
OPTIMAL MODEL ORDER SELECTION AND ESTIMATION OFMODEL UNCERTAINTY FOR IDENTIFICATION WITH FINITEDATAGraham GOODWIN�, Michel GEVERSy, Brett NINNESSzAbstractWe assume that the unmodelled dynamics of asystem are a realisation of a random process withparameterised second order properties. We showthat these parameters may be estimated from thedata. We show how these second order propertiesmay then be used for model order evaluation ofuncertainty bounds.1 IntroductionThe need of robust control designers for modeldescriptions including uncertainty bounds is amajor theoretical challenge in identi�cation. Thebounds required account for two error terms.The �rst one, often called the bias error, iscaused by the fact that the parametrized modelstructure is, at best, a simpli�ed (low order) ver-sion of the true system. The second component,often called variance error, is caused by the noisein the data that make up the particular realiza-tion that is used for identi�cation.The key tool used for the computation of vari-ance errors is the Cram�er-Rao lower bound onthe estimated parameters. In the case of exactmodel structure, this tool has produced reason-able variance error expressions for the estimatedtransfer fuctions : see e.g.[1], [2]. This varianceerror typically decreases like 1N , when N is thenumber of data.The characterization of the bias error on theestimated transfer function is much more dif-�cult. A �rst result, due to Wahlberg andLjung [3] produces an implicit characterizationof the asymptotic bias. Whereas it yields use-ful insights into input design problems, it doesnot produce explicit bias error bounds. Recent�Department of Electrical Engineering, University ofNewcastle, Shortland AUSTRALIAyLaboratoire d'Automatique, Dynamique et Analysedes Systemes, UCL, 3 place du Levant, B1348 Louvain-la-Neuve, BELGIUMzThanks to the Australian Telecommunications andElectronics Research Board for scholarship assistance

work has focused on producing such explicit er-ror bounds : [4]-[5]. However, the results so farare based on a complete prior speci�cation ofthe characteristics of the unmodelled dynamics.These characteristics typically involve assump-tions on the magnitude and smoothness of thevariation of the transfer function, G�(ej!), of theunmodelled dynamics in the frequency domain.The contributions of this paper are twofold.First, following the tradition of [2],[6] , we adopta stochastic embedding approach. However, anovel feature is that we show how the param-eters of these prior distribution functions canbe estimated from the data by maximum likeli-hood. We also compute the Cramer-Rao boundfor these estimates.Our second contribution is to show that theabove procedure leads naturally to a method foroptimal model order selection with �nite data.The optimal order is obtained by minimizingsome suitable criterion of the total mean squareerror between the true transfer function GT (ej!)and the estimated model G(ej!; �̂N ) based on Ndata.We show that, in the presence of undermod-elling and with �nite data, this new criterion per-forms better than the classical Final PredictionError (FPE) and AIC criteria.We should like to make it very clear that, con-trary to popular beliefs, with �nite noisy data theoptimal model order is typically smaller than the\exact" model order if such an exact order exists,and that the traditional quest for a true modelorder on the basis of �nite data is a misguidedpursuit.2 Model AssumptionsWe shall consider discrete-time single-inputsingle-output systems for simplicity, and we shallassume throughout that the true system is de-scribed by yt = GT (q)ut + vt (1)where q is the forward shift operator, GT (q) isthe \true" transfer function and vt is additive1



noise. We further assume that GT (q) is a realiza-tion of a random variable whose mean, G(q; �),is a linearly parametrized nominal model andwhose residual, G�(q), called the \unmodelleddynamics", has zero mean. Thus :GT (q) = G(q; �) +G�(q): (2)We shall make the following assumptions con-cerning G(q; �), G�(q), and vt.Assumptions concerning the nominalmodelThe nominal model is a �nite linear combi-nation of known rational basis functions,G(q; �) = B(q)� (3)with B(q) = [B1; (q); : : : ; Bp(q)] (4)� = (�1; : : : ; �p)T (5)The vector � 2 Rp is unknown but �xed.Assumptions on the unmodelled dynam-ics. The transfer function G�(q) of the unmod-elled dynamics is considered as a particular re-alization of a zero mean random variable havinga probability density function f�(�) with knownstructure, but parametrized by an unknown vec-tor �. Without loss of generality, G�(q) can bewritten as G�(q) = 1X1 �kq�k (6)The important point is that we shall not attemptto estimate G� (i.e. we shall not estimate a largenumber of parameters �k) : this would be mod-elling the unmodelled dynamics. Rather we shallestimate the low-dimensional parameter vector �that describes the properties of G� (eg. magni-tude and smoothness).An example of a suitable model for the charac-teristics of the unmodelled dynamics would beto assume that G�(ej!) is a zero mean Gaussianprocess with covariance function:EfG�(ej!1)G�(e�j!2)g = �ej!ej! � � ;! , !1�!2:(7)This corresponds to the time-domain as-sumption that the impulse response coe�cients�k are independent but non identically dis-tributed random variables drawn from a zeromean Gaussian distribution having variance:Ef�2kg = ��k � 2 R+ ; � 2 (0; 1) (8)We stress that the stochastic embedding ofthe unmodelled G�(q) is just one of several waysof imposing some smoothness assumptions on thevariation of G�(ej!) with !. So the model (8)

corresponds to a prior assumption that the un-modelled impulse resonse is, when averaged overthe entire population of possible realizations, ofzero mean but exponentially stable since its vari-ance decays as ��k. We also note that this prob-abilistic model is characterized by only two pa-rameters �T = (�; �) whereas the impulse re-sponse itself, G�(q), is possibly in�nite dimen-sional.Assumption on the noiseThe additive noise fvtg is a zero mean stochas-tic process whose probability density functionfvt(
; t) is also assumed to be known except forsome unknown �nite parameter vector 
. Theconceptual similarity of this assumption to thatused for the unmodelled dynamics should benoted. A special case considered in the exam-ples later is summarized as:Assumption AG�(ej!) is a zero mean Gaussian process, sta-tionary in the frequency domain, nonstationaryin the time-domain, described by (7). fvtg isindependent of G�(ej!) and is an independentidentically distributed zero mean Gaussian pro-cess with variance �2.3 Estimation of the nominalmodel and the characteris-tics of the residualIn this section we show how to estimate the pa-rameter vector � of the nominal model and theparameter vectors � and 
 that parametrize theprobability density functions of the unmodelleddynamics and of the noise, respectively, on thebasis of a �nite set of input and output data.These parameters can in principle be estimatedjointly by maximizing the likelihood function ofthe data, which is parametrized by �; � and 
.However, we shall instead estimate � by LeastSquares; this is closer to people's familiar way ofestimating a nominal model. We shall then usethe residuals as our new data for the maximumlikelihood estimation of � and 
. We shall con-sider that N output data y1; : : : ; yN are availableand we shall henceforth assume that this datalength N is larger than the settling time of theunmodelled transfer function G�(q), i.e.G�(q) = LX1 �kq�k; L � N: (9)We shall further assume that the input signaland is available from some su�cient time instantin the past (compatible with the settling time ofG� and of the basis functions) up to time N .Taking into account (1), (2), (3) and (9), we canthen write the input-output relations in vector2



form : Y = �� +	� + V; (10)whereY = (y1; : : : ; yN )T (11)V = (v1; : : : ; vN )T (12)� = [�ij ] with �ij , Bj(q)ui (13)	 = [ ij] with  ij , q�jui = ui�j (14)� = [�1; : : : ; �L]T (15)and � 2 Rp is as in (5). Here Bj(q)ui is to beinterpreted as the operator Bj(q) acting on ui.The Least Squares (LS) estimate of � is�̂ = (�T�)�1�TY (16)with N -vector of residuals:" , Y ���̂ (17)= [I ��(�T�)�1�T ]Y , PY: (18)The matrix in (18) has rank N -p. Therefore" has a singular distribution of rank N -p. Toobtain a new full rank data vector, we respresent" in a new coordinate system that forms a basisfor the space orthogonal to the columns of �.Let R be any matrix whose columns span thesubspace orthogonal to the columns of �. Oneway of constructing such R is to take any N -pindependent linear combinations of the columnsof P . Now de�ne Z 2 RN�p as follows :Z , RT ": (19)Now Z has a nonsingular distribution and, bythe construction of R,Z = RTY = RT	� +RTV: (20)Since RT and 	 depend on the input signal only,we observe that Z is the sum of two independentrandom vectors whose probability density func-tions are computable functions of the unknownparameter vectors � and 
. We can thereforecompute the probability density function of Z,conditioned on the input data vector U , and on�T , (�T ; 
T ):We denote the corresponding like-lihood function by L(� j Z;U). Maximimizingthis likelihood function yields the desired esti-mate for the unknown parameters :max� L(� j Z;U)) �̂ (21)4 Computation of uncertaintyboundsIn this section we �rst show that the error in thetransfer function estimate, GT (ej!) � G(ej!; �̂),

can be written as the sum of two random vari-ables whose distributions are computable func-tions of the prior distributions f�(�) and fv(
).Therefore, the p.d.f. of the errror is an ex-plicit and computable function of � and 
. Byreplacing � and 
 by their maximum likelihoodestimates obtained in the previous section, wecan therefore compute an estimate of the p.d.f.of GT (ej!) � G(ej!; �̂), and in particular of itsmean square error over the ensemble of possiblerealizations. From (2), (3) and (9) we haveGT (ej!)�G(ej!; �̂) = B(ej!)(� � �̂) + 
(ej!)�;(22)where 
(ej!) , [e�j!; : : : ; e�jL!] (23)It also follows from (16) and (10) that� � �̂ =M	� +MV (24)where M , �(�T�)�1�T : (25)Combining (22) and (24) yields~G(ej!) , GT (ej!)�G(ej!; �̂) (26)= [
(ej!) +B(ej!)M	]� +B(ej!)MV: (27)We note that 
 and B are known functions of ! ,while M and 	 are known functions of the inputsignal. Therefore, since � and V are two inde-pendent random vectors whose p.d.f., f�(�) andfv(
), are known up to the parameter vectors �and 
, one can compute the p.d.f. of ~G(ej!) andcompute such quantities as con�dence regions,etc... In particular, when the Gaussian condi-tions of assumption A hold we have: have thefollowing result.V (!) , Efj GT (ej!)�G(ej!; �̂) j2g = (28)[
(ej!) +B(ej!)M	]� C�(�)[
(ej!)+ (29)B(ej!)M	]�+B(ej!)MCv(
)MTB�(ej!) (30)M is de�ned by (25), � by (13), 	 by (14), �denotes conjugate transpose andC�(�) = diagf��; : : : ; ��Lg (31)An estimate of the Mean Square Error ofG(ej!; �̂) is then obtained by replacing � and 
by their maximum likelihood estimates obtainedas in section 3.The expression (30) produces bounds on theamplitude of the error in the transfer functionestimate. Alternatively, from (27) one can com-pute the 2� 2 covariance matrix of:~g(ej!) , " Re ~G(ej!)Im ~G(ej!) # : (32)For Gaussian distributions, say, one can thencompute a con�dence ellipse at each ! aroundthe Nyquist diagram of G(ej!; �̂). This will beillustrated in the simulations of Section 7.3



5 Model structure selectionConsider �rst that an optimal model is to be se-lected among a �nite family of r candidate nom-inal models, all of them linear in the parameters.Denote the model structuresM1(�1); : : : ;Mr(�r).Note that �1; �2; : : : ; �r may or may not havedi�erent dimensions. For each model structureMi(�i) one can estimate �̂i by Least Squares.With the assumed prior distribution for G�(q)and for vt , we can then compute, for each esti-mated nominal model, the corresponding maxi-mum likelihood estimates of � and 
. We shalldenote by �̂i and 
̂i the estimates corespondingtoMi(�̂i), and by V̂i(!) the estimate of the MeanSquare Error (30) in which C�(�) and Cv(
) arereplaced by C�(�̂i) and Cv(
̂i). Note that V̂i(!)depends on the particular model Mi(�̂i) in twoways : through the particular choice of basis vec-tor B(ej!) that has been selected in model Mi,and through the parameter vectors �̂i and 
̂i.To select among the r candidate models, weshall now consider any one of the following threecriteria.J1i = supi V̂i(!); i 2 [1; r] (33)J2i = 12� Z ��� V̂i(!)d!; i 2 [1; r] (34)J3i = 12� Z ��� V̂i(!)Su(!)d!; i 2 [1; r](35)Here Su(!) denotes the power spectral densityof a possibly new input sequence to which themodel will be applied. The three criteria obvi-ously cover three di�erent applications in whichthe model may be used. Other criteria can easilybe formulated. Depending on the application (oron one's favourite criterion) the optimal struc-ture will be obtained as Mi� wherei� = arg mini=1;:::;r Jki k = 1; 2 or 3:(36)We now consider the situation where the fam-ily of nominal models is a sequence of modelsgenerated from an increasing sequence of basisfunctions B1(q); B2(q); : : :. The nominal modelsare then of the formPp1Bi(q)�i with p = 1; 2; : : :,and the problem of structure selection becomesone of model order selection.We shall consider the special case where theadditive noise vt is white with variance �2, andwhere the model is intended to be used on thesame input data as was used for identi�cation.For this special case we consider the optimalmodel order selection problem for a criterionwhich is a slight modi�cation of J3, and which weshall call the Generalized Information Criterion

(GIC) :GIC(p) = �̂2 + 12� Z ��� V̂p(!)Su(!)d!: (37)Here p denotes the number of parameters in thenominal model. For this special case V̂ (!) re-duces to (see (30)):V̂p(!) = (
+BM	)C�(�̂p)(
+BM	)�+ (38)�̂2tr[(�T�)�1B�B] (39)By Parseval's theorem,12� Z ���(B�B)Su(!)d! = 1N (�T�): (40)Therefore GIC(p) = �̂2 + pN �̂2+ (41)12� Z ���(
+BM	)C�(�̂p)(
+BM	)�d! (42)Akaike considers a similar criterion in his FinalPrediction Error (FPE) test for model order se-lection [9]. His FPE criterion di�ers from ourGIC(p) criterion in two ways. First, FPE doesnot contain a term due to undermodelling. Sec-ond, in our GIC criterion, the value used for �̂2is obtained independently of the particular nom-inal model under consideration. Akaike's crite-rion explicitly depends on obtaining a new esti-mate of �2, denoted �̂2p, for each model dimensionusing�̂2p = 1N � p(Y � ��̂p)T (Y ���̂p): (43)This leads to the FPE criterion :FPE(p) = N + pN � p � 1N (Y ���̂p)T (Y ���̂p):(44)The estimate (43) would be an unbiased estimateof �2 if there were no undermodelling. Our ra-tionale for using a high-dimensional model forthe estimation of �2 is to ensure that undermod-elling does not a�ect our estimate. Our criterionexplicitly and, we believe, correctly accounts forundermodelling through the third term in (42).Indeed, Y ���̂p = P (	� + V ) (45)Substituting in (44) and taking the expectedvalue w.r.t. the noise vt, assuming the under-modelling to be a deterministic quantity, yieldsEvfFPE(p)g = (46)= �2 + pN �2 + N + pN � p � 1N � trfP	��T	TPg(47)Comparing with (42) shows that the FPE cri-terion on average captures the variance e�ectscorrectly. However, the bias term is incorrectlyscaled by a factor N+pN�p .4



6 Finite Impulse Re-sponse nominal model withuncorrelated inputIn this section, we specialize our results to thecase where the unmodelled dynamics and thenoise satisfy the conditions of Assumption A,where the nominal models are Finite ImpulseResponse models, FIR(p), and where the inputsequence is deterministic and has the followingorthogonality property :1N (	T	) = �2uI (48)where �2u is the input power. Without loss ofgenerality, we take L = N (see (9)). In line withour developments of Section 3 we let R be thelast N � p columns of 	 Note also that, by (48),RT� = 0.The prediction errors f"kg in this case thusform an iid sequence due to the orthogonality ofthe input with�2" = N�2u� LXk=1�k + �20 (49)The asymptotic properties of the estimates fol-low from the well known work of Wald:�̂N a:s:�! � �̂N a:s:�! � �̂2N a:s:�! �2 (50)But more interestingly, if we de�ne�T = "s� lnNln �0 ��0 ;�� lnNln �0 �3=2 ��0 ;pN �2�20 #(51)then pN(�̂N � �0) D�! N (0; P ) (52)with P = 22664 4 �6 0�6 12 00 0 1 3775 (53)So that Var� �̂N�0 � = O� 1N lnN � (54)Var �̂N�0 ! = O� 1(N lnN)3� (55)A proof of these results may be found in [10].

7 SimulationsTo illustrate GIC, the following zero order hold,unit period sampled continuous time system wasstudied and FIR models of various orders was�tted with white noise input for fukge��s�s+ 1 � = 0:1; � = 5The output sequence fykg was disturbed byN(0; 0:005) distributed white noise. The follow-ing calculations were made:1. The parameters �; �; �2 were estimated.2. These estimates were used to evaluate theintegral of the squared frequency responseestimation error both with and withoutweighting by the input power spectrum.This was done for a range of nominal FIRmodel orders.3. The true mean square errors for variousmodel orders were calculated for compar-ison with the estimates in 2, using theknown GT (ej!). This would, of course, beimpossible in practice.4. Akaike's AIC and FPE model order de-termination criteria [8]-[9] were calculatedfrom the data.Typical results for these calculations are shownin Figure 1.
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top right hand corner. As can be seen, they givevery inconclusive order determination criteria.The lower left plot shows the integral of thesquared frequency domain error weighted by theinput power spectrum12� Z ��� jG(ej!)� Ĝ(ej!)j2jU(ej!)j2d! (56)versus nominal model order as a solid line, andthe estimate of (56) as a dashed line. The es-timate was obtained from the estimates �̂, �̂, �̂and �̂2 via equation (35). Notice that the esti-mate of the value of the integral is a very goodindication of the true value of the integral. Fur-thermore, notice that the integrals (true and es-timated) give a very clear criterion for the bestmodel order to �t to the data using least squaresdepending on the intended use for the model.Other results are reported in [13].8 ConclusionIn most identi�cation applications, the nominalmodel is at best an approximation to the truesystem, whose structure is more complex thanthat of the parametrized model. This inducesan error between the true transfer function andthe estimated nominal model, which is called theunmodelled dynamics. One way of treating thiserror is to estimate it by further parametrizingit, but this amounts to replacing the nominalmodel by a more complex one, i.e. it amountsto modelling the unmodelled dynamics. Instead,we have shown in this paper that, by assumingthat the unmodelled dynamics is a realization ofa stochastic process described by a parametrizedprobability density function, one can estimatethese parameters.Our simulations have shown that very simpleprobability density models coupled with straight-forward estimation procedures produce very re-liable error bounds.Our procedure produces an estimate of themean square error between the true and esti-mated nominal transfer functions. This estimateis the sum of two clearly distinguishable terms,one due to the undermodelling (which decreaseswith model complexity) and one due to noise inthe data (which increases with model complexityand decreases with the number of data ). Thisexpression has allowed us not only to produceerror bounds, but also to develop a new opti-mal model order estimation criterion, GIC. Thiscriterion, explicitly and, we believe, correctly in-corporates the e�ect of undermodelling. It com-pares favorably with Akaike's FPE, as is demon-strated by both our theoretical analysis and sim-ulations.
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