An Innovations Approach to Least-Squares Estimation-Part VI: Discrete-Time Innovations Representations and Recursive Estimation

MICHEL R. GEvERS, menber, ieee, and THOMAS KAILATH, fellow, ieee

Abstract

The linear stochastic discrete-time realization problem is to find a white-noise driven finite-dimensional linear system whose output generates a specified separable covariance. The solution to this problem is presented in the form of a causal and causally invertible innovations representation (IR) whose existence depends only on the positive definite nature of the separable covariance. It is also shown that least-squares filtered and smoothed estimates of one process given observations of a related colored process can be expressed as linear combinations of the state vector of the IR of the observed process. The analogous continuous-time problems have been studied earlier, and it has been shown that an important role is played by what is known as the relative order of the covariance. Here this is defined as the number of differencing operations required to produce a delta function component in the differenced covariance. It is shown that, unlike the continuous-time case, the relative order of the covariance does not necessarily induce similar (relative order) constraints on the impulse response of all models whose responses to white noise have the given covariance. This fact is at the heart of certain differences between continuoustime and discrete-time results. It is shown, however, that the innovations representations obey a number of constraints equal to the relative order of the covariance.

I. Introdection and Oetline of Results

THE lincar stochastic realization problem is: "Given the covariance of a signal process, find a linear system driven by white noise whose output has this covariance." It has also been called the time-varying spectral factorization or, more correctly, the covariane factorization problem. The linear system will be said to generate the specified covariance.

In its casiost form, the problem is confined to stationary: and often sealar processes that can be generated by finitedimensional systems. In recent years, however, several authors have presented solutions to various aspects of the time-varying covariance factorization problem for con-tinuolis-time processes (sec [1]-[9]).

The basic problem here is one in which the specified signal covariance, say $R(t, s)$, ementains a white-moise com-

[^0]ponent: in operator form
\[

$$
\begin{equation*}
R=I+K . \tag{1}
\end{equation*}
$$

\]

For the special case of a scparable K, Anderson, Moore, and Loo [i. $]$ and als(s) Brandenburg. [7] gave a solution, under certain conditions, to this problem in the form of a clase of linear finite-dimensional sestems that generate the covariance R. It has been known for a long time that there are esentially distinct minimal systems that can generate a given envariance. In independent work Kailath and Gecsery [1]. [:], obtained a mique (up) to impulse response) solution by requiring that the linear syetem not only be causal but also causally invertible, leading to what have been called innovations models or immovations representations (IR's) [10]. The general properties of IR's wore studied be Levy [11]. Hida [12], and Cramer [13] who called them proper canonical representations.

The ease in which the procese does not explicitly contain white noise, namely, where its covariance R is smooth, is more difficult. Of particular interest for such a process is what has been called [2], [3] its definite relative order α. Essentially this is one half the number of times the covarianec has to be differentiated in order that it contain an added delta function. The covariance of the α th derivalive of the process is then of the form $I+K$. For such processes the most general solution of the singular problem has been given by Geesey and Kailath [2]. (For separable K, and with further assumptions, the problem was also solved independently by Monre and Anderson [6] and Brandenburg [7].) Gieesey and hailath deseribed a Wiener-Hopf equation and, for separable K, a Riceati equation whose solution determined the IR. They also showed that the output of a state-variable system driven by white noise has a covarianer of definite relative order α if and only if the parameters and the state varianec of this system obey α constraints. which can be used to redues the order of the Riceati equation by α. The point is that because of the smoothness of the process $y(\cdot), \alpha$ different projections of the state are calculable without error as some linear combination of the signal $y(\cdot)$ and its first $\alpha-1$ derivatives.

Although several of these results carry ower cesentially unchanged (derivatives must be reflaced by differences, and so ons) to the diserete-time case there are some impertant differenees. For example, the absence of a whitemoise component docs not make a great difference to the
discrete-time problem, as could have been anticipated from the fact that the Kalman filter formulas in discrete time are not critically modified, as they are in continuous time, by the absence of an additive white-noise term [14]. In fact, we shall show (in Section IV) that in discrete time, a causal and causally invertible lumped innovations representation exists whenever a separable positive-definite symmetric covariance is given. However, several different but closely related state-variable forms of the innovations representation will be presented, all obtained through the solution of a Riccati equation. ${ }^{1}$ The existence and some properties of such forms were first pointed out in [15], where it was shown that the different forms essentially arise from using as states of the IR the filtered estimates $\hat{x}(k \mid k)$, say, or the λ-step predictions $\hat{x}(k \mid k-\lambda), \lambda=1$ or $2 \cdots$. This distinction, which cannot be made in continuous time without introducing a pure time delay (and thus destroying finite dimensionality), will be seen to be at the heart of some differences between continuous-time and discrete-time results.

A major difference is that while every realization of a continuous-time covariance of definite relative order α has to obey α constraints, different realizations are possible in discrete time, some of which have constrained states and some of which do not. We have shown [16] that this distinction explains the observation of Bucy, Rappaport, and Silverman [17], [18] that in certain discrete-time filtering problems, differencing the observations does not have the same computation-reducing consequences as the analogous diffcrentiation process always has in continuous time. An equivalent way of stating the above distinction is that while in continuous time the relative order of a covariance is preserved in all impulse responses that generate it (see, e.g., [2, lemma 1]), in discrete time the relative order of the covariance and of the impulse response obtained by factorization are not necessarily equal. This fact can best be seen in the scalar stationary case. In continuous time, the relative order of a transfer function (respectively a covariance) is the difference (respectively one half the difference) between the degrees of the denominator and the numerator polynomials. This relative order is clearly preserved in the factorization since

$$
\begin{equation*}
S(s)=H(s) H(-s) \tag{2}
\end{equation*}
$$

where $S(s)$ is the power spectral density of the process and $H(s)$ is the transfer function of a filter whose response to white noise has power spectral density $S(s)$. In discrete time the relative order of both the transfer function and the covariance is the difference between the degrees of the denominator and the numerator polynomials. That this relative order is not preserved is evidenced by the fact that the factorization in discrete time is determined only up to powers of z since

$$
\begin{align*}
S(z) & =H(z) H\left(z^{-1}\right) \\
& =z^{k} H(z) z^{-k} H\left(z^{-1}\right) . \tag{3}
\end{align*}
$$

[^1]In continuous time, the analog of z^{k} is $e^{s \lambda}$, but this factor cannot be introduced without destroying the finite dimensionality of $H(s)$; there is no such problem in discrete time. In Sections V and VI we shall show how this possibility affects the structural properties of the realizations, and in particular the amount of reduction in the order of the Riccati equation associated with the factorization problem.

Finally, in Section VIII we shall show how knowledge of the IR of the observed process $y(\cdot)$ leads, almost by inspection, to the determination of the filtered and smoothed estimates of a related process for which only cross-covariance information, rather than a model, is available.

Historical Remarks

Earlier results on discrete-time realization were obtained in [19]-[21] and [15]. In [19], various forms were obtained by using an associated control problem (see the further discussion at the end of Section IV), but invertibility was not explicitly discussed. In [20], a form similar to the one in our Theorem 1 (15) was obtained by using an existence argument similar to one presented in continuous time by Kailath and Geesey [2] (see the further discussion in Section IV). In [21], the form (15) was obtained as we do here, viz., by a method similar to that used in Kailath and Geesey [1],[2]. The possibility of forms other than (15) was first noted in Kailath [15], where the close relationship between the estimation problem and the factorization problem was fully exploited. All these forms have the same impulse response, a fundamental property of IR's [10], but they differ by more than just a state transformation (see the further discussion in Section III). The detailed structural analysis of the various IR's and other models was carried out in the thesis [22] and is related to the studies made in [2] and [21]. We may also note here that the authors of [20] also state that their results on realization had first been given in an internal report by Colebatch (Tech. Rep. EE-6813, University of Newcastle, New South Wales, Australia, 1968), although the validation was much less direct than in [20], being similar to the one used in continuous time by Anderson, Moore, and Loo [5].

II. Relations Between Models and Covariances

We shall consider a p-vector valued discrete-time process $y(\cdot)$ over an interval $[0, N]$, with N possibly infinite, and with a separable covariance of the form
$R_{y}(i, i)=A(i) B(j) 1(i-j)+B^{\prime}(i) A^{\prime}(j) 1(j-i-1)$
where $1(\cdot)$ is the step function

$$
\begin{align*}
1(i-j)=1, & \text { if } i \geq j \\
0, & \text { if } i<j \tag{5}
\end{align*}
$$

and $A(\cdot)$ and $B(\cdot)$ have dimensions $p \times n$ and $n \times p$, respectively. This is not the most general form of a dis-crete-time separable covariance because it does not contain a delta component as, for example,

$$
\begin{align*}
R_{y}(i, j)= & A(i) B(j) 1(i-j-1) \\
& +B^{\prime}(i) A^{\prime}(j) 1(j-i-1)+L(i) \delta(i-j) \tag{6}
\end{align*}
$$

where

$$
\delta(i-j)=1, \quad \text { for } i=j, \delta(i-j)=0, \quad \text { for } i \neq j
$$

This last form originates from a process that contains a white-noise component. However, as we noted earlier, the realization theory for smooth covariances exhibits somewhat greater differences from the corresponding continu-ous-time case. Therefore, we shall devote most of our attention to (4).

Now suppose $y(\cdot)$ is known to arise from some lumped model of the form

$$
\begin{gather*}
x(i+1)=\phi(i+1, i) x(i)+G(i+1) u(i+1) \\
x(0)=x_{0} \tag{7a}\\
y(i)=H(i) x(i), \quad 0 \leq i \leq N \tag{7b}
\end{gather*}
$$

where $\phi_{(}^{(\cdot \cdot)}, G(\cdot), H(\cdot)$ are known functions and $\left\{x_{0} . u(\cdot)\right\}$ are zero-mean random variables with

$$
\begin{gather*}
E\left[x_{0} u^{\prime}(\cdot)\right]=0, \quad E\left[x_{0} x_{0}{ }^{\prime}\right]=\Pi_{0}, \tag{7c}\\
E\left[u(k) u^{\prime}(l)\right]=I \delta(k-l) . \tag{7~d}
\end{gather*}
$$

Such a model, with the outputs a linear combination of the states, has been called a Markorian representation of the process $y(\cdot)$. Note that $y(\cdot)$ is not Markov, but is the so-called projection of a Markov process, i.e., a linear combination of the components of a vector Markov process. The model (7) is causal, although it may not be causally invertible. Let us denote the variance matrix of the states at time i by

$$
\begin{equation*}
\Pi(i)=E\left[x(i) x^{\prime}(i)\right] . \tag{S}
\end{equation*}
$$

Then it is well known and is easy to show that $\Pi(\cdot)$ obers the difference equation

$$
\begin{align*}
\Pi(i+1) & =\phi(i+1, i) \Pi(i) \phi^{\prime}(i+1, i)+G(i+1) G^{\prime}(i+1) \\
\Pi(0) & =\Pi_{0} . \tag{9}
\end{align*}
$$

Therefore the covariance of the output $y(\cdot)$ can be cxpressed as

$$
\begin{align*}
& R_{y}(i, j)=H(i) \phi(i, j) \Pi(j) H^{\prime}(j) 1(i-j) \\
&+H^{\prime}(i) \Pi(i) \phi^{\prime}(j, i) H^{\prime}(i) 1(j-i-1) \tag{10}
\end{align*}
$$

Comparing (4) with (10), we conclude that one set of relations between the parameters of the system (7) and the covariance parameters of (4) is

$$
\begin{gather*}
H(i) \phi(i, 0)=A(i) \tag{11a}\\
\phi(0, i) \Pi(i) H^{\prime}(i)=B(i), \quad 0 \leq i \leq N . \tag{11b}
\end{gather*}
$$

Finally, let

$$
\begin{equation*}
M(i)=A(i) \phi(0, i), \quad N(i)=\phi(i, 0) B(i) \tag{12}
\end{equation*}
$$

in terms of which we can also write (4) as

$$
\begin{align*}
R_{y}(i, j)=M(i) \phi & (i, j) N(j) 1(i-j) \\
& +N^{\prime}(i) \phi^{\prime}(j, i) M^{\prime}(j) 1(j-i-1) \tag{13}
\end{align*}
$$

Then an obvious identification between (10) and (13) gives the relation

$$
\begin{gather*}
H(i)=M(i) \tag{14a}\\
\Pi(i) M M^{\prime}(i)=N(i), \quad 0 \leq i \leq N \tag{14b}
\end{gather*}
$$

These several formulas will be used presently.

A Comment on the Invertibility of $\phi(\cdot, \cdot)$

We should note that the identifications in (11) require that the state-transition matrix $\phi(i, j)$ of the given model (7) must be nonsingular ${ }^{2}$ for $i>j$. In our work, however, this assumption is not restrictive because our goal is to construct models corresponding to given covariances. If the columns of $A(\cdot)$ and the rows of $B(\cdot)$ are lincarly independent. and if we choose models of order not greater than the number of such rows or columns, then we can always choose a nonsingular $\phi(\cdot, \cdot)$.

III. Innovations Representations of a Lciped Markovian Process

In the first theorem we shall assume that the process is known to arise from some lumped model. This will be relaxed later when the existence of the IR will be shown to depend only upon the positive definiteness of the given covariance.

Theorem 1-Imorations Representation 1 (IR-1): Let $y(\cdot)$ have a positive definite covariance of the form (13) and assume that $y(\cdot)$ is known to arise from some lumped model. Then an innovations representation for $y(\cdot)$ can be written in the form

$$
\begin{equation*}
\theta(i+1)=\phi(i+1, i) \theta(i)+\phi(i+1, i) K(i) \varepsilon(i), \theta(0)=0 \tag{1亏а}
\end{equation*}
$$

$$
\begin{equation*}
y(i)=M(i) \theta(i)+\mathcal{E}(i) \tag{15b}
\end{equation*}
$$

where $\mathcal{E}(\cdot)$ is a zero-mean white-noise process with covariance

$$
\begin{equation*}
E\left[\varepsilon(i) \varepsilon^{\prime}(j)\right]=\left[M(i) N(i)-M(i) \Sigma_{1}(i) M^{\prime}(i)\right] \delta(i-j) \tag{15c}
\end{equation*}
$$

and

$$
\begin{align*}
K(i)= & {\left[N(i)-\Sigma_{1}(i) M^{\prime}(i)\right] } \\
& {[M(i) N(i)} \tag{15~d}\\
& \left.-M(i) \Sigma_{1}(i) M^{\prime}(i)\right]^{-1} .
\end{align*}
$$

The matrix $\Sigma_{1}(i)$ is the state varianee

$$
\begin{equation*}
\Sigma_{1}(i)=E\left[\theta(i) \theta^{\prime}(i)\right] \tag{15e}
\end{equation*}
$$

and obeys the matrix Riccati difference equation

[^2]\[

$$
\begin{aligned}
\Sigma_{\mathbf{1}}(i+1)= & \phi(i+1, i) \Sigma_{\mathbf{1}}(i) \phi^{\prime}(i+1, i)+\phi(i+1, i) \\
& \cdot\left[N(i)-\Sigma_{1}(i) M^{\prime}(i)\right]\left[M(i) N(i)-M(i) \Sigma_{\mathbf{1}}\right. \\
& \left.\cdot(i) M^{\prime}(i)\right]^{-1}\left[N(i)-\Sigma_{\mathbf{1}}(i) M^{\prime}(i)\right]^{\prime} \phi^{\prime}(i+1, i)
\end{aligned}
$$
\]

$$
\begin{equation*}
\Sigma_{1}(0)=0 \tag{15f}
\end{equation*}
$$

Proof: The proof follows a procedure used in [1]. We begin by assuming that the process $y(\cdot)$ is the output of a known model of the form (7), and show how to find the IR for it. This IR is obtained as a rearrangement of the Kalman filter equations of the system. Since it is known, moreover (see [10]-[13]), that the IR is uniquely determined up to its impulse response by the covariance of the process, we should be able to express the IR entirely in terms of this covariance function.

The Kalman filter equations for the one-step prediction estimates of the state are (see [14])

$$
\begin{equation*}
\hat{x}(i+1 \mid i)=\phi(i+1, i) \hat{x}\left(i_{j}^{l} i-1\right)+\phi(i+1, i) K(i) \varepsilon(i) \tag{16a}
\end{equation*}
$$

$$
\begin{align*}
\mathcal{E}(i) & =y(i)-M(i) \hat{x}(i \mid i-1) \tag{16b}\\
\hat{x}(0 \mid-1) & =0 \tag{16c}
\end{align*}
$$

where

$$
\begin{equation*}
K(i)=\dot{P}(i \mid i-1) M^{\prime}(i)\left[M(i) P(i \mid i-1) M^{\prime}(i)\right]^{-1} \tag{16d}
\end{equation*}
$$

$P(i \mid i-1)$ is the covariance of the instantaneous error
$P(i \mid i-1)=E\left[(x(i)-\hat{x}(i \mid i-1))(x(i)-\hat{x}(i \mid i-1))^{\prime}\right]$
and satisfies the matrix Riccati equation

$$
\begin{align*}
P(i+1 \mid i)= & \phi(i+1, i) P(i \mid i-1) \phi^{\prime}(i+1, i) \\
& +G(i+1) G^{\prime}(i+1)-\phi(i+1, i) \\
& \cdot P(i \mid i-1) M^{\prime}(i)\left[M(i) P(i \mid i-1) M^{\prime}(i)\right]^{-1} \\
& \cdot M(i) P(i \mid i-1) \phi^{\prime}(i+1, i) \\
P(0 \mid-1)= & \Pi_{0} . \tag{16f}
\end{align*}
$$

The $\{\varepsilon(i)\}$ are the innovations of the process $y(\cdot)$. Rearranging (16b) and replacing $\hat{x}(i \mid i-1)$ by $\theta(i)$ shows that (15a), (15b), together with (16d)-(16f), is another model for the process $y(\cdot)$. It can also be verified directly, if so desired, that the outputs of both models have the same covariance.

Next we shall show how to express the IR (15a),(15b) directly in terms of the parameters of the covariance

[^3]function (13). To do so, we define the variance matrix of the state estimates as
\[

$$
\begin{equation*}
\Sigma_{1}(i)=E\left[\hat{x}(i \mid i-1) \hat{x}^{\prime}(i \mid i-1)\right] . \tag{17}
\end{equation*}
$$

\]

By the projection theorem the state estimates are orthogonal to the error in the estimates, and hence

$$
\begin{equation*}
P(i \mid i-1)=\Pi(i)-\Sigma_{1}(i) \tag{18}
\end{equation*}
$$

wherc $P(i \mid i-1)$ and $\Pi(i)$ obey (16 f) and (16 g), respectively. Substituting (1S) in (16f) and subtracting (16g), using (14), gives (15f) for $\Sigma_{1}(\cdot)$. A similar substitution in (16d) gives the expression (15d) for the gain.

The innovations process $8(\cdot)$ driving $I R-1$ [see (15a) and (1ab)] is a whitened version of the obscrvation process, as is well known [10],[14]. Its variance is easily obtained noting that

$$
\begin{equation*}
\varepsilon(i)=M(i)[x(i)-\hat{x}(i \mid i-1)] . \tag{19}
\end{equation*}
$$

The expression (15c) follows immediately using (18).
The existence of a solution to the nonlinear equation (15f) follows from the existence of a model which guarantees the existence of $I I$ and hence of $\Sigma_{1} \leq \Pi$. We shall show in Section IV how this assumption of existence can be relaxed.

Corollary 1-Whitening Filter: The innovations representation (IR-1) is causal and causally invertible, and the inverse serves as a whitening filter. Its equations are

$$
\begin{align*}
\varepsilon(i) & =y(i)-M(i) \theta(i) \tag{20a}\\
\theta(i+1) & =\phi(i+1, i) \theta(i)+\phi(i+1, i) K(i)[y(i) \\
& -M(i) \theta(i)], \quad \theta(0)=0 \tag{20b}
\end{align*}
$$

where $K(\cdot)$ is obtained through (15d)-(15⿵).
Proof: The proof is just a trivial rewriting of the equations (15) of the innovations representation.

In the above we used the Kalman filter equations for the one-step predictions $\hat{x}(i \mid i-1)$. However, it is well known that the Kalman equations can also be described in terms of filtered estimates $\hat{x}\left(i_{i} i\right)$. This distinction, which is effectively absent in continuous time, lcads to an alternative representation. The use of IR's based on filtered or predicted estimates [cf. (31)] was first noted in [15].

Theorem 2-Innozations Representation 2 (IR-2): Let $y(\cdot)$ have a positive definite covarianes of the form (13) and suppose that it is known to arise from some lumped model. Then an innovations representation for this process can be written in the form

$$
\begin{align*}
& \mathfrak{e}(i+1)=\phi(i+1, i) \mathfrak{e}(i)+K(i+1) \varepsilon(i+1) \\
& \mathfrak{e}(-1)=0 \tag{21a}\\
& y(i)=M(i) \mathbb{C}(i) \tag{21b}
\end{align*}
$$

where $\varepsilon(i)$ is a zero-mean white-noise process with covariance

$$
\begin{align*}
E\left[\mathcal{E}(i) \mathcal{E}^{\prime}(j)\right]= & {[M(i) N(i)-M(i) \phi(i, i-1)} \\
& \left.\cdot \Sigma_{2}(i-1) \phi^{\prime}(i, i-1) M^{\prime}(i)\right] \delta(i-j) \tag{21c}
\end{align*}
$$

and

$$
\begin{align*}
K(i)= & {\left[\mathrm{N}(i)-\phi(i, i-1) \Sigma_{2}(i-1) \phi^{\prime}(i, i-1) M M^{\prime}(i)\right] } \\
& \cdot\left[M(i) N(i)-M(i) \phi(i, i-1) \Sigma_{2}(i-1)\right. \\
& \left.\cdot \phi^{\prime}(i, i-1) M^{\prime}(i)\right]^{-1} . \tag{21~d}
\end{align*}
$$

$\Sigma_{2}(\cdot)$ is the state variance

$$
\begin{equation*}
\Sigma_{2}(i)=E\left[\mathcal{C}(i) \mathbb{C}^{\prime}(i)\right] \tag{2}
\end{equation*}
$$

and obeys the Riccati equation

$$
\begin{align*}
& \Sigma_{2}(i+1) \\
&= \phi(i+1, i) \Sigma_{0}(i) \phi^{\prime}(i+1, i)+[N(i+1) \\
&\left.-\phi(i+1, i) \Sigma_{0}(i) \phi^{\prime}(i+1, i) M^{\prime}(i+1)\right] \\
& \cdot\left[M(i+1) N(i+1)-M(i+1) \phi(i+1, i) \Sigma_{2}(i)\right. \\
&\left.\cdot \phi^{\prime}(i+1, i) M^{\prime}(i+1)\right]^{-1} \cdot[N(i+1)-\phi(i+1, i) \\
&\left.\cdot \Sigma_{2}(i) \phi^{\prime}(i+1, i) M^{\prime}(i+1)\right]^{\prime}, \Sigma_{2}(-1)=0 . \tag{21f}
\end{align*}
$$

Proof: The proof is completely analogous to the proof of Theorem 1. Alternatively, wo can also obtain IR-2 from IR-1 directly by using the fact that

$$
\begin{equation*}
\hat{x}(i+1 \mid i)=\phi(i+1, i) \hat{x}(i \mid i) \tag{22a}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\Sigma_{1}(i)=\phi(i+1, i) \Sigma_{2}(i) \phi^{\prime}(i+1, i) \tag{22~b}
\end{equation*}
$$

where $\Sigma_{\mathrm{o}}(\cdot)$ denotes the variance of the filtered estimates

$$
\begin{equation*}
\Sigma_{2}(i)=E\left[\hat{x}(i \mid i) \widehat{x}^{\prime}(i \mid i)\right] \tag{23}
\end{equation*}
$$

Substituting these relations in (16a)-(16c) and (15d)(15f), and replacing $\hat{x}(i \mid i)$ by $\mathfrak{C}(i)$ gives

$$
\begin{align*}
\mathfrak{C}(i+1)=\phi(i+1, i) \mathfrak{C}(i)+K(i+1) \mathcal{E}(i+1) \\
\mathfrak{e}(-1)=0 \tag{24a}\\
y(i)=M(i) \phi(i, i-1) \mathfrak{C}(i-1)+\mathcal{E}(i) \tag{24b}
\end{align*}
$$

where $K(i)$ is obtained through (21d) and (21f).
Finally we notice that

$$
\begin{equation*}
M(i) K(i)=I \tag{20}
\end{equation*}
$$

Hence (24 b) can also be written as (21 b), using (24a) and (25).

It should go without saying (see footnote 3) that the inveres in (21 d) exists because it is the innovations variance which is nonsingular because $R_{y}(i, j)$ is nonsingular.

Corollary 2-Whitening Filter: The innovations representation (IR-9) is causal and causally invertible. Its inverse, which is a whitening filter, is given by
$\varepsilon(i)=y(i)-M(i) \phi(i, i-1) \mathbb{C}(i-1), \quad \mathfrak{C}(-1)=0$
(26a)
$\mathfrak{C}(i+1)=\phi(i+1, i) \mathcal{C}(i)+K(i+1)$

$$
\begin{equation*}
\cdot[y(i+1)-M(i+1) \phi(i+1, i) \mathcal{C}(i)] \tag{26b}
\end{equation*}
$$

where $K(\cdot)$ is given by (21d) and (21f).
Proof: Equations (26) are casily obtained by a rearrangement of (21a) and (21b).

Normalization of the Input White Noise

Notice that the variance of the innovations process in both IR-1 and IR-2 is a time-varying function that depends on the solution of a Riccati equation [see (15c) and (15f) and (21c) and (21f)]. This is in contrast to the continuous-time case where the variance of the innovations is equal to the variance of the white-noise component in the covariance of the process. It may be convenient to have an IR that is driven by unit variance white noise. This can be casily achieved by defining normalized innovations $\nu(\cdot)$ that have unit variance. For IR-2 we define

$$
\begin{align*}
& \nu(i)=\left[M(i) N(i)-M(i) \phi(i, i-1) \Sigma_{2}(i-1)\right. \\
&\left.\cdot \phi^{\prime}(i, i-1) M^{\prime}(i)\right]^{-\frac{1}{2}} \mathcal{E}(i) \tag{27}
\end{align*}
$$

The equations of IR-2 are now

$$
\begin{gather*}
\mathfrak{C}(i+1)=\phi(i+1, i) \mathfrak{C}(i)+L(i+1) p(i+1) \\
\mathfrak{C}(-1)=0 \tag{28a}\\
y(i)=M(i) \mathbb{C}(i) \tag{28b}
\end{gather*}
$$

where $\nu(\cdot)$ is unit variance white noise and

$$
\begin{align*}
L(i)= & {\left[N(i)-\phi(i, i-1) \Sigma_{2}(i-1) \phi^{\prime}(i, i-1) M^{\prime}(i)\right] } \\
& \cdot(M(i) N(i)-M(i) \phi(i, i-1) \\
& \left.\cdot \Sigma_{2}(i-1) \phi^{\prime}(i, i-1) M^{\prime}(i)\right]^{-\frac{1}{2}} \tag{28c}
\end{align*}
$$

Comparison of $I R-1$ and IR-2

We have obtained two different IR's for the same process, and we have shown that they can be written entirely in terms of the parameters of its covariance. Note that, as might be expected, these two representations have the same impulse response

$$
\begin{equation*}
y(i)=\sum_{j=0}^{i} M(i) \phi(i, j) K(j) \varepsilon(j) \tag{29}
\end{equation*}
$$

The point is that the states of IR-2 are a transformation of the states of IR-1 [see (22a)]. However, this is not an ordinary coordinate transformation because there is a one-unit delay between corresponding states.

There is an interesting difference between the output equations (15b) and ($\because 1 \mathrm{l}$) for IR-1 and IR-2, respectively. While IR-2 is of the form of the original model (7), the output equation in IR-1 contains an added white-noise term. However, notice that this last cquation can alioo be rewitten, using (15a), in the form

$$
\begin{equation*}
y(i)=M(i) \phi(i, i+1) \theta(i+1) \tag{30}
\end{equation*}
$$

While in this form $y(i)$ is written as a linear combination
of the states, as in the model (7), it should be observed that there is now a onc-unit delay between the states and the outputs. However, the noncausal relationship between outputs and states in this modified version of IR-1 does not affect the causal invertibility between outputs and inputs.

Other Representations

The ideas used to obtain IR-1 and IR-2 could be extended to obtain representations whose states are 2,3 , \cdots, λ-step predicted estimates of the form

$$
\begin{array}{r}
\hat{x}(i+\lambda \mid i)=\phi(i+\lambda, i+\lambda-1) \hat{x}(i+\lambda-1 \mid i-1) \\
+K(i) \varepsilon(i) \\
y(i)=M(i) \phi(i, i+\lambda) \hat{x}(i+\lambda \mid i) \tag{31b}
\end{array}
$$

for some $\lambda>0$. Similarly, in continuous time, innovations models can be obtained whose states are predicted estimates $\hat{x}(t+\lambda \mid t)$ for some fixed positive λ. However, when $\lambda>0$ the models will contain pure delays and will not be finite dimensional.

IV. Existence of the Innovations Representation

We shall show now that the assumption that the process $y(\cdot)$ arises from some lumped model is not required. Just the basic assumption that $R_{y}(\cdot, \cdot)$ is a positive definite covariance on $[0, N]$ will suffice to demonstrate the existence of IR-2. The existence of IR-1 then follows by the relation (22a). The proof will parallel an argument used in continuous time by Kailath and Geesey (cf. [2, Appendix III) and [3, lemmas 3.6 and 3.7]). The continuoustime proof needs to start with covariances that have a delta-function component, but as we might expect, this is not necessary in discrete time. We may note that Son and Anderson apparently rediseovered the discrete-time analog of the just-cited proof in [2] and [3].
We consider again a process $y(\cdot)$ over $[0, N]$ with a separable covariance of the form (13). We first note that if $R(\cdot, \cdot)$ is a positive definite covariance, there exists a causal system that, when driven by white noise, generates this covariance. We shall subsequently show that this system is finite dimensional.
Proposition 3: Let $R_{y}(i, j)$ in (13) be a positive definite covariance on $[0, N]$. Then there exists a causal impulse response matrix $h(\cdot, \cdot)$ such that a system excited by unit variance white noise and with $h(\cdot, \cdot)$ as impulse response has output covariance $R_{y}(\cdot, \cdot)$, i.e.,

$$
\begin{equation*}
R_{y}(i, j)=\sum_{k=0}^{N} h(i, k) h^{\prime}(j, k) \tag{32}
\end{equation*}
$$

with

$$
\begin{equation*}
h(i, j)=0 \quad \text { for } i<j \tag{33}
\end{equation*}
$$

Proof: The result is well known. It relies on the fact that the $N p \times N p$ covariance matrix

$$
\begin{equation*}
R=[R(i, j)], \quad 0 \leq i, j \leq N \tag{34}
\end{equation*}
$$

can be factored into a lower-triangular matrix H and its transpose

$$
\begin{equation*}
R=H \cdot H^{\prime} . \tag{35}
\end{equation*}
$$

H is partitioned in $p \times p$ blocks $h(i, j)$, and the result follows. Notice that the positive definiteness of R implies that $h(i, i)$ is nonsingular for all i since

$$
\begin{equation*}
0<\operatorname{det} R=\prod_{i=0}^{N}[\operatorname{det} h(i, i)]^{2} \tag{36}
\end{equation*}
$$

Theorem 4: Let $h(\cdot, \cdot)$ be defined as in Proposition 3. Then $h(i, j)$ has the form

$$
\begin{equation*}
h(i, j)=M(i) \phi(i, j) L(j) 1(i-j), \quad 0 \leq i, j \leq N \tag{37}
\end{equation*}
$$

for some matrix $L(\cdot)$ and with $M(\cdot)$ and $\phi(\cdot, \cdot)$ defined by (13).

Proof: Since R is positive definite, so is H. Let V be the inverse of H. Then V is also a lower-triangular matrix. Let V be partitioned like H. Then, using (35), we have

$$
\begin{equation*}
H=R \cdot V^{\prime} \tag{38}
\end{equation*}
$$

with

$$
V^{\prime}=\left[\begin{array}{cccc}
v^{\prime}(0,0) & v^{\prime}(1,0) & \cdots & v^{\prime}(N, 0) \\
0 & v^{\prime}(\mathbf{1}, 1) & & \\
& & \cdot & \\
& & \cdot & \\
0 & \cdots & 0 & v^{\prime}(N, N)
\end{array}\right]
$$

Then we can write, using (38), (13), and the causality of $h(\cdot, \cdot)$,

$$
\begin{aligned}
h(i, j) & =\sum_{k=0}^{j} R(i, k) v^{\prime}(j, k) \\
& =\sum_{k=0}^{j} M(i) \phi(i, k) N(k) v^{\prime}(j, k) 1(i-j) \\
& =M(i) \phi(i, j)\left[\sum_{k=0}^{j} \phi(j, k) N(k) v^{\prime}(j, k)\right] 1(i-j) \\
& =M(i) \phi(i, j) L(j) 1(i-j)
\end{aligned}
$$

with

$$
\begin{equation*}
L(j) \triangleq \sum_{k=0}^{j} \phi(j, k) N(k) v^{\prime}(j, k) . \tag{39}
\end{equation*}
$$

We may observe that the above argument actually already gives a causal and causally invertible model for the process. It can be shown after some algebraic manipulations (see [22]) that $L(\cdot)$ as defined in (39) is identical to the gain $L(\cdot)$ of IR-2 [see (28c)] where $\Sigma_{2}(\cdot)$ obeys the Riecati equation (21f), which proves the existence of IR-1. and IR-2. However, we feel that the approach taken in Theorems 1 and 2 gives more insight and is more helpful in applications to estimation problems.

Another characterization of IR-2 is in its minimum properties. If one considers all models of the form (7) for a process $y(\cdot)$ with eovarianee (13), then the realization problem reduces to finding all solutions II($\cdot)$ and $(i(\cdot)$ of the set of equations

$$
\begin{align*}
11(i+1)=\phi(i+1, i) \Pi(i) \phi^{\prime} & (i+1, i) \\
& +\left(i (i + 1) \left(^{\prime}(i+1)\right.\right. \tag{40a}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{H}(0)=\mathrm{II}_{0} \tag{40~b}
\end{equation*}
$$

$\Pi(i)]^{\prime}(i)=N(i)$.
Inderd, once $H(\cdot)$ and $\phi(\cdot \cdot)$ in (7) have beren identified with the corresponding parameters $M(\cdot)$ and $\phi(\cdot, \cdot)$ of (13). the only way models generating $R_{y}(\cdot . \cdot)$ can differ is the matrix ((\cdot) and the initial conditions matrix Π_{0}.

In the stationary steady-state case, Faurre [19] has analyed the realization problem from this point of view, namely: find all nomegative matrices Π and Q that satisfy the seste of constraints

$$
\begin{align*}
\Pi & =\phi \Pi \phi^{\prime}+Q \tag{41a}\\
\Pi H^{\prime} & =\lambda \tag{41~b}
\end{align*}
$$

There are in general infinitely many solutions (II,Q) to these equations. 'To obtain a ungue solution. Faurre introdued the wewal partial ordering on the set of nonnergatipe definite solutions II, viz. $\mathrm{II}_{1} \geq \Pi_{2}$ if $\Pi_{1}-\Pi_{2}$ is nommegative deffinite. He thern obtamed a smallest and a largest solution for il with the help of an associated optimal control problem. These solutions were found to be the asemptotic solution of a Riceati equation obtained by applying a matrix invorson lemma. It turns out that Faurre's Riecati equation for the smallest solution Π of (41) is precisely ($21 f$) and that the model that could be obtained by factorization of his steady-state solution for Q into (a, is precisely the steady-state version of IR-2. In [2-2] a simple prost has been given of the fact that of all solutions: $\{I I(i),(r(i+1), 0 \leq i \leq M\}$ of (40), ther realizat tion with the smallest variance is IR-量, in the sense that if In* (i) is the statevariance of any other realization. then

$$
\Pi^{*}(i)-\Pi(i) \geq 0 . \quad 0 \leq i \leq N
$$

The proof of this result and some further implications of this minimality property will be presented elsewhere.

V. Relative Order Properties of Covablances and 'Their Realizations

So far we have shown how to obtain IR's for separable covariances that do not contain a (Kromecker) delta function component. It may be remembered, howerer. that in continuous time the realization problem is significantly more complicated when the covariance of the process is smooth [2] than when it eontains a delta function component [1]. In the former case it is generally neecesary te introduce what has been called the definite relative order of the process (sec [2] and [3]). which is the number of differentiations required to produce a delta function term in the differentiated eovariance function.

It has been shown (see, c.g., [2, lemma 1]) that in continuous time the relative order of the process (or the covariance) is equal to the relative order of all models whose response to white noise has the given covariance; the relative order of a model is defined as the number of output differentiations required to produce a term proportional to the input in the differentiated output of the model. The relative order of the model induces constraints that can be used in the realization problem to reduce the order of the Riccati equation associated with the covariance factorization [2]. Thus, in continuous time, the realization of a separable covariance of definite relative order α can be achieved through the solution of a Riceati equation of order $n-\alpha$ where n is the dimension of the minimal realization.

In diserete time, we shall similarly define the relative order of a covariance as the number of differencing operations recuired to produce a (Kronecker) delta function component of the differenced covariance; for stationary proceses it is also equal to the difference between the degrees of the denominator and numerator polynomials of the power spectral density function (the z-transform of the covariance function). The relative order of a model is equal to the number of differencing operations required to produee a term proportional to the input in the differenced output; for constant systems it is also ccual to the difference between the degrees of the denominator and numerator polynomials of the transfer function (the z-transform of its impulse response). As in continuous time, the relative order. say q. of a model induces constraints on the parameters of the model that can be used to reduce by q the order of the Riccati equation in the covariance factorization problem.

However. as we shall see now. the relative order α of a given covariance function has no unique relationship, in diserete time. to the relative order q of a model whose response to white noiso has the given covariance. Whereas in continuous time $q=\alpha$ for all state-variable reprosentations. in discrete time one can only say that $q \leq \alpha$. Hrweyer, we shall show that there exists a class of representations whose relative order equals the relative order of the process, and that the immovations representations belong to that class. For these models the order of the Riceati equation associated with the realization problem can be reduced by α.

Before turning to the proofs of these results, let us note that although our results are stated for scalar processes, they can be essentially carried over, although with a heavy notational burden, to the vector case .

Wr shall say, following [2] and [3], that the eovariance (4) has definite relative urder α if there exists a finite integer $\alpha . \alpha>0$ wheh that

$$
\begin{align*}
& \text { 1) } \begin{aligned}
A(i-k) B(i)-B^{\prime}(i-k) A^{\prime}(i) & =0 \\
k=1 \cdot 2 \cdots \alpha-1 \quad & k \leq i \leq N \\
\because & A(i-\alpha) B(i)-B^{\prime}(i-\alpha) A^{\prime}(i)= \\
& \alpha \leq i \leq N
\end{aligned},
\end{align*}
$$

Let (4) be the covariance of the output of a Markovian model

$$
\begin{array}{ll}
x(i)=x(i-1)+G^{\prime}(i) u(i), & x(0)=x_{0} \\
y(i)=H(i) x(i), & 0 \leq i \leq N \tag{43~b}
\end{array}
$$

where

$$
\begin{array}{ll}
E[u(i)]=0, & E\left[u(i) u^{\prime}(j)\right]=I \delta(i-j) \\
E\left[u(i) x_{0}^{\prime}\right]=0, & E\left[x_{0} x_{0}^{\prime}\right]=\Pi_{0} \tag{43~d}
\end{array}
$$

The state variance obeys the recursive equation

$$
\begin{equation*}
\Pi(i)=\Pi(i-1)+G(i) G^{\prime}(i), \quad \Pi(0)=\Pi_{0} \tag{44}
\end{equation*}
$$

The covariance of the outputs of (43) is given by

$$
\begin{align*}
& R_{y}(i, j)=H(i) \Pi(j) H^{\prime}(j) 1(i-j) \\
& \tag{45}\\
& \quad+H(i) \Pi(i) H^{\prime}(j) 1(j-i-1)
\end{align*}
$$

Comparing with (4) we have

$$
\begin{gather*}
H(i)=A(i) \tag{46a}\\
\Pi(i) A^{\prime}(i)=B(i), \quad 0 \leq i \leq N \tag{46b}
\end{gather*}
$$

Multiplying (44) to the left by $A(i-1)$ and to the right by $A^{\prime}(i)$ and using (46) and the relative order property (42) of the covariance, we find

$$
\begin{align*}
A(i-1) B(i)-B^{\prime}(i-1) A^{\prime}(i) & \equiv 0 \\
& =A(i-1) G(i) G^{\prime}(i) A^{\prime}(i) \tag{47}
\end{align*}
$$

However, contrary to what happened in continuous time (sec, e.g., [2, eq. (23)], we cannot conclude here that either

$$
\begin{equation*}
A(i-1) G(i)=0, \quad 1 \leq i \leq N \tag{48a}
\end{equation*}
$$

or

$$
\begin{equation*}
A(i) G(i)=0, \quad 0 \leq i \leq N \tag{48b}
\end{equation*}
$$

The only conclusion from (47) is that $A(i-1) G(i)$ and $A(i) G(i)$ are orthogonal for all i. Similarly, the following relations, which could have been expected to hold by direct analogy to the continuous-time results, do not necessarily hold in discrete time:

$$
\begin{equation*}
 \tag{49a}
\end{equation*}
$$

If (49a) holds for $k=1, \cdots, q-1,(q \leq \alpha)$, then q will be called the relative order of the representation (43) by analogy to the continuous-time definition (see, e.g., [3, definition B.1, p. 22]). We have just shown that in discrete time there is no unique relationship between the relative order q of the representation and the relative order α of the covariance of a given process. Clearly, by (47), we always have $q \leq \alpha$.

[^4]Notice that the difference between continuous and discrete time is due to the required distinction in discrete time between i and $i-1$; if these could be identified, we would have, instead of (47),

$$
\begin{equation*}
A(i) G(i) G^{\prime}(i) A^{\prime}(i)=0 \tag{50}
\end{equation*}
$$

which would imply

$$
\begin{equation*}
A(i) G(i)=0 \tag{51}
\end{equation*}
$$

just as in continuous time.
Next we show that a process whose covariance has definite relative order α can always be represented as the output of a state-variable model that does obey the constraints (49).

Theorem 5: Let the covariance (4) of a process $y(\cdot)$ over an interval $[0, N]$ have definite relative order $\alpha, \alpha>0$. Then there exists at least one representation of the form (43) that obeys the constraints (49).

Proof: We notice first that the matrix $H(i)$ of the realization (43) is determined by (46a). Hence the set of all realizations (43) for the process $y(\cdot)$ is determined by the set of all solutions $\{\Pi(i), G(i+1), i=0,1, \cdots, N\}$ to the equations (44) and (46b) where $A(\cdot)$ and $B(\cdot)$ obey the constraints (42). We show that there exists a subset of solutions $\{\Pi(\cdot), G(\cdot)\}$ that obey the constraints (49). All we need to prove is that we can choose $\Pi(\cdot)$ and $G(\cdot)$ to obey (49) without violating the constraints (44), (46b), and (42). To show this, we choose $G(\cdot)$ and $\Pi(\cdot)$ such that

$$
\begin{array}{ll}
A(i-1) G(i)=0 & 1 \leq i \leq N \\
A(i-1) \Pi(i)=B^{\prime}(i-1), & \\
1 \leq i \leq N \tag{53}
\end{array}
$$

We show that this choice is consistent with the constraints on $G(\cdot)$ and $\Pi(\cdot)$. Multiplying (44) to the left by $A(i-1)$, using (52) and (53), we get

$$
\begin{align*}
0=A(i-1) & G(i) G^{\prime}(i) \\
= & A(i-1) \Pi(i)-A(i-1) \Pi(i-1) \\
& =B^{\prime}(i-1)-A(i-1) \Pi(i-1) \tag{i4}
\end{align*}
$$

Thus (46b) follows, and post-multiplication by $A^{\prime}(i)$ shows that (42a) follows similarly. If $\alpha>2$, the same procedure can be pursued to show that the constraints (43) on $G(\cdot)$ and $\Pi(\cdot)$ are consistent with the conditions (42), (44), and (46b).

We have established that although not all representations of a process with definite relative order α obey all α constraints (49), there exists a class of models that does obey these constraints. Before identifying such models, it will be useful to restate the relative order conditions (42) and the constraints (49) for a process whose covariance is given by (13) instead of (4). A covariance of the form (13) has relative order α if

1) $M(i-k) \phi(i-k, i) N(i)$

$$
\begin{array}{r}
-N^{\prime}(i-k) \phi^{\prime}(i, i-k) H^{\prime}(i)=0 \\
k=1,2, \cdots, \alpha-1 ; k \leq i \leq N \tag{55a}
\end{array}
$$

2) $M(i-\alpha) \phi(i-\alpha, i) N(i)-N^{\prime}(i-\alpha) \phi^{\prime}$

$$
\begin{align*}
\cdot(i, i-\alpha) M^{\prime}(i)=C(i) C^{\prime}(i) & >0 \\
& \alpha \leq i \leq N . \tag{55~b}
\end{align*}
$$

The constraints (49) for a model of the form (7) are

$$
H(i-k) \phi(i-k, i) G(i)=0, \quad \begin{align*}
& \\
& \quad k=1, \cdots, \alpha-1 \tag{56a}
\end{align*}
$$

$$
\begin{align*}
& H(i-k) \phi(i-k, i) x(i)=y(i-k) \\
& k=0, \cdots, \alpha-1 \tag{56b}\\
& H(i-k) \phi(i-k, i) \Pi(i)=N^{\prime}(i-k) \phi^{\prime}(i, i-k) \\
& k=0, \cdots, \alpha-1 \quad k \leq i \leq N \tag{56c}
\end{align*}
$$

Corollary 3: Let a process $y(\cdot)$ with covariance (13) have definite relative order $\alpha, \alpha>0$. Then the innovations representation IR-2 of this process has definite relative order α, i.e., it obers the constraints (56a)-(56c).

Proof: The proof is an cass but lengthy verification that the equations (56a)-(56e) hold for the model (21) with ($\cdot(\cdot)$ replaced by $K(\cdot), x(\cdot)$ by $\theta(\cdot), \Pi(\cdot)$ by $\Sigma_{2}(\cdot)$, and $H(\cdot)$ by $M(\cdot)$.

As we noticed in Section III, IR-1 is not of the form (7). It does not obey the constraints (55), but obeys the same number of equivalent constraints.

Corollary 4: Let a process $y(\cdot)$ with covariance (13) have definite relative order $\alpha, \alpha>0$. Then the innovations representation IR-1 of this process obeys the constraints

$$
M(i-k) \phi(i-k, i) K(i)=0, \quad k=1, \cdots, \alpha-1
$$

$M(i-k) \phi(i-k, i) \theta(i)=y(i-k)$,

$$
\begin{equation*}
k=1, \cdots, \alpha \tag{57~b}
\end{equation*}
$$

$$
\begin{gather*}
M(i-k) \phi(i-k, i) \Sigma_{1}(i)=N^{\prime}(i-k) \phi^{\prime}(i, i-k) \\
k=1, \cdots, \alpha \tag{57c}\\
k \leq i \leq N
\end{gather*}
$$

Proof: The proof is again a straightforward verification.

VI. Redtced Order Model for a Scalar Process

We shall show now how the constraints (56) can be used to obtain a reduced order Riccati equation for IR-2 [cf. (21f)]. This will require a coordinate transformation. For simplicity of notation, we shall consider a scalar process and we shall assume a "uniform observability" assumption [defined below, after (60)].

Thus consider a sealar process $y(\cdot)$ over an interval $[0, N]$ with covariance

$$
\begin{align*}
R_{y}(i, j)=m(i) \phi(i, j) & N(j) 1(i-j) \\
& +N^{\prime}(i) \phi^{\prime}(j, i) m^{\prime}(j) 1(j-i-1) \tag{58}
\end{align*}
$$

where $m(\cdot)$ is $1 \times n, \phi(\cdot, \cdot)$ is $n \times n$ and nonsingular, and $N(\cdot)$ is $n \times 1$.

Let the covariance (58) have definite relative order α, $\alpha>0$. Then we know by Corollary 3 that the representa-
tion $\operatorname{IR}-2$ given by (21), with $M(\cdot)$ replaced by $m(\cdot)$, obeys the constraints (56). To exploit the constraints (56c) on $\Sigma_{2}(\cdot)$ and thereby reduce the order of the Riccati equation (2lf), we shall make the state transformation

$$
\begin{equation*}
x_{\text {nem }}(i)=T(i) x_{\mathrm{old}}(i) \tag{59}
\end{equation*}
$$

with

$$
T(i)=\left[\begin{array}{c}
m(i) \tag{60}\\
m(i-1) \phi(i-1, i) \\
\cdot \\
\cdot \\
\cdot \\
m(i-n+1) \phi(i-n+1, i)
\end{array}\right]
$$

The assumption of uniform observability is that $T(i)$ is uniformly nonsingular, i.e., nonsingular for $n-1 \leq i \leq$ $N .^{5}$ In the stationary case this assumption is the same as complete observability.

In the new coordinate system we have

$$
\left.\begin{array}{c}
m(i)=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right] \\
\phi(i+1, i)=\left[\begin{array}{ccccc}
\\
\cdots & a(i+1) & & \\
1 & 0 & & \cdots & 0 \\
0 & 1 & 0 & & \\
\cdot & & \cdot & \cdot & \cdot \\
\cdot & & \cdot & \cdot & \cdot \\
\cdot & & \cdot & \cdot & \cdot \\
0 & \cdots & & 0 & 1
\end{array}\right] \tag{61b}
\end{array}\right] .
$$

where $a(i+1)$ is $1 \times n$:

$$
\begin{equation*}
a(i+1)=\left[a^{1}(i+1) \cdots a^{n}(i+1)\right] \tag{61c}
\end{equation*}
$$

Now let $N^{j}(i)$ be the j th component of the vector $N(i)$ in the new coordinate system. Then define

$$
\begin{align*}
& M(i)= \\
& {\left[\begin{array}{cllll}
N^{1}(i) & N^{2}(i) & \cdots & & N^{n}(i) \\
N^{2}(i) & N^{1}(i-1) & N^{2}(i-1) & N^{n-1}(i-1) \\
\cdot & & N^{1}(i-2) & \cdot \\
\cdot & & & \cdot & \cdot \\
\cdot & & & \cdot & N^{1}(i-n+1)
\end{array}\right]} \\
& N^{n^{n}(i)}
\end{align*}
$$

with $N^{j}(i)=0$ for $i<0$ and for any j. Let the $(n-\alpha)$ $\times(n-\alpha)$ lower right-hand submatrix of $\phi(i+1 . i)$ be denoted by

$$
F \triangleq\left[\begin{array}{ccccc}
0 & & \cdots & & 0 \tag{63}\\
1 & 0 & & \cdots & 0 \\
0 & & \cdot & & \\
\cdot & & & . & \cdot \\
\cdot & & & . & \cdot \\
\cdot & & & & \cdot \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

[^5]Finally, let the last ($n-\alpha$) elements of $a(i+1)$ be denoted by

$$
\begin{equation*}
b(i+1) \triangleq\left[a^{\alpha+1}(i+1) \cdots a^{n}(i+1)\right] \tag{64}
\end{equation*}
$$

With these notations we can describe an $(n-\alpha)$ th order Riccati equation for the innovations representation (IR-2) of a process with definite relative order α.

Theorem 6: Let a scalar process $y(\cdot)$ over $[0, N]$ have covariance (58) with definite relative order α and let $\Sigma_{2}(\cdot)$ be the solution of the Riccati equation (21f) of IR-2. Then for $i \geq \alpha-1, \Sigma_{2}(i)$ can be partitioned into

$$
\begin{equation*}
\Sigma_{2}(i)=M(i)+D(i), \quad \alpha-1 \leq i \leq N \tag{65}
\end{equation*}
$$

with

$$
D(i)=\left[\begin{array}{l:l}
0 & 0 \tag{66}\\
\hdashline \mathbf{0} & E(i)
\end{array}\right]
$$

where $E(i)$ is $(n-\alpha) \times(n-\alpha)$ and obeys the equation

$$
\begin{align*}
& E(i+1)=F E(i) F^{\prime}+F E(i) b^{\prime}(i+1)\left[N^{1}(i+1)\right. \\
& \left.-a(i+1) M(i) a^{\prime}(i+1)-b(i+1) E(i) b^{\prime}(i+1)\right]^{-1} \\
& \quad \cdot b(i+1) E(i) F^{\prime}, \quad \alpha-1 \leq i \leq N \quad(67 \tag{67a}
\end{align*}
$$

$E(\alpha-1)=$ lower right-hand submatrix of $\Sigma_{2}(\alpha-1)$

- lower right-hand submatrix of $M(\alpha-1)$.

Proof: That the variance of the states of IR-2 can be written in the form (65) and (66) follows after lengthy algebraic manipulations from the constraints (49c) on $\Sigma_{2}(\cdot)$ and the special form that these constraints take in the new coordinate system. The expressions (67) follow by substitution of (65) and (66) in (21f). More details can be found in [22].

Corollary 5: Let a scalar process $y(\cdot)$ over $[0, N]$ have covariance (58) with definite relative order α. Then for all $i \geq \alpha-1$, IR-2 is state equivalent to

$$
\begin{align*}
& {[\theta(i+1)]=\left[\begin{array}{ccccc}
\quad & a(i+1) & \\
\cdots & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\cdot & & & \cdot & \cdot \\
\cdot & & & \cdot & \cdot \\
\cdot & & & \cdot & \cdot \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]} \\
& {[\theta(i)]+\left[\begin{array}{c}
1 \\
\cdots-\cdots-\cdots \\
0 \\
\cdot \\
\cdot \\
0 \\
\cdots-\overline{\hat{K}}(i+1)
\end{array}\right] \varepsilon(i+1)} \tag{68a}\\
& y(i)=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right][\theta(i)] \tag{68b}
\end{align*}
$$

where $\mathcal{E}(\cdot)$ is a white-noise process with

$$
\begin{align*}
E[\varepsilon(i) \varepsilon(j)]=\left[N^{1}(i)\right. & -a(i) M(i-1) a^{\prime}(i) \\
& \left.-b(i) E(i-1) b^{\prime}(i)\right] \delta(i-j) \tag{68c}
\end{align*}
$$

$\hat{K}(i)$ is $(n-\alpha) \times 1$ and

$$
\begin{array}{r}
\hat{K}(i)=F E(i-1) b^{\prime}(i)\left[N^{1}(i)-a(i) M(i-1) a^{\prime}(i)\right. \\
\left.-b(i) E(i-1) b^{\prime}(i)\right]^{-1} \tag{68d}
\end{array}
$$

where $E(i)$ obeys (67).
Proof: From (21d) it follows directly that $m(i) K(i)=$ 1. From the form of $T(i)$ [see (60)] it follows that the first component of $K(i)$ in the new coordinate space is 1 . The zeros in $K(i)$ follow from the constraints (49a) with $G(\cdot)$ replaced by $K(\cdot)$. The other relations follow from Theorem 6.

Remark 1: From the form of F in (63) we notice that the first component of $\hat{K}(\cdot)$ is zero. This, together with (68a), shows that the realization has a pure delay line of order α and a feedback structure of order $n-\alpha$.

Remark 2: We have obtained a reduced order Riccati equation for IR-2 when the process has relative order α. Naturally, since IR-1 also obeys α constraints [sce (57)], a similar reduction can be obtained for it. Some results along these lines were already obtained in [21], patterned on analogs of the continuous-time results of [2] and [3].

VII. Example

We shall study a second-order scalar process whose covariance has definite relative order 2 . We shall give two different realizations, of which only one is causally invertible and obeys the constraints (56). For this last realization we shall see that the Riccati equation (21f) is totally degenerate. A similar example is studied in continuous time in [2].

We consider a scalar process $y(\cdot)$ over $[0, \infty)$ whose covariance matrix R is given by

$$
R=\left[\left(R_{i j}\right)\right]=\left[\begin{array}{rrrrr}
16 & 1 & 4 & \frac{1}{4} & \cdots \tag{69}\\
1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \cdots \\
4 & \frac{1}{4} & \frac{5}{4} & \frac{1}{16} & \cdots \\
\frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \frac{9}{32} & \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot
\end{array}\right]
$$

This covariance can be factored into
$R(i, j)=h \phi^{i-j} N(j) 1(i-j)+N^{\prime}(i) \phi^{j-i} h^{\prime} 1(j-i-1)$
where h is a row vector with entries 0 and $1, \phi$ is a 2×2 matrix with zeros on the main diagonal and $\frac{1}{2}$ elsewhere, and $N(i)$ is given by the recurrence relations

$$
\begin{align*}
& N^{1}(i+1)=\frac{1}{4} N^{1}(i) \\
& N^{2}(i+1)=\frac{1}{16} N^{2}(i-1)+\frac{1}{4}, \quad i \geq 1 \tag{71a}
\end{align*}
$$

together with the initial values

$$
N^{\prime}(0)=\left[\begin{array}{ll}
2 & 16
\end{array}\right], \quad N^{\prime}(1)=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \tag{71b}
\end{array}\right]
$$

Notice that

$$
\lim _{i \rightarrow \infty} N^{\prime}(i)=\left[\begin{array}{ll}
0 & \frac{1}{4} \tag{72}
\end{array}\right]
$$

It is casy to verify that h, ϕ, and $N(\cdot)$ do indeed produce the covariance $R(i, j)$ given in (69). L'sing (in) we check that the relative order of the covariance is 2 :

$$
\begin{array}{ll}
h \phi^{-1} N(i)-N^{\prime}(i-1) \phi^{\prime} h^{\prime} \equiv 0, & i \geq 1 \\
h \phi^{-2} N(i)-N^{\prime}(i-2) \phi^{\prime 2} h^{\prime}=\frac{1}{4}>0, & i \geq 2 \tag{73b}
\end{array}
$$

Thus we know by Corollary 3 that the projection of $\Sigma_{2}(\cdot)$, the state variane of IR 2 , on the veetors $h \phi^{-1}$ and $h \phi^{-2}$ can be computed directly from $N(\cdot)$ and ϕ [see (56c)]. But $h \phi^{-1}$ and $h \phi^{-2}$ are linearly independent:

$$
h \phi^{-1}=\left[\begin{array}{ll}
2 & 0
\end{array}\right] ; \quad h \phi^{-2}=\left[\begin{array}{ll}
0 & 4
\end{array}\right]
$$

Hence $\Sigma_{2}(\cdot)$ can be eompletely determined without solving the Riceati equation ($21 f$). as we shall see. But first we show that there exist other state-variable models of the form (7) that can yield the same covariance.

A first realization is

$$
\begin{align*}
x(i+1) & =\phi x(i)+\Gamma \nu(i+1) \tag{74a}\\
y(i) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(i) \tag{74b}
\end{align*}
$$

where

$$
\begin{gather*}
\Gamma^{\prime}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \text { and } \phi=\left[\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right] \\
E[\nu(i) \nu(j)]=\delta(i-j), E\left[x_{0} x_{0}{ }^{\prime}\right] \triangleq \Pi_{0}=\left[\begin{array}{rr}
2 & 2 \\
2 & 16
\end{array}\right] . \tag{74c}
\end{gather*}
$$

$\Pi(\cdot)$ can be computed by solving the state-variance equation

$$
\begin{equation*}
\Pi(i+1)=\phi \Pi(i) \phi^{\prime}+G\left(i^{\prime}, \quad \Pi(0)=\Pi_{0}\right. \tag{75}
\end{equation*}
$$

It is casy to check that

$$
\begin{equation*}
\Pi(i) h^{\prime}=N(i), \quad i=0,1, \cdots \tag{76}
\end{equation*}
$$

The relation (73 a) is, of course, satisfied, but notice that nome of the constraints (56) holds. The input-output relation is

$$
\begin{equation*}
y(i)=\frac{1}{4} y(i-2)+\frac{1}{2} \nu(i-1) \tag{77}
\end{equation*}
$$

or in transfer function form

$$
\begin{equation*}
H(z)=2 z^{-1 / 4}-z^{-2} \tag{78}
\end{equation*}
$$

Notice that while both poles of the transfer function are inside the unit circle, the only zero is at infinity. It follows, as is otherwise casy to see, that this system is not causally invertible (or minimum phase). The power spectral density of the output, in the steady state, is

$$
\begin{equation*}
R(z)=H(z) H\left(z^{-1}\right)=4\left[17-4\left(z^{2}+z^{-2}\right)\right]^{-1} . \tag{79}
\end{equation*}
$$

Notice that an alternate factorization of $R(z)$ gives

$$
\begin{equation*}
H(z)=9 / 4-z^{-2} \tag{80}
\end{equation*}
$$

The fact that different factorizations of a given power spectral density are possible in diserete time and the structural properties of these different realizations is studied in [16].

For the same covariance (69) IR-2 is

$$
\begin{gather*}
x(i+1)=\phi x(i)+K(i+1) \varepsilon(i+1) \tag{81a}\\
y(i)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(i) \tag{81b}
\end{gather*}
$$

with

$$
\begin{gather*}
E[\mathcal{E}(i) \mathcal{E}(j)]=\left[h N(i)-h \phi \Sigma_{2}(i-1) \phi^{\prime} h^{\prime}\right] \tag{81c}\\
\Sigma_{0}(0)=N(0)[h N(0)]^{-1} N^{\prime}(0)=\left[\begin{array}{rr}
\frac{1}{4} & 2 \\
2 & 16
\end{array}\right] \tag{81d}\\
x(0)=K(0) \&(0)=\left[\begin{array}{c}
\frac{1}{8} \\
1
\end{array}\right] \varepsilon_{0} .
\end{gather*}
$$

The expressions of $\Sigma_{2}(0)$ and $x(0)$ follow from (21f) and (21a). The gains $K(i)$ are computed from (21d). But notice that for $i \geq 1, \Sigma_{2}(i)$ can be calculated directly by its known projections on h and $h \phi^{-1}$, using the constraints (56c):

$$
\begin{array}{ll}
h \Sigma_{2}(i)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \Sigma_{2}(i)=N^{\prime}(i), & i \geq 0 \tag{82a}\\
h \phi^{-1 \Sigma_{2}(i)=\left[\begin{array}{ll}
2 & 0
\end{array}\right] \Sigma_{2}(i)=N^{\prime}(i-1) \phi^{\prime},} & i \geq 1
\end{array}
$$

The Riccati equation (21f) need not be solved. Notice finally that this last model is invertible (the inverse is obtained by Corollary 2), and that the constraints (56a) and (56b) also hold. In particular,

$$
\begin{equation*}
h x(i)=y(i) ; h \phi^{-1} x(i)=y(i-1) \tag{83}
\end{equation*}
$$

VIII. Applications to Least-Squares Estimation

In Part V [2] of this series of papers we showed how the IR's and the interpretations thereof were helpful in providing solutions, almost by inspection, to a number of filtering and smoothing problems, including problems with covariance information rather than the more common state-model information. Similar discrete-time applications can be made here, and we outline them very briefly. They exploit onec again the intimate relation that exists between least-squares estimation and the IR's.

Suppose we are given observations of a lumped process $y(\cdot)$ with a positive-definite separable covariance function

$$
\begin{align*}
R_{y}(i, j) & =M(i) \phi(i, j) N^{\prime}(j), & & i \geq j \tag{84a}\\
& =N^{\prime}(i) \phi^{\prime}(i, j) M^{\prime}(j), & & i<j \tag{84b}
\end{align*}
$$

Since we know that $R_{y}(i, j)$ is the covariance of some lumped process, we shall assume that we have the model

$$
\begin{align*}
x(i+1) & =\phi(i+1, i) x(i)+G(i+1) u(i+1) \tag{85a}\\
y(i) & =M(i) x(i) \tag{85~b}
\end{align*}
$$

with the usual assumptions on x_{0} and $u(\cdot)$. To be consistent with (84), the state variance $\Pi(\cdot)$ has to obey the constraint

$$
\begin{equation*}
\Pi(i) M^{\prime}(i)=N(i) \tag{86}
\end{equation*}
$$

We wish to find the least-squares filtered and smoothed estimates of a related signal process $u(\cdot)$ for which the following assumption holds:

$$
\begin{equation*}
u(i)=M_{w}(i) x(i)+y^{\perp}(i) \tag{87}
\end{equation*}
$$

where $y^{\perp}(\cdot)$ is any process uncorrelated with $y(\cdot)$. It is easy to see that this assumption is equivalent to the following cross-covariance information about $w(\cdot)$:

$$
\begin{align*}
E\left[w(i) y^{\prime}(j)\right] & =M_{w}(i) \phi(i, j) N(j), & & i \geq j \tag{88a}\\
& =N_{w}^{\prime}(i) \phi^{\prime}(j, i) M^{\prime}(j), & & i<j \tag{88b}
\end{align*}
$$

with the constraint

$$
\begin{equation*}
\Pi(i) M_{w}{ }^{\prime}(i)=N_{w}{ }^{\prime}(i) . \tag{89}
\end{equation*}
$$

We first show that the filtered estimate $\hat{w}(i \mid i)$ of $w(\cdot)$ can be expressed as a known linear combination of the state $\mathfrak{C}(i)$ of the IR-2 of the process $y(\cdot)$:

$$
\begin{equation*}
\hat{w}(i \mid i)=M_{w}(i) \mathcal{C}(i) \tag{90}
\end{equation*}
$$

To show this, we observe that (\$7) implies

$$
\begin{equation*}
\hat{w}(i \mid i)=M_{w}(i) \hat{x}(i \mid i) \tag{91}
\end{equation*}
$$

But as noted earlier (cf. Corollary 2 and the proof of Theorem 2), $\widehat{x}\left(u_{j} i\right)$ is just the state vector of the whitening filter (26) associated with IR-2, and as shown in Theorem 2 , it can be expressed entirely in terms of the parameters $M(\cdot), \phi(\cdot, \cdot)$, and $N(\cdot)$ of the covariance function $R_{y}(i, j)$.

It follows similarly from (87) that

$$
\begin{equation*}
\hat{v}(i \mid i-1)=M_{v}(i) \hat{x}(i \mid i-1) \tag{92}
\end{equation*}
$$

where $\hat{x}(i \mid i-1)$ is the state vector of IR-1 (cf. Corollary 1 and the proof of Theorem 1).

For the smoothed estimate, we have, again using (87),

$$
\begin{equation*}
\hat{w}(i \mid j)=M_{u}(i) \hat{x}(i \mid j) \tag{93}
\end{equation*}
$$

The smoothed estimate $\hat{x}(i \mid j)$ can be calculated by using a general innovations formula (cf. Part. II of this series [23]):
$\hat{x}(i \mid j)=\hat{x}(i \mid i)+\sum_{k=i+1}^{j} E\left[x(i) \mathcal{E}^{\prime}(k)\right] E\left[\mathcal{E}(k) \mathcal{E}^{\prime}(k)\right]^{-1} \mathcal{E}(k)$.

By the orthogonality property of the innovations, we have

$$
\begin{align*}
E\left[x(i) E^{\prime}(k)\right] & =E\left[\tilde{x}(i \mid i-1) \tilde{x}^{\prime}(k \mid k-1)\right] M^{\prime}(k) \\
& =P(i, k) M^{\prime}(k), \quad i<k \tag{95}
\end{align*}
$$

where

$$
\begin{equation*}
P(i, k) \triangleq E\left[\tilde{x}(i \mid i-1) \tilde{x}^{\prime}(k \mid k-1)\right] . \tag{96}
\end{equation*}
$$

It is easy to calculate that

$$
\begin{equation*}
P(i, k)=P\left(i_{i}^{\prime} i-1\right) \psi^{\prime}(k, i) \tag{97}
\end{equation*}
$$

where $P(i \mid i-1)$ is defined by (16 e) and $\psi(k, i)$ is the statetransition matrix of the error equation

$$
\begin{align*}
\tilde{x}(i+1 ; i)= & \phi(i+1, i)[I-K(i) M(i)] \tilde{x}(i \mid i-1) \\
& +G(i+1) u(i+1) \\
= & \psi(i+1, i) \tilde{x}\left(i i_{i}-1\right)+G(i+1) u(i+1) . \tag{98}
\end{align*}
$$

With these notations we can now write

$$
\begin{align*}
\hat{x}(i \mid j)= & \hat{x}(i \mid i)+P(i \mid i-1) \sum_{k=i+1}^{j} \psi^{\prime}(k, i) M M^{\prime}(k) \\
& \cdot\left[M(k) P(k \mid k-1) M^{\prime}(k)\right]^{-1} \mathcal{E}(k) \\
= & \hat{x}(i \mid i)+P(i \mid i-1) \lambda(i), \text { say } \tag{99}
\end{align*}
$$

where $\lambda(i)$ is the so-called adjoint variable

$$
\begin{align*}
\lambda(i)= & \sum_{k=i+1}^{j} \psi^{\prime}(k, i) M^{\prime}(k)\left[M(k) P\left(k^{j} k-1\right) M^{\prime}(k)\right]^{-1} \mathcal{E}(k) \\
= & \psi^{\prime}(i+1, i) \lambda(i+1)+\psi^{\prime}(i+1) M^{\prime}(i+1) \\
& \cdot\left[M(i+1) N(i+1)-M(i+1) \Sigma_{1}(i+1)\right. \\
& \left.\cdot M^{\prime}(i+1)\right]^{-1} \mathcal{E}(i+1) \tag{100a}\\
\lambda(j)= & 0 . \tag{100b}
\end{align*}
$$

Substituting (99) into (93) yields, through (18) and (89),

$$
\begin{align*}
\hat{w}(i \mid j) & =\hat{w}(i \mid i)+M_{w}(i) P(i \mid i-1) \lambda(i) \\
& =\hat{w}(i \mid i)+\left[N_{w}{ }^{\prime}(i)-M_{w}(i) \Sigma_{1}(i)\right] \lambda(i) \tag{101}
\end{align*}
$$

where $\Sigma_{1}(i)$ is the solution of (15f). To complete the rewriting of the smoothing formula for $\mathfrak{z e}(i \mid j)$ in terms of the parameters of the covariance function, notice that, by (98) and (15d),

$$
\begin{align*}
\psi(i+1, i) & =\phi(i+1, i)\left\{I-\left[N(i)-\Sigma_{1}(i) M^{\prime}(i)\right]\right. \\
& \left.\cdot\left[M(i) N(i)-M(i) \Sigma_{1}(i) M^{\prime}(i)\right]^{-1} M(i)\right\} . \tag{102}
\end{align*}
$$

The equations (100)-(102), together with the recursive equation for $\Sigma_{1}(i)$ and the relation (90) for $\hat{v}(i \mid i)$, constitute a complete solution of the smoothing problem for $u(\cdot)$ in terms of the parameters of the covariance function (88). The formula (101) is the analog of the BrysonFrazier form for the fixed-interval smoothing estimate. The continuous-time version of (101) was first published in [2] [see, e.g., (137)].

IX. Concluding Remarks

We have shown how to find innovations representations for discrete-time observation processes with specified separable covariance. From these representattions, expressions can be derived, almost by inspection, for the filtered and smoothed estimates of a related process for which either model or covariance information is given.

Our results show that there exists an important difference between the continuous- and discrete-time realization problems in the case where the covariance has a nonzero definite relative order. Whereas in continuous time the relative order is a unique property of both its covariance function and any of its realizations, in diserete time the relative order of the covariance of a process and a lumped realization of this process are not necessarily the same. This means that whether or not the realization inherits the constraints imposed by the relative order property on the covariance depends on how the factorization is performed. In [16] and [22] we have shown how these facts explain certain phenomena [17],[18] in estimation problems for given discrete-time models.

Another important reason for studying the representation problem is as a prelude to system identification, as opposed to sustem realization, problems. The distinction is that in realization problems knowledge of the true covariance is assumed, while in the identification problem only a finite observed record $\{y(i), 0 \leq i \leq N\}$ is available. One proecdure is to assume stationarity, use the reeord to estimate the covariance, and then apply the algorithms of this paper. However, perhaps because of the difficulty in obtaining good covariance estimates, most attention serms to have been paid to maximum likelihood (ML) techniques that work directly with the given data record. This may very well be the best procedure (and we may note incidentally that use of the IR gives a computationally convenient form of the MLL equations [24]), but we do not believe that this fact has been conelusively demonstrated. In fact, our result that not all the inherent smoothness of a covariance function need be present in all models suggests that the operation of forming a covariance may smooth our irrelevant roughness in a data recerd. This whole question is a topic of continuing inquiry.

References

[1] T. Kailath and R. A. Geesey, "An innovations approach to least-squares estimation-Part, IV: Recursive estimation given lumped covariance functions," IEEE Trans. Aufomal. Contr. (Special Issue on Linear-Quadratic-(iauscian Problem), vol. AC-16, pp. 720-727, Dec. 1971.
$[2]$ ——, "An innovations approach to least-squares estimationPart V : Innovations representations and recursive estimation in colored noise," IEEE Trans. Automat. Comtr., vol. AC-1S, pp. 435-4.33, Oct. 1973.
[3] R. Geesey, "Canonical representations of second-order processes with applications," Ph.D. dissertation, Dep. Elec. Eng., stanford Univ., Stanford, Calif., Dec. 1968; also NLL Tech. Rep. 70.50-17, June 1969.
[4] B. 1). O. Anderson and J. B. Moore, "The Kalman-Bucy filier as a true time-varying Wiener filter," IEEE' Trans. Syst., Man Cybern., vol. SMC-1, pp. 119-128, Apr. 1971.
[i] B. D. O. Anderson, J. B. Moore, and S. (i. Loo, "spectral factorization of time-varying covariance functions," IEEE Trans. Inform. Theory, vol. IT-15, pp. n̄0-5̄̄, Sept. 1969.
[6] J. B. Moore and B. D. O. Anderson, "spectral factorization of time-varying covariance functions: The singular case," Wath. Syst. Theory, vol. 4, no. 1, pp. 10-2:3, 1970 .
[7] I. H. Brandenburg, "Shaping filter models for nonstationary random processes," Ph.I). diseertation. Dep. Flec. ling., Columbia Univ., New York, N.Y., June 1968.
[8] T. Kailath, "Fredholm resolvents, Wiener-Hopf equations, and Riccati differential equations," IEEE Trans. Inform. Theory, vol. IT-15, pp. 66.i-672, Noy. 1969.
[9] R. Geesey and Γ. Kailath, "Applications of the canonical representation to the estimation and detection in colored noise," in Proc. Symp. Comput. Processing on Communications. Brooklyn, N.Y.: Polytechnic Inst. Brooklyn Press, 1970, pp. 43:-4.57.
[10] T. Kailath, "The innovations approach 1o detection and estimation theory," Proc. IEEE, vol. 5S, pp. 680-69.7, Mas 1970.
[11] P. Lévy, Brownian Movement and Stochastic Processes. Paris: Gathier-Villars, 1964, Appendix II.
[12] T. Hida, "Camonical representation: of Gaussian processes and
their applications," $1 / \mathrm{cm}$. Coll. Sci. Kyoio Univ., ser. A, vol. 33, pp. 109-15.5, 1960.
[13] H. Cramer, "A contribution to the multiplicity theory of stochastic processes," in Proc. sth Symp. Math. Statist. and Probabilily, vol. 2. Berkeley, Calif.: Univ. California Press, 1967, pp. 21 i-2 221 .
[14] R. E. Kalman, "A new approach to linear filtering and prediction problems," Trans. ASME (J. Basic Eng.), ser. 1), vol. 83, pp. 9: -107 , Dec. 1961.
[1:\%] T. Kailath, "Seminar on discrete-time stochastic realization," Stanford Univ., Stanford, Calif., Feb. 1971.
[16] M. (evers and T. Kailath, "Constant, predictable and degenerate directions of discrete-time liecati equations," Automatica, Nov. 1973.
[17] K. S. Bucy, D. Rappaport, and L. M. Silverman, "Correlated noise filtering and invariant directions for the liccati equation," IFEE Trans. Automat. Contr., vol. AC-15, pp. 535-亏540, Oct. 1970 . See also 1). Rappaport, "Constant directions of the Riceati equation," Ph. D. dissertation, Dep. Elec. Eng., Lniv. Southern Califoruia, Los Angeles, Aug. 1969.
[18] D. Rappaport, "Constant directions of the Riccati equation," Automalica, vol. 8, pp. 175-186, Mar. 1972.
[19] P. Faure, "Identification par minimisation d'une représentation Markovienne de processus aleatoire,' Cenfre d'Automatique de l'Eeole National supérieure des Mines de Paris, Ref. F. 21, July 1969: also Lreture Votes in Mathematies (from Nice Simp. (Jptimization), vol. 132. New York: Springer, pp. 85106,1970 .
[20] L. H. Son and B, D. O. Anderson, "])esign of Kalman filters using signal model butput statistics," submitted for publication.
[21] R. Geesey, "Notes on discrete-time innovations representations," lecture notes, Univ. Washington, St. Louis, Mo., 1970.
[22] 3. Gevers, "Structural properties of realizations of discretetime Markovian processes," Ph.l). dissertation, Stanford Univ., sitanford, Calif., May 1972; also ALanford Univ., SEL, Tech. Rep. 7050-19.
[2:3] T. Kailath and P. Frost, "An innovations approach to leastsquares estimation-Part II: Linear smoothing in additive white noise," IEEE Trans. Automat. Conir., vol. AC-13, pp. 6.). -660 , Dec. 196 S .
[24] R. K. Mehra, "Identification of stochastic linear dynamic svitems," AIAA J., Jan. 1971.

 Antwerp, Belgium, on June 29, 1945. He recived the X .太. degree in electrical engineering from the Catholie Universing of Louvain, Lonvain, Belgium; and the Ph.l). degree in electrical engineering from stanford University, stanford, Calif., in 1968 and 197^{2}, respectively. In $196!$ he was awarded a Harknes: Fellowship, and in $19^{7} 1$ an Eivio/ NASA International Fellowship. He was also a fellow of the Belgian American Educadional Foundation.

In 190^{2} he joined the Laboratoire d'Automatique et Dynamique des Syomes, Catholic University of Louvain, Louvain-la-Neuve, Belgium. His current research interests are in extimation theory, sotem identifuation and adaptive systems, and the applications of these techniques to ecologital systems.

Thomas Kailath (S'07-M'6- F'70), for a photograph and biography, see page 453 of the Ortober 1973 issule of this Timassamons.

[^0]: Manuscript received July 7,1972 , Paper recommended by P . A. Frost, Chaimmon the IbEF S-C Extimation and Identification Committee. This work was supported in part br the Air Force Otrice of Scientific Research, Air Force Systems Command, under Contract AF 4t-620-69-C-0ion and in part by the Joint services Electronic: Program under Contract N-00014-67-A-0112-0044.
 M. R. (iever: was with the Department of Electrical Engineering, Stanford Chivervity, Stanford, Calif. 0430. He is now at Batiment Maxwell, 13-1:34S Louvain-la-Neuve, Belgium.
 T. Kailath is with the Jepartment of Flectrical Engineering, Stanford Universits, Stanford, Calif. 9430. .

[^1]: ${ }^{1}$ We should point out that solving a. Riccati equation is not necessarily the only way of obtaining a realization.

[^2]: 2 Notice that while the state-transition matrix is always nonsingular in continuous time, this is not necessarily so in discrete time. This is another source of the differences between continuous and discrete time, although it is not particularly so in this paper.

[^3]: ${ }^{3}$ The existence of the inverse requires the assumption that the covariance $R_{v}(i, j)$ is strictly positive for $0 \leq i, j \leq N$ (see Section IV). This is a minimal assumption which is equivalent to the condition that no $y(i)$ be a linear combination of the other $y(\cdot)$; this assumption ensures that there is a unique relation between $y(\cdot)$ and its innovations sequence $\epsilon(\cdot)$. While the assumption can be relaxed by using Moore-Penrose pseudoinverses, we do not feel it useful to indulge in such pedantry here.

[^4]: ${ }^{\text {a }}$ The choice of $u(i)$ rather than the more common $u(i-1)$ is more convenient here [see also (7a) and (21a)].

[^5]: ${ }^{5}$ This assumption can easily be avoided. However, without this assumption, the simple form (61) cannot be obtained (cf. the analogous situation in continuous time [2]).

