIBO stability assump-
tion, i.e. we assume that a small perturbation in the
reference signal produces a small perturbation in the
output signal.

The loop shown in Fig. 3 generates stable gradient
estimates provided P@hj (h, u(h)) is a BIBO operator. In the
contrary case, the signal entering the lower loop of Fig. 3
is unbounded. One can recover a stable estimate of the
gradient by replacing Fig. 3 with Fig. 4. This is always
possible provided one can construct

y(h)"N
r
(h, z

r
(h)), u"D

r
(h, z

r
(h)) (3.5)

and

z
l
(h)"D

l
(h, y(h))"N

l
(h, u), (3.6)

respectively, as stable right and left coprime descriptions
of (2.5); see Hammer (1987) for further details. Here
LD

ly
(h, y(h)) and LN

lu
(h, u(h)) are, respectively, the lineariz-

ations of D
l
(h, y(h)) and N

l
(h, u(h)) around their trajectory.

The stability of Fig. 4 follows from the stability of the
simulation loop (Assumption 3), the smoothness assump-
tion on the closed-loop system (Assumption 2) and the
fact that

LD
ly
(h, y(h))P@hj(h,D

r
(h,.)), (3.7)

is a stable operator for j"1,2, n and ∀h3Dh, i.e. even if
P(h,u(h)) is an unstable operator. Indeed, it follows from
(3.5) and (3.6) that

z@
lhj
(h)"N@

lhj
(h, u)"D@

lhj
(h, y(h))#LD

ly
(h, y(h))y@hj(h), (3.8)

y@hj(h)"P@hj(h, u). (3.9)

Using the preceding equations, one obtains

LD
ly
(h, y(h))P@hj(h, u)"N@

lhj
(h, u)!D@

lhj
(h, y(h)). (3.10)

It is now straightforward to see that

LD
ly
(h, y(h))P@hj(h,D

r
(h, z

r
(h)))

"N@
lhj
(h,D

r
(h, z

r
(h)))!D@

lhj
(h,N

r
(h, z

r
(h))) (3.11)

which shows that (3.7) is a BIBO operator.
In the simpli"ed case where both the real system and

the controller are linear, (2.1), (2.2) and (2.5) reduce to

S : y"P
0
u#v, C : u"C

r
r!C

y
y, M : y(h)"P(h)u.

Also,

LP
u
(h, u(h))"P(h) and LC

y
(r, y(h))"C

y
.

It is now straightforward to see from Fig. 3 that

y@hj(h)"
P@hj(h)

(1#P(h)C
y
)
u(h)"

P@hj(h)C
r

(1#P(h)C
y
)2

r, (3.12)

u@hj(h)"!C
y
y@hj(h). (3.13)

The compact expressions of the gradients presented in
(3.12) and (3.13) are equivalent to those developed in Van
Donkelaar and Van den Hof (1996).

4. Conclusions

In this paper, we have presented gradient expressions
for a closed-loop identi"cation scheme with tailor-made
parametrization. The main novelty of these gradient ex-
pressions is that they extend the current literature to
nonstandard identi"cation criteria and that the plant, the
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parametric model and the controller are allowed to be
nonlinear.
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