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Abstract—The linear stochastic discrete-time realization problem
is to find a white-noise driven finite-dimensional linear system whose
output generates a specified separable covariance. The solution to
this problem is presented in the form of a causal and causally in-
vertible innovations representation (IR) whose existence depends
only on the positive definite nature of the separable covariance.
It is also shown that least-squares filtered and smoothed estimates
of one process given observations of a related colored process can
be expressed as linear combinations of the state vector of the IR of
the observed process. The analogous continuous-time problems
have been studied earlier, and it has been shown that an important
role is played by what is known as the relative order of the co-
variance. Here this is defined as the number of differencing opera-
tions required to produce a delta function component in the differ~
enced covariance. It is shown that, unlike the continuous-time case,
the relative order of the covariance does not necessarily induce
similar (relative order) constraints on the impulse response of all
models whose responses to white noise have the given covariance.
This fact is at the heart of certain differences between continuous-
time and discrete-time results. It is shown, however, that the innova-
tions representations obey a number of constraints equal to the
relative order of the covariance.

I. IxnTrRODUCTION AND OUTLINE OF RESULTS

HE linear stochastic realization problem is: “Given

the covariance of a signal process, find a lincar
svstem driven by white noise whose output has this co-
variance.” It has alzo been called the time-varving spectral
factorization or, more correetly, the covariance factoriza-
tion problem. The linear svstem will be said to generate the
specified covariance.

In itz casiest form, the problem is confined to stationary
and often =sealar processes that can be generated by finite-
dimensional svstems. In reeent vears, however, several
authors have presented =olutions to various aspeets of the
time-varving covariance factorization problem for con-
tinuous-time processes (see [1]-{9]).

The basie problem here is one in which the speeified
signal covariance, =ay R({.s). containg a white-noise com-
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poncent: in operator form
R =171+4+K. (1)

Tror the special case of a separable K, Anderson, Moore,
and Loo [3] and also Brandenburg: [7] gave a solution,
under certain conditions, to this problem in the form of a
class of lincar finite-dimensional svstems that generate the
covariance f. It has been known for a long time that there
are essentially distinet minimal syvstems that can generate
a given covarianee. In independent work Kailath and
Geesey [1], [R], obtained a unique (up to impulse re-
sponse) solution by requiring that the linear svstem not
only be eausal but al=o causally invertible, leading to what
have been called innovationz models or innovations repre-
sentations (IR's) [10]. The general properties of IR’s were
studied by Levy [11]. Hida [12], and Cramer [13] who
called them proper canonical representations,

The case in which the process does not explicitly con-
tain white noise, namely, where its covariance R is smooth,
is more difficult. Of particular interest for such a proeess is
what has been called [2], {3] its definite relative order a.
Essentially this is one half the number of times the co-
variance has to be differentiated in order that it contain
an added delta funetion. The covariance of the ath de-
rivalive of the process is then of the form I + K. For
stuch processes the most genceral solution of the singular
problem has been given by Geesey and INailath [2].
(For scparable K. and with further assumptions, the
problem was also solved independently by MMoore and
Anderson [6] and Brandenburg [7].) Geesey and Kailath
deseribed a Wiener-Hopf cquation and. for scparable K,
a Riceati equation whose solution determined the IR.
They also showed that the output of a state-variable
system driven by white noise has a covariance of definite
relative order « if and only if the parameters and the state
rariance of this svstem obey « constraints, which can be
used to reduce the order of the Riceati cquation by a.
The point is that beeause of the smoothness of the process
y(-). a different projeetions of the state are caleulable
without error as some linear combination of the signal
y() and it= first a-1 derivatives.

Although =cveral of these results carry over essentially
unchanged (derivatives must ke replaced by differences,
and so on) to the diserete-time case. there are some im-
portant differences. For example, the aksence of a white-
noise component does not make a great difference to the
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discrete-time problem, as could have been anticipated from
the fact that the Kalman filter formulas in discrete time
are not critically modified, as they are in continuous time,
by the absence of an additive white-noise term [14]. In
fact, we shall show (in Section IV) that in discrete time, a
causal and causally invertible lumped innovations repre-
sentation cxists whenever a separable positive-definite
svmmetric covariance is given. However, several different
but closely related state-variable forms of the innovations
representation will be presented, all obtained through the
solution of a Riceati equation.! The existence and some
properties of such forms were first pointed out in [15],
where it was shown that the different forms essentially
arise from using as states of the IR the filtered estimates
#(k|k), say, or the A-step predictions a‘:(klk —A,A=1lor
2 - ... This distinction, which cannot be made in con-
tinuous time without introducing a pure time delay (and
thus destroying finite dimensionality), will be seen to be
at the heart of some differences between continuous-time
and discrete-time results.

A major difference is that while every realization of a
continuous-time covariance of definite relative order «
has to obev « constraints, different realizations are possible
in discrete time, some of which have constrained states
and some of which do not. We have shown [16] that this
distinction explains the observation of Bucy, Rappaport,
and Silverman [17], {18] that in certain discrete-time
filtering problems, differencing the observations does not
have the same computation-redueing consequences as the
analogous differentiation process always has in continuous
time. An cquivalent way of stating the above distinetion
is that while in continuous time the relative order of a
covariance is preserved in all impulse responses that gener-
ate it (see, e.g., [2, lemma 1]), in discrete time the relative
order of the covariance and of the impulse response
obtained by factorization are not nccessarily equal. This
fact can best be seen in the scalar stationary case. In
continuous time, the relative order of a transfer function
(respectively a covariance) is the diffecrence (respectively
one half the difference) between the degrees of the de-
nominator and the numerator polynomials. This relative
order is clearly preserved in the factorization since

S(s) = H(s)H(—s) @)

where S(s) is the power spectral density of the process and
H(s) is the transfer function of a filter whose response to
white noise has power spectral density S(s). In discrete
time the relative order of both the transfer function and the
covariance is the difference between the degrees of the
denominator and the numerator polynomials. That this
relative order is not preserved is evidenced by the fact
that the factorization in discrete time is determined only
up to powers of z since

S(2)

i

H@EHE)
2*H (2)z—*H (2 71). 3)

! We should point out that solving a Riccati equation is not
necessarily the only way of obtaining a realization.
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In continuous time, the analog of 2* is e, but this factor
cannot be introduced without destroying the finite dimen-
sionality of H(s); there is no such problem in diserete time.
In Sections V and VI we shall show how this possibility
affects the structural properties of the realizations, and in

‘particular the amount of reduction in the order of the

Riceati equation associated with the factorization problem.
Finally, in Section VIII we shall show how knowledge of
the TR of the observed process y(-) leads, almost by in-
spection, to the determination of the filtered and smoothed
estimates of a related process for which only cross-co-
variance information, rather than a model, is available.

Historical Remarks

Earlier results on discrete-time realization were ob-
tained in [19]-[21] and [15]. In [19], various forms were
obtained by using an associated eontrol problem (sce the
further discussion at the end of Section IV), but inverti-
bility was not explicitly discussed. In {20], a form similar
to the one in our Theorem 1 (15) was obtained by using an
existence argument similar to one presented in continuous
time by Kailath and Geesey [2] (see the further discussion
in Section IV). In [21], the form (15) was obtained as we
do here, viz., by a method similar to that used in Kailath
and Geesey [1],[2]. The possibility of forms other than
(15) was first noted in Kailath [15], where the close rela-
tionship between the estimation problem and the fac-
torization problem was fully exploited. All these forms
have the same impulse response, a fundamental property
of IR’s [10], but they differ by more than just a state
transformation (see the further discussion in Section III).
The detailed structural analysis of the various IR’s and
other models was carried out in the thesis [22] and is
related to the studies made in [2] and [21]. We may also
note here that the authors of [20] also state that their
results on realization had first been given in an internal
report by Colebatch (Tech. Rep. EE-6813, University of
Newcastle, New South Wales, Australia, 1968), although
the validation was much less direct than in [20], being
similar to the one used in continuous time by Anderson,
Moore, and Loo [5].

11. ReLAaTiONS BETWEEN MODELS AND COVARIANCES

We shall consider a p-vector valued discrete-time process
y(+) over an interval [0,N], with N possibly infinite, and
with a separable covariance of the form

R,(1) = A®B(H)1E —j) + B'QA'(HIG —¢— 1 @)
where 1(-) is the step function
1 —j) =1, ifi>j
0, ifi<y 6)
and A(-) and B(-) have dimensions p X n and n X p,
respectively. This is not the most general form of a dis-

crete-time separable covariance because it does not contain
a delta component as, for example,
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R,(ij) = AQB1E —j — 1)
+ B'@QA'(NIG — 72— 1) + L@DsE -7 (6)
where

81 —j) = 1, fori =j7,6(¢ —j) =0, for< # .

This last form originates from a process that contains a
white-noise component. However, as we noted earlier, the
realization theory for smooth covariances exhibits some-
what greater differences from the corresponding continu-
ous-time case. Therefore, we shall devote most of our
attention to (4).

Now suppose y(-) is known to arise from some lumped
model of the form

v+ 1) = ¢@ + L)z + GG + Dul@ + 1),
2(0) = xo
0<i<¥N

(7a)
y(i) = H@x©), (7b)
where ¢f-,-), G(-), H(-) are known functions and
{oul-)] are zero-mean random variables with
Elvu'(-)] =0, Elxgxre’] = o, 7¢)
Elu®)w )] = Is(k — 1). (7d)
Such a model, with the outputs a linear combination of
the states, has been called a Aarkorian representation of
- the process y(+). Note that y(-) is not Markov, but 1s the
so-called projection of a Mlarkov process, i.c., a linear
combination of the components of a vector Markov pro-
cess. The model (7) is causal, although it may not be
causally invertible. Let us denote the variance matrix of
the states at time 7 by
@) = Elz@z'(@)]. (S)

Then it is well known and is casy to show that II(-) obeys
the difference equation

OE + 1) = 6@ + LYNE'(( + 1) + GG+ DE'E+ 1)
() = Ii,. %)
Therefore the covariance of the output y(-) can be cx-
pressed as
R,(.j) = H@¢@HUGHH (7)1E — J)
+ H'OUE' (GHH NIG — ¢ — 1. (10)
Comparing (4) with (10), we conclude that one set of

relations between the parameters of the system (7) and the
covariance parameters of (4) is

H@¢(E,0) = A (11a)

d0HIHDH'(G) = BG@), 0<:i< N (lib)
Finally, let

U@ = A0e(0,7), NGO = G@0)BGE (12

in terms of which we can also write (4) as
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R,(25) = M@, NN(G)1E — J)
+ N'@e'(GAM' (HIG — 4 —1). (13)

Then an obvious identification between (10) and (13)
gives the relation

H@) = M(@)
OEM'G) = N@), 0<i<N.

(14a)
(14b)
These several formulas will be used presently.

A Comment on the Invertibility of ¢(-,-)

We should note that the identifieations in (11) require
that the state-transition matrix ¢(z.7) of the given model
(7) must be nonsingular? for 7 > j. In our work, however,
this assumption is not restrictive because our goal is to
construct models corresponding to given covariances.
If the columns of A(+) and the rows of B(-) arc lincarly
independent. and if we choose models of order not greater
than the number of such rows or eolumns, then we can
alwaya choose a nonsingular ¢(-,-).

IT1. InNOvATIONS REPRESENTATIONS OF A LUMPED
AMarkoviaN ProcEss

In the first theorem we shall assume that the proeess is
known to arise from some lumped model. This will be re-
laxed later when the existenee of the IR will be shown to
depend only upon the positive definiteness of the given
covariance.

Theorem 1—Innovations Represeniation 1 (IR-1): Let
y(-) have a positive definite covariance of the form (13)
and assume that y(-) is known to arise from some lumped
model. Then an innovations representation for y(-) can
be written in the form
0G + 1) = ¢(¢ + 1,0)0@) + o + 1,)K()EW), 8(0) =0

(15a)
y(@) = M@D6@) + &) (15b)

where &(-) is a zero-mean white-noise process with co-
variance

Eg@e' ()] = [MEONE) — MEZOM @) G —~ J)

(15¢)
and
K@) = [NG@) — 2@ IMEN (@)
—~ M@Z@O)M @] (15d)
The matrix Z,(Z) is the state variance
() = E[0G)8 ()] (15e)

and obeys the matrix Rieeati difference equation

2 Notice that while the state-transition matrix is always non-
singular in continuous time, this iz not necessarily so in discrete time.
This is another source of the differences between continuous and
discrete time, although it is not particularly so in this paper.
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Zie + 1) = oG + 1,0)Z1(D)¢" (¢ + 1,5) + ¢(Z + 1,2)
NG — 2@OM OIMEGNG) — M6z,
@M@ NG — Z(@HM (2)])'¢' (¢ + 1,2)

2,(0) = 0. (15f)

Proof: The proof follows a procedure used in [1].
We begin by assuming that the process y(:) is the output
of a known model of the form (7), and show how to find
the IR for it. This IR is obtained as a rearrangement of the
Kalman filter cquations of the system. Since it is known,
moreover (see [10]-[13]), that the IR is uniquely deter-
mined up to its impulse response by the covariance of the
process, we should be able to express the IR entirely in
terms of this covariance function.

The Kalman filter equations for the one-step prediction
estimates of the state are (see [14])

36+ 1) = ¢(G + LD2E — 1) + oG + LK)

(16a)
&) = y(e) — M@ — 1) (16b)
(0|=1) =0 (16¢)
where
K@) = P@li — DM'@M@GPE: = )M @]

(16d)3
P(i]z‘ — 1) is the covariance of the instantaneous error
P@i — 1) = E[(e@) — 26 — D)@ — 26} — 1))']
(16¢)
and satisfies the matrix Riccati equation
PG+ 1|4 = ¢( + L)PGElF — )¢’ + 1,9)
+GE+ DEE+1) — @+ 1,9
- Pli — )M/ [M@) PG — 1)M’(5)]
- M@)P@EE — 1)’ + 1,5)

P(0|—1)= I, (16f)
The {&(5)} are the innovations of the process y(-). Re-
arranging (16b) and replacing %(zlz — 1) by 6(2) shows that
(15a),(15b), together with (16d)-(16f), is another model
for the process y(-). It can also be verified directly, if so
desired, that the outputs of both models have the same
covariance.

Next we shall show how to express the IR (15a),(15b)
directly in terms of the parameters of the covariance

3 The existence of the inverse requires the assumption that the
covariance R,(7,7) is strictly positive for 0 < 7, j < N (see Section
IV). This is a minimal assumption which is equivalent to the condi-
tion that no y(¢) be a linear combination of the other y(-); this
assumption ensures that there is a unique relation between y(-) and
its innovations sequence ¢(-). While the assumption can be relaxed
by using Moore-Penrose pseudoinverses, we do not feel it useful to
indulge in such pedaniry here.
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function (13). To do so, we define the variance matrix of
the state estimates as

() = E[z(i — D& @i — 1] (17)

By the projection theorem the state estimates are orthog-
onal to the error in the estimates, and hence

P(li — 1) = @) — 2.() (18)

wherc P(i%i — 1) and TI(z) obey (16f) and (16g), respec-
tively. Substituting (18) in (16f) and subtracting (16g),
using (14), gives (15f) for Z;(-). A similar substitution in
(16d) gives the expression (15d) for the gain.

The innovations process &(-) driving IR—1 [sce (15a)
and (15b) ] is a whitened version of the nbservation process,
as is well known [10],[14]. Its variance is easily obtained
noting that

&() = M@ [x@) — 2@ — D] (19)

The expression (15¢) follows immediately using (18).
The existence of a solution to the nonlincar equation
(15f) follows from the existence of a model which guaran-
tees the existence of II and hence of Z; < II. We shall show
in Section IV how this assumption of existence can be

_ relaxed. [ |

Corollary 1—Whitening Filter: The innovations repre-
sentation (IR-1) is causal and causally invertible, and the
inverse serves as a whitening filter. Its equations are

8(@) = y(@ — M0 (20a)
0G + 1) = ¢ + 1,000) + ¢( + LOK@) [y(D)
— M@oG)],  6(0) =0 (20b)

where K(-) is obtained through (15d)-(15f).
Proof: The proof is just a trivial rewriting of the
equations (15) of the inhovations representation. B
In the above we used the Kalman filter equations for the
one-step predictions ;T'(i‘i — 1). However, it is well known
that the Kalman equations can also be deseribed in terms
of filtered estimates ;i'(z'!i). This distinction, which is
effectively absent in continuous time, lcads to an alterna-
tive representation. The usc of IR’s based on filtered or
predicted estimates [ef. (31)] was first noted in {15].

Theorem 2—Innovalions Representation 2 (IR-2): Let
y(+) have a positive definite covariance of the form (13)
and suppose that it is known to arise from some lumped
model. Then an innovations representation for this
process can be written in the form

el +1) = ¢ + 1,)CH) + K@t + 1)&G + 1),
e(—1) =0 (2a)

y(@) = M{@EeR)

where 8(7) is a zero-mean white-noise process with co-
variance

(21b)
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Ele@®e’' ()] = [MEONGE) — M@éEz — 1)
- Bt — Do’ — DM ()8 — J) (2le)
and
K@ = [N@) — o(d,7 — DZ:(c — Do'(Z.2 — DM'()]
SMENE) — M@)o, — 1)Zs( — 1)

c@'(dl — DML (21d)
Zo(+) 1s the state variance
2,() = Ele@e’()] (21¢)

and obeys the Riceati equation
Z(t + 1)
= ¢ + 1,2’ + 1,0) + [NE + 1)

— ¢ + 1,920’ + LHM'@ + 1)}
JME+ DNGE + 1) — HE 4 Do@ + 1,0)Z(2)
@@+ LM GE+ DITHING+ 1) — o+ 1,29
@@+ 1,0M'6E+ 1)), Z(—1) = 0. (211)
Proof: The proof is completely analogous to the

proof of Theorem 1. Alternatively, we can also obtain
IR-2 from IR-1 directly by using the fact that

G+ 1)) = 6@ + 1,064
and henee that

2i(0) = o + L9201’ + 1,0)

(22a)

(22b)
where Za(-) denotes the variance of the filtered estimates
() = B[22 (1))

Substituting these relations in (16a)-(16¢) and (15d)-
(15f), and replacing ;i'(z'l'zf) by €(7) gives

(23)

ez + 1) = o¢(f + 1,9)C>E) + K+ 1)&@E@ + 1),
C(—1) =0 (24a)

y(@) = M@e¢G: — e — 1) + &@) (24Db)
where K (7) is obtained through (21d) and (21f).
Finally we notice that
M@EHKGE) = 1. (29)

Hence (24b) can also be written as (21b), using (24a) and
(25).

It should go without saying (see footnote 3) that the
inverse in (21d) exists beeause it is the innovations vari-
ance which is nonsingular beeause £,(7,)) is nonsingular. [l

Corollary 2-—Whitening Filter: The innovations repre-
sentation (IR-2) is causal and causally invertible. Its
inverse, which is a whitening filter, i= given by

&) = y@) — HM@e(i,i — ez — 1), e(—-1) =20

(26a)
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e + 1) = ¢(i + 1,9)e@) + K@ + 1)
@+ 1D — ME+ Do + Loe@]

where K(-) is given by (21d) and (21f).
Proof: Equations (26) are casily obtained by a re-
arrangement of (21a) and (21b). - |

(26b)

Normalization of the Input White Noise

Notice that the variance of the innovations process in
both IR-1 and IR-2 is a time-varying funetion that de-
pends on the solution of a Riceati equation {sce (15¢) and
(15f) and (21c) and (21f)]. This is in contrast to the
continuous-time case where the variance of the innova-
tions is equal to the variance of the white-noise component
in the covariance of the proeess. It may be convenient to
have an IR that is driven by unit variance white noise.
This can be casily achieved by defining normalized innova-
tions »(-) that have unit variance. For IR-2 we define

(@) = [MEON@) — M@¢(E,i — DNE( — 1)
@' (4,1 — DME) ] e@).
The equations of IR-2 are now
e+ 1) =¢(+ 1,9e@) + LE+ D»@+ 1),
e(—1) =0 (28a)
(28b)

(27)

y@ = M@HewE)
where »(-) is unit variance white noise énd
LG = [N@) — ¢(i,i — DZ:(F — 1)o'({,¢ — 1)M'(7) ]
(MHONE@ — M@DeGE,l — 1)
I — De’(57 — DM@ (28¢)
Comparison of IR-1 and IR-2

We have obtained two different IR’s for the same
process, and we have shown that they can be written
entirely in terms of the parameters of its covariance. Note
that, as might be expeeted, these two representations have
the same impulse response

y(@) = Z}J M@DeENK(DED)- (29)
i
The point is that the states of IR-2 arc a transformation
of the states of IR-1 [see (22a)). However, this is not an
ordinary coordinate transformation because there is a
onc-unit delay between corresponding states.

There is an interesting difference between the output
equations (15b) and (21b) for IR-1 and IR-2, respeetively.
While IR-2 is of the form of the original model (7), the
output cquation in IR-1 contains an added white-noise
term. However, notice that this last equation can alxo be
rewritten, using (15a), in the form

y(@ = M@De(i,i + DG + 1). (30)

While in this form y(7) is written as a linear combination
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of the states, as in the model (7), it should be observed
that there is now a one-unit delay between the states and
the outputs. However, the noncausal relationship between
outputs and states in this modified version of IR-1 docs
not affect the causal invertibility between outputs and
inputs.

Other Representations

The ideas used to obtain IR-1 and IR-2 could be ex-
tended to obtain representations whose states are 2, 3,
-+ -, A-step predicted estimates of the form

G4+ = oG+ N+ N — DIE+ N — 1fi — 1)
+ K(@#)&() (3la)
y(@) = M@éG,i + NEE + M) (31b)
for some A > 0. Similarly, in continuous time, innovations
models can be obtained whose states are predicted esti-
mates T(¢ 4+ Alf) for some fixed positive A. However, when

A > 0 the models will contain pure delays and will not be
finite dimensional.

IV. EXISTENCE OF THE INNOVATIONS REPRESENTATION

We shall show now that the assumption that the process
y(-) arises from some lumped model is not required. Just
the basic assumption that R, (-,-) is a positive definite
covariance on [0,N] will sufficc to demonstrate the ex-
istence of IR-2. The existence of IR-1 then follows by the
relation (22a). The proof will parallel an argument used
in continuous time by Kailath and Geesey (cf. [2, Appen-
dix IIT) and [3, lemmas 3.6 and 3.7]). The continuous-
time proof needs to start with covariances that have a
delta-function component, but as we might expeet, this is
not necessary in diserete time. We may note that Son and
Anderson apparently rediscovered the discrete-time analog
of the just-cited proof in [2] and [3].

We consider again a process y(-) over [0,N] with a
separable covariance of the form (13). We first note that if
R(-,-) 1s a positive definite covariance, there cxists a
causal system that, when driven by white noise, generates
this covariance. We shall subsequently show that this
system is finite dimensional.

Proposition 3: Let R,(4,7) in (13) be a positive definite
covariance on [0,N]. Then there exists a causal impulse
response matrix A(-,-) such that a system excited by unit
variance white noise and with A(-,-) as impulse response
has output covariance B,(-,-), i.c.,

N
Ryfirj) = 32 R (Gb) (32)

with
h(i,7) = 0 (33)

Proof: The result is well known. It relies on the fact
that the Np X Np covariance matrix

forz < 7.
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R = [BRE))], (34)

can be factored into a lower-triangular matrix H and its
transposc

0<ij<N

R=HH. (35)

H is partitioned in p X p blocks A(z,7), and the result
follows. Notice that the positive definiteness of £ implies
that h(7,7) is nonsingular for all 7 since
0<det R = [] [det h(z,0) 2 W (36)
iZ0

Theorem 4: Let h(-,-) be defined as in Proposition 3.
Then k(z,7) has the form

hZ,7) = MO NLG1E — ),

for some matrix L(-) and with M (-) and ¢(-,-) defined by
(13).

Proof: Since B is positive definite, so is H. Let ¥V be
the inverse of H. Then V is also a lower-triangular matrix.
Let V be partitioned like H. Then, using (35), we have

0<4j<N (39

H=RYV (38)
with ’
»'(0,0) 2’(1,0) v’ (N,0)
0 v(L1)
V' =
0 cee 0 »(N,N)

Then we can write, using (38), (13), and the causality of
h( "y ):
J
h(ig) = 2 R(GEEW (,k)
k=0
)

Y M@sGRNERY (GG — j)

k=0

M (i)¢(i7ﬁ[§0¢(j,k)N (k)v’(j;k)]l('i )]

i

Il

M@)eo@)L(NLIE — J)
with
;
LG) & X oGRN I (k). W(9)
We may observe that the above argument actually
already gives a causal and causally invertible model for the
process. It can be shown after some algebraic manipula-
tions (see [22]) that L(-) as defined in (39) is identical to
the gain L(-) of IR-2 [see (28¢)] where Z,(-) obeys the
Riceati equation (21f), which proves the existenee of IR-1
and IR-2. Howcever, we feel that the approach taken in
Theorems 1 and 2 gives more insight and is more helpful
in applications to estimation problems.



594

Another characterization of IR-2 i in its minimum
properties. If one considers all models of the form (7) fora
process y(+) with covariance (13), then the realization
problem reduces to finding ail =solutions II(-) and () of
the =ct of equations

Ui+ 1) = (7 + 1.OUG)e (¢ + 1,7)

+ Gl + DG+ D) (H0w)
1H(0) = 1, (10b)
nE) G = NG). (40¢)

Indeed. oncee H(-) and ¢(-.-) in (7) have been identified
with the corresponding parameters M () and @(-.:) of
(13). the only way models generating R,(-.-) can differ
ix the matrix G(-) and the intial conditions matrix .

In the stationary steadv-state case, Faurre [19] has
analvzed the realization problem from this point of view,
namely: find all nonnegative matrices IT and @ that
sati=fy the sets of constraints

I = ¢llg’ + Q (41a)
H' = N. (41b)

There are, in general. infinitely many solutions (IL.Q) to
these cquations. To obtain a unique =olution. Faurre
introduced the usual partial ordering on the =et of non-
negative definite solutions 11, viz., IT; 2 Il if IT; — I 1=
nonnegative definite. He then obtained a =mallest and a
largest solution for IT with the help of an as=ociated optimal
contral problem. These =olutions were found to be the
asvmptatic solution of a Riceati equation obtained by
applving a matrix inversion lemma. It turns out that
Faurre’s Riceati equation for the smallest =olution IT of
(41) ix precisely (216). and that the model that could be
obtained by fuctorization of his steady-state =olution for ¢
into G ix precizely the steady-state version of IR-2. In
[22] a simple proof has been given of the fact that of all
solutions }11(),(i + 1), 0 < i < N} of (40). the realiza-
tion with the smallest variance i IR-2, in the sen=e that if
IT%(/) is the state-varianee of any other realization, then

H*(i) —I(G) > 0. 0<i<A.

The proof of this result and some further implications of
this mimimality property will be presented elsewhere.

V. RELative OrRDER PROPERTIER OF COVARIANCES AND
TuEIR REALIZATIONS

So far we have shown how to obtain 1R’ for separable
covariance= that do not contain a (Kronecker) delta
function component. It may be remembered. however.
that in continuous time the realization problem s xig-
nificantly mare complicated when the covariance of the
process is smooth [2] than when it contains a delta fune-
tion component [1]. In the former ecase it ix generally
necessary to introduce what has been ealled the definite
relative order of the process (zee [2] and [3]). which is the
number of differentiations required to produce a delta
function term in the differentiated covarianee funection.
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It has been shown (see, c.g., [2, lemma 1]) that in con-
tinuous time the relative order of the process (or the co-
variance) is cqual to the relative order of all models whose
response to white noise has the given covariance; the
relative order of a model iz defined as the number of output
differentiations required to produce a term proportional
to the input in the differentiated output of the model. The
relative order of the model induces constraints that can be
uscd in the realization problem to reduce the order of the
Riceati equation associated with the covariance factor-
ization [2]. Thus, in continuous time, the realization of a
separable covariance of definite relative order o« can be
achieved through the selution of a Riceati equation of
order 1-a where 1 is the dimension of the minimal realiza-
tion.

In dizerete time, we <hall similarly define the relative
order of a covariance as the number of differencing opera-
tions required to produce a (Iironecker) delta function
component of the differenced covariance; for stationary
proceszes it iz also equal to the difference between the
degrees of the denominator and numerator polynomials of
the power speetral density function (the z-transform of the
covariance function). The relative order of a model 13
equal to the number of differencing operations required to
produce a term proportional to the input in the differenced
putput; for constant systems it is also equal to the differ-
ence between the degrees of the denominator and numer-
ator polvnomials of the transfer funetion (the z-transform
of its impulse response). A= in continuous time, the relative
order, say ¢. of a model induees constraints on the param-
eters of the model that ean be used to reduce by g the
order of the Ricecati equation in the covariance factoriza-
tion problem.

However. as we shall see now. the relative order « of a
given covarlance function has no unique relationzhip, in
diserete time. to the relative order ¢ of a model whose
response to white noise has the given covariance. Whereas
in continuous time ¢ = « for all state-variable repre-
sentations. in discrete time one can only =ayv that ¢ < a.
However, we shall show that there exists a class of repre-
sentations whose relative order equals the relative order
of the process, and that the innovations representations
belong to that class, For these models the order of the
Riceati equation associated with the realization problem
can be reduced by a.

Before turning to the proofs of these results, let us note
that although our results are stated for scalar processes,
they can be essentially earried over, although with a heavy
notational burden, to the vector casc.

We <hall =ay, following [2] and [3]. that the covariance
(4) has definite relative order e if there exists a finite
integer . a > 0 such that

D AG =BG — B - A7) =0,
k=12 a—1 F<i<N (42a)

DA — B — B'(i — a)A'()) = CHC'G) >0,
a<i<N. (42b)
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Let (4) be the covariance of the output of a DMarkovian
model

2(2) = z(f — 1) + G@)u(@),
y(@) = H@)z(),

2(0) = xy (43a)*
0<i< N (43b)

where
Eu@] =0, EuGu()] =15 —5) @30
Eu@x'] = 0, Elx} = . {43d)
The state variance obeys the recursive equation
0@ = U@ — 1) + GG, 0 = 1, (44)
The covariance of the outputs of (43) is given by
R,(.j) = HOI(HDH'(H1E — j)
+ HOUOH ()H1(G — i — 1). (45)
Comparing with (4) we have
H({@) = A@G) (46a)
(@A (@) = B(), 0<i<N. (46Db)

Multiplyving (44) to the left by A(7 — 1) and to the right
by A’(z) and using (46) and the relative order property
(42) of the covariance, we find

A — DB — B'(i — DA'{) =0

=A@ — DGOG (A (). (47)

However, contrary to what happened in continuous time
(sec, e.g., [2, eq. (23)], we cannot conclude here that either

A@G@ — 1)GE) = 0, 1<2<N (48a)
or

AGHGEH =0, 0<i<N. (48b)

The only conclusion from (47) is that Az — 1)G() and
A ()G () are orthogonal for all 7. Similarly, the following
relations, which could have been expected to hold by
direct analogy to the continuous-time results, do not
necessarily hold in discrete time:

AQG — BGE) = 0, E=12,--,0a —1 (492)

AG — Bz@) = yG — k), k=01,--,0—1 (49b)
AG — BOE) =BG -k, k=01--,a—1 (49)
kF<i<N.

If (49a) holds fork = 1,---,¢ — 1, (¢ < @), then ¢ will be
called the relative order of the representation (43) by
analogy to the continuous-time definition (see, e.g., [3,
definition B.1, p. 22]). We have just shown that in dis-
crete time there is no unique relationship between the
relative order ¢ of the representation and the relative
order « of the covariance of a given process. Clearly, by
(47), we always have ¢ < «a.

4 The choice of u(¢) rather than the more common (7 — 1) is more
convenient here [see also (7a) and (21a)].

595

Notice that the difference between continuous and dis-
crete time is due to the required distinction in diserete
time between ¢ and z — 1; if these could be identified, we
would have, instead of (47),

A@DGEHG (DA (G =0
which would imply

(50)

A@@GE) =0 (51)
just as in continuous time.

Next we show that a process whose covariance has
definite relative order a can always be represented as the
output of a state-variable model that does obey the con-
straints (49).

Theorem 5: Let the covariance (4) of a process y(-) over
an interval [0,N] have definite relative order «, a > 0.
Then there exists at least one representation of the form
(43) that obeys the constraints (49).

Proof: We notice first that the matrix H(@) of the
realization (43) is determined by (46a). Hence the sct of all
realizations (43) for the process y(-) is determined by the
set of all solutions {11(),GE + 1), 1 = 0,1,---,N} to
the equations (44) and (46b) where A(-) and B(-) obey
the constraints (42). We show that there exists a subset of
solutions {II(-),G(-)} that obey the constraints (49).
All we need to prove is that we can choose TI(-) and G(-)
to obey (49) without violating the constraints (44), (46b),
and (42). To show this, we choose G(-) and II(-) such that

AG — 1)GG) (52)
AG — DG = B¢ — 1), (53)

0 1<i{<N
1<7i<N.

We show that this choice is consistent with the constraints
on G(-) and II(-). Multiplying (44) to the left by Az — 1),
using (52) and (33), we get,

0 = AG — GGG E)
AG — DIE) — AG — DG — 1)
=BG —1) —AG — DIG — 1).

(4

Thus (46b) follows, and post-multiplication by A’(2)
shows that (42a) follows similarly. If « > 2, the same pro-
cedure can be pursued to show that the constraints (43) on
G(-) and II(-) are consistent with the conditions (42),
(44), and (46b). [ |

We have established that although not all representa-
tions of a process with definite relative order o obey all &
constraints (49), there exists a class of models that does
obey these constraints. Before identifying such models,
it will be useful to restate the relative order conditions
(42) and the constraints (49) for a process whose covari-
ance is given by (13) instead of (4). A covariance of the
form (13) has relative order « if

1) M{E— k)o@ — kEONE)
— N'(i — k)¢'(e,i — B)M'(D)
a— 1L

I
A

k=12,

IA

N (553)
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N MG — &)t — a,)NE) — N'(F — )’
(i — )@ = CEHC' ) >0,

a <7< N, (33b)
The constraints (49) for a model of the form (7) are
H@ — Bo@ — k)GQR) = 0,
k=1, —1 (H6a)
H{ — B¢l — k2@ =y — k),
k=0,-,a—1 (56b)
HE — B)¢(@ — EDIUE) = N'(@ — k)e'(i,0 — k),
E=0,-,0a~—1 E<i<N. (56¢)

Corollary 3: Let a process y(-) with ecovariance (13) have
definite relative order @, @ > 0. Then the innovations
representation IR-2 of this process has definite relative
order a, 1.c., it obeys the constraints (56a)-(56c¢).

Proof: The proof 1= an casy but lengthy verification
that the equations (56a)-(56c) hold for the model (21)
with G(-) replaced by K(-), z(:) by 6(-), TI(-) by Z.(-),
and H(-) by 17(-).

As we noticed in Seetion III, IR-1 is not of the form (7).
It does not obey the constraints (53), but obevs the same
number of equivalent constraints.

Corollary 4: Let a process y(-) with covariance (13)
have definite relative order ¢, o > 0. Then the innovations
representation IR-1 of this process obeys the constraints

M@ — Kol — k)KGE) = 0,

k=1,--,a—1 (57a)
MG — D@ — ki)bE) = y(i — k),
k=1, (57b)
MG~ B)éi — k)21() = N'(GG — k)’ (6,0 — k),
B=1, e (57¢)
L <i<N.

Proof: The proof is again a straightforward verifica-

tion. | |

V1. Repvcep OrpER MODEL FOR A ScaLAR ProOCESS

We shall show now how the constraints (56) can be used
to obtain a reduced order Riccati equation for IR-2 [cf.
(21f)]. This will require a coordinate transformation.
For simplicity of notation, we shall consider a scalar
process and we shall assume a “uniform observability”
assumption [defined below, after (60) .

Thus consider a sealar process y(-) over an interval
[0,N ] with covariance

R,(i.j) = mO)e({.HN(NIE — J)

+ N'@Qe' (G, )m" (NG — 7 — 1)
where m(-) is 1 X n, ¢(-,-) is n X n and nonsingular, and
N{()isn X 1.

Let the covariance (58) have definite relative order «,
a > 0. Then we know by Corollary 3 that the representa-

(58)
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tion IR-2 given by (21), with A/(-) replaced by m(-),
obevs the constraints (36). To exploit the constraints
(56¢) on Z.(-) and thereby reducc the order of the Riecati
equation (21f), we shall make the state transformation

Tnew() = T(z').rold(z') (59)
with
m(z)
m(E — Dot — 1,7)
T@ = . (60)

miE —n + Dot — n + 1,7)

The assumption of uniform observability is that 7'(i) is
uniformly nonsingular, i.c., nonsingular for n — 1 < 7 <
N5 In the stationary ease this assumption is the same as
complete observability.

In the new coordinate syvstem we have

m(@ =11 0 --- 0] (61a)

I N ]

1 0 4]

0 1 0

$(1 + 19) = (61b)

1o --- 0 1 0]

where a(z + 1) is 1 X n:

a@+1) =[E@+1 - @+ D] (61e)

Now let N(7) be the jth component of the vector N(7) in
the new coordinate system. Then define

M@) =
NG N Ne() T
Ne(i) N'(i—1) NG —1) NG — 1)
: Ni(E —2) :

NY i ~n+1) ]
a—1<i<N (62

with N9(7) = 0 for 7 < 0 and for any j. Let the (n — a)
X (n — a) lower right-hand =ubmatrix of ¢(/ + 1.7) be
denoted by

v

0 ... 0]
1 0 0
0
F&, (63)
Lo -~ 0 1 0]

5 This assumption can easily be avoided. However, without this
assumption, the simple form (61) cannot be obtained (cf. the analo-
gous situation in continuous time [2]).
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Finally, let the last (n — @) elements of a(z 4 1) be de-
noted by

b+ 1) £ [a*F @ + 1) - e@ + 1] (69

With these notations we can describe an (n — «)th order
Riceati equation for the innovations representation (IR-2)
of a proecess with definite relative order «.

Theorem 6: Let a scalar process y(-) over [0,N] have
covariance (38) with definite relative order a and let
Z5(+) be the solution of the Riceati equation (21f) of IR-2.
Then for ¢ > a — 1, Z.(¢) can be partitioned into

Zo(D) = M®) + D), a—1<{< N (65
with
, 00

where E(2) is (n — a) X (n — ) and obeys the equation
EG+1) = FEQOF +FEQVGE+ D[N'(E + 1)
—a(@ + DM@ E+ 1) —bGE + DEE@VE + 1))
0@+ DE@F, a—1<i< N (672
E(a — 1) = lower right-hand submatrix of Zy(a — 1)

— lower right~hand submatrix of M (a — 1). (67b)

Proof: That the variance of the states of IR-2 can be
written in the form (63) and (66) follows after lengthy
algebraic manipulations from the constraints (49¢) on
Zo(+) and the special form that these constraints take in
the new coordinate system. The expressions (67) follow by
substitution of (63) and (66) in (21f). More details can be
found in [22].

Corollary 5: Let a sealar process y(-) over [0,N] have
covariance (58) with definite relative order «. Then for all
7> a — 1, IR-2 iz state equivalent to

[ 1 [..eGtD
1 0 0
010 0
oG+ 1) | =1 - .
a 4 lo 0 1 0]
— — [ 1_ -------- 1
0
SIORES 80 +1) (682)
S
L 1 [KG+ 1]
y@ = (10 --- 0][6()] (68b)

where &(-) is a white-noise process with
Elg@e()] = IN'() — a(@ MG — 1a'()

— b@E@E — Db () 16G — 7). (68¢c)
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K@is(n — o) X 1and
EG) = FEG — DV G)[N'G) — a@ MG — 1a’ ()

—b@DEFZ — DY@ (68d)

where E(7) obeys (67).

Proof: From (21d) it follows directly that m(@Z) K@) =
1. From the form of T(2) [see (60)] it follows that the first
component of K (i) in the new coordinate space is 1. The
zeros in K(7) follow from the constraints (49a) with G(-)
replaced by K(-). The other relations follow from The-
orem 6.

Remark 1: From the form of F' in (63) we notice that the
first component of K(-) is zero. This, together with (68a),
shows that the realization has a pure delay linc of order «
and a feedback structure of order » — .

Remark 2: We have obtained a reduced order Riceati
equation for IR-2 when the process has relative order a.
Naturally, since IR-1 also obeys « constraints [sce (57) ], a
similar reduction can be obtained for it. Some results
along these lines were already obtained in [21], patterned
on analogs of the continuous-time results of [2] and [3].

VII. ExavrLE

We shall study a second-order scalar process whose co-
variance has definite rclative order 2. We shall give two
different realizations, of which only one is ecausally in-
vertible and obeys the constraints (56). For this last
realization we shall sce that the Rieecati equation (21f) 1s
totally degenerate. A similar example is studied in con-
tinuous time in [2].

‘We consider a scalar process y(-) over [0,o) whose
covariance matrix R is given by

16 1 4 1% ]

1 3 & %

4 1 ¥
BR=[RBp)l=| 1 % o =% (69)

|- -

This covariance can be factored into

R(G,7) = h¢*IN()1(E —j) + N'@)¢""h'1(j —1i — 1)
(70)

where h is a row vector with entries O and 1, ¢ isa 2 X 2

matrix with zeros on the main diagonal and % elsewhere,
and N (%) is given by the recurrence relations

NG+ 1) = 1IN

N+ 1) = %M@ — 1) +3 i>1 (71a)
together with the initial values
N'(@©) = [2 16], N'(1) =[5 3] (71b)
Notice that
lim N'G) = [0 %] (72)

i—w®
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It i= easy to verify that &, ¢, and N () do indeed produce
the covariance R(Z,7) given in (69). Using (53) we check
that the relative order of the covariance is 2:

h¢~N(E — N'(z — 1)¢'h’ =0,
he=*N (i) — N'(i — 2)¢%h’ =

121

12> 2

(73a)

1 >0, (73b)

Thus we know by Corollary 3 that the projection of Z.(-),
the state variance of IR 2, on the vectors he—! and h¢p—2
can be computed direetly from N(-) and ¢ [see (56¢)].
But h¢~! and h¢—? are linearly independent:

h¢~' = [2 0]; ho—2 = [0 4l

Henee =5(+) can be completely determined without solving
the Riceati equation (21f), as we shall sce. But first we
show that there exist other state-variable models of the
form (7) that can vield the same covariance.

A first realization is

27 4+ 1)
y(@)

ox(?) + Tz + 1)
0 1)z

(74a)
(74b)

I

where

"= O]and¢=|:

N O

[ SV SV |

Elp@v(f)] = 8@ —J), Elrery’] £ 1o =

1 O w-

16:‘ (7T4c)

II(-) ean be computed by solving the state-variance
equation

i + 1) = ¢ll(?)¢" + (7, I{0) = M, (73)
Tt is casy to cheek that
@K = N@©), i =01,---. (76)

The relation (73a) iz, of course, satisfied, but notice that
none of the constraints (56) holds. The input—output rela-
tion ix

y() = ty@ — 2) + @ — 1), (77)
or in transfer funetion form
H(z) = 2271/4 — 22, (78)

Notice that while both poles of the transfer function are
inside the unit eirele, the only zero i= at infinity. It follows,
as is atherwise easy to see, that this system is not causally
invertible (or minimum phase). The power speetral density
of the output, in the steady state, 13

RG) = HEHE™) = 417 — 4(* + 27917 (79)
Notice that an alternate factorization of R(z) gives
H() = 2/4 — z72 (S0)

The faet that different factorizations of a given power
spectral density are possible in diserete time and the
structural propertiex of these different realizations 1s
studied 1 [16].

For the same covariance (69) IR-2 is
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@+ 1) = ¢z(d) + K¢+ 1)8G@ + 1)  (8la)
y@) = [0 1]z() (81b)

with
E8()&()] = [IN@) — heZs(z — 1)¢'h’]  (8le)

1 9
4

2.(0) = NQ)[AN(0)]-IN'(0) = [2 18] (81d)

2(0) = K(0)&(0) = [ﬂ&,

The expressions of Z:(0) and x(0) follow from (21f) and
(21a). The gains K (7) arc computed from (21d). But notice
that for ¢ > 1, Z:(i) can be calculated directly by its
known projections on /i and h¢ !, using the constraints
(56¢):

hZ,(0) = [0 1]2.() = N'(d), t>0 (82a)
he—1Za() = [2 01Z:() = N'(G; — 1)¢', i>1. (S2b)

The Riccati equation (21f) need not be solved. Notice
finally that this last model is invertible (the inverse is
obtained by Corollary 2), and that the constraints (56a)
and (56b) also hold. In particular,

ha(®) = y@); hé~'2(D) = y(G@ — 1). (83)

VIII. AppLicATIONS TO LEAST-SQUARES ESTIiIATION

In Part V [2] of this series of papers we showed how the
IR’s and the interpretations thercof were helpful in
providing solutions, almost by inspection, to a number of
filtering and smoothing problems, including problems with
covariance information rather than the more common
state-model information. Similar diserete-time applica-
tions can be made here, and we outline them very briefly.
They exploit onee again the intimate relation that exists
between least-squares estimation and the IR’s.

Suppose we are given observations of a lumped process
y(-) with a positive-definite separable covariance function

R,(i,0) = M@e@NN'(5), 127 (84a)

N'(D)e¢'(,7)M(5), (84b)

Since we know that R,{7,7) iz the covariance of some
lumped process, we shall assume that we have the model

@i+ 1) = o@ + 1,D)x(@) + GE+ Dulf + 1) (S5a)

y(@) = M@xQ) (85Db)

with the usual assumptions on xp and «(-). To be con-
sistent with (84), the state variance II(-) has to obey the
constraint

1 < J.

]

()M (G) = NG). (S6)

We wish to find the least-squares filtered and smoothed
estimates of a related signal process w(+) for which the
following assumption holds:

w(@) = M)z + y*@) (87)
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where y1(-) is any process uncorrelated with y(-). It is
easy to see that this assumption is equivalent to the
following cross-covariance information about w(-):

Elw@y' (D] = Mu(0)oE)N (), 127 (88a)
= N,/ @¢'(GDHM(7), 1 <7 (88b)

with the constraint
' G M, @) = No/G). (89)

We first show that the filtered estimate zb(ili) of w(-)
can be expressed as a known linear combination of the
state @(7) of the IR-2 of the process y(-):

#(id) = M, (0)e@). (90)
To show this, we observe that (87) implies
B(id) = M, (2)3]). (91)

But as noted earlier (cf. Corollary 2 and the proof of
Theorem 2), .i'('iii) is just the state vector of the whitening
filter (26) associated with IR-2, and as shown in Theorem
2, it can be cxpressed entirely in terms of the parameters
M), ¢(-,+), and N(-) of the covariance function R,(7,7).

It follows similarly from (87) that
Wi — 1) = M,@26i — 1) (92)

where i(z‘z — 1) is the state vector of IR-1 {(ef. Corollary 1
and the proof of Theorem 1).
For the smoothed estimate, we have, again using (87),

Bi|j) = Mu@)2E;). (93)
The smoothed estimate ;%(i] 7) can be calculated by using a
general innovations formula {(ef. Part II of this series
[23]):
;
26l =2ty + 2 Bl 6 EE®E ()] Ek.
99
By the orthogonality property of the innovations, we have

E[z@)&' (k)] = E[&(@]d — )&/ (k[k — 1)1M' (k)

= PGRM'(k), i<k (95)
where
PGk &2 Elx(li — D& (kE — 1)1 (96)
It is easy to calculate that
P@k) = Pii — DY/ (k) (97)

where P(él¢ — 1) is defined by (16e) and ¥(k,7) is the state-
transition matrix of the error equation

X+ 11) = ¢ + 1) — K@M @)@ — 1)
+ GG+ Du@@ + 1)

= 9@+ L)xEi — 1) + GG+ Du(@ + 1).
(98)

With these notations we can now wrife
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36 = 26D + Pali — 1) Z+ W (o)) M ()

(ME)PE|E — )M (k) ]-16k)

= &(id) + PGli — NG, say (99)

where A(7) is the so-called adjoint variable

A@) = i ¥’ (k)M (k) [M () P(klk — 1) M’ (k)]~'6(k)
E=i+1

=Y+ LN+ D)+ E+FDME+ D)
ME+DNGE+ 1) — ME+ DZGE+ 1)
MG+ 1)]78G + 1) (100a)

A7) = 0. (100b)
Substituting (99) into (93) yields, through (18) and (89),
w(ilf) = @) + M @)PE — DAE)
= @) + [N, () — Mu()Z:G) NG (101)

where Z(7) is the solution of (15f). To complete the re-
writing of the smoothing formula for -zb(zl 7) in terms of the
parameters of the covariance funetion, notice that, by (98)
and (15d),

Y@ + 14) = ¢(i + L){I — [NG) — Z:(6)M'(5)]
M@NG — MOZ@M @] M@} (102)

The equations (100)-(102), together with the recursive
equation for Z;(¢) and the relation (90) for z?)(ii'i), con-
stitute a complete solution of the smoothing problem for
() in terms of the parameters of the covariance function
(88). The formula (101) is the analog of the Bryson-
Frazier form for the fixed-interval smoothing cstimate.
The continuous-time version of (101) was first published in
{27 [see, e.g., (137)].

IX. CoxcLupiNG REVARKS

We have shown how to find innovations representations
for discrete-time observation processes with specified
separable covariance. From these representations, ex-
pressions can be derived, almost by inspection, for the
filtered and smoothed estimates of a related process for
which either model or covariance information is given.

Our results show that therc exists an important differ-
ence between the continuous- and discrete-time realization
problems in the case where the covariance has a nonzero
definite relative order. Whereas in continuous time the
relative order is a unique property of both its covariance
function and any of its realizations, in diserete time the
relative order of the covariance of a process and a lumped
realization of this process are not necessarily the same.
This means that whether or not the realization inherits the
constraints imposed by the relative order property on the
covariance depends on how the factorization is performed.
In [16] and [22] we have shown how these facts explain
certain phenomena [17],[18] in cstimation problems for
given discrete-time models.
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Another important reason for studying the representa-
tion problem is as a prelude to system identification, as
opposed to svstem realizaizon, problems. The distinetion is
that in realization problems knowledge of the true co-
variance is assumed, while in the identification problem
only a finite observed record 1y(©),0<: < N} i= available.
One procedure is to assume stationarity, use the record to
estimate the covarianee, and then apply the algorithms of
this paper. However, perhaps beeause of the difficulty in
obtaining good covariance cstimates, most attention scems
to have been paid to maximum likelihood (ML) techniques
that work dircetly with the given data record. This may
very well be the best procedure (and we may note inci-
dentally that use of the IR gives a computationally con-
venient form of the ML equations [24]). but we do not
believe that this faet has been conelusively demonstrated.
In faet, our result that not all the inherent smoothness of a
covariance function need be present i all models suggests
that the operation of forming a covariance may =mooth
our irrclevant roughness in a data record. This whole
question is a topie of continuing inquiry.
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