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Constant, Predictable and Degenerate Directions of
the Discrete-Time Riccati Equation®

Directions Constantes, Prédictibles et Dégénérées de 'Equation de
Riccati Discréte

Konstante, vorhersagbare und degenerierte Richtungen der
Diskretzeit-Riccati-Gleichung

HOCTOHHHOC, npeackasyeMoe U BBIPOXKIAIOLICCC HAllpaBJICHU OJId
AUCKPETHOI'O BO BpEMCHH YPABHCHHUA PuxatTin

M. GEVERS! and T. KAILATH$§

The solution of a Riccati equation may go to a constant or zero value in certain
directions. The number of such directions is related to the relative order of the output
covariance and the transfer function, respectively.

Summary—Several recent papers have dealt with the
phenomenon that the solution of the Riccati equation for
certain discrete-time linear stochastic systems can attain a
constant value in certain directions after a limited number of
iterations, thus enabling a reduction in the effective order of
the Riccati equation. Curiously these results do not have
exact continuous-time analogs. In this paper we explain
the reasons for this, chiefly by introducing the concept of
predictable directions along which the solution goes to
zero rather than a nonzero constant. In continuous-time,
the predictable and constant directions coincide and their
number depends upon the relative order, a measure of
smoothness, of the transfer function of the system or
equivalently of its output covariance. This equivalence
breaks down in discrete-time, where the number of constant
directions is the relative order of the covariance while the
number of predictable directions is the relative order of the
transfer functions. The insight provided by our approach
not only shows how to convert constant directions to pre-
dictable directions but also shows how the concept may be
extended to time-variant systems, where the name degenerate
directions is more descriptive than constant directions.
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1. INTRODUCTION AND OUTLINE OF RESULTS

CONTINUOUS-time linear estimation problems with
colored noise are basically solved by means of
repeated differentiations until a white-noise process
appears in the observations. Furthermore, if this
takes o differentiations it is known that the order
of the Riccati equation can be reduced by «, an
important computational consideration. It seems
evident that similar results can be obtained in
discrete-time, and in fact several authors have
carried out such analyses: e.g. BRYSON and
HENRIKSON [1], BROWN and SAGE [2]. It was there-
fore a surprise when Bucy et al. [3] pointed out
that differencing in discrete-time did not determine
the maximum possible reduction in the order
of the Riccati equation. That is, even if the
first g differences of the observations contained no
white noise sequence, the order of the Riccati
equation for the state-error matrix P(ili -1
could be reduced not just by ¢, but by a larger
number, say «. In this paper we shall explain the
reasons for this behaviour. As we shall show, the
point is that in the ¢ directions along which the
differenced observations do not contain white
noise, the projections of the error matrix P(i|i—1)
are identically zero after a finite number of steps
corresponding to the order of the difference; in
the remaining a~—¢q directions, the projections of
P(ili—1) do not go to zero but for time-invariant
systems, Bucy et al. showed that they go to con-
stant values in a number of steps less than the
dimension of the state-vector. These directions
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were therefore called invariant or constant directions
[3, 4]. Necessary and sufficient conditions on the
system matrices for the existence of invariant
directions have been given and will be quoted
later. The directions in which the error matrices
go to zero will be called predictable directions [3],
because along these directions the state can be
predicted without error. As we shall see below it
will be convenient to use the term degenerate
directions to cover both constant and predictable
directions and also the extensions of these con-
cepts to time-variant systems.

One major aim of this paper is to explore the
reasons for this difference in behaviour of
continuous-time and discrete-time systems. That
is, more specifically why is it that in continuous-
time problems the predictable and constant
directions coincide and are equal to the number of
process derivatives that do not contain white noise,
while in discrete-time the latter number only
determines the number of predictable directions
and does not reveal the possible existence of further
degenerate directions?

For scalar output constant systems we shall give
a complete explanation of the above differences;
moreover, our explanation will show how the
concept of invariant directions can be naturally
extended to time-variant systems. The multiple-
output problem [4] is still not entirely clarified
from our point of view.

Our results rely heavily on the observation that
the number of degenerate directions for P(ii— 1),
or invariant directions for a time-invariant system,
is equal to the relative order of the covariance
function of the output of the state-variable system,
a fact that apparently escaped the authors of [3, 4].
Once this connection is established, we can use the
result of Ref. [6] that there is no unique relation-
ship in discrete time between the relative order «
of the covariance of a given process and the relative
order g of its state-variable representation, except to
say that g <«. This is in contrast to the continuous-
time situation where the relative order of the
covariance of a process is equal to the relative order
of all its state-variable representations (cf. [7],
Lemma 1). It was shown in [6] that this difference
is due to the required time-delay introduced in
discrete-time by the differencing operation (cf.
[6], Section 5).

As an introduction to the mathematical treat-
ment that follows we shall briefly introduce the
main definitions and heuristically explain the
results of this paper.

For discrete-time systems:

(i) The number of degenerate, or invariant,
directions, say a, of a state-variable model

is equal to the relative order of the co-
variance function of the observed process.
The latter is equal to the number of
differencing operations required to pro-
duce a Kronecker delta function com-
ponent in the differenced covariance: for
stationary processes it is also equal to the
difference between the degrees of the
denominator and numerator polynomials
of the power spectral density function,
S(z), the z-transform of the covariance
function.

(i1) The number of predictable directions is
equal to the relative order of the model for
the observed process. The latter is one less
than the number of differencing operations
required to produce a term proportional
to the input in the differenced output; for
single-input single-output (SISO) constant
systems it is also equal to one less than the
difference between the degrees of the
denominator and numerator polynomials
of the transfer function, i.e. the z-transform
of its impulse response.

(iii) The relative order of a covariance function
has no unique relationship to the relative
order of a model whose response to white
noise has the given covariance. For
constant SISO systems this follows from
the decomposition

S(z2)y=H(z)H(z™")
=z"H(z)-z *H(z™ '), k arbitrary. (1)

(iv) The preceding result also shows how in a
given situation invariant directions of a
given model can be converted to predictable
directions of a closely related model, and
one with the same covariance function.

For continuous-time systems: the spectral de-

composition for stationary continuous-time processes
is

S()=H(s)H(—s)
=e* " H(s)-e " H(—s), T arbitrary  (2)

where S(s) is the power spectral density of the
observed process, i.e. the bilateral transform of its
covariance function, and H(s) is the transfer
function of a model whose response to white noise
has the given spectral density. There is a non-
uniqueness introduced by the factor €, but if we
wish to work only with lumped models, i.e. models
with rational transfer functions, we must take
t=0. With this restriction, the difference between
the denominator and numerator polynomials of
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the transfer function of a model, i.e. its relative
order, must always be one-half the difference
between the corresponding polynomials of the
spectral density of the response of the model to
white noise, that is, the relative order of the co-
variance of the observed process. The first dif-
ference equals the number of differentiations
required to produce a term proportional to the
input in the differentiated output of a model, while
the second difference equals the number of dif-
ferentiations required to produce a delta function
term in the differentiated covariance function. This
strict relationship explains why the numbers of
predictable and invariant directions must coincide
in continuous-time and why differentiation always
correctly identifies the maximum possible reduction
in the order of the Riccati equations that arise
in the problem.

Finally we note that the close relation we have
identified between predictable and invariant direc-
tions shows that both notions can readily be
extended to time-variant systems. There is no
change in the definition of predictable directions,
i.e. directions along which P(i Ii —1) goes to zero in
a finite number of steps. But the definition of
invariant directions has to be modified because in
time-variant systems, P(i[i—1) may not go to a
constant value in any direction. The real point is
one of “degeneracy” rather than ‘“‘constancy’——
for a covariance of a given relative order, there are
directions along which P(i|i~ 1) goes to a trivial
or degenerate value, i.e. a value that can be
computed from the model by inspection without
having to solve the Riccati equation along those
directions. Clearly this degeneracy helps to reduce
the order of the Riccati equation that has to be
solved and this is the appropriate generalization of
the concept of invariant directions. We remark,
for reasons that should be clear from the above
discussion, that in continuous-time the degenerate
directions of both time-invariant and time-variant
systems are also predictable directions (cf. [7],
Appendix I).

The major contribution of this paper is to present
a unified treatment of degenerate directions via
the connection with the relative order of the output
covariance. Invariant and predictable directions
appear as special cases of degenerate directions,
and the number of predictable directions is shown
to depend upon the particular factorization of the
covariance. The differences between the discrete
and continuous-time case result from the different
properties of the factorization in discrete and
continuous time.

We present the proofs of the above results in
Sections 2 and 4. Section 3 develops some of the
main properties of predictable systems. Some of

these properties are used in Section 4, but they
also have other applications, e.g. in stability studies
along the lines of [8].

2. DEGENERATE DIRECTIONS AND THE
RELATIVE ORDER PROPERTY

We shall consider a Markovian representation
of a p-dimensional observation process y(-) of the
form

x(@+D)=0¢0+1, H)x(@)
+ G+ Du(i+1), x(0O)=x, (3a)
y(@)=H(@)x(i), 0<i<N (3b)

where ¢(-, +), G(-), H(-) are known functions of
dimension nxn, nxm, pxn respectively, and
{xo, u(-)} are zero-mean random variables with

Elxou'(:)]=0, E[xoxo]=T1, (4a)
Elu(k)’ (D] =18(k 1) (4b)
S(k—1)=1 for k=1, 3(k—1)=0, k#l.  (4c)

It is well known that the Kalman filter equations
for the one-step prediction estimates of the state,
R(@{+ 1|i), require the solution of the following
matrix Riccati equation

P(i+1|D)=¢(+1, )Pili— D' G+1, i)
+ G+ )G+ 1) = d(i+1, )PGili
~DH'GOHGOPGi— DH' ()] " HEP i
~1)¢'(i+1,4) (5a)
PO|-1)=II, (5b)

where TI, is a non-negative definite symmetric
matrix. The matrix P(i ]i — 1) is the error—covariance
matrix of the Kalman filter estimates

P(ili— D=E[(x(i) — £([i — D}x()
—2(i)i-DY1). (6)

The system (3a) often arises by state-
augmentation from a system that has a correlated
noise term in its output equation [1]. The Riccati
equation may then be ill-conditioned because its
dynamic rank is lower than its order, though this
can, of course, be alleviated by proper partitioning
of the augmented system equations. For constant
systems, RAPPAPORT et al. [3, 4] have obtained the
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dynamic rank by exhibiting a space of what they
called invariant directions for the Riccati equation

P(i+ D)= P(i|i— )¢’ + GG’ — ¢pPili
— )H'[HP(|i— )H]" HP(i|i— )¢’ (Ta)

P(O|—1)=T,. (7b)

Definition 1 (3, 4]

Let P(i, IT;) be the solution at time / of the
Riccati equation (7) started with initial condition
I1,. The n-vector ¢ is a k-invariant direction of
(7) if and only if

e'-P(i, I1)=e'+P(k, 0)=constant 8)

for all i>k and for all symmetric non-negative
definite I1,,.

For single-output constant systems the main
results of Bucy et al. are as follows as described in
[3]. We denote by I, the vector space of all k-
invariant directions and by [/ the vector space of
all invariant directions

<8

I=
k

I 9)

1

1]

The first lemma exhibits a basis for /,. Define row
vectors

e;=Hep ' i=1,2,...,n (10)
and a k x n matrix

E;=[ey, ..., ¢l (11)

We shall assume that the system is completely
observable, although this is by no means essential.
It can be shown [3] that any k-invariant direction,
is a linear combination of the rows of E,.

Next we define the (i+1)—vectro L; by

L’i=[011’ e .0y li]’ i=0, 1, “ ey n_l (12)

where

i .
l,= S;Hdw’sGG'gb”'sH’,j:l, ...,n—1. (13)

With these notations we can now state the main
result of [3].

Proposition 1 [3]
Suppose a<n. Then e; is i-invariant, i=1,
., o, I=1I, and I;=span(e,, . . ., ¢) for i<a if
and only if
(i) fora<n:L,#0,L, ,=0,
or (14

(i) for a=n: L,_,=0.

An important consequence of Proposition 1 is
that the projections of P(i, I1,) on the subspace of
invariant directions have known values that are
independent of I1;, and can be expressed in terms
of H, ¢ and G. Indeed, if the Riccati equation (7)
has a degenerate directions, it is easy to see that

J .
ejP(i, H0)= Zl H¢"SGG;¢/J“.§’

j=1, ..., iza. (15)

Using these known projections of P(i, I1,) on
the «-dimensional invariant subspace I one can
then reduce the order of the Riccati equation to
n—ua, since, after an initial transient period,
P(i, T1,) varies only on the orthogonal subspace /*.

But as we shall show now the number of
degenerate directions is more fundamentally a
property of the covariance of the output signal;
more specifically, it is equal to the relative order of
this covariance. This observation, which was made
to us by GEESEY [9], will enable us to extend the
concept of invariant directions to that of degenerate
directions for time-variant systems.

The covariance of the output of the system (3) is

(cf. e.g. [6])
Ry(i, )=H(i)pU, HINGN(i—j)
+N'())¢'(j, DH'(H(j—i— 1)(16)
where
1i—j)=iifi>j
=0if i<y
NGO=TI(OH'(i) (17

and TI(-) is the state-variance and obeys the
difference equation

G+ D)=¢(+1, DIGEP'(+1, i)
+G@i+1)G'(i+1). (18)
The covariance (16) will be said to have definite
relative order a [6] if there exists a finite integer «,
a>0, such that
() HG-k)¢(—k, DNGH—N'(i—k)¢'(, i
—kH'()=0,k=1,2,...,0—1;
k<i<N (19a)
@) H@i—o)p(i—o, ON@—N'(i—o)p'(i, i

—0)H'())>0, x<i<N. (19b.
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Let us now define the parameters
=1
L;(HA Zo H(i—j)¢(i—j, i—s)G(i—5)G'(i

—-)¢'(Q, i—H' () j=1,...,a—1;
j<i<N. (20)

For constant systems /(i) is independent of i and
specializes to /; defined in (14).

Theorem 1

The Riccati equation (7) has « invariant direc-
tions if and only if the covariance of its output has
definite relative order a.

Proof. Using (17) and (18) we establish, after
some algebra, the identity

LOA'S. H(i—K)li—k, i—$)G(i-5)G (i
s=0

—8)¢'(i, i—)H'(D)
=H(i~k)p(i—k, HN@)—N'(i—k)¢'(i, i

—kH'(), k<i<N. (1)

This identity, specialized to the constant case,
establishes the equivalence between the con-
ditions of Proposition 1 and the conditions (19)
for the relative order « of the output covariance.
This completes the proof.

The equivalence established by Theorem 1
implies that the number of invariant directions is
an invariant property of all state-variable models
whose outputs have the same covariance. In
Section 4 we shall show how, for a constant single-
output system, this property can be used to replace
a system with invariant directions by a “‘simpler”
one with a full set of predictable directions. More-
over, the fact that the equivalence has been
established by means of the time-variant identity
(21) points to the fact that the fundamental concept
is one of degeneracy, not constancy, as we show
next.

Definition 2

Let P(i, II,) be the solution at time i of the
Riccati equation (5) started with initial condition
IT,. Then the row-vector e(i) is a k-degenerate
direction of (5) if and only if the projection of
P(i, I1,) on e(i) is a function of H(-), ¢(-, -) and
G(-), independent of II,, i.e.

e(DPG, Mo)=f(H(), (-, -), G(-))  (22)
for all i>k and for all I1,.

Theorem 2

If the output covariance of the system (3) has
definite relative order «, then the following are
degenerate directions of the Riccati equation (5)

e, ()=H(i—Dli~1, i), i1
' @3)
ea'(i)=H(i— )p(i—a, i), i>a.

Proof. From the identity (21) of Theorem 1 and
the relative order conditions (19) it follows that

L()=0,k=1,...,a—1; k<i<N. (24)

After some straightforward manipulations on the
Riccati equation (5), the conditions (24) on H(-),
o(-, ) and G(-) imply that

e, ()P(i, Ig)= i H(i—k)$(i—k, i—)G(i
<o
—NGG=)P'G, i—j), k=1, . .., a;
k<i<N. (25)

Hence the directions e, (i), . .
erate.

The important property is that the projections of
P(@i, II,) on the degenerate directions can be
computed directly from the system parameters,
without solving a Riccati equation. By a time-
varying state-transformation, analogous to the one
used by Bucy et al. in [3], one can again reduce by
o the order of the Riccati equation.

., e,i) are degen-

3. PREDICTABLE DIRECTIONS OF A
STATE-VARIABLE SYSTEM

The fact that the projection of P(i, IT,) on any
degenerate direction is a known value that does not
depend on Il,—and a constant value for time-
invariant systems—raises the question about
whether this known value could not be made
equal to zero, which would still further simplify
the equations of the predictor. In such a case the
projection on this direction of the error inthe
predicted state is zero with probability one,
meaning that the corresponding costate is a known
function of the past measurements only. For
obvious reasons such a costate will be called
predictable, and the corresponding direction a
predictable direction of the system.

Definition 3a

A vector e will be called a k-predictable direction

of the system (3) if and only if

e x()=f{y©0), y(1), ..., yi-=1} --(26)
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for all i=k, where f is a known function of the
outputs {y(0), . . ., y(@—1)}. The quantity e -x(i)
is then called a predictable costate.

It is essential to distinguish a predictable costate
from the concept of a constructible costate, as
introduced by KALMAN [10]. A costate of x(i) is
said to be constructible if it can be completely
determined from past and present inputs, assuming
that the past and present inputs are zero (or are
known). Here however the inputs are assumedto
be unknown. It should be clear that the vectors
e; for which (26) holds are in the nullspace of the
Riccati matrix P(i [i —1), since for such directions

e} 2(ili—1) =} - x(i) @7)

with probability one. This will be formally proved
later in this section. First we shall derive con-
ditions under which a state-variable system has a
subspace of predictable directions. For reasons of
space, we shall limit our analysis to a single-output
constant parameter system. It contains ail the
ideas of the more general time-variant and multiple-
output case, which is studied in {5], leads to closed
form analytical conditions, and lends itself to an
interesting transfer function analysis that will be
presented in the next section. Thus we consider a
single-output time-invariant system

x(i+ D=¢x())+ Gu(i+ 1), x(0)=x, (28a)

y(i)=hx(i), 0<i<N (28b)

with the same assumptions on #(-) and x, as
before. In addition, we shall assume that ¢ is non-
singular. Note that [5] has extensions and more
details of the derivation.

From the state equations (28) we derive the
relation

= i)
h¢~? y(i-2)
x(i)=
h¢~* y(0)
- J L _

h¢™'G 0. ... 0
h¢2G h¢'G O ......

h¢™G .. he='G

(29a)

or in matrix form

E¥x(iy=y*(i— 1D +Dfu*(i), 1<i<N (29b)

with the obvious definitions. Since the system (28)
is of order n, the last » outputs form a sufficient
statistic; in addition it is clear from the linearity of
(29) that Definition 3a can be replaced by the
following equivalent definition.

Definition 3b

A vector e is a k-predictable direction of the
system (28) if and only if for all i>k and for some
vector b;

e x()=b: y(i—1), i>k, 30)
where

yi—-D='G-1Dy(-2), ...,y (—nVO). (31)
Thus we replace (29) by the relation
Ex(D)=y(i—1)+ D,.u(), 1<i<N  (32)
where

Ei=E;k An> Di=D,-*An (33)

)=/’ (G—-1), ..., ([—n+1V1)] (34
ie.

E,=EFifi<n, E;=E*ifi>n. (35)

* iVk=max{7, k}. Notice that y(¢—1) is the vector formed
by either the first / or the last » outputs, whichever contains
the least components.
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It is easy to see that any k-predictable direction
is a linear combination of the rows of E,.

We shall say that a vector e in R” is a predictable
direction of system (28) if it is predictable for some
k, k>0; the system has a g-dimensional predictable
subspace if it has g linearly independent predictable
directions.

Theorem 3
The system (28) has g k-predictable directions
(k>¢q) if and only if

h¢ 1G=h¢p *G= ... =h¢ G=0 (362)
rank (E)=>q (36b)
and either
h¢~ 171G #0 or rank (E)=¢. (36c)
Proof.

Sufficiency: Follows immediately from the
relations (29). Indeed the conditions (36a, b)
imply that the first g rows of E; are k-predictable
directions of the system (28).

Necessity: Suppose there exist ¢ linearly
independent k-predictable directions. Then there
exist a g x n matrix E and a ¢ X kp matrix B such
that

Ex(k)=By(k—1) 37

with
rank (E)=g4. (38)

Comparing with (32) we have
BD,=0 39
BE,~E. (40)

From (38) and (40) it follows that (36b) holds and
that rank (B)>¢. This last condition, together
with (39), implies that the dimension of the left
nullspace of D, is at least g. But from the structure
of D,, this implies that the conditions (36a) hold.
That (36c) must hold foilows by contradiction,
using the sufficiency part of the proof.

From the proof of Theorem 3 we can immediately
derive the following corollaries.

COROLLARY 3. T'he/s'ystem (28) has g k-predic-
table directions if and only if it has g g-predictable
directions.

COROLLARY 4, The system (28) has a g-dimen-
sional predictable subspace if and only if the
conditions (36) hold with k replaced by n, the
dimension of the system.

COROLLARY 5. If the system (28) has a g-dimen-
sional predictable subspace, the vectors {e, . . .,
e,}, with

e=h¢~* k=1,...,q, QY

form a basis for the predictable subspace. The
projections of x(i) on these directions are given by

e x()=y(i—k),k=1,...,9 k<i<N. (42)

COROLLARY 6. The number of predictable
directions is a property of the impulse response,
i.e. it is invariant under state transformation. This
follows immediately from the conditions (36a).

Corollary 4 gives a very straightforward test for
the number of predictable directions, if any, of the
single-output system (28). Corollary 5 shows that
the values at x(i) of the costates e,, . . . , ¢, are
given directly as past outputs.

Theorem 4

The predictable subspace of the system (28) is
in the null-space of P(i, I1,), the solution of the
Riccati equation (7).

Proof. 1t is easy to show as indicated in [5] that
the conditions (36a, c) are equivalent to

he~ PG, TI)=0, k=1, . .., q; k<i<N  (43)

hqﬁ_"‘lP(i, IMy)#0, k+1<i<N. (44)

We show next that the nullspace of P(i, Tly)
cannot be larger than the predictable subspace,
i.e. we show that the error-covariance matrix
cannot have a nullvector if the system does not
have a predictable direction.

Theorem 5

Let IT, in the Riccati equation (7) be non-
singular. Then P(i, I1,) is positive definite for all
i in [0, N]if and only if k¢ ~'G 0.

Proof. We prove that if for some &, P(k, I1y) is
positive definite and if hp~'G#0, then P(i, I1o)
is positive definite for all i, k<i<N. The result
will follow by iteration. The proof goes by contra-
diction. Suppose P(k+1, II,) is singular, and let
the row vector ¢ be a null-vector of P(k+1, ITy).
Then we can write (see, e.g. [3])

2 .
°|| Pk +1, TIg) = 0= min o¢
2. 2
+rh) byt G (49
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where

2

€ilp

AcPc'. (46)

Let r, be the minimizing value of r. It follows from
(45) that

(c¢ +rh)P(k, T1,)=0 @7
¢G=0. (48)

Since P(k, Il;) is assumed positive definite, the
first relation implies

c=rhe L. (49)
This, together with (48) implies
h¢p~1G=0, (50)

which is a contradiction. Repeating the argument
for k+2, k+3, etc. proves the lemma.

Theorem 5 gives an easy test for the positive-
definiteness of the error—covariance matrix;namely
if the states are not known a priori, i.e. if I, is
positive definite, they cannot be perfectly predicted
at some later time unless the system has a predict-
able subspace.

Finally, we show that a system with ¢ predictable
directions can be realized as a pure tapped-delay
line with ¢ delays together with a feed-back system
of dimension n—gq.

Theorem 6

The system (28) has a g-dimensional predictable
subspace if and only if, for g<i<N, it is state-
equivalent to the form

—ay —dy . ... .. —a,

1 0 ...... 0

0"

x(i+D=| - - - - - - x(i)

1, 0...0
1
0
|

0 0, 0....10

L -

- N
0 0
+ . Jdou(i+1) (51
0...0
G
- _

y@=[—a,—a,, ... —ax(i),g<i<N. (52)
The parameters {a;, . . ., a,} are the coefficients of
the characteristic polynomial of ¢. The submatrix
G of G is (n—q) x m. The system is assumed to be
completely observable.

Proof. The form (51)—(52) follows from the
constraints (36a) and (42) after a state-transfor-
mation

xnew(i)zE:xold(i) (53)

with E¥ as defined in (29).

Comments.

(1) The continuous-time analog of this result
is presented in [7, Appendix IIJ.

(2) Notice from the tapped delay structure of
¢ that

Yi)=x'(G+D)=x*i+2)= ... =x%+q). (54

It is obvious therefore, that the predicted
Kalman filter estimates of the first ¢ com-
ponents coincide with the state components
themselves

ili—D=x"0), k=1,...,q. (5%)

Thus the Kalman filter needs to be written
only for the n—g remaining components of
2(3)i-1).

(3) From the remarks just made we know that
the error—covariance matrix, P(i[i ~1), has
the form

P(i|i-1)= . O......... 0| , g<i<N(56)
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where P(i|i— 1) has dimension (n—g)x(n—q)
and obeys the reduced-order Riccati
equation

P(i+ 1|i)=FP(i|i— 1)F' — FP(i|i- 1)b'[bP(i|i
— D] 'BP|i- )F' + GG, g<i<N (57)
P(g|q—1)=lower righthand submatrix of

P(glg—1) (58)

where F is the lower righthand submatrix of
¢ in (51) and

b=[-ay41, ..., —a,. (59)

The reader is referred to [5] for more details on

the structural properties of the Kalman filter and

the whitening filter of a system with a g-dimensional
predictable subspace.

(4) Notice finally that a system that has g
predictable directions has at least g+1
degenerate, or invariant, directions. Indeed
it follows from (51), (52) and (54) that

R4 (i]i= 1) =p(i—g—1). (60)

This last estimate is not perfect, but its
error has constant variance, i.e.

E[(x?*1(i)— 22" '(i|i— 1))*|=constant.  (61)

Finally we note that we have assumed through-
out that ¢ is nonsingular, and in fact the basis for
the predictable subspace actually involves ¢~ '.
But it is well known that in discrete time the state—
transition matrix may be singular. It can be shown,
[5], that in such case the system (28) can have a
predictable direction only if there exists some n-
vector a such that a’¢=h. However, in such case
the system is not completely observable. The
reader is referred to [5] for more details.

4. TRANSFER FUNCTION ANALYSIS

The concepts of degenerate and predictable
directions, and the relation between these two
concepts, become intuitively obvious when they
are examined in the z-transform domain for single-
input single-output (SISO) systems. In this section
we examine the relation between the number of
predictable and degenerate directions of a constant
SISO system and the form of its transfer function
and the power spectral density of its output. Next
we shall show how the Kalman filter equations for
the one-step prediction state estimates of a system
with o degenerate but nonpredictable directions can

be replaced by filter equations for a related system
that has «— 1 predictable directions.

Consider the SISO system (28) with G replaced
by a n-vector g. The general form of its transfer
function is

b0+b12_1+ PRI +b,,__lz_"+l

H(z)=
@ L+az 4+ ... +a,z™"

(62)

We assume that the system is minimal and that
a,#0, so that ¢ is invertible. We have the following
simple lemmas.

Lemma 1

(MORF [11]). The SISO system (28) with transfer
function (62) has ¢ predictable directions if and
only if

by_y=by_r= ... =b,_;=0,b,_4_1#0. (63)

Proof. By Theorem 3 we need only show the
equivalence between the conditions (63) and (36).
From the realization of (62) in control canonical
form, recalling that the number of predictable

directions is the same for all realizations of a same
transfer function, one finds

hp~'g=— i—bn-l 64)

2= 2=t b,._l—% Bz (65)

n n

etc. The equivalence between (63) and (36) follows
immediately.

Lemma 1 shows that the number of predictable
directions is the difference between the degrees of
the denominator and the numerator polynomials
of its transfer function, minus one. This number
has been called the relative order of the transfer
function (cf. Section 1).

Lemma 2

The SISO system (28) with transfer function (62)
has a degenerate, or invariant, directions, g of them
predictable, if and only if (14) holds and

b0:b1= “ v =bs_2=0, bs_l#o (66)

for sAx—g>1.

Proof. The first part is true by Lemma 1.
Furthermore, we know by Comment 4 of Section 3
that the system (28) always has one degenerate but
nonpredictable direction. Hence if s=1, no further
condition is needed. Let s>1. By Proposition 1
the system has a degenerate directions if and only if

L=lL=...=l,_;=0 (67)
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with /; defined by (13). Together with the con-
ditions (36) for ¢ predictable directions, (67)
implies

hg=hdg= ... =hp* 2g=0. (68)

These are the first s—1 terms of the impulse
response and they are zero if and only if (66) holds
as can be easily verified by obtaining the impulse
response from (62) by ““long division™.

If a system with transfer function (62) is driven
by unit variance white noise, the power spectral
density of its output has the form

S(z)=H(z)H(z™")

Ccote(zHzTHF L e (2 2T
do+d(z+z" D+ ... +d(z"+z7"

(69)

with d,=a,#0. The parameters ¢, are related to the
parameters b, as follows

Cnm1=boby
Cpm2=boby 2+ b1,

Cac3=bob,_3+b1b, > +b,b,_, (70)

etc.

Theorem 7

The number of degenerate directions of any
realization with power spectral density (69), or
the relative order of the signal y(), is the difference
between the degrees of the denominator and
numerator polynomials.

Proaf. The proof is obvious from Lemma 2 and
the relations (70).

Comment. Let a signal y(-) of definite relative
order o have power spectral density S,(z), and let
H,(2) be a factorization of Sy(z) such that

H(z)

bz bz L +b, iz
l+a;z7 '+ ... +a,z”" '

(71)

That is, y(-) is obtained by passing unit variance
white noise through the transfer function Hy(z).
But if Hy(z) is a proper factorization of S,(z), so
are the following '

Hk(z):ZkHO(Z)7 OSkSOC—], (72)

and in particular

H, ()= by +bz '+ ... +b,,_lz"”;’". 73)
o T+az""+ .. +a,z7" )

This follows from the fact that
S z)=Hy(2)Ho(z™")=2"H(2)-z *Hy(z™"). (74)

But notice from Lemma | that Hy(z) has no
predictable directions while the number of pre-
dictable directions of the transfer function (72) is
equal to the number of zeroes that is added to the
transfer function Hy(z), i.e. the power of z by
which Hy(z) is multiplied. Stated otherwise, a
transfer function with o degenerate and ¢ pre-
dictable directions {(g<a—1) can be transformed
into a transfer function with a—1 predictable
directions by removing a—g—1 delays from the
feedforward loops, without affecting the relative
order of the output signal.

These observations suggest a procedure (o
replace the Kalman filter equations of a SISO
system with « degenerate directions, ¢ of them
predictable, by a Kalman filter of a related system
with @ — 1 predictable and one degenerate direction.
Thus consider a SISO system with o degenerate
directions, g of them predictable (g<x—1). In
terms of A, ¢ and g the transfer function is

H(z)=hI-z""¢]""'g. (75)

The maximum number of predictable directions
(x—1) is obtained by replacing H(z) by

H*@@y=hz""""I-z"1¢] 'g. (76)
This can be achieved by replacing A by

*=hgp*~ 1", (77)

which effectively removes ¢« —g— 1 delays from the
feedforward loops. The system A*, ¢, ¢ now has
a— | predictable directions, since by condition (68)
of Lemma 2 and (77) we have

r h*¢—1g=h¢a—q—2g20

ﬁ (78)

L h*¢—a+lg:h¢—qg20.

Let 0 be defined as

O@)=x(i—a+qg+1), izoa—g—1 (79)
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where x(-) is the state of the original system. Then,
for i=a—q—1, the original system can be replaced
by

(i +1)=0()) +gu(i—a+q+2)  (80a)
()= h*6(i). (80b)

The predicted estimates §(i+ 1]i) can be computed
using the reduced order Kalman filter mentioned
in Section 3 and for which «—1 components are
known without error from past outputs. These
predicted states are related to the predicted states
£(@i+1|i) of the system (28) as follows.

Theorem 8

Let the SISO system (28) have a degenerate and
g predictable directions. If 8(-) is defined by (79)
and if Py(i+ 1|i) is the error—covariance matrix for
the Kalman filter estimates 8(i+1|i) of 6(i+1),
then

2@+ 1[i)=¢*"4" 10+ 1) (81a)

P(i+1])=¢*" 1" Py(i + 1|i)¢p* 797!
a-4-2 :
+ _;) ¢’gg’¢"”  (81b)

where P(i+1]i) is the error—covariance matrix of
the predicted estimates £(i + 1|i).

Proof. By Lemma 2 the relations (68) hold for
the parameters h, ¢, g of the original system (28).
It follows easily that

a(i—k|)=0, k=0, 1,...,a—g—2. (82)
By the state equation for x(-) we have

x(i+1)=¢*" 1" x(i—a+q +2)
a—q—2 .
+ _;0 d’gu(i+1—j). (83)

Conditioning on {y(0), . . ., (i)} and taking the
expected values gives, using (82) and (79),
2+ 1|)=¢*"1" (i —a+q+2|i)

=¢* I%(i—a+qg+1|i) (84a)
=¢*~ (i + 1)) ="~ 1B(i]i) (84b)

which proves (81a). Subtracting (84b) from (83),
using (79), and taking the variance gives (81b).

Comments.
(1) Itshould be clear from the proof of Theorem
8 that the predicted estimates § (i+1]i) of

the transformed system (80) are the
smoothed estimates of the original system.
Thus, in a SISO system, the degenerate
costates that are not predictable are costates
for which a perfect smoothed estimate can
be obtained. That the predicted estimates
2(i+1[i) are obtained by simply multi-
plying the smoothed estimates a—gq steps
earlier by ¢*7%, as indicated in (84a), is a
consequence of the relative order property
that is responsible for the crucial relations
(82). These imply that the outputs {y(i—a
+g+2),..., ¥} do not bring any infor-
mation about the inputs {u(i—o+g+2),
s I.l(l) }'

(2) As for all procedures involving degenerate
or predictable directions in discrete-time,
the procedure suggested here can start only
after a transient period, i.e. for i>a—1.
For i<a—1, the full-dimension filter has
to be used. Actually the Riccati equation
for Py(i+1[i) has to be started with initial
condition

Pylo— 1|oc - 2)=P(qioc— 2) 85

where P(q|oc—2) is the error—covariance
matrix for the smoothed estimate 52(q|cx-2).
It is obtained from P(glg—1) by setting
equal to zero the projections of P(glg—1)
on h*¢~', ..., h*¢~****1 For more
details the reader is referred to [5].

5. EXAMPLE
Consider the SISO system

001 0

x(i+)= |1 0 0| x(@)+ |0 u(i+1), x0)
010 1

=x, (86a)

yH=[0 0 1]x@@) (86b)

where x, and u(-) obey the usual assumptions.
The system is minimal, and we have

h¢~'g=hd~2g=0, h$~3g #0. (87)

By Theorem 3 we know that the system has two
predictable directions. By Comment 4 of Section 3
we know that the third direction is degenerate. By
Corollary 5 we have

hp™ x(i)=x'()=y(i—1), i21 (88a)
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he ™ *x(i)=x%({)=p(i—=2), i>2. (88b)

Notice that the system is already in the canonical
form of (51)-(52). The Kalman filter is, trivially

y(i-1)
£i-D)= |wi-2)| , i=3. (89)
y(i-3)

The error—covariance matrix is

0 0 0
P(ili-1)=GG’'= |0 0 0}, i>3. (90)
0 0 1

Notice that the input-output relation is of the
autoregressive form

V() =y(i=3)=u(i), 123 €2y

and

]

~=3°
ot

H(z)= (92)

The power spectral density of y(-) is

S (2)=H(z)H(z 1) = 51(2—31_'_?5) . (93)
An alternate realization for y(-) is with
— 2_2
A=~ 94)
i.e. ¢ and g are as in (86a) and
h=[0 I O0]. (93)

This realization has, of course, also three degener-
ate directions, since this is a property of the power
spectral density of y(-), but it has no predictable
directions, i.e. a=3, g=0. Notice that the first
realization is obtained from the second by replacing
h by h¢?, as expressed in (77).

6. CONCLUSIONS

We have used the results of Ref. [6] to show how
the much discussed problems of correlated noise
filtering and invariant directions can be better
understood in terms of the relative order of the
covariance of the output signal. Once the con-
nection is established between this relative order

and the number of degenerate directions, it becomes
clear that the differencing techniques [1, 2] do not
always lead to the lowest-order Riccati equation.
Indeed the results of [6] show that the relative
orders of a signal covariance and its realizations
do not usually coincide in discrete-time, although
they always coincide for innovations models.

In Ref. [12] it has been shown that in certain
problems the autoregressive moving average
(ARMA) model is superior to the state-variable
model. The results of the present paper reinforce
this conclusion. Indeed the degenerate and pre-
dictable costates artificially augment the dimension
of the Riccati equation in the state-estimation
problem. The computation of a predictable costate
through the Riccati equation leads to ill-
conditioning and is actually unnecessary whenever
$(i|i—1) rather than £(i|i—1) is needed. It should
be clear from Lemma 2, for example, that if an
ARMA model with n autoregressive and m moving
average parameters (m<n) is transformed into
state-variable form, the n-th order Riccati equation
to be solved for P(i[i—1) will have a true dynamic
rank of m, rather than n, it will be ill-conditioned
whenever n>m. In particular the computation of
4 ]i —1) in a pure n-th order autoregressive model,
solved via a state-variable model, leads to a model
that has »—1 predictable directions and hence a
Riccati matrix that has n—1 singularities; this
follows directly from Lemma 1. A direct solution
via the ARMA model, using the innovations
methods of [12], is preferable in all such cases.
The matrix to be inverted is Re(-), the covariance
matrix of the innovations, and this will always be
nonsingular if the signal y(-) has a positive definite
covariance.

Even though some more work needs to be done
in the multivariable case, where we are now
developing [13] the appropriate matrix polynomial
transfer function specifications, we believe that the
results of this paper show conclusively that in the
discrete-time filtering and prediction problems the
properties of the signal covariance should dictate
the choice of the model that is best suited for the
particular problem. The presence of degenerate
or predictable directions and the fact that some
degenerate directions may not be predictable merely
reflect the fact that in discrete time all models do
not inherit the properties of the signal.
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Résumé—Plusieurs articles ont étudié le fait que I’équation de
Riccati pour certains syst émes stochastiques linéaires discrest
peut atteindre une valeur constante dans certaines directions
aprés un nombre restreint d’itérations. La présence de ces
directions constantes permet une réduction de Ilordre
effectif de I’équation de Riccati. Curieusement ces résultats
n’ont pas d’analogues exacts en temps continu. Dans cet
article nous présentons les raisons qui expliquent ce com-
portement différent. Pour ce faire nous introduisons le
concept de directions prédictibles. Ce sont des direc-
tions dans lesquelles la solution de léquation de Riccati
s’annule au lieu de tendre vers une constante non nulle. En
temps continu, les directions prédictibles et constantes
coincident et leur nombre dépend de P’ordre relatif (une mes-
ure de la continuité) de la fonction de transfert du systéme
ou - ce qui est équivalent - de la covariance de sa sortie. Cette
équivalence n’existe pas en temps discret, ou nous montrons
que le nombre de directions constantes est égal & 'ordre rel-
atif de la covariance tandis que le nombre de directions pré-
dictibles est égal a 1’ordre relatif de la fonction de transfert.
Notre approche montre non seulement comment convertir

des directions constantes endi rections prédictibles, mais
elle montre aussi que le concept peut étre étendu 2
des systémes & paramétres variables le temps.

Zusammenfassung—Mehrere frilthere Arbeiten befaBten
sich mit dem Phidnomen, dal die Losung der Riccati-Gleich-
ung fiir gewisse lineare stochastische Diskretzeitsysteme nach
einer begrenzten Zahl von Iterationen in gewissen Richtung-
en einen konstanten Wert erreichen kannund so eine Reduk-
tion in der effektiven Ordnung der Riccati-Gleichung
ermoglicht. Seltsamerweise haben diese Ergebnisse keine
exakten Analoga bei kontinuierlicher Zeit. In dieser Arbeit
setzen wir die Griinde hierfliir auseinander, hauptsidchlich
durch Einfiihrung des Konzepts vorhersagbarer Richtungen,
lings denen die Losung eher zu Null als zu einer von Null
verschiedenen Konstanten geht. Bei kontinuierlicher Zeit
fallen die vorhersagbaren und konstanten Richtungen zus-
ammen und ihre Zahl hidngt von der relativen Ordnung
(einem MaB der Glittung) der Ubertragungsfunktion des
Systems oder dquivalent von seiner Ausgangskovarianz ab.
Diese Aquivalenz bricht in Diskretzeit ab, wo die Zahl der
konstanten Richtungen die relative Ordnung der Kovarianz
ist, wihrend die Zahl vorhersagbarer Richtungen die relative
Ordnung der Ubertragungsfunktion ist. Die durch unse:e
Niherung erlangte Einsicht zeigt nicht nur, wie die kon-
stanten Richtungen in vorhersagbare Richtungen iiberge-
fiihrt werden, sondern zeigt auch, wie das Konzept auf
zeitvariante Systeme ausgedehnt werden konnte, wo die
Bezeichnung degenerierte Richtungen mehr erldutert als
konstante Richtungen.

Pestome—Pan mocnennux cTarteil MOCBALIEH ABIEHHIO,
KOTAa pelueHHe ypaBHCHMA PuxaTTH O ONpeaesNeHHbIX
JIMHEHHBIX TUCKPETHBIX BO BPEMEHH CTOXACTHYECKMX CHCTEM
MOXET HOCTHYL IOCTOSHHOIO 3HAYEHHsI B ONpENENCHHbIX
HATIpABJIEHUAX IIOCEe OTPaHMYEeHHOTO YHWCNIA HTepaluii,
1103BOJIAS TEM CAMBLIM YMeHblleHue YGPKTUBHOrO Nmopsnka
ypasHenus: Paxkarty  KypbesHo, HO 3TH pe3yjbTaThl HE
HMEIOT TOYHOIO aHayiora IUIS HempephIBHLIX CilyyaeB. B
JIAHHOM CTaThe Mbl 0OBACHAEM NPHYHHY 3TOrO, TJIABHBIM
00pa3oM BBEICHHEM MTOHATHS NPEICKA3YEMOT 0 HallpaBJICHHs!
BOJIL KOTOPOIO pEIlieHre UAET K HYTIO, a He K HeHyJeBO#
NOCTOSIHHOM B HempepbIBHOM IO BPEMEHH Clly4yae npeicka-
3yeMoe M IOCTOSTHHOE HAMIPABIIEHUS COBNAAIOT, a LX YMCIIO
3aBHCHT OT OTHOCHTENILHOTO mOpsAka (Mepa IIagKoCTH)
repeaaToOMHOM (YHKIMA CUCTEMBI MJTH 3KBMBAJICHTHOCTH ee
BBIXOJHOTO PACCOriacoBanus Ta 3KBUBANICHTHOCTH pa3b-
MBAaeTCs HA BPEMEHHbIE MHTEPBAb], II¢ YACIO MOCTOAHHBIX
HAMpaBjeHMi COOTBETCTBYET OTHOCHTEJILHOMY TOPANKY
paccorinacoBaHisi B TO BPeMsi Kak 4YMCJIO MPencKasyeMbiX
HATIPABJICHHI COOTBETCTBYET OTHOCHTENBHOMY NOPSIKY
pepenaroynoii Qyuxkuum. IlonmManme, oOecneumpacmoe
HaMINM IOAX0IOM He TOIBKONOKAa3kia €T, Kak Ipeodpa3osaTh
NOCTOSHHbBIE HANIPABJIEHHs! B IPEACKa3yeMEbie, HO MOKa3bIBaeT
TaKXe KaKk [MOMOOH KOHIUEMLINIO MOXHO pacnpoCTPaHUTh Ha
JECKPETHEIE BO BPEMEHH CHCTEMBI, TA¢ BHIPOXKAAIOLIMECH
HaupapJyiedus 6omnee MHGOPMATUBHBI YeM NOCTOSTHHBIC



