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Abstract

This paper aims at introducing the reader to the various issues
that arise in the development of a coherent methodology for the de-
velopment of robust control design on the basis of models identified
from data. When a reduced complexity model is identified with the
purpose of designing a robust controller, the model is just a vehicle
for the computation of a controller. The design of the identification
and of the controller must be seen as two parts of a joint design prob-
lem. The central message of this paper is to show that the global
control performance criterion must determine the identification cri-
terion. This leads to non standard identification criteria, which can
be minimized by appropriate experimental set-ups.

1 Introduction

The intensive work that is presently going on in the general area of iden-
tification in connection with robust control design finds its origin in the
awareness, among people from both the identification and the robust con-
trol community, that a wide gap exists between the premises on which
robust control design is built and the tools and results that ‘classical’ iden-
tification theory is able to deliver. (By ‘classical’ I mean the theory as
it existed at the end of the nineteen eighties, and which can be found in
classical textbooks such as [Lju87] or [SS89].) To understand how such gap
has materialized, a historical retrospect is perhaps appropriate.

∗This paper presents research results of the Belgian Programme on Interuniversity
Poles of attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy
Programming. The scientific responsibility rests with its author.
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A historical perspective

Until 1960 and the publication of Kalman’s celebrated work on state
space models [Kal60], control design was for the most part based on graph-
ical techniques using Bode plots and Ziegler-Nichols charts. The controllers
that were built were PI and PID controllers; they were not model based.
Robustness concepts were incorporated in the design techniques in the form
of gain and phase margins.

The major impact of Kalman’s work was perhaps not so much the
introduction of state space models, but the replacement of graphical de-
sign techniques by model based certainty equivalence control design. Linear
Quadratic Gaussian (LQG) control and model reference control became
major new design techniques. Parametric models became the central focus
of attention, and it is therefore natural that the development of parametric
identification techniques followed that of model based control design on its
heels. One of the important early papers on parametric identification is
that of Åström and Bohlin [ÅB65] which introduced many of the formal
concepts that dominated identification theory for about 20 years.

The Achilles’ heel of the model based control era of the sixties and seven-
ties was the certainty equivalence principle. Except for the gain and phase
margins naturally inherited by LQG controllers, the model based control
design methods did not lend themselves easily to tractable design methods
that would incorporate plant model uncertainty descriptions. Perhaps for
that reason (or would it be sheer laziness?), for a long time identification
theorists focused on questions of convergence and efficiency of parameter
and transfer function estimates in the case when the true system was con-
tained in the model set, rather than on the effect on controller performance
of plant/model errors due to undermodeling.

It is interesting to observe that the first analyses of the interplay be-
tween identification and control design were produced during this certainty
equivalence era. Motivated by problems in communications, Fel’dbaum
introduced the concept of dual control, in which he showed that, when con-
trolling a system whose parameters are unknown, the control effort must
pursue the dual goal of “investigating” and “directing” [Fel60]. Fel’dbaum
then called “investigation risk” the loss in the achieved performance due
to the fact that the control is not optimal in view of obtaining information
about the system (resulting in a subsequent suboptimal control action),
and he called “action risk” the loss in the achieved performance due to the
fact that the control causes a deviation from the best achievable state.

The ideas of Fel’dbaum inspired Åström and Wittenmark [ÅW71], who
addressed the problem of combined identification and control in the context
of exact modeling (i.e. the true system is in the model set) using a linear re-
gression (ARX) model structure. They considered the direct minimization
of both a one-step and a multi-step minimum variance regulation criterion.
In the case of an exact model structure, the unknown parameters and their
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covariance matrix can be added to the state, the problem can be re-framed
as an optimal control problem for an augmented system, and solved (at
least in principle) using dynamic programming. Even though the model
errors in [ÅW71] are only noise-induced errors - and not bias errors due
to unmodeled dynamics - the contribution of Åström and Wittenmark is
significant for the following reasons:

• it showed, probably for the first time and albeit in the context of exact
model structure, that the combined identification and control problem
can be formulated as the minimization of a global control performance
criterion, leading in simple cases to a simple and computable solution;

• it produced an optimal solution to the minimum variance regulator
problem with unknown parameters in the form of a cautious controller
with reduced gains;

The publication of Zames’ paper [Zam81] marked the start of the model-
based H∞ robust control design period that dominated most of the eighties.
The key technical result that made it all possible was the availability of the
Youla-Kucera parametrization of all stabilizing controllers for a given plant
model. The structured singular value (or µ-synthesis) approach later ex-
tended worst case control design from the realm of unstructured uncertain-
ties (i.e. error bounds on the transfer function model) to that of structured
uncertainties (i.e. error bounds on parameters). It is interesting to observe
that these robust control design methods have been developed entirely in
the context of models that are not data-based.1 As the robust control design
methods invaded the literature (if not the world of process control applica-
tions), the pressure grew to apply these methods on models identified from
real data. This required the development of identification techniques able
to deliver error bounds in the case of undermodeling and, more importantly,
it required an understanding of the interactions between control design and
identification design in this restricted complexity modeling situation.

In the identification community - and for the reasons explained above -
very few attempts had been made to quantify errors on estimated transfer
functions due to the use of restricted complexity model sets. In fact, at the
end of the ‘classical era’ of the development of identification theory (say,
1987), the only useful result available on the error due to undermodeling
(also called the ‘bias error’) was an implicit characterization of the con-
vergence point of the parameter estimation algorithm [WL86]. While very
useful for design, this integral formula did not give a clue as to a bound on
the error between true and estimated transfer functions.

As for the interaction between identification and control in the case of
restricted complexity models, a small step had been made in [GL86], where,

1Having just presented a sketch of the robust control design steps, John Doyle, one
of the key contributors to robust control theory, recently asked a bunch of identifiers:
“Can you guys tell me how data can improve our designs in any way?” [Doy92]
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for certain control performance criteria, it was shown that the performance
degradation due to errors in the identified model can be minimized by
performing the identification in closed loop and with an appropriate data
filter. Since the ‘appropriate data filter’ is itself a function of the optimal
controller, and hence of the unknown model, the result can only be ap-
plied in practice by replacing the optimal filter by an approximation, thus
leading to the presently popular iterative control and identification design
methods. The result of [GL86] was the first instance in which closed loop
identification was shown to be helpful, rather than something to be avoided
at all cost. The necessity of performing closed loop identification when the
model is to be used for control design has since been recognized as a key
element in the successful application of identification for control, as we shall
see in Section 5.

State of the art at the end of the eighties

At the end of the eighties, the state of affairs concerning the connection
between identification and control can thus be characterized as follows:

• robust control control design tools were being developed at a rapid
pace, under the assumption that prior hard bounds were available
on transfer function errors or parameter errors, or a combination of
these;

• with the exception of a small school of thought that had developed
“bounded error identification methods”, mainstream identification
theory had almost come to a halt. It was able to deliver sophisti-
cated models and techniques, but was unable to quantify the errors
on identified transfer function models in the frequency domain, as
required by the H∞ robust control design theory;

• some preliminary but scant results were available on optimal design
of the identification when the model is of restricted complexity and
is to be used for control design [GL86]; these early results were based
on H2 performance measures, and made no connection yet with the
new theories of H∞ robust control;

• except for the case of exact model structure (see [ÅW71]), no results
were available on the interplay between identification and control, or
a fortiori on their combined design.

It is thus clear that a rather huge gap had developed at the end of the
eighties between the tools and assumptions of robust control design and
the techniques that identification theory had produced. The most obvious
manifestation of this gap, and the one that has triggered most of the present
research activity, was the realization that robust control theory requires a
priori hard bounds on the model error, whereas classical identification theory
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delivers at best soft bounds2 in the case where the system is in the model
set and no bounds at all in the case of undermodeling.

Nowadays, one has come to realize that the great ‘hard-versus-soft’
bound debate is not the real issue. An identification and control design
method that leads to a closed loop system that is stable with probability
.99 is of course just as acceptable as an H∞-based design that leads to a
‘guaranteed stable’ closed loop, but that is based on prior error bounds
that cannot always be verified. However, the main focus of research - and
by far - is still on trying to produce identification methods that allow for
the computation of uncertainty bounds, whether hard or soft. This is of
course a most pertinent scientific pursuit: whatever the eventual objective,
it is unreasonable to deliver a model to a user without a statement about
its quality. However, if the objective of the identification is to design a
robust controller, then the most important issue is probably not the esti-
mation of uncertainty bounds on the identified model, but the design of
a control-oriented identification or, even better, the synergistic design of
identification and control.

This leads me to suggest that the new and fashionable research area that
deals with the interconnection of identification and control can be subdi-
vided into three areas, that correspond to three aspects of the identification
and robust control design problem:

1. Estimation of uncertainty bounds on identified models;

2. Identification for robust control design;

3. The combined (synergistic) design of the identification and control.

The point of this classification is to stress that the goals pursued in these
three areas of research are quite different.

A brief review of the present research efforts.

For the moment, the mainstream approach seems to be ‘Perform the
identification with a method that allows the computation of error bounds
on the estimated model, then design a robust controller using that model
and its bounds’. The main focus of research is therefore on the estimation of
error bounds, whether hard or soft, and novel identification techniques are
being produced for the sake of delivering such bounds. The problem is that
identification methods whose sole merit is to deliver accurate error bounds
on restricted complexity models may well produce nominal models that are
ill-suited for robust control design: that is, the frequency distribution of the
model error may be such that they lead to poor closed loop performance.
Examples have been given in [Sch92a,b].

2By soft bounds we mean confidence intervals or ellipsoids in the probabilistic sense.
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The idea of the second line of research above is to develop identification
methods that will produce models whose uncertainty distribution, over the
frequency range, allows for high performance robust control design. Thus
these models should have low uncertainty where closed loop control spec-
ifications require this, but they may have large uncertainty in frequency
bands where this does not imperil closed loop stability or penalize closed
loop control performance. Results are now available for the tuning of the
identification method towards such objectives: the identification must be
performed in closed loop with an appropriate data filter. These results
rely on an understanding of the interactions between identification, robust
stability and robust performance. As already mentioned, an early result
leading to the idea of closed loop identification was [GL86]; however, that
result was based on performance degradation ideas and the authors failed
to consider the connections with the newly emerging robust control the-
ory. It is probably fair to say that the book by Bitmead et al [BGW90]
gave a major impetus to this second line of research (as well as the third
one). There, the robust stability and robust performance criteria of H∞
control design were used as the key ingredient for an understanding of the
identification/control interactions, in an adaptive control framework. Using
H∞-based prescriptions as a guide (or an excuse), a design was proposed
using a combination of Least Squares identification and LQG/LTR control
design. In the scheme of [BGW90], the identification design takes account
of the robust control requirements through the data filters and the prescrip-
tion of closed loop identification. Thus, this scheme fits in the framework
of identification for control. It was followed by other results, using different
identification techniques and/or different control design schemes, which all
came to similar conclusions. The Delft school played and continues to play
a major role in the progress of control-oriented identification and approxi-
mation: [Hak90], [HSV92], [Sch91], [Sch92a], [Sch92b].

The third line of research is to combine the identification and the control
design in a mutually supportive way, from the point of view of robust sta-
bility and/or robust performance. Even though the objective might seem
overly ambitious and elusive, some results are now emerging. They all take
the form of iterative schemes in which a succession of identification and
control design steps are performed, leading to more and more performant
control systems. The identification steps are performed in closed loop using
data obtained with the last controller operating on the actual plant. The
control design steps use the most recently identified plant model. The dif-
ferent schemes vary in the identification criteria and techniques, the model
structures that are used, the control design criteria, the way in which the
model uncertainty is or is not used in the control design step, the way in
which the performance requirements are increased or not between successive
design steps: see [BYM92], [LAKM92], [LS90], [PB93], [Sch92a], [Sch92b],
[ZBG91], [ZBG92]. Even though the specific identification and control de-
sign techniques vary between these schemes, they all have in common a

6



succession of performance enhancement designs. The idea of redesigning
controllers using closed loop data collected on the plant in order to im-
prove performance is what process control engineers naturally tend to do.
The merit of the recent research is to develop systematic and theoretically
justified procedures to achieve this performance enhancement.

Conclusion for an introduction

To summarize, most of the present focus of research is on the estimation
of error bounds. This problem is not only of independent interest, but it
is also an important step towards the design of robust controllers based on
identified models. However, the key ingredient for the successful application
of robust control design methods to identified models is not so much the
computation of error bounds, but it is to let the global control performance
criterion dictate what the identification criterion should be, and to design
the controller in a way that takes account of data-based information about
the plant/model mismatch. This idea will be the focal point of this paper.

To achieve this objective requires a better understanding of the inter-
connections between closed loop identification and control design. Thus,
this paper will focus on these interconnections. In Section 2, we introduce
the concepts of optimal loop, design loop and actual loop, and we present the
robust stability and robust performance constraints that are at the heart of
the identification and control interplay. This interplay leads to three ques-
tions that correspond to the three research areas delineated above. These
are briefly discussed in Section 3. In Section 4, we give a brief review of
prediction error identification theory in open and closed loop, with the aim
of displaying the role of the experimental set-up and the design variables in
the properties of the identified model. These results are used in Section 5
to show how the identification criterion can be shaped to become a perfor-
mance robustness criterion, which is itself tuned by the global control design
criterion. This result serves as an inspirational source for the more ad-hoc
iterative design schemes that are described in Section 6. These iterative
schemes are the presently available alternatives to the combined design of
identifier and controller in the form of a global - but for the moment elusive
- optimization problem. The formulation of this combined problem raises
many deep and challenging open questions that will undoubtedly occupy
numerous researchers in the years to come.
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2 The identification/control interplay

Our first task is to demonstrate how identification and robust control in-
teract in a model based control design procedure in which the model is
constructed from data collected on the process.

To make things perfectly clear3 about the set-up to which our ensuing
developments apply, we shall make the following assumptions.

Assumptions

1. The true plant will be assumed to be representable as follows,

yt = P (z)ut + vt, (1)

where P (z) is a scalar strictly proper rational transfer function, ut is
the input, vt is an unmeasurable disturbance acting on the output yt.

2. Prior knowledge about the system may have helped the designer to
select a parametric model structure or may have given him insight
about the achievable bandwidth, but the information about the dy-
namics of the process is assumed to be derived from data collected
on the process. Hence no prior model or approximation of P (z) is
available.

3. The exact model structure is assumed to be unknown, but we shall
consider that - possibly after some initial analyses including plant
data information - the designer has set his or her eyes on a certain
parametrized model set,

M 4
= {P̂ (z, θ), θ ∈ Dθ ⊂ Rd}, (2)

together (possibly) with a noise model v′t, where P̂ is a strictly proper
transfer function. Thus, the model structure estimation will not be
part of our discussion.

4. The true plant is not contained in the model structure, i.e. there
exists no value of θ for which P̂ (z, θ) = P (z) for almost all z.

There are, of course, control design procedures that are based not on
data, but on a prior model of the system, perhaps with some knowledge
or estimate about its quality. However, the situation described by our
assumptions is typical of process control applications, in which such prior
knowledge is usually not available and in which the model is necessarily
data-based.

3As Richard Nixon used to say.
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Thus, the task that we consider here is to design a feedback controller
on the basis of a model that is to be identified from data taken on the
process, using the available techniques of robust control design, given that
whatever the identification exploits that are accomplished by the designer,
the model will not be able to represent the true system accurately.

A typical control design type situation is that the designer has a global

control performance criterion, Jglobal
4
= J(P,C), in mind. For example, in

an H∞ design, one might like to minimize the following control performance
criterion,

JH∞

4
= J(P,C)

4
= ||W (z)

1

1 + P (z)C(z)
||∞, (3)

over a class of admissible controllers, where W (z) is a weighting that reflects
performance specifications and 1

1+P (z)C(z) is the sensitivity of the actual

feedback system. In an LQG framework, Jglobal could take the form

JLQG
4
= J(P,C)

4
= lim
N→∞

1

N

N∑
t=1

[(yt − rt)2 + λu2
t ], (4)

where the signals yt, rt and ut are, respectively, the output signal, the
tracking signal, and the to be designed control signal, and where λ is a
positive weighting factor that reflects the respective importance given to
the tracking error and the control effort.

These criteria cannot be minimized because the first one depends ex-
plicitly on the unknown P (z), while the second depends on P (z) through
the dynamic relationship that links rt, ut and yt. Instead, one designs a
controller on the basis of an estimate P̂ (z, θ̂) of P (z), which we shall in this
paper consider to have been obtained from plant data by identification.
Thus, one has to design both an identification method (taking into account
that the model set is of restricted complexity) and a model-based control
design procedure, possibly taking account of plant/model error informa-
tion. In analysing the interplay between the identification and the control
parts of the design, it will prove useful to consider the three feedback loops
represented in Figures 1, 2 and 3.

The optimal loop of Figure 1 contains the true system in feedback with
the optimal controller Copt(z). This optimal controller depends on the
unknown true system P (z), and can therefore not be computed. The design
of the controller C(z) is conceptually performed on the basis of the nominal
(or design) loop of Figure 2, in which the true plant is replaced by an

identified model P̂ (z, θ̂). The actual feedback loop of Figure 3 contains the
true system P (z) and the designed controller C(z).

The reasons for drawing attention to these three figures is that much of
the discussion about the interplay between identification and robust control
is based on a comparison between these loops.
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Figure 1: Optimal feedback loop
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Figure 2: Nominal (or design) feedback loop

• The three loops are all driven by the same reference signal, rt, while
the noise signal, v′t, in Figure 2 is an estimate of the actual noise
source vt.

• Ideally, one would like the identification and control design to be
such that the performance achieved by the designed controller on the
actual system is as close as possible to that achieved by the optimal
controller. That is, one would like the loops of Figures 1 and 3 to
be ‘close to one another’ in some sense. Since Copt is unknown, it is
usually impossible to use the closeness of these two loops as a design
criterion. Instead, one compares the loops of Figures 2 and 3.

• One has to make sure that the controller C(z) designed for the loop
of Figure 2 stabilizes the actual loop of Figure 3: this is the concept
of robust stability.

• The controller designed for the design loop must also produce on the
actual loop an achieved performance that is not too different from the
designed performance: this is the concept of robust performance.
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Figure 3: Actual (or achieved) feedback loop

• Thus, in robust analysis one wants the loops of Figures 2 and 3 to be
‘close to one another’ in some sense.

• Note that a comparison between the signals uoptt , uct and ut, as well
as between yoptt , yct and yt, gives information about the mismatch
between the corresponding closed loop systems. This is exploited in
the scheme of Zang et al. [ZBG91] that we describe in Section 6.

In the classical robust stability and robust performance analyses, it is
assumed that the ‘nominal model’ P̂ is obtained from prior information
and/or modeling techniques, and that the plant/model error is either ex-

perimentally based or god-given. The key point is that the choice of P̂ is
typically not a part of the control design procedure. Here, with a model
P̂ (z, θ̂) that is estimated from data within a set of M = {P̂ (z, θ)} of can-
didate models, the robust stability and robust performance requirements
hinge both on the identification design and on the control design. The
model is only used as a vehicle to compute a high performance controller,
and therefore it need not necessarily be a good open loop model of the plant.

Without rederiving any of the theory, we now briefly summarize some
fundamental formulae about robust stability and robust performance inso-
far as they clearly exhibit the identification/control interplay.

Robust stability of a unity feedback loop

We first introduce some notations. With P (z) the true plant and P̂ (z, θ̂)
an estimated model, we define the additive plant/model error as

L(z, θ̂) = P (z)− P̂ (z, θ̂). (5)

We denote the designed mixed sensitivity function as,

M̂
4
= C(z)[1 + C(z)P̂ (z, θ̂)]−1, (6)
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the designed sensitivity function as,

Ŝ(z)
4
= [1 + C(z)P̂ (z, θ̂)]−1, (7)

and the achieved sensitivity function as,

S(z)
4
= [1 + C(z)P (z)]−1. (8)

We now consider the two feedback loops of Figures 2 and 3, with some
fixed estimated model P̂ (z, θ̂) in the nominal loop. One simple version of
a robust stability result for such unity feedback loops is as follows.

Assume that P (z) and P̂ (z, θ̂) have the same number of unstable poles,
and that the designed loop of Figure 2 is internally stable. Then the con-
troller C(z) will stabilize all plants P (z) for which the following inequality
holds:

||L(z)M̂(z)||∞ < 1. (9)

This inequality can be more explicitly restated as follows.∣∣∣∣∣[P (ejω)− P̂ (ejω, θ̂)]× C(ejω)

1 + P̂ (ejω, θ̂)C(ejω)

∣∣∣∣∣ < 1 ∀ω. (10)

We make the following observations concerning this inequality.

• The term P − P̂ represents the plant/model error and is essentially
determined by the identification part of the design. Notice that the
distribution of the model error in an identified model is strongly in-
fluenced, among other things, by the input spectrum.4 Therefore,
in closed loop identification (and, in particular, in adaptive con-
trol) the controller also influences the frequency distribution of this
plant/model error.

• The right hand fraction in (10) is the mixed sensitivity function of the
nominal loop. Thus, for an estimated plant model and with a designed
controller, this frequency dependent quantity is entirely known. We
note that this quantity is therefore influenced by both the identifica-
tion and the control design.

This inequality exhibits the interplay between identification and control
design as far as robust stability is concerned. In classical robust control
design, it is interpreted as a constraint on the controller to be designed
for a given plant/model error bound: the controller must provide for a
small value of the mixed sensitivity function where the plant/model error
is large. In our joint identification and control design, it can alternatively

4For those readers not too familiar with identification theory, this point will be made
amazingly obvious in Section 4.
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be interpreted as putting constraints on the identification: the plant/model
error must be small in frequency bands where the mixed sensitivity of the
designed closed loop system is large.

Robust performance of a unity feedback loop

In terms of performance, there are various ways of defining the robust-
ness of a controller design. Let us assume first that the control design is
based on the minimization of some global performance criterion, J(P,C),
as illustrated above by two examples. In order to discuss the performance
achieved by a controller designed on the basis of a reduced complexity
model, it is useful to introduce the following concepts.

If the plant were known exactly, then the minimization of J(P,C) over
the class of admissible full order controllers would result in an optimal

controller, Copt, to which there corresponds an optimal cost, denoted Jopt
4
=

J(P,Copt). This is the cost obtained for the loop of Figure 1.
The controller is effectively designed on the basis of a nominal model,

P̂ (z, θ̂), which we shall denote P̂ for short, and possibly on the basis of

information about a bound on the model error L(ejω) = P (ejω)− P̂ (ejω).

We denote the corresponding controller Ĉ(z). The designed cost is then

defined as Jdes
4
= J(P̂ , Ĉ). It is the cost obtained on the design loop of

Figure 2.
The quantity that really matters is not the optimal cost nor the designed

cost, but the achieved cost, i.e. the cost achieved by the designed controller

on the actual plant: Jach
4
= J(P, Ĉ). Thus, one measure of the performance

robustness of an identification/control design is the comparison between
Jdes and Jach. This comparison expresses how ‘close’ the loops of Figures 2
and 3 are, as measured in terms of the global control performance criterion.
Notice that Jach can be either larger or smaller than Jdes.

To be more specific, we consider the two performance criteria suggested
above. Consider first the H∞ design criterion (3), and let Ĉ be a controller

designed on the basis of P̂ and (possibly) some known or assumed bound
on the error, L(ejω). We can then write:

W
1

1 + PĈ
= W

1

1 + P̂ Ĉ
+ [W (

1

1 + PĈ
− 1

1 + P̂ Ĉ
)].

By expressing successively each one of the three terms above as the sum (or
difference) of the other two, and by applying the triangle inequality to each

of these three expressions, Schrama showed that one can squeeze Jach
4
=

||W 1

1+PĈ
||∞ between the following lower and upper bounds [Sch92a]:∣∣∣∣ ||W 1

1 + P̂ Ĉ
|| − ||W (

1

1 + PĈ
− 1

1 + P̂ Ĉ
)||
∣∣∣∣
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≤ ||W 1

1 + PĈ
||

≤ ||W 1

1 + P̂ Ĉ
||+ ||W (

1

1 + PĈ
− 1

1 + P̂ Ĉ
)||. (11)

Thus, the achieved cost is bounded above by the sum of the designed
cost, Jdes = ||W 1

1+P̂ Ĉ
||∞, and the H∞ norm of the weighted difference

between the sensitivity of the actual loop (Figure 3) and that of the design
loop (Figure 2). We call this second term JprH∞

, because it is a performance
robustness measure:

JprH∞

4
= ||W (

1

1 + PC
− 1

1 + P̂C
)||∞. (12)

JprH∞
expresses the performance error that results from applying the con-

troller Ĉ, designed for P̂ , to the true plant P . With these notations, we
can rewrite the inequalities (11) in a more suggestive way:

|Jdes − Jpr| ≤ Jach ≤ Jdes + Jpr. (13)

The inequalities show that, if JprH∞
is very small, the controller designed for

P̂ achieves almost the same performance on the true plant.
Consider now the LQG criterion (4), and let Ĉ again denote a controller

computed on the basis of some nominal model together (possibly) with
plant/model error information. Using the triangle inequality again, we
show that the square root of Jach can be squeezed between a lower and an
upper bound. To do this, we first rewrite the LQG criterion as the square
of a vector norm. We denote

JNLQG = JN (P,C) =
1

N

N∑
t=1

[(yt − rt)2 + λu2
t ]. (14)

We now introduce the following vector 2-norm for a vector process

(
xt
yt

)
:

∥∥∥∥ xt
yt

∥∥∥∥
2

4
= (

N∑
t=1

[(
1√
N
xt)

2 + (
1√
N
yt)

2])1/2. (15)

Redefining α as the positive square root of λ, α
4
= (λ)1/2, we can then

rewrite the criterion as,

JNLQG =

∥∥∥∥ yt − rt
αut

∥∥∥∥2

2

(16)

Now, consider the signals defined in the loops of Figures 2 and 3, and
observe that (

yt − rt
αut

)
=

(
yct − rt
αuct

)
+

(
yt − yct

α(ut − uct)

)

14



Therefore, by repeated use of the triangle inequality again, we have∣∣∣∣ ∥∥∥∥ yct − rt
αuct

∥∥∥∥
2

−
∥∥∥∥ yt − yct
α(ut − uct)

∥∥∥∥
2

∣∣∣∣
≤
∥∥∥∥ yt − rt

αut

∥∥∥∥
2

≤
∥∥∥∥ yct − rt

αuct

∥∥∥∥
2

+

∥∥∥∥ yt − yct
α(ut − uct)

∥∥∥∥
2

(17)

For the same reasons as above, we denote

Jpr,N
4
=

∥∥∥∥ yt − yct
α(ut − uct)

∥∥∥∥2

2

=
1

N

N∑
t=1

[(yt − yct )2 + λ(ut − uct)2]. (18)

Jpr,N expresses the performance error that results from applying the LQG
controller Ĉ, designed for P̂ , on the actual plant P . Taking the limit for
N →∞, the inequalities (17) can then be rewritten as

|(Jdes)1/2 − (Jpr)1/2| ≤ (Jach)1/2 ≤ (Jdes)1/2 + (Jpr)1/2, (19)

with an obvious definition for Jpr = limN→∞ Jpr,N . The upper bound in
(19) had been obtained in [ZBG91] by a more complicated argument using
the Hölder inequality, and served as the basis for the iterative design scheme
to be described in Section 6.

We note that Jach = limN→∞
1
N

∑N
t=1[(yt − rt)2 + λu2

t ], where yt and

ut are the signals in the actual loop when the controller Ĉ is applied to
that loop, while yct and uct are the signals in the design loop when the same

controller Ĉ is used.
The inequalities (11) and (17) call for the following observations.

Comments

1. In both cases, the inequalities show that the achieved performance is
bounded above by the sum of the designed performance, and a term
expressing the performance error between the two closed loops, in a
measure that is determined by the global control performance crite-
rion. The achieved cost will be close to the designed cost, provided
Jpr is much smaller than the designed cost. Thus, Jpr is a robust
performance criterion, hence the notation. In the H∞ case, JprH∞

is
indeed the classical robust performance criterion. In the LQG case,
minimizing Jpr,N corresponds to making the errors between the cor-
responding signals in the two loops small in the sense defined by the
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LQG control performance criterion. In each case, Jpr will be small if
the actual loop and the design loop are “close to one another in the
appropriate sense”.

2. Both inequalities show that in order to make the achieved cost small,
one should minimize the designed cost (this is what the control design
classically does), and at the same time one should keep the difference
between the two closed loops small, again in the norm determined by
the global control performance criterion Jglob = J(P,C).

3. We note that the estimated plant model, P̂ , and the controller, Ĉ,
both influence the two terms Jdes and Jpr. Thus, ideally, one should
minimize the two terms jointly over the class of admissible plant mod-
els and admissible controllers. This is an impossible task in the case
of restricted complexity models.5 On the other hand, minimizing Jdes

with respect to the controller for a given model P̂ is in both cases a
classical control design task, whereas Jpr expresses in both cases a
distance between two closed loop transfer functions, in the appropri-
ate measure. Therefore, an obvious suboptimal strategy is to make
Jdes small by controller design for a given plant model, and to keep
Jpr small by identification design for a given controller. Since Jdes de-
pends on the estimated plant model, and Jpr depends on the designed
controller, this strategy can only be applied in an iterative manner,
using a succession of local controller designs and local identification
designs:6

min
C

J(P̂i, C) −→ Ĉi+1

min
P (θ)∈M

Jpr(P (θ), Ĉi) −→ P̂i+1. (20)

This idea is at the heart of the iterative identification/controller de-
sign methods that we discuss in Section 6.

4. In classical robust control design, a unique nominal model is given
a priori together with error bounds, and the problem is restricted to
designing a controller. When the model is obtained from data, as
discussed in this paper, we observe that it is natural to design the
controller such as to minimize the designed cost, and to design the
model such as to minimize the performance robustness criterion: the
term Jpr becomes our local identification criterion. This is certainly

5We recall that in [ÅW71] the achieved criterion is minimized jointly over the
parametrized set of plant models and corresponding controllers, but the model set is
assumed to contain the true system, and the minimization leads to a tractable solution
only for the very simple minimum variance control criterion.

6The term ‘local’ refers to the fact that, at each iteration, the controller design (resp.
the identification design) is performed on the basis of some present (i.e. local) plant
model (resp. presently operating (i.e. local)) controller.
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a non standard identification criterion: in (11) it is the H∞ norm of
the frequency weighted difference between the sensitivities of the two
loops; in (17) it is a weighted Least Squares criterion of the difference
between the corresponding signals in the two loops. We make the
important observation that these identification criteria are en-
tirely determined by - and hence consistent with - the global
control performance criteria. This is what we meant in the intro-
duction by stating that in a combined identification/control design
the control performance criterion should dictate what the identifica-
tion criterion should be.

5. It remains to be seen whether these nonstandard identification criteria
can actually be minimized over a class of admissible models: this is
the object of Section 5. It also remains to examine the properties of
the iterative schemes that have only been sketched above. This is the
object of Section 6.

To get a better understanding of the constraints imposed on the esti-
mated plant model by the performance robustness requirements, we elab-
orate on the term Jpr of the inequalities (11) and (17). For (11) we get,
straightforwardly,

JprH∞

4
= ||W (

1

1 + PC
− 1

1 + P̂C
)||∞ = ||W (P − P̂ )C

(1 + P̂C)(1 + PC)
||∞. (21)

The computations for (17) are more complicated. An LQG control design
minimizing (4) leads to a two-degree-of-freedom controller as shown in Fig-
ure 4, where nt is the input to the reference model, rt = R(z)nt: see e.g.
[BGW90].

Assume now that we take v′t ≡ 0 in the corresponding design loop: see
Figure 5. It is shown in [ZBG91] that the second right hand term of (17)
can then be expressed as follows.

JprLQG
4
= lim

N→∞

1

N

N∑
t=1

[(yt − yct )2 + λ(ut − uct)2]

=
1

2π

∫ π

−π

{
|(P − P̂ )C1|2(1 + λ|C2|2)

|(1 + PC2)(1 + P̂C2)|2
Φn

+
(1 + λ|C2|2)

|1 + PC2|2
Φv

}
dω (22)

In these expressions, yt and ut are defined on the actual LQG controlled
plant of Figure 4, while yct and uct are defined from the design LQG loop of
Figure 5, and Φn and Φv are the spectra of the signals nt and vt, respec-
tively. Note that the two loops are driven by the same external signal, nt,
but that the loop of Figure 5 is noise free. Assuming that the spectrum of
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Figure 4: Actual LQG controlled system

the input to the reference model, nt, dominates that of the noise, vt, within
the passband of the closed loop system, then the model fit obtained by the
minimization of this Least Squares criterion will be essentially determined
by the first term.

-
nt

C1(z) -
+ ���

-
uct

P̂ (z, θ̂) -
yct

�C2(z)

6
–

Figure 5: Nominal (or design) LQG controlled system

In both cases (H∞ and LQG design) we observe that the model fit that
is imposed by the minimization of Jpr is one in which the error between
P (ejω) and P̂ (ejω) must be made small in a frequency weighted sense,
where the frequency weighting contains the product of the actual and de-
signed sensitivities. Thus, the model errors must be small where these
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sensitivities are large, and in particular around the crossover frequency of
the actual and the designed closed loop systems. Comparing with the ro-
bust stability criterion (10), we note that we have an additional weighting
by the sensitivity function of the actual closed loop system. In Section 5,
we examine how these performance robustness criteria can be minimized
by identification design.

3 Questions raised by the interplay

The expressions of the previous section have shown that the control design
and the identification design are closely intertwined. For example, the
robust stability inequality (10) shows that the model error can be large in
frequency areas where the mixed sensitivity function of the designed closed
loop system is small, but must be small where this sensitivity function is
large. Similarly, the robust performance considerations have shown that
what really matters for performance is not the error between the open
loop transfer functions P (z) and P̂ (z), but the error between the closed
loop transfer functions (or, equivalently, the closed loop sensitivities) of the
achieved and designed loops of Figures 3 and 2.

These expressions, and the interplay they reveal, raise several questions,
leading to several research topics.

1. Can we estimate the model error P (ejω) − P̂ (ejω), or a bound on
this error, for every ω, when that model has been obtained by iden-
tification on the basis of input/output data information? This is the
question of model error quantification.

2. Can we design the identification in such a way that

• the controller designed from that model will stabilize the actual
plant,

• and the performance robustness criterion Jpr is minimized in
(21) or (22)?

This is the question of identification for control.

3. Can we jointly optimize the identification and the control design, in
order to maximize the achieved control performance? This is the
question of synergistic identification and control design.

As stated in the introduction, the first question is where most of the
research effort is presently concentrated. Although most of this work is
said to be ‘motivated’ by robust control, the control design or the con-
trol performance criterion is rarely mentioned in the papers that deal with
‘identification for robust control’. The effort is spent on trying to develop
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identification methods whose sole merit is to deliver error bounds, with-
out much attention paid to the question of whether the identified model
is good for the control design problem at hand. Our analysis above has
clearly indicated that the identification method must take account of the
control objective. Given that with a restricted complexity model set a cer-
tain amount of plant/model mismatch is inevitable, the control objective
must determine the distribution of this plant/model error. The point of the
remark above is to stress that the identification methods will be useful for
robust control design only if they do take account of the control objective.

The quantification of the error on identified models is of course a very
important objective in itself: it has historically been a trademark of engi-
neers that they should be able to produce an evaluation of the quality of
the product that they deliver. In addition, the estimation of the error on
an identified model is indeed an important ingredient for robust control de-
sign. However, it is not central to the design of the identification for robust
control or to the identification/control interplay. Therefore we do not at-
tempt here to cover the huge amount of literature that is published on this
problem. Let it suffice to say that the methods are essentially distinguished
by the following ingredients.

• The type of prior knowledge that is assumed about the unmodeled
dynamics and the noise: this prior knowledge can be in the form
of stochastic descriptions or hard bounds, it can be unstructured or
parametric.

• The form in which the data are assumed to be injected in the algo-
rithms, such as time series data, or Fourier transform estimates.

• The methods that are used to propagate the prior uncertainty using
data information. Examples are least squares, recursive least squares
with bounding ellipsoids, or worst case constraints leading to large
size linear programming problems.

• The norms, criteria and algorithms that are used to formulate the
approximation problems: H∞, H2, l1, etc.

It is fair to say that, even though the objective is to arrive at bounds on
transfer function errors, the imagination of our research community to get
there is essentially unbounded.

Recent surveys of available methods can be found in [WL92], [Tem93],
[MV91], [GK92], [Gev91]. Finally, we like to mention that [GGN92] is prob-
ably the only contribution in which the prior assumptions on unmodeled
dynamics and noise are of a qualitative rather than a quantitative nature:
the prior uncertainty descriptions are parametric functions whose parame-
ters are subsequently estimated from the data.
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4 What can identification do for you?

We shall from now on adopt a performance enhancement objective. We
have seen in Section 2 that a reasonable scheme for the minimization of the
achieved performance by the combined design of identification and control
is to perform a succession of model-based controller designs and controller-
based identification designs: for a given (local) plant model, a designed
control criterion, Jdes, is minimized over the class of admissible controllers,
and with a given (local) controller operating on the plant, an identification
criterion, Jpr, is minimized over the set of plant models. This odd-looking
identification criterion consists of a measure of the difference between the
actual and the design loop, this measure being derived from and compatible
with the global control performance criterion.

We now examine whether these bizarre control-performance-based iden-
tification criteria can indeed be minimized by classical identification meth-
ods. We shall do the development for the LQG criterion (an H2 control
criterion) because, as we will show, the corresponding criterion JprLQG can
be naturally connected to a prediction error identification criterion (an H2

identification criterion). Similarly, the H∞ criterion JprH∞
naturally leads

to an H∞ identification criterion.

Least squares prediction error identification

We first recall the basic ingredients of prediction error identification.
Remember that the true plant is assumed to be representable by (1). We
consider that the model set takes the form

yt = P (z, θ)ut +H(z)et. (23)

Here P (z, θ) is a proper rational transfer function parametrized by some
real vector θ, et is a zero mean white noise sequence, while H(z) is, for
simplicity, assumed to be some fixed noise model chosen by the user. From
the model set (23) it is easy to write the one-step ahead prediction for yt:

ŷt|t−1(θ) = H−1(z)P (z, θ)ut + [1−H−1(z)]yt. (24)

The one-step ahead prediction error is

εt(θ)
4
= yt − ŷt|t−1(θ)

= H−1(z)[(P (z)− P (z, θ))ut + vt]. (25)

In Least Squares prediction error identification, the estimation of the pa-
rameter vector θ on the basis of N input-output data is obtained by mini-
mizing the sum of the squares of the prediction errors {εt(θ), t = 1, . . . , N}.
However, for reasons that will soon become transparent, it is often desirable
to minimize a frequency weighted sum or, equivalently, to filter the errors
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by some stable filter with transfer function D(z). We denote by εft (θ) the
filtered errors :

εft (θ)
4
= D(z)εt(θ). (26)

Least-squares prediction error identification amounts to estimating θ that
minimizes

VN (θ)
4
=

1

N

N∑
t=1

[εft (θ)]2. (27)

The parameter estimate is then defined as

θ̂N = arg min
θ∈Dθ

VN (θ), (28)

where Dθ is a predefined set of admissible values. The parameter vector
θ̂N then defines an estimated input-output model P (z, θ̂N ).

Under reasonable conditions on the data and the model structure (see

[Lju87]), θ̂N converges as N →∞ to

θ∗ = arg min
θ∈Dθ

V̄ (θ), (29)

where
V̄ (θ) = lim

N→∞
EVN (θ). (30)

If the data are a realization of a stationary stochastic process, then V̄ (θ) =

E[εft (θ)]2, the variance of the filtered prediction errors. Expressing these
filtered prediction errors as a function of the ‘true system’ and the model
transfer functions, and using Parseval’s identity,

E[εft (θ)]2 =
1

2π

∫ π

−π
Φεf (ω)dω,

allows one to obtain an expression for the frequency distribution of the
asymptotic model error. To make this exercise useful, we shall successively
derive the expressions of εft in the case of open loop and closed loop iden-
tification.

The filtered prediction error, εft , can be written, using (25) and (26),

εft (θ) = D(z)H−1(z)[(P (z)− P (z, θ))ut + vt]. (31)

Identification in open loop

Assume first that the data have been collected while the process operates
in open loop. In such case, the signals ut and vs are uncorrelated for all t
and s. It then follows from (31) that,

V̄ (θ)
4
= E[εft (θ)]2 = 1

2π

∫ π
−π{|P (ejω)− P (ejω, θ)|2Φu(ω) + Φv(ω)}

× |D(ejω)|2
|H(ejω)|2 dω (32)
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Since θ̂N converges to θ∗, and θ∗
4
= arg minθ∈Dθ V̄ (θ), this integral expres-

sion gives an implicit characterization of the model P (ejω, θ∗) to which

P (ejω, θ̂N ) will converge if the number of data tends to infinity. In other
words, it gives an implicit characterization of the asymptotic bias error.

The expression (32) shows that, when identification is performed on

data collected in open loop operation, P (ejω, θ̂N ) converges to that model
within the model set that minimizes a frequency weighted integral of the
square error between the true transfer and the model transfer function,

with a frequency weighting Φu(ω)|D(ejω)|2
|H(ejω)|2 . With our assumption of a fixed

noise model (i.e. H(z) is θ-independent), the convergence point of θ̂N is
independent of the actual noise distribution. It depends on the noise model

H(ejω), but only through the combined weighting Φu|D|2
|H|2 .

The formula (32) is useful because it shows that, in the situation where
some restricted complexity model structure has been chosen for P (z, θ), one
can still manipulate the frequency distribution of the plant/model error to a
certain extent by playing with the design variables Φu, D and H. Since the
whole interplay between identification and robust control design is based
on obtaining a frequency distribution of the plant/model error that satisfies
performance constraints, we will come back to this design issue and exam-
ine, on the basis of formula (32), whether open loop identification with the
required choices of Φu, D and H can help us obtain robust performance.
But first, we derive a similar expression for the frequency distribution of
the plant/model error in the case of closed loop identification.

Identification in closed loop

We now consider that the data have been collected on the true system
when some controller was operating, and we compute the expression of
the filtered one step ahead prediction error. To make our derivation more
general, and because we shall return to the LQG controller in Sections 5
and 6, we consider that the system operates under a two-degree-of-freedom
controller as shown in Figure 4. First we compute εft . Substituting the
expression for ut derived from Figure 4 into (31) yields:

εft (θ) =
D(z)

H(z)[1 + P (z)C2(z)]
[(P (z)−P (z, θ))C1(z)nt+(1+P̂ (z, θ)C2(z))vt].

(33)
To get a better insight into some properties of closed loop identification, we
shall further assume that the noise vt on the true system can be modeled as
vt = H0(z)et, where et is zero mean white noise. The expression for εft (θ)
can then be rewritten as (dropping the dependence on z for simplicity of
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notation):7

εft (θ) =
D

H(1 + PC2)
[(P−P̂ (θ))C1nt+(H0(1+P̂ (θ)C2)−H(1+PC2))et]+Det.

(34)
When identification is performed on closed loop data collected on the pro-
cess operating under a two-degree-of-freedom controller, the estimate θ̂N

converges to the minimum of the cost function V̄ (θ)
4
= E[εft (θ)]2. From

(33) we get, using Parseval’s theorem:

E[εft (θ)]2 =
1

2π

∫ π

π


∣∣∣∣∣ (P (ejω)− P̂ (ejω, θ))

1 + P (ejω)C2(ejω)

∣∣∣∣∣
2

|C1(ejω)|2Φn(ω)

+

∣∣∣∣∣1 + P̂ (ejω, θ)C2(ejω)

1 + P (ejω)C2(ejω)

∣∣∣∣∣
2

Φv(ω)

× |D(ejω)|2

|H(ejω)|2
dω (35)

An interesting alternative expression of the minimizing value of V̄ (θ) can
be obtained using (34). Since the last term in (34) is independent of θ, the
minimization of V̄ (θ) with respect to θ is equivalent with the minimization
of8

V ∗(θ) =
1

2π

∫ π

π


∣∣∣∣∣ (P − P̂ (θ))

1 + PC2)

∣∣∣∣∣
2

|C1|2Φn(ω)

+

∣∣∣∣∣H0(1 + P̂ (θ)C2)−H(1 + PC2)

1 + PC2

∣∣∣∣∣
2

σ2
e

× |D|2|H|2
dω (36)

The expressions (35) and (36) describe in an implicit way the asymptotic
distribution of the error between the true system P (ejω) and the estimated

model P̂ (ejω, θ̂) when the identification is performed on data collected in
closed loop using a reduced complexity model set. The following remarks
are worth making.

• The model fit is definitely influenced by the controller: the component
C1 shapes the spectrum |C1|2Φn that enters the loop, while the com-
ponent C2 exerts its influence through the sensitivity 1

1+PC2
of the

actual closed loop. The weighting on both terms of the integrand will
be large where this sensitivity is large, namely around the crossover
frequency of the closed loop system.

7This alternative calculation results from an insightful discussion with R. Hakvoort
and P. Van den Hof.

8We drop the dependence of the transfer functions on ejω here to simplify notation.
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• External excitation is definitely needed for closed loop identification.
The model P̂ will approximate P (in the frequency weighted sense
determined by the formula (35)) only if the reference signal spectrum
|C1|2Φn that enters the loop dominates the noise spectrum Φv within
the closed loop bandwidth.

• Without external reference, the model will attempt to approximate
the inverse of the controller, C−1

2 (ejω).

• The data filter D(ejω) can again be used to shape the fit globally.

• The expression (36) shows that, even if the model setM = {P̂ (z, θ)}
is able to represent the true system P (z), closed loop identification
using a direct prediction error method will lead to a biased estimate
of P (z) if the noise model is incorrect, that is if H(z) 6= H0(z). This
is a serious drawback which has led Hansen [Han89] and Schrama
[Sch92a] to propose an alternative indirect scheme that transforms
the closed loop identification problem into an open loop scheme.

The Hansen-Schrama scheme

We present the Hansen scheme, as modified by Schrama, to perform
closed loop identification using open loop methods. The scheme is based on
the idea that if a compensator C(z) stabilizes the plant P (z), then P (z) can
be represented in the Youla parametrization of all plants stabilized by the
compensator C(z): this is the dual of the classical Youla parametrization.
Thus, consider the loop of Figure 3, and assume that the noise vt can be
modeled as vt = H(z)et, with H(z) a rational transfer function and et white
noise of zero mean. Let P0 be an auxiliary model (possibly an estimate of
P ) such that the closed loop (P0, C) is stable, and let P0 and C have right
coprime factorizations P0 = N0(D0)−1 and C = Nc(Dc)

−1, respectively,
where N0, D0, Nc, Dc are all stable transfer functions. It can then be
shown [Sch92a] that the feedback system of Figure 3, with vt = H(z)et, is
stable if and only if [H P ] has a right coprime factorization of the form

[H P ] = [DcS N0 +DcR]

[
I 0

NcS D0 −NcR

]−1

, (37)

where R(z) and S(z) are stable transfer functions. We note, in particular,
that P (z) = (N0 +DcR)(D0 −NcR)−1. For future use, we define:

Na 4= N0 +DcR Da 4= D0 −NcR. (38)

Using this coprime factor representation of P and H, the feedback system
of Figure 3 can be redrawn as in Figure 6.
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Figure 6: Coprime factor representation of P and H.

Now it is easy to show that the signal xt of Figure 6 can be reconstructed
from ut and yt through

xt = (D0 + CN0)−1(ut + Cyt). (39)

In addition, it follows immediately from the figure that ut + Cyt = rt.
Therefore, xt is uncorrelated with et, and hence with the noise vt.

There are a number of ways to extract an estimate of the plant from
this coprime factor representation. They are all based on the observation,
immediately derived from (38) and the block-diagram, that(

ut
yt

)
=

(
Da

Na

)
xt +

(
−NcS
DcS

)
et. (40)

Thus, the signal vector (u y)T is expressed as the output of an unknown
system driven by the known signal xt, plus a noise term that is uncorre-
lated with xt. These equations serve as a basis for the identification of the
transfer functions Na and Da, thus yielding an estimate P̂ = N̂a(D̂a)−1 of
the unknown plant P . Notice that, unlike the estimate obtained by direct
identification (see (36)), the present estimate is not biased by the incor-
rectness of the noise model. Finally, we mention that this coprime factor
representation has also been used by Zhu et al. [ZS92] for the identification
of closed loop systems using spectral estimates.

We have briefly presented the bare essentials of prediction error identi-
fication theory, and we have given a frequency domain characterization of
the criteria that are minimized by prediction error methods when identifica-
tion is performed in open loop and in closed loop. These characterizations
can also be seen as an implicit description of the frequency distribution
of the asymptotic model error. We have also shown how the bias effects
introduced by the noise in closed loop identification can be circumvented.
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5 Identification for control

We now examine how the identification theory of the previous section can
be used to tune the identification criterion towards the satisfaction of a
control performance criterion, as suggested in Section 2. We thus return
to the LQG design problem posed in Section 2. Ideally, one would like
to design the identification in such a way that the difference between the
cost achieved using the model-dependent controller Ĉ on the real plant P
achieves a performance, Jach, that is as close as possible to Jopt.

Given that the global control performance criterion is given by JLQG
(see (4)), this strategy should, in principle, be pursued by designing an
identification criterion that minimizes

V optN (θ) =
1

N

N∑
t=1

[(yt − yoptt )2 + λ(ut − uoptt )2]. (41)

For the case of minimum variance control (λ = 0), this was precisely the
experiment design criterion adopted in [GL86], and it led to the conclusion
that the identification should be performed in closed loop under minimum
variance control. Although an exact implementation of this result is of
course impossible because the minimum variance controller is a function of
the unknown plant, it suggests an iterative design strategy in which the
identification is pursued under feedback control with a minimum variance
controller computed from the present model estimate. Adaptive minimum
variance control is a fast implementation of this idea.

In the minimum variance control case, an optimal experiment design
can be derived because the controllers Copt and Ĉ are an explicit function
of the system and model parameters, respectively. The same is true for
model reference control: see [Lju87]. In our present LQG design problem,
the controller is a nonlinear function of the plant, and this seems to rule out
a design based on a comparison of the optimal loop and the achieved loop.
Thus, we return to a comparison between the achieved and the design loop,
equipped with (or reinforced by) the inequalities (19). It was suggested
in Section 2 that one could minimize the first term of the upper bound,
Jdes, by control design (this is a standard LQG control design problem)
and the second term by identification design. The question was raised as to
whether the non-standard criterion (18) can be minimized by identification
techniques.

We first recall that the criterion (18) has been reformulated in the fre-
quency domain as (22), and we now compare (22) with the prediction error
criteria (32) and (35) for open loop and closed loop identification, respec-
tively. It is immediately obvious that the criterion (22) cannot be minimized
as a result of open loop identification. However, it can be minimized by a
classical least squares prediction error method provided,

• the identification is performed in closed loop;
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• with a data filter D(z) obtained as the solution of

|D(z, θ)|2 =
|H(z)|2(1 + λ|C2(z)|2)

|1 + P̂ (z, θ)|2
. (42)

We thus have the following remarkable result, that was derived in [ZBG91].

‘Remarkable?’ result (denoted R?R)
Assume that some two-degree-of-freedom controller [C1(z), C2(z)] op-

erates on the true system as in Figure 4, and on a simulated design loop
containing a θ-dependent model set P̂ (z, θ) as in Figure 5. Let the two
loops be driven by the same reference signal source, nt. Then the criterion

Jpr,NLQG =
1

N

N∑
t=1

[(yt − yct )2 + λ(ut − uct)2], (43)

which expresses the ‘distance’ between the two loops in a measure that
is determined by the global LQG criterion, can be minimized over this
model set by a classical least squares prediction error method, provided the
identification is performed in closed loop with the data filter D(z, θ) defined
by (42).

This result is remarkable because it is a priori not obvious that the
criterion (43), which is in fact a ‘control performance error criterion’, can
be made identical to a classical prediction error criterion, given the proper
experimental set-up and the proper data filter. This equivalence allows one
to estimate the model P̂ (z, θ̂) that minimizes (43) using standard identifi-
cation algorithms. We now make a few comments about this result.

Comments

1. One of the important consequences of result R?R is that, if one iden-
tifies a model for control design, then the identification should be
performed in closed loop. The intuition behind this result is that
a model will be good for control design if its closed loop properties
are close to the closed loop properties of the actual system under the
same feedback control, that is if the closed loop transfer functions
of the loops of Figure 3 and 2 are close. This is the message of the
inequalities (11) and (17).

2. The problem is that the controller that should ideally operate dur-
ing the collection of data for identification is precisely the optimal
controller that is to be designed from the identified model. This is
a classical case of the design method biting its own tail, and is the
main reason for introducing iterative design methods. In these itera-
tive designs, each control design step is followed by an identification
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design step, and vice versa. The rationale of these iterative designs,
in the light of our present identification analysis, is that, even if the
presently acting controller, say [C1,i, C2,i], is not the optimal one in
the class of admissible reduced complexity controllers, it will produce

a frequency distribution of the input signal,
|C1,i|2

|1+PC2,i|2 Φn, that will

force the next identified model, say P̂i+1(z, θ̂), to have closed loop
properties close to those of the true system.

3. A number of other approaches to the ‘identification for control’ prob-
lem have also led to the conclusion that the identification should be
performed in closed loop and with appropriate data filters, and this
is now widely recognized as a key ingredient for the success of control
design based on reduced complexity identified models.

• In [Han89] (see also [HFK89]) the idea of [GL86] has been ex-
tended from an H2 measure of the performance degradation be-
tween the optimal and the actual system to an H∞ measure of
the difference between the closed loop transfer functions of these
two feedback systems.

• In [BGW90] the H∞ stability and performance robustness con-
straints detailed in Section 2 were used to motivate the use of
closed loop prediction error identification in the context of mod-
eling for LQG control design. Indeed, a comparison between the
robust performance criterion (21) and the closed loop identifica-
tion criterion (35) shows that, by proper choice of the data filter
D(z) and by closed loop identification, the robust performance

expression | (P−P̂ )C

(1+PC)(1+P̂C)
| can be made small in an H2 sense.

Even though the H2 minimization of this quantity cannot guar-
antee a bound on its H∞ norm, the idea of making that quantity
small within the bandwidth of the closed loop system to enhance
performance robustness was advocated.

• The Delft group, Hakvoort, Schrama, and Van den Hof, have
brought important contributions to the identification for control
problem (see e.g. [Hak90], [Sch91], [Sch92a], [Sch92b], [SvdH92]).
In his remarkable thesis [Sch92a], Schrama examined many facets
of the ‘identification for control’ and ‘iterative identification and
control design’ problems. In particular, he demonstrated con-
vincingly with a dramatic simulation example that an open loop
model that would pass all standard model validation tests can
result in a disastrous controller. Conversely, the best model for
control design can be so poor as an open loop model of the plant
that it would fail most classical model validation tests.

• The equivalence between a performance robustness criterion and
a prediction error criterion established in [ZBG91] for an LQG
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control criterion has been extended to a pole placement control
design by Åström [Åst93]. For this particular control design, he
shows that the ‘control performance error’ (i.e. the error between
the outputs y and yc of the loops of Figures 3 and 2) can be made
identical to the ‘identification error’ (i.e. the filtered prediction
error) by performing closed loop identification with a specific
data filter.

• Mäkilä and Partington have advocated closed loop identification,
both as a way of identifying open loop unstable but stabilizable
systems [MP92a] and as a procedure for enhancing control per-
formance robustness when the model is used for control design
[MP92b]. In [MP92a] H∞ identification of the closed loop trans-
fer function is performed, while parameter bounding techniques
using l∞-stable coprime factor descriptions are used in [MP92b].

• Liu and Skelton [LK90] pointed to the need for closed loop identi-
fication and proposed an iterative design scheme using Skelton’s
q-Markov Cover models.

We have demonstrated in this section that the performance robustness
criterion JprLQG, defined for some given controller operating both on the
plant and on the model, can be minimized over a set of parametrized mod-
els by least squares prediction error identification in closed loop with an
appropriate data filter. A similar conclusion can be drawn for the mini-
mization of JprH∞

.
We now examine methods for the synergistic identification and control

design that are based on the iterative minimization of Jdes by controller
manipulation and of Jpr by model manipulation.

6 Iterative identification and control design

Suppose that, for some plant P to be controlled, a preliminary analysis
has led to the choice of some model set, M = {P̂ (z, θ), θ ∈ Dθ}, and
some control performance criterion, J(P,C), with the property that the

minimization of J(P̂ , C) with respect to C, for any P̂ ∈ M, uniquely

determines a designed controller, Ĉ = Ĉ(P̂ ). The choice of an adequate
model set and of an adequate control objective is of course very much part
of the control design. In particular, one must choose a control performance
objective that is compatible with the achievable closed loop bandwidth, etc.
However, we adopt these assumptions (or play this game) to illustrate the
central features of the synergistic design problem. Ideally, the problem of
joint identification and control could then be reformulated as a parameter
estimation problem as follows:

min
θ∈Dθ

J(P, Ĉ(P̂ (θ))). (44)
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To make things concrete, assume for example that J(P,C) is the LQG
criterion (4) and that M is a parametrized set of third order output error
models with a parameter vector θ ∈ Dθ = R6. The optimal control problem
has thus been turned into an identification problem.

The direct minimization of such a global control performance criterion
over a set of restricted complexity models is typically intractable, but one
way to attack the problem is to perform a succession of local identification
steps and local control design steps in an iterative way. Several motivations
can be given to rationalize such iterative procedures.

• A feasibility motivation: the intractable joint optimization problem
alluded to above is replaced by a sequence of tractable closed loop
identification problems with fixed controller, and controller design
problems with a given model.

• A theoretical motivation: the triangle inequalities (11) and (19) are
one way of giving theoretical credibility to the the idea that by per-
forming small controller changes that minimize Jdes for a given P̂ ,
followed by small model changes that minimize Jpr for a given Ĉ,
then this iterative procedure may tend to jointly minimize the upper
bound on the achieved cost. For the moment, no hard results are yet
available.

• A practical motivation: in the process control industry, it is common
practice to design a controller, let it operate for a while, collect data
on the controlled process, and then use these data to perform a new
design in order to ameliorate performance. The novel contribution of
the iterative design schemes is to provide a systematic and theoreti-
cally justified framework to perform these successive designs. Thus,
they should really be seen for what they are, namely performance
enhancement schemes.

There are many variants to the iterative design schemes - and we shall
discuss some of them - but the basic idea is as follows.

1. Step 0: Identify an open loop model, P̂0, from input-output data,
and design a controller, Ĉ0, that stabilizes both the true plant P and
the estimated model P̂0. Apply this controller to the plant and collect
new input-output data.

2. Step i: Using the closed loop data collected on the plant while the
controller Ĉi−1 operates, identify a new model P̂i by minimizing a lo-

cal identification criterion. Using this new identified model P̂i, design
a new controller Ĉi that stabilizes both P and P̂i, by minimizing a
local control design criterion. Apply this controller to the plant and
collect new input-output data.
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3. Step∞: Do not iterate until convergence (who would?), for two good
reasons: convergence has not been proved for any of these schemes,
and which practical control engineer would want to redesign his con-
trollers every day anyway?

In [ZBG91] such a procedure was proposed, first for the case where the
global criterion is a classical H∞ criterion, then for the case of an even
more classical LQG criterion. In the case of an H∞ criterion, the iteration
of identification steps and control design steps can be formulated, and it
was proved that the achieved performance criterion decreases at every step.
However, no feasible algorithm is presently available for the H∞ identifica-
tion step of this joint design. The same idea of iterative minimization of
an H∞ criterion was developed independently in [BYM92], where the exact
same conclusion was reached, a rather fortunate coincidence.

We therefore turn to the LQG criterion, and present the algorithm
known in the process control industry as the Zangscheme.9

The Zangscheme10

The Zangscheme of [ZBG91] uses the LQG criterion (4) as the global
criterion to be minimized. To simplify the notation, we shall often use
the vector notation C(z) to denote the two-degree-of-freedom controller

C1(z), C2(z). Thus, C(z)
4
= [C1(z) C2(z)].

Consider now that we are at i-th iteration of the design (see above), and

that the two-degree-of-freedom controller Ĉi−1, designed at the previous
iteration, is operating on the real plant P . Thus, C(z) is replaced by

Ĉi−1(z) in the loop of Figure 4, and N data yt and ut are being collected
on that actual closed loop system.

The identification step is performed by minimizing the local prediction
error identification criterion,

J id,N =
1

N

N∑
1

[Di(z, θ)εt(θ)]
2, (45)

over the model set M, where εt(θ)
4
= yt − ŷt(θ), and where the data filter

is computed from

|Di(z, θ)|2 =
|H(z)|2(1 + λ|Ĉ2,i−1(z)|2)

|1 + P (z, θ)|2
. (46)

The criterion is ‘local’ only through its dependence on the present controller,
Ĉ2,i−1, acting in the loop. As shown in Section 5, this local identification

9... and better known in Australia and Belgium as the Zangstuff.
10We present here a slightly improved version of the Zangscheme, taking account of

modifications introduced by Partanen and Bitmead [PB93] and by the author: progress
just cannot be stopped.
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criterion is identical to the robust performance criterion Jpr of LQG defined
in (18), where the signals uct and yct are those that would be generated by
applying the same signal nt to the loop of Figure 5 controlled by the same
controller Ĉi−1 and with no noise input. The new model that results from

the identification step is denoted P̂i(z):

P̂i(z) = arg min
P (z,θ)∈M

J id,N (47)

Comments

We note that the data filter depends on the model that is being identi-
fied. There are several ways to cope with this problem.

• The first solution is to replace the unknown P̂ (z, θ) in the data filter

by the most recent estimate, P̂i−1(z); this is the solution proposed
in [ZBG91]. However, the equivalence between Jpr and J id breaks
down with this solution, as pointed out by Hakvoort and Van den
Hof [HV93].

• A better solution is to let the filter Di(z) be θ-dependent. This ef-
fectively corresponds to solving a prediction error problem with a
modified model structure. It will, however, typically lead to a more
complicated minimization problem for J id,N .

We now turn to the i-th control design iteration. The certainty equiv-
alence control design criterion would be to minimize the following perfor-
mance criterion Jdes:

Jdes = lim
N→∞

1

N

N∑
t=1

{(yct − rt)2 + λ(uct)
2}, (48)

where uct is the designed control signal and yct is the output of the identified

model, P̂i, driven by uct .
Instead of following the certainty equivalence route of minimizing (48),

the Zangscheme performs a controller design that takes account of the
present plant/model uncertainty in the following way.

• A closed loop simulation is performed with the controller Ĉi−1(z) act-

ing on the present plant model P̂i(z). The actual closed loop system
of Figure 4, and the simulation loop of Figure 5, with the same con-
troller Ĉi−1(z), are driven by the same signal nt

11, thus generating
the signals ut and yt, respectively uct and yct .

• With these experimental and simulated data sets, low order (typically
third order AR models) are fitted to the signals (y − r), u, (yc − r)

11In addition, the actual system is also driven by the noise source vt.
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and uc, thus yielding spectral estimates Φ̂
1
2
y−r(z), Φ̂

1
2
u (z), Φ̂

1
2
yc−r(z)

and Φ̂
1
2
uc(z).

• The following frequency weighted local control criterion is minimized
to compute Ci(z):

Jc = lim
N→∞

1

N

N∑
t=1

{[F1(z)(yct − rt)]2 + λ[F2(z)uct ]
2}, (49)

where F1 and F2 are weighting functions (linear filters) that are chosen
as the following ratios of the estimated spectra:

F1 =

(
Φ̂y−r

Φ̂yc−r

)1/2

, F2 =

(
Φ̂u

Φ̂uc

)1/2

. (50)

We comment that all the signals necessary for the computations of the
filters F1(z) and F2(z) are readily available at every iteration step. The
effect of the frequency weightings is to make the filtered tracking error
signal and control signal, respectively, in (49) have the same spectra as
the corresponding signals in the global (ideal) performance criterion JLQG
of (4). Thus, the frequency weightings are a distortion of the certainty
equivalence criterion that takes account of plant/model mismatch in order
to reflect the global criterion. The plant/model mismatch information is
injected in the design on the basis of signal information only.

Besides forcing the local control objective to mimic the global one, as
explained above, the effects of the frequency weightings in (49) have entirely
logical and intuitive interpretations. If at some frequency Φy−r is larger
than Φyc−r, it means that at that frequency the model fit is poor with the
consequence that the achieved tracking performance (with the presently
active controller) is worse than expected from the designed system. Hence,
more emphasis should be put on the tracking penalty at that frequency
at the next control design stage, which is reflected by the weighting being
larger than 1. If at some frequency Φy−r is smaller than Φyc−r, it also means
that at that frequency the model fit is poor, but in such a way that the
presently active controller actually achieves a better tracking performance
on the true plant than on the model. The emphasis on the tracking penalty
at that frequency should therefore be decreased at the next control design
stage to provide scope for improvement at other frequencies. Similar astute
and entirely intuitive observations can be made by the reader as regards
the frequency weighting on the control.

The i-th iteration of the Zangscheme (at least in one of its variants)
thus involves the following steps:

• Apply the controller Ĉi−1(z) to the true plant P (z) with an external
reference rt, as in Figure 4, to generate a data set {yt, ut} of length
N .
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• Compute the data filter Di(z, θ) using (46).

• With the data set {yt, ut} identify P̂i(z, θ̂) using Di(z, θ).

• Perform a closed loop simulation, driven by the same external ref-
erence rt, with the controller Ĉi−1(z) acting upon the plant model

P̂i(z, θ̂), as in Figure 5, to generate a data set {yct , uct} of length N .

• With the data sets from the experiment and the simulation, identify

AR models of (y − r), u, (yc − r), uc to yield Φ̂
1
2
y−r(z), Φ̂

1
2
yc−r(z),

Φ̂
1
2
u (z) and Φ̂

1
2
uc(z).

• Calculate the frequency weightings F1 and F2 using (50).

• Design a new frequency weighted feedback controller Ĉi(z) based on

P̂i(z, θ̂) and the identified signal spectra.

A number of other variants have been proposed [PB93], [HSV92], and
a large number of simulations have been performed (see [ZBG91]). The
disturbance rejection properties of the Zangscheme have been examined in
[ZBG92]. The simulations typically exhibit an improvement of the achieved
cost during the first three or four iterations, with no significant improve-
ment thereafter. They also show that the model that is obtained after these
few iterations can be very different from the best open loop model: this last
finding is corroborated by the simulations performed with all other iterative
design methods, again confirming that the best model for control design is
definitely not the best open loop model.

Alternative iterative design schemes

We now briefly describe the key features of some of the other iterative
identification and control design schemes. They are all based on trying to
make the design loop of Figure 2 close to the achieved loop of Figure 3 in
some sense.

• In Liu and Skelton [LS90], the q-Markov Cover theory of Skelton et
al., which is a method for model reduction, is used in the identifi-
cation step to identify a model of the closed loop system with the
previously designed controller operating in the loop. Since the con-
troller is known, a model of the open loop plant can be derived. A
minimum energy controller with output variance constraint is used in
the control design step.

• In [BYM92] Bayard et al. formulate an H∞ robust performance cri-
terion for the joint optimization of control design and identification
design. A relaxation algorithm is proposed for solving the joint op-
timization problem, based on alternating between curve fitting and
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control design steps. This strategy yields a monotonically improving
achieved performance, but is presently not implementable. A nu-
merical example using an approximate implementation, for which no
descent property can be proved, shows the usefulness of the approach.

• The Delft group has done a thorough analysis of the iterative design
scheme. Although several alternative methods and variants have been
examined, the basic approach in [Sch92a], [Sch92b] and [SV92] is to
use, as global performance measure, an H∞ norm of the feedback
system linking the exogenous signals to the (u y)T vector. This en-
compasses most H∞ control design criteria. The triangle inequality
(11) is used to justify the iterative design schema. Both the control
and the identification design are performed using coprime stable fac-
tor representations of the plant model and the controller, as explained
in Section 4. This use of coprime factor representations guarantees
that the designed controller is optimally robust against perturbations
of the coprime factors, as shown by Vidyasagar [Vid85]. The closed
loop identification step is based on the open loop scheme detailed in
Section 4, using the auxiliary signal xt defined in Figure 6. For lack
of a satisfactory H∞-algorithm, the minimization of the performance
robustness criterion JprH∞

in the identification step is replaced by an
H2 minimization. The control design step is a certainty equivalence
minimization of the nominal H∞ criterion. One interesting feature of
the Schrama scheme is that it can ‘predict’ the achieved performance;
this feature is used to update the performance requirements as the
closed loop model becomes better.

• The idea of improving the performance requirements as the closed
loop model becomes closer to the actual closed loop system is central
to the philosophy of the scheme developed by Lee et al. [LAKM92],
who call this idea the windsurfer approach to adaptive control. The
techniques used by Lee et al. are based on the Hansen representa-
tion of the closed loop system, and are therefore close to those of
Schrama et al., but the global objective is different. It is formulated
as the minimization of the H∞ norm of the difference between the
achieved closed loop transfer function and that of a reference model.
The emphasis is put on how to update the reference model (i.e. the
performance specifications) as the model and the controller improve.
The identification step, which is still not fully resolved, attempts to
estimate the stable factor R in the representation (38), rather than
the factors Na and Da in the Schrama scheme.
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7 Conclusions

Two o’clock in the morning. What more can I say? The joint design of
identification and control is a fresh field, ripe with ideas and probably a
few misconceptions as well. Some convergent streams are emerging from
the array of different approaches that have been applied to the identifica-
tion and control design problem. These streams and guidelines bear the
names ‘iterative designs’, ‘closed loop identification’, ‘control-determined
identification criterion’, ‘appropriate data filter’. However, the evidence
is still circumstantial, the methods ad hoc, and the hard proofs scarce.
So far, it appears that the benefits to be drawn from this research area are
more attuned towards the development of performance enhancement design
schemes for industrial process control than they are towards the fine-tuning
of controllers that need to stabilize high performance aircraft.

However, beneath the surface lie fascinating and deep theoretical ques-
tions that have information theoretic significance going back to the dual
control ideas of Fel’dbaum, and enough hard mathematical and control-
theoretic questions to keep a few generations of PhD students busy.
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[Mäk91] P.M. Mäkilä, “Identification of stabilizable systems: closed loop
approximation”, Int. J. Control, Vol. 54, No 3, pp. 577-592, 1991.
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