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An Innovations  Approach to Least-Squares 
Estimation-Part  VI: Discrete-Time  Innovations 

Representations  and  Recursive Estimation 

Abstract-The linear stochastic  discrete-time  realization problem 
is to  find a white-noise driven finite-dimensional linear system  whose 
output  generates  a specified separable covariance. The solution to 
this problem is  presented in the form of a causal and causally in- 
vertible  innovations  representation (IR) whose  existence depends 
only on the positive definite nature of the  separable covariance. 
It is  also  shown that  least-squares filtered and smoothed estimates 
of one  process given observations of a  related colored process  can 
be expressed as linear  combinations of the  state vector of the JR of 
the observed process. The analogous continuous-time  problems 
have been studied  earlier, and it has  been shown that  an important 
role is played by what is known as  the relative  order of the co- 
variance. Here  this  is defined as  the  number of differencing opera- 
tions required to produce a delta  function component in the differ- 
enced covariance. It is shown that, unlike the continuous-time  case, 
the relative  order of the covariance does  not  necessarily  induce 
similar (relative  order)  constraints on the impulse  response of all 
models whose  responses to white noise have the given covariance. 
This fact  is at  the  heart of certain  differences  between continuous- 
time  and discrete-time  results. It is shown, however, that  the innova- 
tions representations obey a  number of constraints equal to the 
relative  order of the covariance. 
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discretetime problem, as could have  been  a.nticipat,ed  from 
the fact. t.hat  the  Iialman  filter  formulas  in  discrete  time 
are  not critically modified, as  they  are  in  continuous  time, 
by  the absence of an  additive white-noise term [14]. In 
fact,, we shall  show (in Section  IV)  that  in  discrete  time!  a 
causal and causally invrrtible  lumped  innovations  repre- 
sentation  rxists whenever  a  separable positive-definite 
symmetric  covariance is given. However, several different 
but closely related  state-rariablr forms of the innovat,ions 
representation will be  presented, all obt.ained through t.he 
solut.ion of a Riccati equat,ion.' The exist,rnce and some 
properties of such  forms were first  pointed  out  in [15], 
where it was  shown that  the different  forms  essentially 
arise from  using as  states of t.he I R  t,he  filtered  estimates 
? ( k ] k ) ,  my, or the X-step predictions Z(klk - X),  X = 1 or 
2 . . . . This dist>inct.ion, which  cannot  be ma.de in con- 
tinuous  timr  without,  int.roducing  a  pure  time de1a.y (and 
thus dcst.roying finite dimcnsionalit,y), will be  seen  to be 
at the  heart of some differences between  continuous-time 
and discret.c-time results. 

A ma.jor difference is that. while ewry rea1izat)ion of a 
continuous-t.imc  covariance of definite relative  order a 
has t,o obey a conshints,  differrnt realizat,ions are possible 
in  discrete  time, AOI;~C of which have  const>rained  states 
and some of which  do not.  We  have  shown [16] that,  this 
distinction  cxplains the observation of Bucy,  Rappaport, 
and  Silvcrnlan [17], [IS]  that,  in  certain discret,e-time 
filtering  problem?, differencing thc observations  does  not 
have  the  same  computat,ion-reducing  consequences  as the 
analogous differentiahn process a1n-a)-s has in continuous 
t.ime. An cquivalent  way of sta.t.ing t,he above  distinction 
is that 1%-hilr in cont.inuous time  the  relative  order of a 
covariance is preserved  in all impulse  responses  t,hat  gener- 
ate  it (we? e.g., [2, lemma l ] ) ,  in discrete  time the  relative 
order of t,he  covariance  and of the impulse  response 
obtained  by  factorization  are not. necessarily equal.  This 
fact  can  best  be  seen  in  the  scalar  stat,ionary case. In  
cont,inuous time,  the  relative  order of a  transfer  function 
(respect.ivcly a. cova.riance) is t.he difference (respect,ively 
one ha.lf the difference) bet,wcrn  t,hc  degrees of t.he de- 
nominator  and t,he numerator polynomials. This  relative 
order is clearly preserved  in t,he fa.ctorization since 

X(S) = H(s)H(-s) (2) 

where S(s)  is t.he p o w r  spectral  density of t.he process and 
H ( s )  is the  transfer  function of a  filter whose response to 
xi-bite noise ha? power spectral  densit,y S(s).   In discret,e 
time  the  rclat.ive  order of both  the  transfer  function  and  the 
covaria,ncc is t,hc  diffrrence bct,n-cen the degrees of the 
dcnominator  and  the  numrrator polynomials. That  this 
relative  order is not  preserved is cvidenced  by the  fact, 
that  the factorizat,ion  in  discrete  time is determined only 
up  to pou-ers of z since 

S(Z) = H(z)H(z-') 

= z'H(z)z--'H(~-').  (3) 

1 We should  point out. t,hat solving a Riccat.i equation is not 
necessarily the only way of obt.aining a realizat,ion. 

In  continuous  time, the analog of 2 is eSX, but  this  factor 
cannot  be  int.roduced  without  destroying the finite  dimen- 
sionality of H ( s ) ;  t.here  is  no  such  problem  in  discrete  time. 
In  Sect,ions V and  VI we shall shom- how this possibi1it.y 
affects t.he  structural  properties of the realizations,  and  in 
particular  the  amount of reduction  in the order of the 
Riccati  equation associated with  the  factorization  problem. 

Finally,  in  Section  VI11 we shall  show how knowledge of 
the  IR of the observed  process y( .) leads,  almost  by  in- 
spection, t.0 the  det,ermination of the filtered  and  smoothed 
estimates of a relat,ed process for which  only cross-co- 
variance informat.ion, rat.her  t,han  a  model,  is  available. 

Historical Remarks 
Earlier  results on discrete-timc realizat,ion were ob- 

tained  in [19]-[21] and [ G I .  In  [19], various  forms \vere 
obtained  by  using an associated cont.ro1 problem (see the 
further discussion at   the  end of Sect,ion IV),  but  inverti- 
bility  was  not, explicitly discussed. In [20],  a  form  similar 
to  the one in  our  Theorem 1 (1.5) was  obt,ained  by  using  an 
existence  argument, similar to one present.ed in  continuous 
time by Iiailath  and Geesey [2] (see the  furthrr discussion 
in Section IV). In [21], the form (15) was obtained  as we 
do  here,  viz.,  by a met.hod similar to t.hat.  used in Iiailath 
and Geesey  [1],[2]. The possibility of forms other  than 
(15) \vas first  noted  in  Iiailath  [la],  whrre  the close rcla- 
tionship  between the estimation  problem  and the fac- 
torization  problem  was fully exploited. All thrsr forms 
have  the  same impulse  response,  a fundnmrntal  property 
of IR's  [lo],  but. t,hey differ by  more than  just a state 
transformation (see t,he  furt,her discussion in  Section 111). 
The detailed  structural  analysis of t.he various  IR's  and 
other models  was  carried out  in  the  thesis  [22]  and is 
related  to  the  studies  made  in  [2]  and ["I. We  may also 
note  here  that,  the  authors of [20] also state  that  their 
results  on  realization  had first. been  given in  an int.erna1 
report  by  Colebakh  (Tech. R.ep. EE6813,  University of 
Newcastle, X e w  South  Wales,  Australia, 196S), although 
t,he  validation xvas much less direct,  than in [20],  being 
similar to  the one  used in continuous t.ime by  Anderson, 
Moore, and Loo [SI. 

We shall  consider a p-vector  valued discret,e-time process 
y( .) over  an  interm1 [O,N], with X possibly infinit.e, and 
with  a  separable cova.riancc of t.he form 

where I (  .) is  the st.ep function 

and A (  .) and B ( . )  have dimensions  p X n and n. X p, 
respectively.  This is not, the most  general  form of a dis- 
crete-time  separable  covariance  because it, does not. contain 
a delta component, as, for example, 
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Eg( i? j )  = A(i)B(j)l(i - j - 1) 

+ B’(i)A’(j)l(j - i - 1) + L(i)G(i - j )  (6) 

where 

6(i - j )  = 1, for i  = j ,  6(i - j )  = 0, for i  # j .  

This  last  form  originates  from a process that  contains a 
whitc-noisc component. Howver,  as n-e noted  earlicr, the 
realization  theory  for smooth covariances  exhibits some- 
what  greater differences from the corresponding  continu- 
ous-time  casc. Thcreforr. \\-e shall drvotc most of our 
attcntion  to (4). 

Sow suppose y( .) is knon-n to aria(. from  somr  lumped 
model of the form 

z ( i  + 1) = +(i + l , i )x ( i )  + C( i  + l)u(i  + 1). 
x(0) = 2.0 (7a) 

g ( i )  = H ( i ) z ( i ) .  0 5 i 5 -3’ (7b) 

whcrv c#(.;), G ( . ) ,  H ( . )  arc known  functions and 
1 z0:u I . ) 1 arc’ zero-mean random  variablcs \\-it11 

E[[sOU‘( . )  3 = 0: E[sozo’] = no? (74  

E[u(k)u.’(l)] = 1 6 ( k  - I ) .  (‘7d) 

Such a modt.1, \\-ith the  outputs a linear  combination of 
thr  statrs. ha:: been called a Jfarkoria,t rrprcscntation of 
thv prowss y(.). Sot?  that y(.) is  not 1\Iarl<ov, but ia the 
so-called projection of a Markov process,  i.c.. a linrar 
combination of th r  componcnts of a  vcctor JIarlwx- pro- 
cess. The rnodcl (7) is  causal,  although it ma>- not  bc 
causally inrwtiblc. Let us  denote  the  variancr  matrix of 
thr  statrs at time i b>- 

n(i) = X [ x ( i ) x ‘ ( i ) ] .  6 )  

Thrn  it is \\-ell kno\vn and  is easy to show that II( .) obrys 
the differencc equation 

n(i + 1) = +(i + l>i)rI(i)+’(i + l?i) + G(i  + l)C‘(i + 1) 

H(0) = no. (9) 

Therefore  the covariance of the  output, y( . )  can be  rx- 
prrssrd as 

Ru(i, j)  = ~(i)+(i!j)II(j)H’(~)l(i - j )  
+ H’(i)rI(i)+’(j , i)H‘(j)l( j  - i - 1). (10) 

Comparing (4) ni th  (lo), \\-e concludr that onr set of 
relations bet\vccn the  parametcrs of thc systcm (7) and thr 
covariancc parameters of (4) is 

H(i)+(i,O) = A ( i )  (1 la) 

+(O:i)II( i )H’( i )  = B( i ) ,  0 5 i 5 X .  ( l l b )  

Finally?  let 

M(i) = -A(i)+(O!i). -V(i) = +(i.O)B(i) (12) 

in  trrms of which 11-c can also \\-rite (4) as 

&(i, j )  = ~~~(z)+(i , j)~~r(j)l( i  - j )  
+ ~’(i)+‘(j,i)-~r’Ql(j - i - 1). (13) 

Then  an obvious  ident.ification  between (10) and (13) 
gives the relation 

H ( i )  = X ( i )  (144 

rI(i)W(i) = X(i), 0 5 i 5 A T .  (lab) 

These  srvcral  formulas will be usrd  prcsentlv. 

A Conment  0)) the Iureriibility of +(. :) 

We should note  that  the identifications  in (11) require 
that  the  state-transition  matrix +(i.j) of the given model 
(7) must  bc nonsingular? for i > j .  In our  work.  however, 
this  assumption is not  restrictive brcause our goal is to 
construct modcla corrcsponding to given  covariances. 
If th r  columns of A (  . )  and  thr row? of B( .) arr linearly 
indrpcndcnt.  and if \\-e choow  models of order  not  greater 
than  thc  number of s ~ c h  r o w  or columns:. then lvc can 
always choow a nonsingular +(. , .). 

111. INNOVATIOSS REPRESEXTATIOXS OF -4 LCNPED 
MARKOVIAS PROCESS 

In  thr first thcorcnl TVE shall  assume that  the proccss  is 
kno\vn to arisr from somr lumped  model. This will be re- 
lascd  later whrn thc  csistrncc of the 111 will br sho\\-n to 
dcpcnd only  upon thc i)ositive  definitenrss of th r  given 
covariance. 

Theorem  I-Illuoratious  Represetltatiotl 1 (IR-1): Let 
y(.) have a positive  dctinite  covariance of the form (13) 
and  assume  that y( .) is known to  arisr  from some lumped 
model. Then  an  innovations  rcprenrntation for y( e )  can 
be  Ivrittrn in the form 

e(i + 1) = +(i + l,i)e(i) + +(i + l , i )K( i )Z( i ) ,  O(0) = 0 
(13a) 

y(i)  = X( i ) e ( i )  + &(i) (15b) 

\\-here I ( . )  is a zrro-mran \\-hitc-noise proccss with co- 
variance 

E [ ~ ( i ) & ’ ( j ) ]  = [JI(i))Y(i) - X(i)&(i)N’( i )]6( i  - j )  
(13) 

and 
K ( i )  = [Y(i) - Z,( i )M’( i )  ] [X(i).V(i) 

- X(i)21(i)JI’(i)]-’. (1Sd) 

Thr  matrix S l ( i )  is the  stat(.  variance 

sl(i) = E[e(i)e’(i)] (1Se) 

and  obrys  thc  matrix  Riccati differrncc. equation 

singular in continuous  time,  this is not  necessarily so in discrete  time. 
2 Kotice  that.  ahile  the  state-transition  matrix is always non- 

This is another source of the differences  betrveen continuous  and 
discrete  time,  although  it is not  particularly so in  this  paper. 
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Z l ( i  + 1) = +(i + l,i)Zl(i)+’(i + 1,i) + +(i + 1,i) 

* [ N ( i )  - Z l ( i ) ~ V ‘ ( i )  ] [M(i)A‘( i )  - M(i)& 

- (i)lU’(i)]-l [A‘(i) - Z1(i)M’(i)]‘+‘(Z + 1,i) 

Zl(0) = 0. (1Sf) 

Proof: The proof  follows a  procedure  used  in [l I. 
R e  begin  by  assuming t,hat  the process y (  .) is  the  output 
of a  known  model of the form (7), and show  how to find 
t.he IR for  it.  This IR is  obtained as a rearrangement, of the 
Iialman  filter cquat.ions of t.he system: Since it is knolvn, 
moreover (see [lo]-[13]), that  the  IR  is uniquely  det,er- 
mined up t.0 its impulse  response by  the  covariance of t.he 
process, wc should be able to  express t,he IR entirely  in 
t.erms of this covariance  function. 

The  Iialman filter equa,tions  for  tlhe one-st,ep prediction 
est.imates of the  state  are (see [14]) 

q i  + lli) = +(i + l,i)?(i)i - 1) + +(i + l,z]K(i)&(Z) 

&(i) = y(i) - M(i)?(ili - 1) (16b) 

?(Ol -I) = 0 (164 

K( i )  = P(ili - l)W(i) [M(i)P(ili - l)AT(i)]-l. 

( 16a) 

where 

(16d) 

P(ili - i) is  the covariance of the  instantaneous  error 

P(ili - 1) = ~ [ ( s ( i )  - ?(ili - I ) ) (z(~)  - Z ( i ( i  - I))’] 
(164 

and satisfies the  matrix Riccat.i equation 

~ ( i  + l ( i )  = +(i + l ,i)P(ili - l)+’(i + 1,i) 

+ G(i  + l ) G ( i  + 1) - +(i + 1,i) 

. ~ ( i l i  - I)M’(~) [M(i)P(+ - I)M’(~)]-]  

. M(i)P(ili - 1)+’(i + 1,i) 

P(01- 1) = no. (16f) 

The { ~ ( i ) )  are  the  inno~at~ions of the process y( .). Re- 
arranging (16b) and replacing .?(ili - 1) by O ( i )  shom  that  
(lSa),  (15b),  together  with  (16d)-(  16f), is another  nlodrl 
for  the process y( .). I t  can also be verified directly, if so 
desired,  t.hat t.he outputs of bot,h models have  the  sanw 
covariance. 

Next n.e shall show how to  express  the  IR  (13a),(13b) 
direct.ly in  terms of t.hc parameters of the covariance 

covariance Ru(i,j) 1s strictlv positive for 0 5 i, j 5 ;IT (see Section 
3The existence Of t,he inverse  requires the msumpt.ion that  the 

IV).  This is a minimal assumption which is  equivalent  to  the condi- 
tion  that no y(d) be a linear conlbinat.ion of t,he other y( e ) ;  t,his 
assumption ensures t.hat t.here is a unique relation between y(. ) and 
its  innovations sequence e ( - ) .  While the  assumption can be relaxed 
by using  Moore-Penrose  pseudoinverses, we do not. feel it useful t o  
indulge  in such pedantry here. 

function (13). To do SO, \=,-e define t.he variance  matrix of 
the  state  estimates a+q 

zl(i) = E[.?(+ - l)Z’(iii - I)]. (l’i) 

By the projection t.heoren1 the atat.e  estimates  are  orthog- 
onal t.0 the error  in the  estimates,  and hence 

P(ili - 1) = rr(i) - &(i) ( 1s) 

\=,-here P(i\i - 1) and n(i) obry (1Gf) and (leg), rcspw- 
t.ively. Substituting  (1s)  in (1Gf)  and  subtracting (lGg), 
using (14), gives (15f) for Zl ( . ) .  A similar substitution  in 
(16d) gives  t,he  expression (15d) for thr gain. 

The innovat,ions  procrss E ( . )  driving IR-1 [scr (15a) 
and (15b) ] is  a whit.ened  version of t.hc observation procrss, 
as  is ~ w l l  knou-n [10],[14]. I ts  variance is cwdy 0btainc.d 
noting  that 

&(i) = M(i) [z(i)  - .?(ili - l)]. ( 19) 

The expression (15,) follows immcdiatcly  using  (18). 
The existence of a solution to  the nonlinear  rquation 

(1Sf)  follows from  t,he  existence of a  model  which guaran- 
tees  t,he  exisknce of II and hence of Z1 5 II. IVP shall  show 
in  Sedion  IV how t.his a.ssumpt.ion of mistmce can be 
relaxed. 4 

Corollary I--Whiterzi?zg Filter: The innovations repre- 
sentat,ion (IR-1) is causal and causally invcrt.ible,  and  the 
inverse  serves as a d i t e n i n g  filtrr. I ts  equations  are 

qi) = ~ ( i )  - M(i )e ( i )  (2Oa) 

e( i  + 1) = +(i + l,i)e(i) + +(i + I , ~ ) K c ~ )  [y(i) 

- M(i)O(i)], O(0) = 0 (2Ob) 

where K (  - )  is obtained  through (15d)-(15f). 
Proof: The proof is just a t.rivial rewriting of the 

equations (15) of the innovations  rrpresent.ation. 1 
In  the above \=,-e used thc  Iialman  filter  equations for t.he 

one-step  predictions ?(i(i - 1). Howcvrr, it. is ~ ~ 1 1  lmon-n 
tha.t  the  Iialman  equations  can also bt   describd in trrnm 
of filtered  estimates ?(i\i). T h k  dist.inction,  which is 
effectively absent  in  continuous  timc,  leads to  an  aIterna- 
tive  rrpresentation.  The  usr of IR’s  bawd on  filtered  or 
predicted  estimat.es [cf. (31)] was first. notrd in [l.i]. 

Theorem. 8--IT.)l?lOLYItiO??S Representatio,, 2 (TR-2): Let 
y ( . )  h a w  a  positivr  drfinitc  covariancc o f  thr form (13) 
and suppose that it.  is 1;noLm to  ariw from wmr lumped 
model. Then  an  innovations  reprcwntation for this 
process  can  be written  in  the  form 

e(i + 1) = 4( i  + l,i)e(i) + K ( i  + 1)&(i + I). 

P.(-l) = 0 (.la) 

y(z] = nr(i)e(Z] (2lb) 

wherr &(i) is a  zcro-moan nhitc-noiw process  with co- 
variance 
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E[&(i)G’(j)] = 

and 

K ( i )  = [x(;) 

[ J P ( Z p T ( i )  - M(i)+(i,i - 1) e(i + 1) = +(i + 1;i)e(i) + K ( i  + 1) 
Z s ( i  - l)+‘(i,i - l ) M f ( i ) ] 6 ( i  - . j )  (?le) . [ ~ ( i  + 1) - X(i + l)+(i  + l,i)e(i)] (26b) 

where IC(.) is  given  by (21d) and  (210. 

- +(i,i - l )Z?( i  - l)+‘(i$ - 1)Mf(i)]  

. [ N ( i ) A r ( i )  - M(i)+(i,i - l)ZS(i - 1) 

. +‘(i.i - l)1IIf(i)]-1. (2ld) 

&( .> is thc  stat? variance 

Sr(i)  = E[e(i)e’(i)] (2 k )  

and obeys thc  Riccati  equation 

Zy(i  + 1) 

= +(i + 13i)Z2(i)+‘(i + 1.i) + [N( i  + 1) 

- +(i + l>i)L(i)+’(i  + l ,i)>I/(i + l)] 

.4’(i + l>i)X‘(.i + 1)]-’. p - ( i  + 1) - +(i + l i )  

. S ( i ) + / ( i  + l,i)M’(i + 1)] ’3( -1)  = 0. ( “ l f )  

. [M(i + l)LV(i + 1) - Jl(i + l )+( i  + l - i )&(i)  

Ploof: Thtl proof is  complrtely  analogous to  thc 
proof of Thwrcm 1. Altcmatively, UT can also obtain 
IR-2 from  IR-1 directlJ-  by  using th(3 fact  that 

.?(i + lli) = +(i + l,i).?(ZIZ) (22a) 

and hencc  t.hat 

Z l ( i )  = +(i + l ,i)Z2(i)+f(i + 1,i) (22b) 

where %(-) drnotcs  the  variance of the fi1trrc.d cstimatrs 

E?(;) = E[.?(i\i).?’(i\i)]. (23)  

Substitut.ing  these  relations  in  (16a)-(lGc) and ( 1 3 -  
(15f), and rrplacing S(il i) by e(i) givw 

e(i + 1) = +(i + l,i)e(i) + K ( i  + 1)&(i + 1)> 

e(-1) = 0 (“.&a) 

y(i) = Jl(i)+(i,i - l ) e ( i  - 1) + &(i) (24b) 

u-hrrc, K ( i )  is obtaincd  through (‘2ld) and (21f). 
Finally we notice that 

dl(i)K(.i) = 1. ( 3 3 )  

Hpnccl (24b) can also bc written as (2lb): using (24a) and 

It. should go without  saying (sw footnotv 3 )  that  thr 
invcwc. in  (2ld) mists becausc. it  is the innovations  vari- 
anw which is nonsingular b(1rausc. Rv(i, j )  is nonsinguIar. 

Corolla1y 3--TBhife~i,r!/ Filter: T l l ~  innovations rcyrc’- 
sentatiorl (111-2) is  causal and causally inuc.rtibl(\. I t s  
inv(’rsc, n-hich is x n-llitc.ning fi1tc.r. is givcw by 

(25). 

&(i) = y(i) - ill(i)+(i,i - l)e(i - l)? e(- 1) = 0 

(%a) 

Proof: Equations (26)  are easily obtaincd  by a re- 
arrangement of (2la)  and (2lb). E 
Normnulizatimt. of the Input W h i t e  Noise 

Sotice  that  the variance of the innovat.ions process in 
both IR-1 and IR-2 is a time-varying  function that de- 
prnds on the solut.ion of a Riccati quat ion [ w e  (13c) and 
(15f) and  (2lc) and (21f)l. This is in contrast to the 
continuous-timr case where the variance of thc innova- 
tions  is  equal to  thr variance of the u-hite-noise  component 
in the covariance of the process. I t  may  be  convenient to 
have an IR. that. is drivrn by unit variance \\hit? noise. 
This can be easily achievc.d by  drfining  normalized  innova- 
tions v ( . )  that haw unit  variancr. For 111-2 n-r drhc. 

.(i) = [M(i)N(i) - M(i)+(i,i - l)&(i - 1) 

.+’(i,i - l)M’(i) ]-;&(i). (27) 

The equations of IR-3 arc now 

e(i + 1) = +(i + l , i )e( i )  + I,(i + 1).(i + l), 

e ( - l )  = 0 (%a) 

y(i) = M(i)e(i) (PSb) 

v-hrrc V (  .) is unit  variance  Ivhitr noise and 

L(i)  = [N(i) - +(i,i - l)Z?(i  - l)+’(i,i - l)N‘(i)] 

. ( J I ( i )N( i )  - Jf(i)+(i?i - 1) 

- l)+’(i,i - l)M’(i)]-! (2Sc) 

Cun1parism of IR-1 and IR-2 

We have obtained  two  diffrrcnt. IR’s for thr same 
procws. and UT have shown that  thcy  can  br  u-rittcn 
ent.ircly in  terms of the  paramctrrs of its  covariancr. S o t c  
t.hat, as might be cspcctvd,  thcw  two  rcprcsrntations  have 
thr same  impulw rcqmlsc 

1 

y(i) = ~l~(i)+(~,.j)~(~)&(~). (29) 

The point  is that   thr  statw of  111-2 arc’ a transformation 
o f  the statcls of In-1 [ s w  (??a)]. Howvrr, this is not an 
ordinary  coordinatc  transforma.tiorl bccausc, thcrv is a 
on(.-unit drlaJ-  b(ltww1  corrwponding  statw. 

Thcw is an intcrcsting diffcrrnccx br tw~cn  thr   output  
equations (15b) and  (“lb) for IR-1 and 111-2. rw:p(&wly. 
Whik Ilt-2 is o f  the. form o f  thv origirlttl  mod(1l (7). thr 
output cqu:ltion i n  111-1 contains nn addrd wllitc.-noisc 
tcwn. Hon-cv,r, notic(. that  this last  cquntion can also be 
r e n i t t m ,  using (1.k). in tlw form 

j = O  

y ( i )  = N(i)+(i,i + l)O(i + 1). (30) 

While in t.his form y(i) is writtm as a linvar combirlation 
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of the  states,  as  in  the model (7), it  should  be  observed 
that  there  is now a  one-unit  delay  between the  states  and 
t.hr  outputs. However, the noncausal  rclationship  between 
outputs  and  states  in  this modified version of IR-1 does 
not, affect. the causal  invertibilit,y  between  outputs  and 
inputs. 

Other Represen.tations 
The ideas  used to obt.ain IR-1  and  IR-2 could  be ex- 

t.ended to  obtain  represent,ations whose states  are 2, 3, 
. . . , X-step predicted  cstimat,es of t,he  form 

R = [R(i,i) 1, 0 5 i , j  5 N (34) 

can  be  factored  into  a  lower-triangular  matrix H and  its 
t.ransposc 

R = H-H‘.  (35) 

H is partitioned in p X p block? h(i?J] ,  and  the  result 
follows. Notice  t,hat,  the positive definitenesg of R implies 
that  h(i,i) is nonsingular for all i since 

N 
0 < dct R = n [dct h(i,i) 12. M(36) 

i = O  

?(i + X l i )  = +(i + X , i  + X - 1)P(i  + X - lli - 1) Themem 4: Let h ( - ,  . j be  defined a.s in Proposition 3. 

+ K(i)&(i) (31a) 
Then h(i , j)  has  the  form 

y(i) = M(i)+(i,i + X)?(i + hli) (3 Ib) 
h(i,~] = M(i)+(i,j)L(j)l(i - j ) ,  O 5 i , j  5 N (37) 

for some matrix L( .) and  xith M (  .) and +( . , . ) defined by 

Proof: Since R is positive definite, so is H .  Let V be 
the inverse of H .  Then V is also a  low?r-triangular  matrix. 
Let V be  partitioned like H .  Then, using (3.3, \vc have 

for some X > 0. Similarly, in  continuous  time,  innovations 
models can bt. obt.ained whose st,at,es are  predicted  esti- 
matrs .?(t + X l t )  for some fixed positive X. However, when 
X > 0 t.hc models will contain  pure  delays  and will not,  be 
finitct dimensional. 

(13)- 

IV. EXISTENCE OF THE INNOVATIONS REPRESENTATION wit,h 

We shall show  now t,hat. the assumption that  the process 
y(  .) arises from  some  lumped  model is  not,  required.  Just, 
the basic assumpt,ion that R,(-, .)  is a posit,ive definite 
covariance  on [ O , N ]  will suffice to  demonstrate  t,hc ex- 
istence of IR.-2. The exist,encr of IR-1  then follows by  the 
relation (2%). The proof \ d l  parallel  an  argument. used 
in  continuous  time  by Ihilath  and Gecsey (cf. [2, Appen- 
dix 111) and [3, lemmas 3.6 and 3.71). The continuous- 
t,imc proof needs to  start  with covariances t,hat h a w  a 
delta-function  component,,  but  as xve might. expect,  this  is 
not  neccwary in discrete t,ime. We may not,e that Son and 
Anderson apparently rcdiscovcred the discrete-time  analog 
of t.hc just.-cited proof in [‘I and [3]. 

We  consider  again  a  process y(.) over [O,N]  with  a 
separable  cocariame of the form (13). We first  note that if 
R ( .  ,-) is  a  positive definit.e covariance, there  exists a 
causal system  that, when  driven  by  white noise, generates 
this covariance. ?ire shall subsequently show that t>his 
system is finite  dimensional. 

Proposition 5: Lrt  Ry(i,j] in (13) be  a  positive  definite 
covariancc  on [ O , N ] .  Then  there exists a  causal  impulse 
responsst: matrix h ( .  , .) such that a system  excited  by  unit 
variance  white noise a.nd \i-it.h h ( .  , .) as impulse  response 
has  output  covariance R,(. , .), i . c ,  

:v 

Ru(i,j) = W(i,k)h’(j,k) (32) 
k = O  

\vi t h 

h.(i,j) = 0 for i < j .  (33) 

Proof: The result. is \vel1 1inon.n. It, relics on the  fact 
that  t,hc N p  X N p  covariancc  matrix 

Then we ca.n write,  using (3S), (13), and  t,he  causality of 
h ( . , . ) ,  

h(i , j)  = R(i,k)d(j ,k)  
j 

k = O  

= iM(i)+(i,j)L(j)l(i - j )  

1vit.h 
i 

L ( j )  C +(j,k)AJ(k)n‘(,j,k). m 3 9 1  
k = O  

We may observn that. t.he above argummt  actually 
already gives a  causal and causally invcrt.iblc  model  for t,hc 
proems. It.  can  be shown after some' algobraic manipula- 
tions (see [2‘2]) that, I,(-) as defined in (39) is identical t.o 
the gain L( .) of IR-2 [see (2%) ] whcrc Z2( .) obeys the 
Riccati  equation (21f), which  proves  tho  existence of IR-1 
and  IR-2.  Howver, x e  frel  tha.t  the  approach  taken  in 
Theorcms 1 and 2 gives more insight. and is mow  helpful 
in applica.tions to estimation  problcms. 
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Let (4) be the covariance of the  output of a  Narkovian 
model 

z(i)  = z( i  - 1) + G‘(i)u.(i), z(0) = zo (43a)4 

y(i) = H(i)z(i), 0 5 i 5 N (43b) 

where 

E[21(i) J = 0, E [ 2 1 ( i ) U ’ ( j ) ]  = 16(i - 37 (43c) 

E[U(i)XO‘J = 0, E[zozo’] = no. (434 

The  state variance  obeys the recursive  equation 

n(i) = 1T(i - 1) + G(i)G’(i), IT(0) = no. (44) 

The covariance of the  outputs of (43) is given by 

R,(i,j) = H(i)II(j)H‘(j)l(i - j) 

+ W(i)IT(i)H’(j)l(j - i - 1). (45) 

Comparing  with (4) u-e ha.ve 

H ( i )  = A( i )  (464 

H(i)A’(i) = B(i),  0 5 i 5 N .  (46b) 

Jlultiplying (44) to  the  left by ,4(i - 1) and  to  the  right 
by A‘(i) and using (46) and  the  relative  order  propert,y 
(42) of the covaria,nce, we find 

A ( i  - l)B(i) - B’(i - l )A’( i )  = 0 

= A(i  - l)G(i)G’(i)A’(i). (47) 

Hon-ever, contrary  to  what  happened in cont,inuous time 
(see, e g . ,  [2, cq. (“3)], we cannot  conclude here  that.  either 

A(i - l)G(i) = 0, 1 I i 5 N (484 

or 

A (i)G(i) = 0, 0 I i 5 N .  (4Sb) 

The only  conclusion  from (47) is that. A(i - 1)G‘Ci) and 
A(i)G‘(i) are orthogonal for all i. Similarly,  the following 
relations, which could have been  expected  to  hold  by 
direct  analogy  to the cont,inuous-time  results?  do not 
necessa.rily hold in  discrete  time: 

A(i - k)G‘(i) = 0,  k = 1,2,. . - ? a  - 1 (49a) 

A( i  - k ) r ( i )  = y(i  - k ) ,  X: = 0,1,.-. ,a - 1 (49b) 

A(i  - k)rI(i)  = B’(i - k ) >  k = 0,1,..  ’ , c y  - 1 (49c) 

k 5 i 5 N .  

If (49a) holds for k = 1,. . . !q - I? (y 5 a),  then q will be 
called the rclativc  order of the  representation (43) by 
analog). to  thc continuous-time definition (see, c.g., [3, 
definition B.l, p. 221).  We have  just  shown that in dis- 
crctc time thrw i? no  unique  relationship  bctn-ern  the 
relative ordw q of the representation  and  the  relative 
order a of thc  covariance of a. given process. Clearly,  by 
(47), we aln-ays have q 5 a. 

4 The choice of u(  i) rather t.han the more common u ( i  - 1) k more 
convenient  here  [see also (7a) and  (?la)]. 
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lrTot,ice t,hat,  the difference between cont.inuous and dis- 
crete  time is due  to  the required  distinction  in  discrete 
t.ime between i and i - 1; if t,hese could  be identified, we 
would  have, inst.ead of (47), 

A(i)G(i)G’(i)A’(i) = 0 (50) 

&ich  u-odd imply 

A(i)G(i)  = 0 (51) 

just as in cont,inuous time. 
Kext 11-e show that a process whose covaria,nce has 

definite  relative  order a c.an always  be  represented as the 
output of a stahvariable model t.hat. docs  obey the con- 
straints (49). 

Theorem 5: Let. the covariance (4) of a process y(.) over 
an  interval [O,N] have definite relative  order a, a > 0. 
Then  there  exists a t  least one representation of the  form 
(43) t.hat. obeys the  constraints (49). 

Proof: We not,icc first, that t,he  matrix H ( i )  of the 
realizat.ion (43) is  determined by (46a.). Hence the  set of all 
realizations (43) for the process y(.) is determined  by the 
set, of all solutions { I I (~) ,G(~ + I), i = O,I; . . ,AT\ to 
the  equations (44) and (46b) where A (  .) and B( .) obey 
the  constraints (42). We show that  there  exists  a  subset of 
solut.ions {II( . ) ,G(.) )  that, obey the  constraints (49). 
-411 u-e need to prove is that. we can choose n( .) and G( .) 
t.0 obey (49) wit.hout. violating the const.raints  (44),  (46b), 
and (42). To show this, n-e choose G ( . )  and IT( .) such that 

ACi - l)G(i) = 0 1 5 i 5 N (52) 

rl(i - l)II(i) = B’(i - l), 1 5 i 5 N .  (53)  

We shou- that  this choice is consistent, 11-ith the const.raint,s 
on G( .) and IT( .). Nultiplying (44) to t.he left  by A (i - 1), 
using (52) and (53) ,  we get 

0 = A (i - l )G( i )G/ ( i )  

= A ( i  - l)rI(i) - A ( i  - l)rI(i - 1) 

= B’(i - 1) - 4 ( i  - l)rI(i - 1). (54) 

Thus (46b) follows, and post-mult.iplication by A’(i) 
shoxvs that (42a) follows similarly. If a > 2, the  same pro- 
cedure  can  be  pursued  to show tha.t  the  constraints (43) on 
G ( . )  and n( .) are consistent. with  the  conditions (42), 
(44), and (46b). 

We have  established  t.hat  although  not all represent,a- 
tions of a  process  u-ith definite relative  order a obey all a 
constraints (49), there  exists a class of models that does 
obey these  constraints.  Before  identifying  such  models, 
it. will be useful to  restate  the  relative  order  conditions 
(42) and  the  constraints (49) for a  process whose covari- 
ance is given  by (13) instead of (4). A covariance of the 
form (13) has  relative  order a if 

1) V ( i  - k)+(i - k , i ) N ( i )  

- N’(i  - k)+’(i,i - k ) W ( i )  = 0,  

k = 1 , 2 ? . . . , ~ r  - 1; k 5 i 5 N ( S a )  



596 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, DECEMBER 1973 

2) .U(i - a)+(i - a , i )S ( i )  - X’( i  - a)+’ 

. (i,i - cy)M’(i) = C(i )C’( i )  > 0,  
cy _< i 5 iY. ( S b )  

The  constraints (19) for a modcl of the form (7) arc 

H ( i  - k)+(i  - k , i ) G ( i )  = 0, 

k = 1,. . . ! a  - 1 (S6a) 

H ( i  - k)+(i - k,i)z(i) = y( i  - k ) >  

k = 0,. . . ,a - 1 (56b) 

H ( i  - k)+(i - x.:i)II(i) = X’(i - k)+’(i)i - x.)) 
k = O;. .?CY - 1 k 5 i 5 X .  (56~) 

Corollary 3: Let a process y( .) lvith  covariance (13) h a w  
dcfinitc rv1ativ-c ordcr cy, cy > 0. Then  the innovations 
rc,prc,~;c,rltation IR-2 of this process has definite relative 
order CY: i.0.. it  obeys thr constraints (56a)-(Xc). 

Proof: The, proof in an cas). but length?- verification 
that thc equations (5Ga)-(56e) hold  for the model (21) 
with (;(.) rrplaced  by K ( . ) ,  x(.) b -  e( . ) !  n(.) by E:(.), 
and H ( . )  b!. X(.). 

As w noticcd  in  Section 111, IR-1 is not of the form (7). 
It docs  not  obey the  constraints (55): but obeys the same 
number of cquivalrnt  constraints. 

Corollary 4: Let a process y( . )  with covariarlcc (13) 
have drfinitc  relative order a? CY > 0. Then  the  innovations 
rcprescntation IR-1 of this process o b r p   t h e  constraints 

X(i  - k)+(i - k, i )K(i)  = 0)  
k = 1;. ‘ , a  - 1 (5ia) 

X(i - k)+(i - k , i )e ( i )  = y(i  - k ) ,  

k = l!...!cy (sib) 

U ( i  - k)+(i  - k , i ) Z l ( i )  = W’(i - k ) @ ‘ ( f ! f  - k ) !  
= 1 . . .  

1 > f f  (57C) 
k 5 i 5 x .  

Prooj: The proof is  again a straightforlvard verifica- 
tion. I 

VI. REDL-CED ORDER J I O D E L  FOR -4 SCAL.4R PROCESS 

We shall shoa non- ho\v the constraints (36) can be used 
to obtain a reduced  ordcr  Riccati  rquation  for IR-2 [cf. 
(“lf)  1. This will rcquirc a coordinate  transformation. 
For simplicit!- of notation. n-e shall consider a ccalar 
process and 1j-r shall assume a “uniform  observability” 
assumption [defined bclon-, after (GO) 1. 

Thus cowidcr a walar process y( .) over an  interval 
[O!A17] with covariance 

Ru(i..j) = m(i)+(i. j)~~r(, j) l( i  - j )  
+ ~‘(i)+’~j,i)?~.‘~~)l(j - i - 1) (5s) 

n-hcrc m (  .) is 1 X ? I ,  @(. , .) is 1 1  X ‘ ~ 1  and nonsingular? and 
X ( . )  is I I  X 1. 

Let thc covariance (5s) h a w  definite relative order a ,  
(Y > 0. Thrn xvr know by Corollary 3 that  the rcpresenta- 

tion IR-2 given  by (21). with M (  .) replaced by m( . )? 
obeys the constraint3 (56). To exploit the  constraints 
(56~)  on E?(.) and thercbJ- reduw the  ordrr of the  Riccati 
equation t2lf) :  \ w  shall mal;r the  statr  transformation 

X n e r ( i )  = T(i)X,,d(i) (59) 

with 

m (i) 
T(i) = [ 7 4 2 . -  11;- 1?4 ] 

(60) 

m ( i  - ‘ I 1  + l)@(i - I I  + 1,i) 

The assumption of uniform  obscrvability is that T ( i )  is 
uniform1)- nonsingular,  i.c.:  nonaingular  for I I  - 1 5 i 5 
N . j  In thc  stationary caw this ansumption  is the. sanw as 
completr  obscrrability. 
In thc 11cw coordinntc syatcm UT have 

m(i) = [I O . . . 0] i6la) 

a ( i  4- 1) 
0 
1 

. . .  
0 

0 

assumption:  the  simple form (61) cannot  he  obtained (cf. the analo- 
5 This awunption can  easily be avoided.  However, n-ithout this 

goua situation  in  continuow  time [ 2 ]  ). 
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Finally, let. t.he last ( n  - a) element,s of a ( i  + 1) be de- k(i) is (n - a) X 1 and 
noted  by 

b(i + 1) P [uQfl(i + 1) . . . an(i + l)]. (64) 

1Vit.h these  not.ations we can describe an (n. - a) th order 
Riccati equat.ion for the innovations  representation  (IR-2) 
of a  process x\-ith definit,e relat,ive  order a. 

The07-em 6: Let  a  scalar process y(  - )  over  [O,N] have 
covariance (5s) with definite relative  order a a.nd let 
&(.) be  the solution of the Riccat.i equat.ion  (Slf) of IR-2. 
Then for i 2 a - 1, &(i) can  be  partitioned  into 

L(i)  = X(i) + D(i) ,  CY - 1 5 i 5 A’ (65) 

with 

where E( i )  is ( n .  - a) X (11- - a) and obeys t.he equation 

E ( i  + 1) = FE(i)F’ + FE(i)b’(i + 1) [Nyi  + 1) 

- a(i + l)LII(i)d(i + 1) - b( i  + l)E(i)b’(i + 1 ) ] 4  

.b(i + l)E(i)F‘, a - 1 5 i I N (67a) 

E(a - 1) = lower  right-hand  submatrix of &(a - 1) 

- lower right-hand  submatrix of Jf(a - 1). (67b) 

Proof: That  the variance of the  stat.es of IR-2  can  be 
n-&ten  in the form (65) and (66)  follows after  lengthy 
algebraic manipulations  from  the  const,raints (49c) on 
&(.) and  the special form that t.hese constraints ta la  in 
the new  coordinate  system.  The  espressions (67) follow  by 
subvtit,ut.ion of (65) and (66) in (Slf). More det.ails can  be 
found in [ B ] .  

Corollary 6: Let  a  scalar process y(-) over [O,N] have 
comriance (5s) u-ith definite relat,ive order a. Then for all 
i 2 a - I, IR-2 is st.ate  equivalent- t.0 

‘TJ+ 
1 1  

y(;) = o . . I o][e ( i ) ]  (6Sb) 

where &( .) is a u-hite-noise process with 

E[&(i )&( j )]  = [W(i) - a(i)U(i  - l)a’(i) 

- b(i)E(i - l)b’(i)]d(i - j ) .  ( 6 8 ~ )  

&(i) = FE(i - l)b‘(i)[Ar’(i) - ~(i)M(i - l )~’ ( i )  

- b(i)E(i - l)b’(i)]-’ (68d) 

where E(i )  obeys (67). 
Proof: From (21d) it. follows directly  t.hat m(i)K( i )  = 

1.  From  the form of T ( i )  [see (60)]  it follows that  the first 
component. of K(i )  in  the new coordinate  space is 1. The 
zeros in K(i)  follow from the  constraints (49a) with G (  .) 
replaced by K(  .). The  other relat.ions follow from  The- 
orem 6. 

Remark 1: From  the  form of F in (63) wc notice  t.hat  t,he 
first. component of I?(.) is zero. This,  together  u-ith (68a), 
shows that.  the  realization  has  a  pure  delay line of order a 
and a feedback  structure of order n - a. 

Remark 2: We  have obt,ained a  reduced  order Riccat.i 
equation  for  IR-2 when the process has  relativc  order a. 
Sat.urally, since IR-1 also obeys a const.raint-3 [scc ( X ) ] ?  a 
similar reduction  can  be  obtained  for it. Some results 
along  these lines were already  obtained in [21],  patterned 
on analogs of the cont,inuow-time  results of [2] and  [3]. 

VII. E X A m L E  

We  shall s h d y  a  second-order  scalar  process whose co- 
varia.nce has definite rrlative  order 2. We shall  give  two 
different realizations, of which  only  one is causally in- 
vert,ible  and obeys the  constraints (56). For  this  last 
realization we shall sce that  the Riccat.i equation (‘Llf) is 
totally  degenerate. A similar example is studied in con- 
tinuous  time  in [ 2 ] .  

%‘e consider  a  scalar  process y(  - )  over [0, a) whose 
covariance mat,ris R is given  by 

16 1 4 t . . .  
1 1 1 L . . .  1 $ $ ‘- ’ ] .  (69) 

2 4  8 

R = t(R,j)l = I 4 s 16 T P  

This covariance  can be  factored  into 

R(i,j] = h.&jlV(j)l(i - j )  + N’(i)+’J-%’l(j - i - 1) 

(70) 
where h is a  row vect,or n-ith ent,ries 0 and 1, C#J is a 2 X 2 
ma.trix with zeros on t,he main  diagonal  and 3 clsen-here, 
and N( i )  is given by t.he recurrence  relations 

N’(i  + 1) = tN’(i) 
N”(i + 1) = &V(i - 1) + $, i 2 1 (71a) 

together  with  the init,ial values 

N’(0) = [e 161,  N’(1) = [$ 31. (71b) 

Kotice that 

lim W’(i) = [0 $1. 
i-+m 
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I t  is cas?- to verify that h !  +. and X(.) do indced  produce 
thc  corariance R(i.j) pircn in (69). L-sing (55) x w  check 
that  thc  rclativr  ordcr of the covariance is 2 :  

h + - l X ( 2 )  - X’(i - l)+‘ll’ 0, i 2 1 (734 

h+-‘LV(i) - X ‘ ( i  - 2)+”h’ = $ > 0: .i 2 2. (73b) 

Thus wc k n o ~  by Corollary 3 that  thc  projrction of S2(.), 
the  statr variance of IR 2! on the  vectors  and h+-2 
can bv computcld dircctly  from A’(.) and + [see ( ~ G c ) ] .  
But h + - l  and are  linearly  independent: 

/!+e1 = [L’ 01; = [0 41. 

Hcrw I,( . )  ran br  complctcly drtcrminrd  without solving 
tho  Riccati quation  (2lf). as \ve Fhall wc. But first u-e 
she\\- that  thrrc exist othvr  statc-variablr models of the 
form (7) that can yirld  the samr covariance. 

A first rcalizatiorl is 

x ( i  + 1) = +x(i)  + rv(i + 1) (744 

y ( i )  = [O 11 x ( i )  (74b) 

n-hcrr 

r’ = [ I  01 and + = [p x] 

x ( i  + 1) = + x ( i )  + K(d + 1)&(i + 1) (Sla) 

y(i) = [O 11 L ( i )  (81b) 

E[&( i )&( j ) ]  = [hAV(i) - h+Ze(i - l)d‘h’] (Slc) 

~ ( 0 )  = N(0) [ ~ X ( O ) ] - ~ W ( O )  = [i li] (Sld) 

r(0) = K(O)G(O) = [ ; ] E , .  

Thc expressions of &(O) and x(0) follon- from (21f) and 
(?la).  The gains K( i )  arc  computed  from (2ld).  But  notice 
that for i 2 1, S , ( i )  can  bc  calculated  dirrctly  by  its 
1mm-n  projrction5 on h and h + - l ,  using the  constraints 
(SGC) : 

h.&ci) = [O 1]2?(i) = :V’(i)! i 2 0 (@a) 

h+-’&(i) = [ 2  O]Z, ( i )  = N’(i - 1)+’, i 2 1. (S2b) 

The  Riccati  equation (21f) need  not be solved. Notice 
finally that,  this  last model is invertiblc  (the  inverse  is 
obtained  by  Corollary 2)?  and  that,  the  constraints (56a) 
and (SGb) also hold. In  particular, 

h X ( i )  = y ( i ) ;  h+-1x(i) = y ( i  - 1). (83) 

VIII. APPLICATIONS TO LEAST-SQUARES ESTIUXTIOS 

In Part V [ 2 ]  of this series of papers we showed how the 
IR’s and  the  interpretations thereof n-ere helpful  in 
providing  solutions,  almost  by  inspection.  to  a  number of 
filtering and  smoothing  problems,  including  problems  with 
covariance  information  ra.thcr  than the more common 
statr-modrl  information. Similar diwretc-time applica- 
tions  can  bc  made  herc.  and v-c outline  them w r y  briefly. 
They exploit once again the  intimat(.  rclation  that  exists 
bet\\-een  least-squares  estimation  and  thc IR’s. 

Suppose we arc  given  obsrrvations of a  lumped process 
y( .) xl-ith a positive-dcfinitr  separable  covariance  function 

Rg( i2 j )  = X ( i ) 4 ( i 2 j ) K ‘ ( ~ ] ,  i 2 j (%a) 

= N’(z)+’(i,j)M’(j)! i < j .  (84b) 

Since know that. R,(i?j) i3 thr  covariance of some 
lumped proccss, we shall assume that \\-e have  the model 

x ( i  + 1) = +(i + l,i)s(i) + C(i + l)zl(i + 1) (SSa) 

y i i )  = M(i)s(i)  (SSb) 

xi th   thr  usual  assumptions  on s o  and .u(-). To be con- 
sistent  with (S4). thc  statc variance n(.)  has  to obey the 
constraint 

rI(i)M’(i) = X ( i ) .  (SG) 

Wr nish  to find the  lcast-quarrs filtered and smoothed 
cstirnates of a  related signal process w( .) for which the 
folloxving assumption  holds: 

For the sanw covariance (69) IR-2 is w(i) = -lI&)x(i) + y q i )  (87) 
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where y’(-) is  any process  uncorrelated  with y(.). It..is 
easy to see that  this  assumption is equivalent  to  t,he 
following  cross-covariance  information about z c (  - )  : 

E[u:(i)y’(j)] = Mz(i)4(i , j)N(j) ,  i 2 j (88a) 

= Nz’(i)+’(j,i)M’(~>, i < j (S8b) 

with  the  constraint, 

rI(i)XE‘(i) = Nm’(i). (89) 

We first shox  t,hat  the  filtered  estimate G(i( i )  of IC(.) 

can  be  expressed as a  known  linear  combination of t,he 
state e(i) of t.he IR-2 of the process y( .) : 

G(+) = Mz(i)e(i). (90) 

G(ili) = Mz(i)2(ili).  (91) 

To show t,his, xve observe  that. (S7) implies 

But. as  noted  earlier (cf. Corollary 2 and t,he proof of 
Theorem 2 ) ,  2(i i i)  is just  the  state vector of the  whitening 
filter (26) associated x\-ith IR-2, and  as  shon-n  in  Theorem 
2, it. can  be expressed ent.irely in terms of the  parameters 
M(.),,+(.,.), and W ( . )  of the covariance  function Rg(i,j).  

It follow similarly from (87) that. 

$(ili - 1) = X&)?(iIi - 1) (92) 

where .?(ili - 1) is the  st.ate  vector of IR-1 (cf. Corollary 1 
and  the proof of Theorem  1). 

For the  smoothed  estimate, we have?  again  using (S7) , 
G(i( j )  = iw&).qilj). (93) 

The smoothed  est.imate ?(il j)  can  be  calculated by using  a 
general  innovations  formula (cf. Part I1 of this series 
[23]) : 

?(il j)  = ?(ili) + E[~( i )&’ (k ) ]E[&(k )&’ (k ) ] - ’&(k ) .  
j 

k=i+l 

(94) 
By the orthogonality  propert,y of the innovations, we have 

E[z(i)&’(k)] = E[?(ili - 1)a’(@ - l)]M’(k) 

= P( i , k )M’ (k ) ,  i < k (95) 

P(i,k) E[Z(iJi - 1)a’(kJk - l ) ] .  (96) 

P(i,k) = P(ili - l)#‘(k,i) (97) 

where 

I t  is easy to  calculate  that 

whcrc P(il.1: - 1) is defined by (IGe) and #(k , i )  i- h the  stat,+ 
transition  matrix of th r  error equation 

a(i  + lji) = +(i + l . i ) [ I  - K(i)U(i)]Z(i\i - 1) 

+ G‘(i + l)u.(i  + 1) 

= #(i + l,L-).T(i;i - 1) + G(i + l)u(i  + 1). 

(98) 
With  these  notations we can now n-rite 

X(i)  = $’(k,i)M‘(k) [M(k )P(k j k  - l)M’(k)]-1&(k.) 
i 

k = i + l  

= #’(i + l,i)X(i + 1) + #’(i + l)Af’(i + 1) 

. [M(i + l)N(i + 1) - M(i + 1)Zl(i  + 1) 

.W(i + l)]-1&(i + 1) (100a) 

X(j) = 0. (100b) 

Substitut.ing (99) into (93) yields, through (1s) and (S9), 

G(ilj) = $(ili) + Xz(i)P(i1i - l)h(i) 

= G(ili) + [NE’(i) - Xz(i)Z1(i)]A(i) (101) 

where &(i) is the solution of (13f). To complete the re- 
writ.ing of the smoothing  formula for $( i ! j )  in  terms of the 
parameters of the covariance  function,  notice that, by (9s) 
and (l jd),  

#(i + 1:i) = 4(i  + l , i ){ I  - [X( i )  - Zl(i)JI’(i)] 

. [M(i )N( i )  - ~ ~ ( i ) ~ ~ ( i ) ~ ~ ~ ’ ( i ) ] - l ~ ~ ~ ( i ) } .  (102) 

The  equations (100)-(102), together  with  the  recursive 
equat,ion for &(i) and  the  relation (90) for G(iii), con- 
stitute a comp1et.e solution of the smoothing  problenl  for 
IC(.) in  terms of t.he parameters of t.he covaria.nce function 
(SS). The formula (101) is  the  analog of the Bryson- 
Fmzicr  form for t.he  fixed-interval  smoothing  estimate. 
The cont.inuou3-t.ime version of (101)  was first  published in 
[2] [see, e.g.,  (137)l. 

IX. COSCLUDING REXARKS 

We have  shoxn how to find innovations  rcprcsent.ations 
for discrete-t.imc observation  processes  with specified 
separa.ble covariance.  From  t,hesr  representations, ex- 
pressions  can  be  derived, almost, by inspect.ion. for t,he 
filtered and smoothed  estima.tes of a related process for 
which either model or covariance  information i s  given. 

Our  results show t,hat  there  exists  an  important. differ- 
ence betwen  the continuous-  and  discrete-timc  realization 
problems in  the case whrrc  the  covariance  has  a  nonzero 
definite relat.ive order.  Whrreas in cont.inuous time  the 
relative  order is a  unique  property of both  its  covariance 
function  and an). of its realizations:  in discrc.te time  thc 
relative  order of the covariance of a  process and  a  lumped 
realization of this  procrss  arc  not  nrcessarily  the  same. 
This  means  t.hat  u-hethw or not  the  rcalization irlhcrits the 
constmints imposed by the rclat.ivc order  property  on  the 
covariance  depends  on how the  factorization  is  performed. 
In  [16]  and [ Z ]  we have shown hox thew  facts  explain 
certain  phenomena  [17], [lS]  in  estimation  problems for 
given discrete-time models. 
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