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V. CONCLUSION 

The  similarity between  the decentralized  control of finite  state  Markov 
chains  and  the  centralized  cases was shown  in  Sections I11 and  IV: 
centralized  methods  are used  to derive  algorithms  for  one  step  delay 
sharing  decentralized  problems.  essentially by defining the “state” to be 
the  one  step  delayed  “shared  information.”  In  Section 111 each  controller’s 
action  depends  on the one  step  delay  sharing  information  pattern  only via 
his present  observation, the past  state  information.  and  the  past  control 
information  for noiseless recoverable  problems. For the infinite  horizon 
problem with average  expected  cost,  sufficient  conditions  for the existence 
of a  stationary  optimal policy  were obtained.  The  “policy  iteration 
algorithm” was modified slightly- to be applicable to this  problem.  The 
development of the general  case  (noisy  observations)  displayed  a  structure 
similar  to  that  in the centralized  case [20]. Sondik‘s algorithm was readily 
applied  with  some  modifications. Also. some properties  concerning  the 
existence of a  stationan.  optimal policy and  the  structure of the  system 
were revealed. 

As noted  previously.  one of the important  points  that makes the 
extension of the  classical  results to  the decentralized  case  possible is due 
to  the  separation  principle [6]. In [6] this  principle is proved to  hold with 
the  one  step  delay  sharing  information  pattern. In addition.  the  separation 
principle ib ptoved to break  down  when  the  delay is more than  one  step. 
One  interesting  application of the decentralized  control of Markov  chains 
is in multiaccess  broadcast  communication  systems; the reader is referred 
to [?X].  tvhere detailed modeling. analytical,  and  simulation  results  are 
presented. 
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On  Jointly  Stationary  Feedback-Free  Stochastic 
Processes 

Abstract --We consider stationq stochastic  vector  processes  made up 
of two component  processes J and 11. Such processes arise, for  example. in 
feedback  processes. We consider  the  task  of  determining  whether  there is 
feedback  from one process,  say, J*, to the  other. say. 14.  A definition is 
proposed  for  the  absence of feedback  in  terms of  the spectrum G r U ( z )  of 
the joint process.  Comparison  with  previous  results on feedback-free 
processes  shows that the  proposed  definition  has  same  desirable  properties 
which  were  absent  in  previous  work. In particular,  system  structures  other 
than canonical ones are shown to be  feedback-free. 

I. INTRODUCTION 

We study the  task of determining  the  presence (or absence) of feedback 
between two jointly-  stationary  stochastic processes (F) and { u } .  These 
processes  can  be the output  and  the  input of a physical  linear  stochastic 
time invariant  feedback  system; they can  also  originate as two separate 
subvectors 1’ and u of a joint  stationary  vector  process x = ( J ~ ,  u ‘ ) ~ .  for 
which it is desired  to  examine the feedback.  relationships.  The first 
situation is typical of many  engineering  applications  where  a  linear  time 
invariant system (or plant) is controlled by a  linear  feedback.  The  second 
situation  arises in econometric or biological time series. wrhere the  ques- 
tion may be  asked  about the existence of feedback  between  any two scalar 
or vector time  series. 

The  notion of feedback between time  series is  closely related to that of 
causality. Both notions  have  been  studied by a  number of authors [ I]-[7]. 
and  a precise definition of feedback  between  stationary  processes  has 
been given by Caines  and  Chan in [4]. (These  references also include 
examples  on  the  testing  for  the  presence of feedback.)  The  definition 
given by Caines  and  Chan is based  on  the  upper  block  triangular  structure 
of a canonical  innovations  representation of the joint (!. u )  process. In [7] 
Caines  introduced  a new definition  (based  on work  in the  econometrics 
literature).  terming it “strong feedback-free’’ and  renaming  the  earlier 
“weak  feedback-free”:  any  pair of time  series with  the strong  feedback-free 
property  enjoys  the weak feedback-free  property.  but  not  necessarily 
conversely.  The  main  result of this  paper is that if the joint  process  has  the 
strong  feedback-free  property,  then  normally every square  feedback  repre- 
sentation  (as well as almost every joint  process  representation) of the 
0 3 ,  u )  process has an  upper  block  triangular  structure.  The  term “nor- 
mally” is understood to mean  “except in nongeneric cases.” the  ap- 
propriate  notion of genericity being defined in the  paper.  Thus.  the 
definition. even though it is  given  in terms of a  canonical  innovations 
representation. \vi11 be shown  to  extend  normally to all equivalent  square 
representations of the  joint ( J, u )  process.  n’e suggest that  this  definition 
is desirable  because i t  corresponds. as we shall  show. \vith  the intuitive 
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Fig I Standard feedback system 

notion  that  a  process  is  feedback-free if the  noises  in the fonvard  path  and 
the  feedback  path  are  uncorrelated,  and if the  transfer  function  matrix 
relating to u in the  feedback  path is identically zero.  even Lvhen the 
system is not  associated with a  canonical  (minimum  phase)  spectral  factor 
of the  spectrum. We shall  show by an  example  that  another widely  used 
definition of feedback-free  does  not  imply this property. Tlus paper relies 
heavily on  some  results  obtained  in [SI. where the  feedback  representa- 
tions of joint  stationary  stochastic processes (y .  u )  have  been  studied. 
including  their  stability  properties  and  their  relationship  to the spectral 
factors of the joint  spectral  density  matrix +,,,( :). 

11. DEFINITIONS OF FEEDBACK 

We consider two stationary  vector  stochastic processes u,E R”’ and 
y, E R p .  The dynamical  behaviour of the joint ( !. u )  process  can  often 
(although  not  always) be represented by the  following feedback  system 
(see 18) and  Fig. I): 

(2.la) 

u , = H ( z ) r ; + K ( r ) v , .  (2.lb) 

F(:). G(r). H ( z ) ,  K(2) are  causal  real  rational  transfer  function  matrices. 
($1; ) and { 0 , )  are  white noise processes, ”; E R q. ( q 2 p ). c, E R ‘ I .  ( n 2 m ). 
and 

The  follo\r.ing  standing  assumption will  be made  throughout tIus paper. 
Arsunlptrotl A: (y. u )  is a real full rank bounded stationap stochastic 

process with rational  spectrum.’ 
In [8] conditions  on F. G, H ,  K have been  derived  for  the  stationarity of 

the joint  process. If there is a  delay  somewhere in the  loop,  then an 
equivalent  representation  for the (y. u )  process is  $\,en  by the  joint 
process model’ 

where 

W( t) = 
( I  - FH)-’G 

( I  - HF)-’HG 

( I -  FH)-‘FK 

(1- H F ) - ’ K  

The  spectrum of the  joint  process (y, u )  is  given by 

+vu( t) = W( -)OW*( z )  (2.5) 

processes without a ratlonal spectrum. 

assumed to correspond to those of and u.  

‘Man? of the results will actuall) carr). over to infinite-dimensional processes. i . e ,  

’In the sequel --e shall often use partitioned matrices. The dimenslons will always be 

4-here M * ( Z ) % N ’ ~ ( ~ - ’ ) ~  the adjoint of W ( z ) .  We recall  an  important 
result  about  spectral  factorization  (see [9]). 

Spectral   Factor izat ion Theorem: Let + ( z )  be an n X n real  rational full 
rank spectral  density  matrix. 

I )  Then  there  exists  a  unique  factorization of the form a(? )=  
W(:)Q) . t”(z ) .  in wh+h z ( z )  is n X n real  rational,  stable. minimum 
phase  and  such  that W ( m )  = 1. with a positive  definite  symmetric. 

2) Any other  factorization of the form + ( z )  = W ( : ) Q W ( z )  in  which 
l,t.( :) is real rational,  and Q is nonnegative  definite  symmetric. is such 
that W (  z )  = W (  : ) V ( z  ). where V( z )  is a  real  rational  scaled  paraunitary 
matrix. i.e.. V ( z ) Q V * ( : )  =& Moreover. V ( z )  is stable if and only if 
II’( :) is stable. 

The  unique  (canonical)  spectral  factor (E(:), a} defined in part 1) of 
the  theorem. will  be called the normalized  minimum  phase  spectral  factor 
(NMSF) of +( z ) .  (See [SI.) 

Equations @la)  and (2. lb) are  normally  understood  to  represent  the 
forward  path  and  the  feedback path  of  a feedback  system.  It is then 
reasonable to say  that  there is no  feedback  from y to u if H( t) = 0 and 
{ 11.) and (c}  are  uncorrelated. This then  ensures  that  the  processes ( u }  
and (w) in (2.la) are  uncorrelated. which  is  how Akaike [5] and  Bohlin [6] 
define the absence of feedback. If H = 0. then (2 .4 )  shows that W 2 ’ ( z )  = 0 

- __ 

Therefore. an equivalent  definition  for the absence of feedback  betweenr. 
and u would  be that  the  joint  process  model is upper block triangular, 
while the  noise-covariance  matrix Q is  block diagonal. However, from  the 
spectral  factorization theorem it follows that  there  are  other  couples 
1; (: ). Q that  produce the same spectrum 9, ,,( z )  as b+’( I ) ,  Q. If the  joint 
model W( I ) ,  Q obtained  from a physical  feedback  system  has W Z 1 ( z )  = 0 
and Q block di9onal. this does  not  necessarily  imply  that  equivalent 
spectral  factors iV(z), 0 of the same joint  spectral  density  matrix 
\vi11 also have Lk21(r) = 0 and 0 block diagonal.  Therefore,  a  more  precise 
definition is needed. As it turns  out.  the  definition of strong  feedback-free 
of (71 is  what  is required. The definition  requires some notation. 

We consider the Hilbert  space X- which is the mean-square  completion 
of the space of all stationary  processes  with  finite first- and  second-order 
moments. We denote  the  joint  process by .Y = (?*?  uT) .  and %-e assume 
that (.Y) has  zero  mean.  and  that the process (x} is purely  nondeterminis- 
tic [IO]. We denote by X‘ = U ( . Y L ~ : .  . . x k )  the subspace of Xgenerated 
by the components of ( . Y L ~ , - . - , . Y ~ } .  The  subspaces U h  and Y k  are 
defined  similarly. If r is any  random  variable, r X k  (or rl Y k .  L r k )  will 
denote the projection of r on X h .  

Specifically. rl X‘: = ,Y:=L,H,x,. tvhere the  matrices H, are  such  that 
E((r-r.Y‘:).Y:}=O. ) =  - x : - . . k .  r l X h  will mean  that E { r . x 7 ) = 0  
for all X E  A’’. We shall also use rl Y‘ or  ~ 1 . 5 : ~  to denote  the  projection of 
r on the corresponding  subspaces Y‘ or .5 :h .  We can now state  a first 
definition  for  a  feedback-free  process. 

Definition 1; Consider the jointly  stationary  process (x. u )  with As- 
sumption A. The  process (!. u )  is feedback-free (i.e.. there is no  feedback 
from J’ to u )  if and onlb- if 

Cunzmenrr; 1) The  definition is a  natural  one.  There is no  feedback 
from J to u if and  only if the process ( u )  is orthogonal  to  the  process 
obtained  from the pasty’s after  removing the effect of the  past u’s. 
2) The  second-order  statistics of the u and J processes  are all that  are 

needed  to check (2.7). i.e. (2.7) is a  property  checkable  using  the  spectrum. 
not  the  detailed  structure of (2.1)  (which  in  general is not known if only 
the  spectrum is known) 

The follotving theorem  can  be  obtained  from [7]. 
Theorem I: Consider  a  real full rank  bounded stationaq stochastic 

process ( J. u )  with  rational  spectrum 9, Jz). Then  there is no  feedback 
from J to u if and  only if any  one of the  following  equivalent  conditions 
hold: 
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3) u,lLr'- ' ,Y'= u, lu ' -1  (2.10) 

4) The  NMSF { w( z), a} of z )  has %,( z )  = 0 

and  Gblock diagonal.  (2.1 I )  

Theorem  1  provides  four  equivalent  definitions  for  a  feedback-free 
process.  Definition  2 [i.e.. condition  (2.9)]  states  that  there is no feedback 
from y to u if the one-step  ahead  prediction  error  process on y is 
orthogonal  to  the  process u. This condition  guarantees  that  the  transfer 
matrices F and G are  identifiable  using  a  prediction  error  method on 
(y .  u )  [ I  I]. Definition  3 is intuitively  appealing:  there is no feedback  from 
J' to u if knowledge of past  and  present y does  not  add  any  information as 
f a r  as the prediction of u is concerned.  The  last  definition in terms of the 
NMSF will  be  useful in  deriving  some  further  results on feedback-free 
processes in the next sections. In the  next section we examine  some 
properties of feedback-free  processes. 

111. PROPERYES OF FEEDBACK-FREE SYSTEMS 

We first recall some results on feedback  systems  established  in [8]. 
Defiinifion 2: Consider  the  feedback  system (2.1)-(2.2) with  Assump- 

tion A, and the corresponhng W(z) and +,,(z) defined by (2.4)  and  (2.5). 
Let A - I [  B i C] = [ F i GI be  a left c o p b e  polynomial  matrix  fraction 
description (MFD) of [ F 1 GI. and  similar by D-'[ M i X ]  = [ H i K ] .  
(Note: A ,  B.  C .  D, M .  N are  matrices whose elements  are  polynomials  in 
z ;  see,  e.g., [12]  and [13].)  Let r=highest power of z - l  in  detC(z)C*(z) 
and s=highest power of z-' in  det N ( z ) . V * ( z ) .  Then  the  system 
{ F ,  G. H, K )  is called gemric if 

W(z)hasminimaldegree.i.e.,S[W(z)]=~S[+,u(z)]3 (3.1) 

z'detC(z)C*(z) and  z'det.?'(z)N*(;)  havenocommonzeros. 

( 3 4  
Comments: 
1 )  When G and K are  square,  the  zeros of z'det  CC*  are the zeros of 

det C and  their inverses. and  similarly  for  the  zeros of det N N * .  Notice 
that  the  zeros of det C are  zeros of G and  poles of F,  while the  zeros of 
det A' are  zeros of K and poles of H. Therefore,  (3.2) is a very natural 
condition which will almost  always  hold.  The  minimal  degree  condition 
(3.1) will be  satisfied if there is no  pole-zero  cancellation  between  a  pole 
of "(2) and  a  zero of W*( z ) .  It is essentially  implied by (3.2)  plus  some 
additional  technical  assumptions which are of the same  nature,  namely 
the  absence of common poles and zeros in some of the  matrices F. G .  H ,  
K. See [8] for  more  details on generic  systems and for  the  interpretation of 
(3.2) in  the  case of nonsquare G or K.  In the sequel we shall  in  most  cases 
assume  that G and K are  square. 

2) We have  argued in  [8] and it follows from  the first comment  that 
almost all feedback  systems  satisfy  the  conditions (3.1) and (3.2).  which 
partly  explains  the  name  generic. 

3) The  everyday  meaning of generic is, roughly.  that  nothing is special; 
there is of course  a  technical  meaning  also in algebraic  geometry.  The 
meaning we are  assigning  here is precisely  that of Definition 2. but no 
more. and in  some  sense is in  between  the two extremes. By excluding 
special  pole-zero  cancellations  and  the like, (3.1)  and  (3.2)  are  implied. 
and in  this  sense we might  say  nothing is special.  On  the  other hand, 
without  Definition  2  a  purist  might  hold  that  any  rational  spectrum  was 
by virtue of that  rationality  special,  and  consequently  nongeneric:  Defini- 
tion 2,  by specializing  the  meaning of generic,  rules  out  such an argument. 
Just as relevant to this  paper is the fact  that njhen H = 0, (3.1) and  (3.2) 
can still hold, and { F,  G,O. K )  will then  be  generic. 

4)  With A .  B ,  C. D, M. .Ar as in  Definition 2. it is easy to see that W ( z )  
admits  a  "natural"  polynomial MFD 

(3 3)  

The  genericity  condition  (3.2)  guarantees  that  det C and  det X have no 
common zeros: it  then easily  follows that  this MFD is coprime  (see  [8]). 

5) Given  a  joint  model { W ( z ) ,  Q} for  a  joint  process (y, u )  there 
corresponds  a  unique  quadrupole { F,  G, H. K )  to it via 

F =  Wl2M.;;' G= ~ I I -  W12%'1v21 

H=W21W;;' K = W ~ - W Z ~ W ; ; ' W I ~ .  (3.4) 

The inverses exist by the full rank assumption on ( y ,  u). Therefore, we 
shall  also say that  a joint model {W(z), Q} is generic if (3.1) and  (3.2) 
hold, where it  is understood  that C(z )  and N ( z )  are  obtained from 
MFD's of a  feedback  model { F, G, H ,  K )  defined by (3.4). 

In [8]  the  following theorem was proved. 
Theorem -7 [8]: Consider  the  feedback  system  (2.1)-(2.2)  with As- 

sumption  A  and  the  correspondmg W ( z )  and +,,(z) given  by (2.4) and 
(2.5). Assume that 

the  system { F .  G ,  H, K }  is generic  (3.5a) 

Q is block diagonal  (3.5b) 

F(w) = H ( x )  =0 ,  G ( m )  and K ( x )  have full rank. ( 3 . 5 ~ )  

Then  any  other  minimal  degree  spectral  factor { i@(z), Q} of $,(z) with 
@ ( x )  block diagonal  and  nonsingular  has  a  block  diagonal Q .  In 
addition.  the  scaled  paraunitary  transforp?tio?  matrix V ( z )  = 
k I ( z ) W ( z )  is also  block  diagonal.  and if F,  G, H, K is the  feedback 
system  obtained  from $ z )  by  (3.4L4 $en f:&, H ,  K is also  generic. 
Moreover ,F=f ,H=H.G=GVl ,K=KV2.whereV,(z)andV,(z)are  
scaled paraunitaq matrices. 

Since there is a one-to-one  relation  between { F ,  G, H, K )  and W ( z )  by 
(2.4),  the  conditions (3.5) of Theorem  2  can also be  stated as follows: 

W( z )  is generic  (3.6a) 

Q is block diagonal  (3.6b) 

W (  E) is block  diagonal and  has full row rank. ( 3 . 6 ~ )  

Therefore,  Theorem  2  actually  says  that if any  spectral  factorization 
{ @(z) .Q)  has  the  properties (3.6). then all minimal  degree  spectral 
factors W( z )  which are  block  diagonal  and  nonsingular at L = E, have  a 
block  diagonal Q and  are  related by block  diagonal  transformations. This 
result  has  important  consequences  insofar as the  identifiability of the 
closed-loop  system { F,  G, H.  K }  is concerned.  The  question of identifia- 
bility of feedback  systems  has  been  dealt  with  in [I61 and will not  be 
pursued here. 

We shall now specialize  the  results of Theorem 2 to  feedback-free 
processes to show  that if a.system is generic and feedback-free  in  a  sense 
defined below. then all its  feedback  representations  have  block  diagonal Q 
and H(z) = 0. [See (2.1)]. First, we establish the relations  between  the 
feedback  model (2.1) and the joint  model (2.3)  when H ( z )  = 0. 

Lemma 1: Consider  the  feedback system (2.1)  with H(z) = 0. Then 
there is a  bijective  relationship  (one-to-one  and  onto)  between { F ,  G, K }  
and W(z) 

W ( z )  = [ "1 O K  (3.7) 

Moreover, the joint  process (J: u )  is stationary if and  only if F,  G, and K 
are  stable. 

Proof: If K ( z )  is not  square. WG' is understood  to be a  right 
inverse: its existence is guaranteed by the full rank  assumption  on (J. u) .  
(For a  proof. see [16].) Then  (3.7)  and (3.8) follows  immediately  from 
(2.4).  Inspection of Fig. 2 shows that (v. u )  is stationary if and  only if F. 
G. and K have all their  poles  in I z I < 1.  (An unstable  pole-zero  cancella- 
tion  between F,  K would in practice  lead  to nonstationaq y ,  and is 
therefore ruled out.)  This last result  also  follows  as  a  special  case of the 
stability  results  obtained in [8] for  4-block  models { F, G, H ,  K ) .  

feedback model F. G. H ,  K was pr0X-d in [SI: see (2.4) and (3.4). 
4The existence of a one-to-one relationship between a joint model W:) and a Cblock 
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We now introduce a definition  for a jeedhnck-free s,.srem. as dis- 
tinguished from afeedhatk-f,.eepro~ess. This nea. definition is inspired by 
property 4)  of Theorem I .  

Dejinition 3: Consider a system (2.1)-(2.2) obeying Assumption A. 
Then the 5 w e m  Is ( J', u )  jeedhack-free if H( :) = 0. Q is  block diagonal 
and F( 30) = 0. 

Conlnzenr: The requirement in this definition that F( x ) = 0 may  seem 
a departure  from  intuition. We defend it on two  grounds:  without  it. a 
number of the folloa.ing conclusions are  no longer valid and second. with 
F( x )  f 0. u, is  in part predictable  from J;, and in a perverse sense t h s  is 
like feedback. 

In the next  two results we shall relate the definition of a feedback-free 
sybtem to  that of a feedback-free process. Kotice  that i t  follou-> im- 
mediately from Definition 3 and  Theorem I that a stationap proccas 
(1 .  u )  with rational  spectrum +,,,( :) is feedback-free if  and  only if the 
feedback  system obtained from the NMSF of 0, ,,(:) is (.I.. u )  

feedback-free. Indeed. by (2.4) and (3.4). 111:) = 0 is eyuixalent a i th  

Tlleurrm 3: Consider a system (7.1)-(2.2) obeying Assumption'A.  and 
assume that the system  is (J .  u )  feedback-free. Let It.(:) be the corre- 
sponding p in t  model and 0, ,,(:) the corresponding bpectrum. Then  the 
NhlSF (F(: ). Q )  of 0, J:) has GI(:) = 0 and block diagonal. and 
the ( I'. u )  proces is feedback-free. 

It.,,(: = 0. 

Pruu/:' Since the system  is feedback-free. a e  may \\rite 

xvhcre n 1  = 2 , 2 0 G L ~ t ; - , .  Furthermore. as the structure of Fig. 2 sho1v.s. 
n , L u ,  Vs and so n , - L L : ' - ' .  Hence 

Because u, i n ,  Vs 1 .  u ,  I ( J; - 1; L:'-' ) Vs 2 r and so by Theorem I 
[see ( L P ) ] .  the process is feedback-free. 

Theorem 3 shows that if a syatern generating ( 1'. u )  is feedback-free. 
then the process (J' .  u )  is feedback-free. The following  example  shows 
that the converse is not alv.qs true.  even  when the svstem  in question  has 
minimal degree. and F ( x )  = 0. 

E.;\-unlp/e 1; Consider the  system 

u, = - : + O S  
z +0.75 

with Q = 1. This system  is feedback-free. Its transfer function matrix is 
actually the  normalized  minimum  phase spectral factor. as we now check. 
Constructing left coprime MFD's for { F GI and for 6. \ields 

I+.(: ) = 
(: +0.5)(: +O.X)  - (: +O.P) 

: +0.75 

[ ( Z  + O h ! :  +0.5) 
: -0.5 O I  (3.9) 

Thib factorization is not coprime. A coprime factorization is 

Notice that W'(:) is square. stable. minimum phase. and lV(/(x) = I .  
Therefore. It'(:)= F(z). the NMSF of e,.(:)= N . ( : ) W * ( : ) .  Since 
MiI(:) = 0 and Q = I .  i t  follows  by Theorem 1 that (1. .  u )  is feedback-free. 
(Equally. - lve could have applied  Theorem 3 Lvithout verifying that I.+'(=) 
= W(: ), to obtain this conclusion.) Sow one  can show that the following 
is an equivalent spectral factorization of @, ,,( : ) 

It'( :) = [ j(: :o.8) : -0.75 I I - ' [  - 1.085 : + O M 2  4.034 1 5: + 13-91? 

Q = [  0.159  0.1971 
0.197 0.813 ' 

Obviously. t h s  defines a system 5 .  We  remark that I?(=) = I .  which  will 
ensure e( x )  = 0. but E.;](:) Z 0 and 0 is not block diagonal. even 
though the process (1'. u )  is feedback-free. Also. the Mclchzillan degrees of 
H -(: ) and ii.( : ) are the same. 

The example  above  is nongeneric: there is a pole-zero cancellation at 
: = -0.5 behveen F and the noise  model K for { u ) .  (See Fig. 2.) 
Therefore. der C and  det :V have a common zero and the standard 
factorization (3.9) for It'( :) is not coprime.  One a-ould expect (or hope) 
that if  a system  is feedback-free. then all equivalent minimal degree 
representations (ri'(:). Q )  Lvith W( x )  block diagonal a.ould also produce 
feedback-free bystems  (Le..  would  have I+'-, = 0 and 0 block diagonal). 
Although Example I show that t h s  is not so [ iiil( 2 )  0 and 0 is not 
block diagonal. and ?et the process (I,. u )  is feedback-free. i.e.. the NMSF 
yields a fccdback-free system  via (3.4)]. n e  shou now that the hoped  for 
result ia true for all generic systems.  provided that u.e restrict attention  to 
other representations which are square. 

T/wwrm 4: Consider the  station- atochaatic system 

I . , = F ( : ) u , - G ( : ) N ;  (?.loa) 

u,= K ( : ) c , .  (3.10b) 

Assume that i t  is generic. that F ( x )  = 0 rvhile G ( c c )  and K ( x )  have full 
rank.  and  that Q is  block diagonal (hence it is feedback-free). Let the 
corresponding I+'(:) be defined by (3.7) and +,Jz) b> (2.5). Then all 
other square minimal degree spectral  factors [ $( :).Q) of +,.(;) with 
li.(x) block diagonal  and  nonsingular have Mi,( :) = 0 and Q block 
diagonal: in addition. the triple f. 6. K obtained from I i i  :) through (3.8) 
is also generic. and the corresponding system is feedback-free. 

Proof: The result follows as a special case of Theorem 7. By the 
assumptions. all  the conditions of Theorem 2 are satisfied. Hence. 0 is 
block diagonal and 

(3.1 1 )  

Therefore. dil(:) = 0. Let A - I [  B C] be a left coprime  polynomial 
MFD of [ F GI. and similarly D-'3'= K .  Then by the genericity 
assumption. the follotving "natural" MFD for W( :) is coprime. since C 
and 3 -  do not drop in rank at the same 

(3.12) 

Therefore. by the proof of Theorem 2 (see [8]). Ii'(:). being of minimal 
degree. admits a factorization 

(3.13) 

where ?(:) and ;<(:) satisfy the condition (3.2). Therefore. the system 
t =  ,4 -'B. G = A - I C .  x =  D-I.<. 0 is also generic. and it is obvi- 
ously feedback-free. 

Curulkun. I :  Consider a stationary full rank feedback-free ( I,. u )  p r e  
cess with rational  spectrum e, ,,( :) and assume that the NMSF { rr/c z ) .  Q) 
of 0, ,'( :) is generic. Then the feedback systems ( F .  G. H.  K }  obtained 
from all equivalent minimal degree spectral factors (W( :). Q )  of 9, J:) 
a-ith lt'(x) block diagonal  and  nonsingular  are all (1'. u )  feedback-free. 
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Proof: Replace W( z )  in  Theorem 4 by  the  NMSF E( z ) and remem- 
ber  that ~ ( c o )  = I .  

Theorem 4 and  Corollary 1 are  interesting in that  in  a  generic  situation, 
if a  process 0,. u )  is feedback-free.  then  any  minimal  degree  spectral 
factorization  with W(.v(x)  block diagonal  and  nonsingular  (and  not  just  the 
NMSF) will show this, i.e..  will have W2, ( z )  = 0 and Q block diagonal: 
therefore, all the  corresponding  feedback  systems  are (J. u )  feedback-free. 
In Theorem 3 we proved  that if a system (2.1)-(2.2) is (y. u )  feedback-free, 
then the process (J. u )  is feedback-free.  Corollary 1 gives a  converse 
result, at least  for  generic  systems  with  square G and K. We summarize 
these results  in the following  corollary. 

Corolluy 2: Consider  a joint  stationary process ( J .  u )  obeying  As- 
sumption A. and represented  by  either  a  feedback system (2.1)-(2.2) or  a 
joint model (2.3). Let @Jz) be its  spectrum.  Assume  that  the  model  has 
minimal  degree,  that w(m)  is block diagonal  and  nonsingular and  that 
the NMSF w( I)  is also generic. Then the process  is-feedback-free if and 
only if every minimal  degree  spectral  factorization { W J z ) .  Q), with W ( x )  
block  diagonal  and  nonsingular,  has M/21(z) = 0 and Q block  diagonal. In 
particular, the process is feedback-free if and only if the system is ( J .  u )  
feedback-free. 

Proof-Sufficiency: If every factorization  has = 0. Q block  diag- 
onal,  then  the  NMSF  has this property  and  the  result  follows  from 
Theorem I .  

Yecessig: If the process is feedback-free,  then  the NMSF has E2, = 0 
and pblock diagonal.  Since  it is generic. all other  minimal degree spectral 
factors  with @(x) block  diagonal  and  nonsingular  have I&, = 0, Q block 
diagonal by Theorem 4. In particular,  the  true W(i), Q. corresponding to 
the  physical  system,  has  this  property  and  hence the system is feedback- 
free. 

IV. COMPARISON WITH PREVIOUS R E S ~ T S  

In [4] the  following  definition was proposed  for  a  feedback-free  process 
by Caines  and  Chan. This definition was later  renamed "weak feedback- 
free" in [7]. 

Definirion 4 [ 41: Consider  a  real  stationary full rank  bounded  stochas- 
tic process (.Y, u )  with rational  spectrum @,.Jz j. Then  there is no  feed- 
back  from y to u if and only if the NMSF (v( z), G) has E2,( z )  = 0. 

Comparing  with  our  definition  (see  Theorem 1) shows that t h ~  only 
difference is that no requirement is made  on G, while we require Q to  be 
block  diagonal. As a  consequence,  there is no  equivalent of our  Theorem 3 
under the definition in [4]: in  other  words if a system has H ( z )  = 0 (or 
y Z l ( z )  = 0) and W ( x j  = Z, it does  not follo\r. that the NMSF will have 
W 2 , (  z )  = 0. as the  following  example  indicates. 

Esumple 2: Consider the following  stationary full rank  bounded (!. u )  
process: 

Note  that F ( z )  = H ( z )  = 0. W(s) = I ,  but Q is not  diagonal.  Note  also 
that C = :  + 2  and X= z + 4  have no  common  zeros: the genericity 
conditions  (3.1)  and  (3.2)  are  satisfied.  The  corresponding W ( z )  is not 
minimum  phase 

I "  ~ z +0.6 1 
Let @,.(z)= W ( z ) Q W * ( z ) .  The  NMSF of @.,,Jz) is 

E( I) = 

I +OS75 
z + 0.4 
0.348 

z +0.6 
- 

-0.069 
z +0.4 
z 70.176 

z +0.6  

Q= [ 7.838 7.2501 
7.250 31.204 

Note  that w21(z)  ZO. even though W2,(z)  = O .  We cannot  recover  a 

result  similar to Theorem 3 by allowing  some "denormal-ization" of w(z): 
thus if  we permit v(z) to be replaced by w ( z ) T  and Q by T- it 
is impossible  to  obtain [ M/(z)T],, = 0 by any  choice of constant  nonsin- 
gular T. 

The next example  shows  that  the  converse of Theorem 3. namely 
Corollary I .  does  not  hold  either  with  Definition 4. If a  process is 
feedback-free  according to Definition 4. and  the NMSF is generic,  it  does 
not follow that all equivalent  representations  with  block  diagonal W ( w )  
have  an  upper block triangular W(r). 

Example 3: Consider the process (3.10) with 

and 

e = [ :  :I 
The  corresponding MI( z)  is 

z+0.5 O I  ' 

W(z) is stable.  minimum  phase, W(m)  = Z and Wzl(z) = 0. Therefore, 
the  process (J. u )  is feedback-free  according to Definition 4. In addition, 
the system  is generic. An equivalent  factorization { k'( z). o} of +.,,,,( z )  = 
M'( z ) Q W * ( z )  ujith k'(m) = I is given  by the  following: 

Q = [ '  1 ] 
I 1.25 

Notice now' that z )  # 0. Once  again,  there is no way one  can  change 
the  normalization  to  obtain [ k'( z ) T I 2 ,  = 0. 

The  failure of Definition 4 to  imply  a  result  similar to Theorem 3 and 
Corollary I means  that,  with  this  definition,  the  feedback-free  property 
cannot be detected by inspection  from an  arbitraq feedback  model 
( F ,  G ,  H ,  K ) .  If H = 0, this  does  not  necessarily  mean  that  the  process is 
feedback-free:  conversely if H f 0, the  process  could still be  feedback-free 
in the  sense of Definition 4. A transformation  to  the  equivalent NMSF is 
always  required  to  decide  whether  the  process is feedback-free. In  other 
respects. most of the  conclusions  that  can be drawn with Definition 1 are 
paralleled by those which can  be  drawn  with  Definition 4. Theorem 1 has 
a  close parallel-see [7]. 

v. DETECTING FEEDBACK FROM ESTIMATED SPECTRA 

We have  seen in Section I11 that the absence of feedback  between??  and 
u can  be  detected  in  different ways. If a  model  for ( y ,  u )  is known and if 
H = 0 and Q is  block diagonal,  then  the  process is feedback-free by 
Theorem 3.  If in addition the model is generic.  then H = 0 and Q block 
diagonal is a necessary condition by Corollary 2. If the  spectrum @.,,,(z) is 
known  rather  than  a  model,  then  an NMSF { w, a can  be  computed  and 
the process is feedback-free if E21(z) = 0 and Q is  block diagonal. In 
most  practical cases.  however, only  an  estimate of the  spectrum is 
available. We can  then use a  continuity  result  derived  in [16]. 

Theorem 5 [ 161: Consider  a  stationary full rank  stochastic  process and 
assume  that its spectrum @ ( z )  is such  that 

O < c l Z ~ ~ ( e ' " ) ~ c 2 1 < m  (5.1) 

for some positive  constants c l r  c2 and w E [ - a, a] .  Regarding Q as a 

R"*"  
function in e [  - a, a]. W( e'") as a  function  in e,[ - a, a ]  and Q in 

, then  the  mappings @ - E( e'") and @ - Q are  continuous.  where 
E, p i s  the NMSF of @. 

The following  results  then follow from  Theorem 5 and the results of 
Section 111. 

Corollu? 3: Consider  a ( y ,  u )  feedback-free system represented  by 
(3.15).  and  obeying  Assumption A. Let @,,Jz) be the spectrum of the 
(J: u )  process;  assume  that  it  obeys  condition (5.1) and  that  an NMSF 
(w(z) ,g}  is computed  from an approximation G,,Jz) of +,.Jz). Then 
given arbitrary z > 0, there  exists a (<)  such  that 

- 
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(5  .la) 

(5 .Zb) 

whenever 

sup l lQ,u(:)-~ru(:)ll~6. ( 5 . 3 )  
: = I  

Proof: The proof results from  Theorems 3 and 5. 
The above corollary says that if a system  is  really feedback-free but  one 

has homewhat inaccurate spectral data.  one will find the prcxess is 
approximately feedback-free. The next corollaq says that if a system is 
approximately feedback-free and  one has accurate or somewhat  inaccu- 
rate spectral data. then one will find the process is approximately feed- 
back-free. 

Curollun 4: Consider a system of the  form (2.1)-(2.2). satisfying .&- 
sumption A, and suppose  that F. G. and K are all stable. a i th  no  zeros  on 
1: I = 1 and F ( c c ) .  H(sc) are zero. Let 9, Jz) be the s p e c p m  $ the 
asociated (J.. u )  process.  assumed to satisfy (5.1 ). and let (It'(: ). Q )  be 
the NMSF obtained  from  an  approximation &,,(I ) to Q, Jz). Then given 
z > 0. there exists 6 ,  8,. such  that 

sup ~ l & u ( z ) - + , u ( : )  I < a ,  (5.4a) 

sup ! I  H( :)I1 6, (5.4b) 

1: 0 2 ,  II 6, (5.4c) 

I;I = I 

\ : ( = I  

imply  (5.2). - 

ProuJ Let Q, !,( z )  be  obtained by setting H ( :  ) = 0. QZ1 = Q;? = 0 in 
(2.1)  and  (2.2). Then (5.1) holds with Q replaced by 6 and so there exists 
8( e )  > 0 such that (5.2) is implied by 

Il6,"(:)-6,,,11<8. 

Select 6 ,  = 6 / 2 .  Also. since the spectrum  depends  continuously on the 
system matrices, we can find such  that  (5.4) implies 

(5.5) 

Then  (5.4a) with 6,  = 8/Z and  (5.5) imply (5.2). as required. 
Finally. a.c  need to ask the following question. G \ e n  that measure- 

ments show that a procsss is approximately feedback-free. given that we 
knoa the underlying system h a  F(x)  = H(x)  = O .  is square.  and is 
generic. can  one  conclude that i t  is at least approximately feedback-free? 
(Naturally.  there  is no possibility of concluding that it is exactly 
feedback-free). The  answer to this question  is  more complicated (see [16]); 
if  the true and  approximate  spectrum are positive definite on 1: = I .  if 
the KMSF of the  approximate  spectrum is generic. and if there  is a 
feedback-free approximation with the  same characterihtic polynomial as 
the NMSF.  then  one  can conclude the original system is  approximately 
feedback-free. 

\'I. CONCLUDING REhtARKS 

We  have anal>zed a definition for the  absence of feedback betxveen  two 
(vector)  subcomponents of a stationary  stochastic process. Using some 
new results on fcedback processes. n e  have shown that  this new definition 
has some desirable properties which  were not present in  an earlier 
definition  proposed  by Caines and  Chan.  despite earlier suzestions that 
the tv.n definitions  and their consequences are very close indeed. How- 
ever. with the definition used in this paper the absence of feedback can be 
checked by inspection from  any given ( F ,  G, H .  K )  or H'( z )  model. In 
addition. in the generic case the  block-triangular  structure of the (1,. I() 
modcl extend> naturally to a l l  equivalent square. minimal degree factors 
of the joint  spectrum <b,.,( :) which  have the right  behavior at : = x .  
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Linear Systems with Two-Point Boundary  Lyapunov 
and Riccati Ekpations 

W. H. KWOh', MEMBER, IEE. AND A. E. PEARSON. 
hfEMBER, IEEE 

Abstruct--'This paper extends  some  well-knom s\-stem theories for 
algebraic Lgapunov  and  Riccati equations. These  extended  results  deal with 
the existence  and uniqueness properties of the solutions to matrix differen- 
tial equations with Mepoint boundary conditions and are shown to include 
conventional results as special cases. Kecessary  and sufficient conditions 
are derived  under  which linear systems are stabilizable with periodic 
feedback gains derived  from the two-point  boundar?; matrix differential 
equations. An  ea? iterative method for solving the two-point  boundary 
differential Riccati equation is given nith an initial guess which is obtained 
from  the inten-alw-ise receding horizon control. The results in this paper are 
related to periodic feedback  gain controls and also to the quadratic cost 
problem  with a discrete state penalh. 

I.  INTRODUCTION 

The follorbing  well-known theoretical result exists in the area of 
Lyapunov stability for the linear time invariant  homogeneous system 

. ? ( f ) = A . Y ( r )  (1 .1 )  

where x (  r )  E R" and .4 is an FZ X n matrix. The system ( I .  1 )  is asymptoti- 
cally stable i f  and  only if for a n y  C such  that {.A. C) is observable  there 
exists a positive definite matrix K satisfying the  Lyapunov matrix equa- 
tion 

.4'K - M + C'C = 0. (1 2 )  
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