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Abstract

We assume that the unmodelled dynamics of a
system are a realisation of a random process with
parameterised second order properties. We show
that these parameters may be estimated from the
data. We show how these second order properties
may then be used for model order evaluation of
uncertainty bounds.

1 Introduction

The need of robust control designers for model
descriptions including uncertainty bounds is a
major theoretical challenge in identification. The
bounds required account for two error terms.
The first one, often called the bias error, is
caused by the fact that the parametrized model
structure is, at best, a simplified (low order) ver-
sion of the true system. The second component,
often called variance error, is caused by the noise
in the data that make up the particular realiza-
tion that is used for identification.

The key tool used for the computation of vari-
ance errors is the Cramér-Rao lower bound on
the estimated parameters. In the case of exact
model structure, this tool has produced reason-
able variance error expressions for the estimated
transfer fuctions : see e.g.[1], [2]. This variance
error typically decreases like %, when N is the
number of data.

The characterization of the bias error on the
estimated transfer function is much more dif-
ficult. A first result, due to Wahlberg and
Ljung [3] produces an implicit characterization
of the asymptotic bias. Whereas it yields use-
ful insights into input design problems, it does
not produce explicit bias error bounds. Recent
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work has focused on producing such explicit er-
ror bounds : [4]-[5]. However, the results so far
are based on a complete prior specification of
the characteristics of the unmodelled dynamics.
These characteristics typically involve assump-
tions on the magnitude and smoothness of the
variation of the transfer function, Ga(e’*), of the
unmodelled dynamics in the frequency domain.

The contributions of this paper are twofold.
First, following the tradition of [2],[6] , we adopt
a stochastic embedding approach. However, a
novel feature is that we show how the param-
eters of these prior distribution functions can
be estimated from the data by maximum likeli-
hood. We also compute the Cramer-Rao bound
for these estimates.

Our second contribution is to show that the
above procedure leads naturally to a method for
optimal model order selection with finite data.
The optimal order is obtained by minimizing
some suitable criterion of the total mean square
error between the true transfer function Gp(e?*)

and the estimated model G(e7*, fy) based on N
data.

We show that, in the presence of undermod-
elling and with finite data, this new criterion per-
forms better than the classical Final Prediction
Error (FPE) and AIC criteria.

We should like to make it very clear that, con-
trary to popular beliefs, with finite noisy data the
optimal model order is typically smaller than the
“exact” model order if such an exact order exists,
and that the traditional quest for a true model
order on the basis of finite data is a misguided
pursuit.

2 Model Assumptions

We shall consider discrete-time single-input
single-output systems for simplicity, and we shall
assume throughout that the true system is de-
scribed by

Yt = Gr(q)ut + vt (1)

where q is the forward shift operator, Gr(q) is
the “true” transfer function and wv; is additive



Gr(q) = G(q,0) + Galq). (2)

We shall make the following assumptions con-
cerning G(q,6), Ga(q), and v;.
Assumptions concerning the mnominal
model

The nominal model is a finite linear combi-
nation of known rational basis functions,

G(q,0) = B(q)8 (3)

with
B(q) = [B1,(9),---,Bp(q)] (4)
0 = (61,...,6,)" (5)

The vector § € R' is unknown but fixed.
Assumptions on the unmodelled dynam-
ics. The transfer function Ga(q) of the unmod-
elled dynamics is considered as a particular re-
alization of a zero mean random variable having
a probability density function fa(3) with known
structure, but parametrized by an unknown vec-
tor 8. Without loss of generality, Ga(gq) can be
written as

Galg) = i Mg " (6)

The important point is that we shall not attempt
to estimate G (i.e. we shall not estimate a large
number of parameters 7;) : this would be mod-
elling the unmodelled dynamics. Rather we shall
estimate the low-dimensional parameter vector 8
that describes the properties of Ga (eg. magni-
tude and smoothness).

An example of a suitable model for the charac-
teristics of the unmodelled dynamics would be
to assume that Ga(e’*) is a zero mean Gaussian
process with covariance function:

ael?

eiw — A

B{Ga (e )Ga )} =

(7)
This corresponds to the time-domain as-
sumption that the impulse response coefficients
N are independent but non identically dis-
tributed random variables drawn from a zero
mean Gaussian distribution having variance:

E{n}} =a)* aeRT ) Xe(0,1) (8)

We stress that the stochastic embedding of
the unmodelled Ga(q) is just one of several ways
of imposing some smoothness assumptions on the
variation of Ga(e’”) with w. So the model (8)

. A
W= W —wsa.

abilistic model is characterized by only two pa-
rameters 37 = (a,\) whereas the impulse re-
sponse itself, Ga(q), is possibly infinite dimen-
sional.

Assumption on the noise

The additive noise {v;} is a zero mean stochas-
tic process whose probability density function
fu,(7,t) is also assumed to be known except for
some unknown finite parameter vector . The
conceptual similarity of this assumption to that
used for the unmodelled dynamics should be
noted. A special case considered in the exam-
ples later is summarized as:

Assumption A

Ga(e’) is a zero mean Gaussian process, sta-
tionary in the frequency domain, nonstationary
in the time-domain, described by (7). {v;} is
independent of Ga(e’*) and is an independent
identically distributed zero mean Gaussian pro-

cess with variance o2.

3 Estimation of the nominal
model and the characteris-

tics of the residual

In this section we show how to estimate the pa-
rameter vector 6 of the nominal model and the
parameter vectors § and v that parametrize the
probability density functions of the unmodelled
dynamics and of the noise, respectively, on the
basis of a finite set of input and output data.
These parameters can in principle be estimated
jointly by maximizing the likelihood function of
the data, which is parametrized by 6,8 and +.
However, we shall instead estimate 6 by Least
Squares; this is closer to people’s familiar way of
estimating a nominal model. We shall then use
the residuals as our new data for the maximum
likelihood estimation of 8 and . We shall con-
sider that N output data yi,...,yn are available
and we shall henceforth assume that this data
length IV is larger than the settling time of the
unmodelled transfer function Ga(q), i.e.

Ga(g) =) maq *, L<N. (9)

We shall further assume that the input signal
and is available from some sufficient time instant
in the past (compatible with the settling time of
Ga and of the basis functions) up to time N.
Taking into account (1), (2), (3) and (9), we can
then write the input-output relations in vector



Y = (yl,...,yN)T (11)
Vo= (vi,..,on)" (12)
® = [¢y] Wlth ¢ij = Bj(q)ui (13)
v [:5] with ¢;; £ ¢ Ty = ui_ —; (14)
n = [n,..,m)” (15)

and # € R is as in (5). Here Bj(q)u; is to be
interpreted as the operator Bj(g) acting on u;.
The Least Squares (LS) estimate of 6 is

6= (a7d) 'oTYy (16)
with N-vector of residuals:

e £ Y -®0 (17)
= [I-o@Td) o7y £ PY. (18)

The matrix in (18) has rank N-p. Therefore
¢ has a singular distribution of rank N-p. To
obtain a new full rank data vector, we respresent
€ in a new coordinate system that forms a basis
for the space orthogonal to the columns of ®.

Let R be any matrix whose columns span the
subspace orthogonal to the columns of ®. One
way of constructing such R is to take any N-p
independent linear combinations of the columns
of P. Now define Z € RN~ as follows :

Z 2 RTe. (19)

Now Z has a nonsingular distribution and, by
the construction of R,

Z = RTY = RTun + RTV. (20)

Since RT and ¥ depend on the input signal only,
we observe that Z is the sum of two independent
random vectors whose probability density func-
tions are computable functions of the unknown
parameter vectors § and . We can therefore
compute the probability density function of Z,
conditioned on the input data vector U, and on
¢T 2 (BT, 4T). We denote the corresponding like-
lihood function by L( | Z,U). Maximimizing
this likelihood function yields the desired esti-
mate for the unknown parameters :

m?xL(g | Z,U) = ¢ (21)

4 Computation of uncertainty

bounds

In this section we first show that the error in the
transfer function estimate, Gp(e/®) — G(e7*, 6),

replacing 8 and 7 by their maximum likelihood
estimates obtained in the previous section, we
can therefore compute an estimate of the p.d.f.
of Gr(ei®) — G(e#*,6), and in particular of its
mean square error over the ensemble of possible
realizations. From (2), (3) and (9) we have

Gr(e’) — G(7*,6) = B(e/)(6 — 6) + Q()n,

(22)
where _ _ _
Q(e??) & [e79v, ... eI (23)
It also follows from (16) and (10) that
0—0=MUn+ MV (24)
where
ML —(3Te) 1T, (25)

Combining (22) and (24) yields
G(e) £ Gr(e/*) - G(e/,6)  (26)
= [Q(e’) + B(e?*)M¥|n 4+ B(e?*)MV. (27)
We note that Q and B are known functions of w ,
while M and ¥ are known functions of the input
signal. Therefore, since n and V are two inde-
pendent random vectors whose p.d.f., fa(83) and
fu(7), are known up to the parameter vectors (3
and v, one can compute the p.d.f. of G(e/*) and
compute such quantities as confidence regions,
etc... In particular, when the Gaussian condi-

tions of assumption A hold we have: have the
following result.

V(w) 2 E{| Gr(e™) — G(¢,0) P} = (28)
[Q(e7) + B(e™*)M¥] x Cp(B)[Qe™)+  (29)
B(e2)M]* + B(e?)MC,(v)MT B*(e?*) (30

M is defined by (25), ® by (13), ¥ by (14), =*
denotes conjugate transpose and

C,(B) = diag{a),...,a\} (31)

An estimate of the Mean Square Error of
G(e?*, ) is then obtained by replacing 8 and ~
by their maximum likelihood estimates obtained
as in section 3.

The expression (30) produces bounds on the
amplitude of the error in the transfer function
estimate. Alternatively, from (27) one can com-
pute the 2 x 2 covariance matrix of:

Re G(e%) ]

Im G(e) (32)

gle’) & {
For Gaussian distributions, say, one can then
compute a confidence ellipse at each w around
the Nyquist diagram of G(e“,6). This will be
illustrated in the simulations of Section 7.



Denote the model structures My(6y),. .., M,(6,).
Note that 64,0,,...,60, may or may not have
different dimensions. For each model structure
M;(6;) one can estimate #; by Least Squares.
With the assumed prior distribution for Ga(q)
and for v; , we can then compute, for each esti-
mated nominal model, the corresponding maxi-
mum likelihood estimates of 8 and ~. We shall
denote by B; and 'y, the estimates coresponding
to M;(6;), and by V( ) the estimate of the Mean
Square Error (30) in which C,(8) and C,(7) are
replaced by C,,(Bi) and C,(%). Note that V;(w)
depends on the particular model M;(6;) in two
ways : through the particular choice of basis vec-
tor B(e’¥) that has been selected in model M;,
and through the parameter vectors ,BAZ and ;.
To select among the r candidate models, we

shall now consider any one of the following three
criteria.

Jb = supV( ), i €[1,7] (33)
2 = % " Viw)dw, i€ [L,r]  (34)
7= zi/w Vi(w)Su(w)dw, i € [1,7](35)

Here S,(w) denotes the power spectral density
of a possibly new input sequence to which the
model will be applied. The three criteria obvi-
ously cover three different applications in which
the model may be used. Other criteria can easily
be formulated. Depending on the application (or
on one’s favourite criterion) the optimal struc-
ture will be obtained as M;, where

. = arg 1 ‘min J
T

k=1,2or 3.

(36)
We now consider the situation where the fam-
ily of nominal models is a sequence of models
generated from an increasing sequence of basis
functions B1(q), B2(q), - ... The nominal models
are then of the form >} B ( )6; withp =1,2,.. .,
and the problem of structure selection becomes
one of model order selection.

We shall consider the special case Where the
additive noise v; is white with variance o2, and
where the model is intended to be used on the
same input data as was used for identification.
For this special case we consider the optimal
model order selection problem for a criterion
which is a slight modification of Js, and which we
shall call the Generalized Information Criterion

[RRRS!

nominal model. For this spec_ial case V(w) re-
duces to (see (30)):

Vo(w) = (Q+ BMU)C,p(3,)(Q2+BMU)*+ (38)

&%r[(@T®) "' B*B] (39)
By Parseval’s theorem,

%/ (B*B)S(w)dw — %(qﬂ’q»). (40)

Therefore
GIC(p) = 62 + %&u (41)

™

s | @+ BMU)C,(53,)(Q+ BM¥)*dw (42)
Akaike considers a similar criterion in his Final
Prediction Error (FPE) test for model order se-
lection [9]. His FPE criterion differs from our
GIC(p) criterion in two ways. First, FPE does
not contain a term due to undermodelling. Sec-
ond, in our GIC criterion, the value used for 2
is obtained independently of the particular nom-
inal model under consideration. Akaike’s crite-
rion explicitly depends on obtaining a new esti-
mate of o2, denoted &12,, for each model dimension
using

. 1 R .
pm (o) —26,).  (43)
This leads to the FPE criterion :
N+p 1 A N
FPE(p) = 3— b ¥ - 0,)T (Y — ®6,).

(44)
The estimate (43) would be an unbiased estimate
of o2 if there were no undermodelling. Our ra-
tionale for using a high-dimensional model for
the estimation of o2 is to ensure that undermod-
elling does not affect our estimate. Our criterion
explicitly and, we believe, correctly accounts for
undermodelling through the third term in (42).
Indeed, R

Y -®0, =P(Un+7V) (45)

Substituting in (44) and taking the expected
value w.r.t. the noise vy, assuming the under-
modelling to be a deterministic quantity, yields

E{FPE(p)} = (46)

N 1
=0’ + %02 + % J_ri X & X tr{ PUnn" w7 P}
(47)

Comparing with (42) shows that the FPE cri-
terion on average captures the variance effects
correctly. However, the bias term is incorrectly

scaled by a factor N—+p




In this section, we specialize our results to the
case where the unmodelled dynamics and the
noise satisfy the conditions of Assumption A,
where the nominal models are Finite Impulse
Response models, FIR(p), and where the input
sequence is deterministic and has the following
orthogonality property :

1

N(\IIT\II) =o2]

(48)

where o2 is the input power. Without loss of

generality, we take L = N (see (9)). In line with
our developments of Section 3 we let R be the
last N — p columns of ¥ Note also that, by (48),
RT® = 0.

The prediction errors {e;} in this case thus
form an iid sequence due to the orthogonality of
the input with

L
ol = NO’ZQZ AR + o
k=1

(49)

The asymptotic properties of the estimates fol-
low from the well known work of Wald:

OAéN a.s. o )\N a.s. by 0'2N a.s. 0_2 (50)

But more interestingly, if we define

—InN « “InN\3?% ) o?
T

= il 2 JN=—
b [V In \g a0’< In \g ) )\0’\/_0%]

(51)
then
VN(By = fo) > N(O,P)  (52)
with
4 -6 0
P=2| -6 12 0 (53)
0 0 1
So that
an 1
Var (Oé_o) =0 (NlnN) (54)
AN 1
Var <)\—0> =0 (m) (55)

A proof of these results may be found in [10].
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fitted with white noise input for {ug}

e—As

7s+1

The output sequence {yx} was disturbed by
N(0,0.005) distributed white noise. The follow-
ing calculations were made:

1. The parameters a, A, 0% were estimated.

2. These estimates were used to evaluate the
integral of the squared frequency response
estimation error both with and without
weighting by the input power spectrum.
This was done for a range of nominal FIR
model orders.

3. The true mean square errors for various
model orders were calculated for compar-
ison with the estimates in 2, using the
known Gr(e’?). This would, of course, be
impossible in practice.

4. Akaike’s AIC and FPE model order de-
termination criteria [8]-[9] were calculated
from the data.

Typical results for these calculations are shown
in Figure 1.

True Cost

05

Y
-0.5

ot/

-1

Lag Model Order
Estimated Cost
50
Model Order
Figure 1: Full order estimation, Akaike crite-

rion, and true and estimated weighted and non-

weighted mean square error.

The top left quadrant shows the true impulse
response together with the full 30th order model
found via least squares. The true impulse re-
sponse is the solid line, and the estimated im-
pulse response is the dashed line. The Akaike
information criterion (dotted line) and final pre-
diction error tests (solid line) are shown in the



1 /7 . o :
o | 1G(e) ~ G U fdo (56)
T J—m
versus nominal model order as a solid line, and
the estimate of (56) as a dashed line. The es-

timate was obtained from the estimates é, a, A

and o? via equation (35). Notice that the esti-
mate of the value of the integral is a very good
indication of the true value of the integral. Fur-
thermore, notice that the integrals (true and es-
timated) give a very clear criterion for the best
model order to fit to the data using least squares
depending on the intended use for the model.
Other results are reported in [13].

8 Conclusion

In most identification applications, the nominal
model is at best an approximation to the true
system, whose structure is more complex than
that of the parametrized model. This induces
an error between the true transfer function and
the estimated nominal model, which is called the
unmodelled dynamics. One way of treating this
error is to estimate it by further parametrizing
it, but this amounts to replacing the nominal
model by a more complex one, i.e. it amounts
to modelling the unmodelled dynamics. Instead,
we have shown in this paper that, by assuming
that the unmodelled dynamics is a realization of
a stochastic process described by a parametrized
probability density function, one can estimate
these parameters.

Our simulations have shown that very simple
probability density models coupled with straight-
forward estimation procedures produce very re-
liable error bounds.

Our procedure produces an estimate of the
mean square error between the true and esti-
mated nominal transfer functions. This estimate
is the sum of two clearly distinguishable terms,
one due to the undermodelling (which decreases
with model complexity) and one due to noise in
the data (which increases with model complexity
and decreases with the number of data ). This
expression has allowed us not only to produce
error bounds, but also to develop a new opti-
mal model order estimation criterion, GIC. This
criterion, explicitly and, we believe, correctly in-
corporates the effect of undermodelling. It com-
pares favorably with Akaike’s FPE, as is demon-
strated by both our theoretical analysis and sim-
ulations.
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