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Constant, Predictable and Degenerate Directions of 
the Discrete-Time Riccati Equation** 

Directions Constantes, Pr6dictibles et D6g6n6r6es de l'Equation de 
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Konstante, vorhersagbare und degenerierte Richtungen der 
Diskretzeit-Riccati-Gleichung 
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The solution of a Riccati equation may go to a constant or zero value in certain 
directions. The number of such directions is related to the relative order o f  the output 
covariance and the transfer function, respectively. 

Summary--Several recent papers have dealt with the 
phenomenon that the solution of the Riccati equation for 
certain discrete-time linear stochastic systems can attain a 
constant value in certain directions after a limited number of 
iterations, thus enabling a reduction in the effective order of 
the Riccati equation. Curiously these results do not have 
exact continuous-time analogs. In this paper we explain 
the reasons for this, chiefly by introducing the concept of 
predictable directions along which the solution goes to 
zero rather than a nonzero constant. In continuous-time, 
the predictable and constant directions coincide and their 
number depends upon the relative order, a measure of 
smoothness, of the transfer function of the system or 
equivalently of its output covariance. This equivalence 
breaks down in discrete-time, where the number of constant 
directions is the relative order of the covariance while the 
number of predictable directions is the relative order of the 
transfer functions. The insight provided by our approach 
not only shows how to convert constant directions to pre- 
dictable directions but also shows how the concept may be 
extended to time-variant systems, where the name degenerate 
directions is more descriptive than constant directions. 
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1. INTRODUCTION AND OUTLINE OF RESULTS 

CONTINUOUS-time l inear  es t imat ion  p rob lems  with 
co lored  noise are basical ly  solved by  means  o f  
repea ted  different iat ions unti l  a white-noise process  
appears  in the  observat ions .  Fu r the rmore ,  if  this 
takes  0t di f ferent ia t ions  it is known  tha t  the o rder  
o f  the  Riccat i  equa t ion  can be reduced  by ~, an 
impor t an t  compu ta t i ona l  considera t ion .  I t  seems 
evident  tha t  s imilar  results can be ob ta ined  in 
discrete-t ime,  and  in fact  several au thors  have 
carr ied  out  such analyses :  e.g. BRYSON and  
HENRIKSON [1], BROWN and  SAGE [2]. I t  was there- 
fore a surprise when B u c v  et al. [3] po in ted  out  
tha t  differencing in discrete- t ime d id  no t  de termine  
the m a x i m u m  possible  reduct ion  in the  order  
o f  the  Riccat i  equat ion .  Tha t  is, even i f  the 
first q differences of  the observat ions  con ta ined  no 
white noise sequence, the o rder  o f  the Riccat i  
equa t ion  for  the s t a t e - e r ro r  mat r ix  P(i l i -1  ) 
could  be reduced  no t  jus t  by  q, bu t  by  a larger  
number ,  say 0c In  this pape r  we shall  explain  the 
reasons  for  this behaviour .  As  we shall  show, the 
po in t  is tha t  in the q di rect ions  a long which the 
differenced observat ions  do  not  conta in  white 
noise, the pro jec t ions  o f  the er ror  mat r ix  P( i l i -  1) 
are ident ical ly  zero after  a finite number  o f  steps 
co r respond ing  to the order  o f  the  difference; in 
the remain ing  ~ t - q  direct ions,  the pro jec t ions  o f  
P ( i l i - l )  do not  go to  zero bu t  for  t ime- invar iant  
systems, Bucy et al. showed that  they go to con- 
s tant  values in a number  o f  steps less than  the 
d imension  o f  the state-vector.  These direct ions 
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were therefore called invariant or constant directions 
[3, 4]. Necessary and sufficient conditions on the 
system matrices for the existence of invariant 
directions have been given and will be quoted 
later. The directions in which the error matrices 
go to zero will be called predictable directions [5], 
because along these directions the state can be 
predicted without error. As we shall see below it 
will be convenient to use the term degenerate 
directions to cover both constant and predictable 
directions and also the extensions of these con- 
cepts to time-variant systems. 

One major aim of this paper is to explore the 
reasons for this difference in behaviour of 
continuous-time and discrete-time systems. That 
is, more specifically why is it that in continuous- 
time problems the predictable and constant 
directions coincide and are equal to the number of  
process derivatives that do not contain white noise, 
while in discrete-time the latter number only 
determines the number of predictable directions 
and does not reveal the possible existence of further 
degenerate directions ? 

For scalar output constant systems we shall give 
a complete explanation of the above differences; 
moreover, our explanation will show how the 
concept of invariant directions can be naturally 
extended to time-variant systems. The multiple- 
output problem [4] is still not entirely clarified 
from our point of view. 

Our results rely heavily on the observation that 
the number of degenerate directions for P(i l i -  1), 
or invariant directions for a time-invariant system, 
is equal to the relative order of the covariance 
function of the output of the state-variable system, 
a fact that apparently escaped the authors of  [3, 4]. 
Once this connection is established, we can use the 
result of  Ref. [6] that there is no unique relation- 
ship in discrete time between the relative order 
of the covariance of a given process and the relative 
order q of its state-variable representation, except to 
say that q < c~. This is in contrast to the continuous- 
time situation where the relative order of  the 
covariance of a process is equal to the relative order 
of  all its state-variable representations (cf. [7], 
Lemma 1). It was shown in [6] that this difference 
is due to the required time-delay introduced in 
discrete-time by the differencing operation (cf. 
[6], Section 5). 

As an introduction to the mathematical treat- 
ment that follows we shall briefly introduce the 
main definitions and heuristically explain the 
results of  this paper. 

For discrete-time systems: 

(i) The number of degenerate, or invariant, 
directions, say ct, of  a state-variable model 

(ii) 

(iii) 

is equal to the relative order of the co- 
variance function of the observed process~ 
The latter is equal to the number of 
differencing operations required to pro- 
duce a Kronecker delta function com- 
ponent in the differenced covariance: for 
stationary processes it is also equal to the 
difference between the degrees of the 
denominator and numerator polynomials 
of the power spectral density function, 
S(z), the z-transform of the covariance 
function. 
The number of predictable directions is 
equal to the relative order of the model for 
the observed process. The latter is one less 
than the number of differencing operations 
required to produce a term proportional 
to the input in the differenced output; for 
single-input single-output (S1SO) constant 
systems it is also equal to one less than the 
difference between the degrees of the 
denominator and numerator polynomials 
of the transfer function, i.e. the z-transform 
of its impulse response. 
The relatwe order of a covariance function 
has no unique relationship to the relative 
order of a model whose response to white 
noise has the given covariance. For 
constant SISO systems this follows from 
the decomposition 

S(z ) -  H(z)H(z- 1) 

=zkH(z).z-kH(z -1), k arbitrary. (1) 

(iv) The preceding result also shows how in a 
given situation invariant directions of  a 
given model can be converted to predictable 
directions of a closely related model, and 
ot~e with the same covariance function. 

For continuous-time systems: the spectral de- 
composition for stationarycontinuous-time processes 
is 

S(s)= I4(s)n(- s) 

=e~H(s).e-~'H(-s), z arbitrary (2) 

where S(s) is the power spectral density of the 
observed process, i.e. the bilateral transform of its 
covariance function, and H(s) is the transfer 
function of a model whose response to white noise 
has the given spectral density. There is a non- 
uniqueness introduced by the factor e ~, but if we 
wish to work only with lumped models, i.e. models 
with rational transfer functions, we must take 
z=0 .  With this restriction, the difference between 
the denominator and numerator polynomials of  
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the transfer function of a model, i.e. its relative 
order, must always be one-half the difference 
between the corresponding polynomials of the 
spectral density of the response of the model to 
white noise, that is, the relative order of the co- 
variance of the observed process. The first dif- 
ference equals the number of differentiations 
required to produce a term proportional to the 
input in the differentiated output of a model, while 
the second difference equals the number of dif- 
ferentiations required to produce a delta function 
term in the differentiated covariance function. This 
strict relationship explains why the numbers of 
predictable and invariant directions must coincide 
in continuous-time and why differentiation always 
correctly identifies the maximum possible reduction 
in the order of the Riccati equations that arise 
in the problem. 

Finally we note that the close relation we have 
identified between predictable and invariant direc- 
tions shows that both notions can readily be 
extended to time-variant systems. There is no 
change in the definition of predictable directions, 
i.e. directions along which P(ili- I) goes to zero in 
a finite number of steps. But the definition of 
invariant directions has to be modified because in 
time-variant systems, P(il i -1)  may not go to a 
constant value in any direction. The real point is 
one of "degeneracy" rather than "constancy"-- 
for a covariance of a given relative order, there are 
directions along which P(ili-1) goes to a trivial 
or degenerate value, i.e. a value that can be 
computed from the model by inspection without 
having to solve the Riccati equation along those 
directions. Clearly this degeneracy helps to reduce 
the order of the Riccati equation that has to be 
solved and this is the appropriate generalization of 
the concept of invariant directions. We remark, 
for reasons that should be clear from the above 
discussion, that in continuous-time the degenerate 
directions of both time-invariant and time-variant 
systems are also predictable directions (cf. [7], 
Appendix I). 

The major contribution of this paper is to present 
a unified treatment of degenerate directions via 
the connection with the relative order of the output 
covariance. Invariant and predictable directions 
appear as special cases of degenerate directions, 
and the number of predictable directions is shown 
to depend upon the particular factorization of the 
covariance. The differences between the discrete 
and continuous-time case result from the different 
properties of the factorization in discrete and 
continuous time. 

We present the proofs of the above results in 
Sections 2 and 4. Section 3 develops some of the 
main properties of predictable systems. Some of 

these properties are used in Section 4, but they 
also have other applications, e.g. in stability studies 
along the lines of [8]. 

2. DEGENERATE DIRECTIONS AND THE 
RELATIVE ORDER PROPERTY 

We shall consider a Markovian representation 
of a p-dimensional observation process y(.) of the 
form 

x(i+ l)=~b(i+ 1, i)x(i) 

+G(i+l)u(i+l) ,  x(0)----x 0 (3a) 

y(i)=H(i)x(i), O<_i<_N (3b) 

where qS(., .), G(-), H(.) are known functions of 
dimension n x n, n × m, p x n respectively, and 
{x0, u(.)} are zero-mean random variables with 

E[XoU'(')]=O, =no (4a) 

E[u( k )u' ( l) ]= I6( k - l) (4b) 

6 ( k - l ) = l  for k-----l, ~(k-l)-~O, k # L (4c) 

It is well known that the Kalman filter equations 
for the one-step prediction estimates of the state, 
~(i+1[i), require the solution of the following 
matrix Riccati equation 

P(i+ l[i):~b(i+ 1, i)P(i[i- 1)~b'(i+ 1, i) 

+G(i+l)G' ( i+l ) - (o( i+l ,  i)P(i[i 

--1)H'(i)[H(i)P(ili--1)H'(i)]-~H(i)P(ili 

-1)~b'(i+l, i) (5a) 

e(0[- l)=no (Sb) 

where II o is a non-negative definite symmetric 
matrix. The matrix P(i l i -  1) is the error-covariance 
matrix of the Kalman filter estimates 

P(i l i -  1) = E[(x(i) - R(ili - 1))(x(i) 

-2( i l i - -  1))']. (6) 

The system (3a) often arises by state- 
augmentation from a system that has a correlated 
noise term in its output equation [1]. The Riccati 
equation may then be ill-conditioned because its 
dynamic rank is lower than its order, though this 
can, of course, be alleviated by proper partitioning 
of the augmented system equations. For constant 
systems, RAPPAPORT et aI. [3, 4] have obtained the 
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dynamic rank by exhibiting a space of what they 
called invariant directions for the Riccati equation 

P(i + l]i)=¢P(ili-- 1)¢ '+ GG'-CP(i l i  

-- l)H'[HP(i[i-  I)H]-IHP(il i  - 1)¢' (7a) 

An important consequence of Proposition I is 
that the projections of P(i, H0) on the subspace of 
invariant directions have known values that are 
independent of l-I 0 and can be expressed in terms 
of H, q~ and G. Indeed, if the Riccati equation (7) 
has a degenerate directions, it is easy to see that 

P(0[-  l ) = n o .  (7b) 

Definition 1 [3, 4] 
Let P(i, Ho) be the solution at time i of the 

Riccati equation (7) started with initial condition 
Ho. The n-vector e is a k-invariant direction of 
(7) if and only if 

e'.P(i, Ho)=e'.P(k, O)=constant (8) 

for all i > k  and for all symmetric non-negative 
definite 1Io. 

For  single-output constant systems the main 
results of  BucY et al. are as follows as described in 
[3]. We denote by I k the vector space of all k- 
invariant directions and by I the vector space of 
all invariant directions 

OO 

1 = U I k. (9) 
k = l  

The first lemma exhibits a basis for lk. Define row 
vectors 

e l = H e  -i, i--1, 2, . . . , n (10) 

and a k × n matrix 

E[ = [e~ . . . . .  e~]. ( l l )  

We shall assume that the system is completely 
observable, although this is by no means essential. 
It can be shown [3] that any k-invariant direction, 
is a linear combination of  the rows of E k. 

Next we define the ( i+ 1 ) -vec t ro  L i by 

L'i=[Ol, . . . . .  li], i=0,  1 . . . . .  n - 1  (12) 

where 

J 
lj = ~ H¢-*GG'¢'J-SH ', j = 1 . . . . .  n -  1. (13) 

$=1  

With these notations we can now state the main 
result of [3]. 

Proposition 1 [3] 
Suppose ~<n.  Then e i is i-invariant, i=1,  

• . . , ~, I=I~ and It-----span(el . . . . .  et) for i<a if 
and only if 

(i) for =<n :  L=#0,  L=_I=0,  

or (14) 

J 

ejP(i, Ho)= ~ H¢-~GG'¢ 'j-~, 
s = l  

j = l  . . . . .  ~ i>~. (15) 

Using these known projections of P(i, Ho) on 
the ~-dimensional invariant subspace I one can 
then reduce the order of the Riccati equation to 
n - a ,  since, after an initial transient period, 
P(i, Ho) varies only on the orthogonal subspace I ±. 

But as we shall show now the number of 
degenerate directions is more fundamentally a 
property of the covariance of the output signal; 
more specifically, it is equal to the relative order of 
this covariance. This observation, which was made 
to us by GEESEY [9], will enable us to extend the 
concept of invariant directions to that of  degenerate 
directions for time-variant systems. 

The covariance of the output of the system (3) is 
(cf. e.g. [6]) 

Ry(i, j )  = H(i)¢(i, j)N(j)I  ( i - j )  

where 
+ N'(i)¢'(j, i ) H ' ( j ) l ( j - i -  1)(16) 

l ( i - j ) = i  if i>_j 

= 0  if i< j  

N(i)=H(i)H'(i)  (17) 

and 17(.) is the state-variance and obeys the 
difference equation 

I I ( i+  1 ) = ¢ ( i +  I, i)rI(i)cy(i+ 1, i) 

+G(i+ 1)G'(i+I).  (18) 

The covariance (16) will be said to have definite 
relative order ~ [6] if there exists a finite integer ~, 

> 0, such that 

(1) H(i -k )dp( i -k ,  i )N ( i ) -N ' ( i - k )¢ ' ( i ,  i 

-k )H' ( i )=O,  k = l ,  2 . . . . .  a - l ;  

k < i < N  (19a) 

(2) H(i -=)¢( i -oq  i)N(i)-N'( i-ot)¢'( i ,  i 

(ii) for ~ =n :  L~_x=0. - ~ ) H ' ( i ) > 0 ,  ~<_i<N. (19b, 
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Let us now define the parameters 

j - 1  

lj(i)A ~ H ( i - j ) ~ p ( i - j ,  i - s ) G ( i - s ) G ' ( i  
s=O 

Theorem 2 
If  the output covariance of the system (3) has 

definite relative order ct, then the following are 
degenerate directions of the Riccati equation (5) 

-s)~p'(i, i--s)H'(i)  j = l  . . . . .  ~t-1; e l ( i ) = H ( i -  1)qS(i- 1, i), i>_ 1 

j < i < N .  (20) (23) 

For constant systems lj(i) is independent of i and 
specializes to lj defined in (14). 

Theorem 1 
The Riccati equation (7) has ~ invariant direc- 

tions if and only if the covariance of its output has 
definite relative order ~. 

Proof. Using (17) and (18) we establish, after 
some algebra, the identity 

k - 1  

Ik(i)A ~ H( i - -  k)q~(i - k, i - s)G(i - s)G'(i 
s=O 

- s)¢'(i, i - s)H'(i) 

= H ( i -  k)dp(i- k, O N ( i ) -  N ' ( i -  k)c~'(i, i 

- k )H ' ( i ) ,  k < i < N .  (21) 

This identity, specialized to the constant case, 
establishes the equivalence between the con- 
ditions of Proposition 1 and the conditions (19) 
for the relative order ~ of the output covariance. 
This completes the proof. 

The equivalence established by Theorem 1 
implies that the number of invariant directions is 
an invariant property of all state-variable models 
whose outputs have the same covariance. In 
Section 4 we shall show how, for a constant single- 
output system, this property can be used to replace 
a system with invariant directions by a "simpler" 
one with a full set of predictable directions. More- 
over, the fact that the equivalence has been 
established by means of the time-variant identity 
(21) points to the fact that the fundamental concept 
is one of  degeneracy, not constancy, as we show 
next. 

Definition 2 
Let P(i, 17o) be the solution at time i of the 

Riccati equation (5) started with initial condition 
II o. Then the row-vector e(i) is a k-degenerate 
direction of (5) if and only if the projection of 
P(i, Ho) on e(i) is a function of H(.), ~(., .) and 
G(.), independent of rio, i.e. 

e(i)P(i, l-lo)=f(H(.), ~k(', .), G(.)) (22) 

e~(i)=H(i-cOc~(i-a,  i), i>ct. 

Proof. From the identity (21) of Theorem 1 and 
the relative order conditions (19) it follows that 

lk(i)= O, k = 1 . . . . .  ~ -  1 ; k < i< N. (24) 

After some straightforward manipulations on the 
Riccati equation (5), the conditions (24) on H(.), 
q~(., .) and G(.) imply that 

k 

ek(i)P(i, Ho) = ~, H ( i -  k)dp(i- k, i - j ) G ( i  
j = O  

- j )G' ( i - j )dp ' ( i ,  i - j ) ,  k =  1 . . . . .  ~; 

k < i < N .  (25) 

Hence the directions el(i ) . . . . .  G(i) are degen- 
erate. 

The important property is that the projections of 
P(i, Fl0) on the degenerate directions can be 
computed directly from the system parameters, 
without solving a Riccati equation. By a time- 
varying state-transformation, analogous to the one 
used by Bucv et al. in [3], one can again reduce by 

the order of the Riccati equation. 

3. PREDICTABLE DIRECTIONS OF A 
STATE-VARIABLE SYSTEM 

The fact that the projection of P(i, Ho) on any 
degenerate direction is a known value that does not 
depend on Flo--and a constant value for time- 
invariant systems--raises the question about 
whether this known value could not be made 
equal to zero, which would still further simplify 
the equations of the predictor. In such a case the 
projection on this direction of the error in the 
predicted state is zero with probability one, 
meaning that the corresponding costate is a known 
function of the past measurements only. For 
obvious reasons such a costate will be called 
predictable, and the corresponding direction a 
predictable direction of the system. 
Definition 3a 

A vector e will be called a k-predictable direction 
of the system (3) if and only if 

for all i>_k and for all II o. e'.x(i)----f{y(O), y(1) . . . .  , y ( i - 1 ) }  (26) 
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for all i>k, where f is a known function of the 
outputs {y(0) . . . . .  y(i-1)}. The quantity e'.x(i) 
is then called a predictable costate. 

It is essential to distinguish a predictablecostate 
from the concept of  a constructible costate, as 
introduced by KALMAN [10]. A costate of  x(i) is 
said to be constructible if it can be completely 
determined from past and present inputs, assuming 
that the past and present inputs are zero (or are 
known). Here however the inputs are assumed to 
be unknown. It  should be clear that the vectors 
e i for which (26) holds are in the nullspace of the 
Riccati matrix P(i[i- 1), since for such directions 

ej" 2(ili-- 1) = ej" x(i) (27) 

with probability one. This will be formally proved 
later in this section. First we shall derive con- 
ditions under which a state-variable system has a 
subspace of  predictable directions. For  reasons of  
space, we shall limit our analysis to a single-output 
constant parameter  system. It  contains all the 
ideas of  the more general time-variant and multiple- 
output case, which is studied in [5], leads to closed 
form analytical conditions, and lends itself to an 
interesting transfer function analysis that will be 
presented in the next section. Thus we consider a 
single-output time-invariant system 

x(i+ 1)=~x(i)+Gu(i+ 1), x ( 0 ) = x  o (28a) 

y(i)=hx(i), O<_i<N (28b) 

with the same assumptions on u(.) and x0 as 
before. In addition, we shall assume that ~b is non- 
singular. Note that [5] has extensions and more 
details of  the derivation. 

From the state equations (28) we derive the 
relation 

I 

x(i) = 

y(i- 11 
y(i--2)]  

y(0) 

+ 

- 0 . . . . . . . . .  0 

h~-lG h(~-lG 0 . . . . .  j.] h(~- 2G 

I 

• ol hd~-iG h4) -~ 

- u ( i )  -] 

u ( i - 1 )  

• , (29a) 

.I 

or in matrix form 

E*x(i)=y*(i-1)+D*u*(i), l < i < N  (29b) 

with the obvious definitions. Since the system (28) 
is of  order n, the last n outputs form a sufficient 
statistic; in addition it is clear from the linearity of  
(29) that Definition 3a can be replaced by the 
following equivalent definition• 

Definition 3b 
A vector e is a k-predictable direction of the 

system (28) if and only if for all i>k and for some 
vector bi 

e'.x(i)=b;..~(i-1), i>_k, (30) 
where 

~ ( i -  1 ) = [ y ' ( i -  l ) y ' ( i - 2 )  . . . .  , y ' ( i -nV0) ] ' .  (31) 

Thus we replace (29) by the relation 

E,x(i)=~(i-- 1)+ Di.~(i), 1 _<i_<N (32) 

where 

E, = E* a, ,  Di = D*A, (33) 

i.e. 

~(i)=[u'(i)u'(i- 1) . . . . .  u'(i-n+ 1V1)] (34) 

Ei=E* if i<_n, Ei=E* if i~n. (35) 

* iVk = max{ L k }. Notice that ~(i-- 1) is the vector formed 
by either the first i or the last n outputs, whichever contains 
the least components. 
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It is easy to see that any k-predictable direction 
is a linear combination of the rows of Ek. 

We shall say that a vector e in R" is a predictable 
direction of system (28) if it is predictable for some 
k, k > 0; the system has a q-dimensional predictable 
subspace if it has q linearly independent predictable 
directions. 

Theorem 3 
The system (28) has q k-predictable directions 

(k>q) if and only if 

COROLLARY 5. If  the system (28) has a q-dimen- 
sional predictable subspace, the vectors {el . . . . .  
eq}, with 

e~=h~b -k, k = l  . . . . .  q, (41) 

form a basis for the predictable subspace. The 
projections of x(i) on these directions are given by 

e~ ' x ( i )=y ( i - k ) , k= l  . . . . .  q k<i<_N. (42) 

h(a-~G=hd~-2G= . . .  = h ¢ - q G = 0  (36a) 

rank (Ek) >q (36b) 

and either 

hdp-q-IG¢O or rank (Ek)= q. (36c) 

Proof. 
Sufficiency: Follows immediately from the 

relations (29). Indeed the conditions (36a, b) 
imply that the first q rows of Ek are k-predictable 
directions of  the system (28). 

Necessity: Suppose there exist q linearly 
independent k-predictable directions. Then there 
exist a q x n matrix E and a q x kp matrix B such 
that 

COROLLARY 6. The number of predictable 
directions is a property of the impulse response, 
i.e. it is invariant under state transformation. This 
follows immediately from the conditions (36a). 

Corollary 4 gives a very straightforward test for 
the number of predictable directions, if any, of the 
single-output system (28). Corollary 5 shows that 
the values at x(i) of the costates el, . . . , eq are 
given directly as past outputs. 

Theorem 4 
The predictable subspace of the system (28) is 

in the null-space of P(i, rio), the solution of the 
Riccati equation (7). 

Proof. It is easy to show as indicated in [5] that 
the conditions (36a, c) are equivalent to 

Ex(k)=B~(k-  1) (37) 

with 

rank (E)=q. (38) 

Comparing with (32) we have 

BDk=O (39) 

BEk=E. (40) 

From (38) and (40) it follows that (36b) holds and 
that rank (B)>q. This last condition, together 
with (39), implies that the dimension of the left 
nullspace of D~ is at least q. But from the structure 
of Dk, this implies that the conditions (36a) hold. 
That (36c) must hold follows by contradiction, 
using the sufficiency part of the proof. 

From the proof of Theorem 3 we can immediately 
derive the following corollaries. 

COROLLARY 3. The'system (28) has q k-predic- 
table directions if and only if it has q q-predictable 
directions. 

COROLLARY 4. The system (28) has a q-dimen- 
sional predictable subspace if and only if the 
conditions (36) hold with k replaced by n, the 
dimension of  the system. 

h~-kp(i, 17o)=0 , k-----1 . . . . .  q; k < i < N  (43) 

h(o-q-lP(i, Ho)¢0,  k + l < i < N .  (44) 

We show next that the nuUspace of P(i, rio) 
cannot be larger than the predictable subspace, 
i.e. we show that the error--covariance matrix 
cannot have a nullvector if the system does not 
have a predictable direction. 

Theorem 5 
Let Ho in the Riccati equation (7) be non- 

singular. Then P(i, I'Io) is positive definite for all 
i in [0, N] if and only if hqS-1G~0. 

Proof. We prove that if for some k, P(k, Ho) is 
positive definite and if hcb-lG#O, then P(i, rio) 
is positive definite for all i, k< i<N.  The result 
will follow by iteration. The proof goes by contra- 
diction. Suppose P(k+ 1, Ho) is singular, and let 
the row vector c be a null-vector of P(k+ l, 17o). 
Then we can write (see, e.g. [3]) 

Ilcll (k+l 0  nllc  

2 
(45) 
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where 

c 2A_cPc'. (46) 

Let r k be the minimizing value of r. It follows from 
(45) that 

(eck + rkh)e(k, rI0)=0 (47) 

cG=O. (48) 

0 

+ . 

0 . • • 

G 

I 
• I 

• ] u ( i + l )  

? 

(51) 

Since P(k, 17o) is assumed positive definite, the 
first relation implies 

c=rkhc p- 1. (49) 

This, together with (48) implies 

h4,-la=0, (50) 

y ( i ) = [ - a l - a 2  . . . .  -a,]x(i), q<i<_N. (52) 
The parameters {al . . . .  , a,} are the coefficients of  
the characteristic polynomial of q~. The submatrix 
G of G is ( n - q )  x m. The system is assumed to be 
completely observable. 

Proof. The form (51)-(52) follows from the 
constraints (36a) and (42) after a state-transfor- 
mation 

X,ew(i)=E*Xojd(i ) (53) 

which is a contradiction• Repeating the argument 
for k + 2 ,  k + 3 ,  etc. proves the lemma. 

Theorem 5 gives an easy test for the positive- 
definiteness of the error--covariance matrix;namely 
if the states are not known a priori, i.e. if H o is 
positive definite, they cannot be perfectly predicted 
at some later time unless the system has a predict- 
able subspace. 

Finally, we show that a system with q predictable 
directions can be realized as a pure tapped-delay 
line with q delays together with a feed-back system 
of dimension n - q .  

Theorem 6 

The system (28) has a q-dimensional predictable 
subspace if and only if, for q<_i<N, it is state- 
equivalent to the form 

x(i+l)= 

i °i 1 - - a  1 --a 2 . . . . . .  

1 0 . . . . . .  

O" 

0 

I t  0 • . .  0 

I 1 

f 0 

I 

0 I 0 . . . .  10  

x(i) 

with E* as defined in (29). 

Comments. 
(1) The continuous-time analog of this result 

is presented in [7, Appendix II]. 
(2) Notice from the tapped delay structure of 

q~ that 

y(i)=x~(i+ 1)=x2(i+2)  . . . . .  xq(i+q). (54) 

It is obvious therefore, that the predicted 
Kalman filter estimates of the first q com- 
ponents coincide with the state components 
themselves 

.~k(i[i-- 1):x~(i),  k :  1 . . . . .  q. (55) 

Thus the Kalman filter needs to be written 
only for the n - q  remaining components of 
~(ili-  1). 

(3) From the remarks just made we know that 
the error--covariance matrix, P(i[i-1), has 
the form 

P(ili-- 1) = 

0 . . . . . . . . . . . . . .  0 

0 . . . . . . . . .  0 

[ . . . . . .  

P(i[i -- 1) 

. . . 0  

, q <  i < N  (56)  
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where P( i [ i -  1) has dimension ( n - q ) x ( n - q )  
and obeys the reduced-order Riccati 
equation 

P( i + l l i)= FP(i[ i -  I ) F ' -  FP(iIi-1)b'[bP(ili  

be replaced by filter equations for a related system 
that has a -  1 predictable directions. 

Consider the SISO system (28) with G replaced 
by a n-vector g. The general form of its transfer 
function is 

- l ) b ' l - ' b P ( i l i -  1)F'+GG',  q < i < N  (57) 

P(q lq -  1)=lower righthand submatrix of 

P ( q l q - l )  (58) 

where Fis  the lower righthand submatrix of 
~b in (51) and 

b = [ - a q +  1 . . . . .  - a . ] .  (59) 

The reader is referred to [5] for more details on 
the structural properties of the Kalman filter and 
the whitening filter of a system with a q-dimensional 
predictable subspace. 

(4) Notice finally that a system that has q 
predictable directions has at least q+  1 
degenerate, or invariant, directions. Indeed 
it follows from (51), (52) and (54) that 

H(z)= b ° + b l z - ~ +  " " " + b " - l z - " + l  (62) 
l + a l z  -x + . . . +anz -n 

We assume that the system is minimal and that 
a, ~ 0, so that q~ is invertible. We have the following 
simple lemmas. 

Lemma 1 
(MORt [11]). The SISO system (28) with transfer 

function (62) has q predictable directions if and 
only if 

b . _ l = b . _ 2  . . . .  =b ._~=0 ,  bn_a_ 1 ~-0. (63) 

Proof. By Theorem 3 we need only show the 
equivalence between the conditions (63) and (36). 
From the realization of (62) in control canonical 
form, recalling that the number of predictable 
directions is the same for all realizations of a same 
transfer function, one finds 

~q+'(ili- 1 ) = y ( i - q - 1 ) .  (60) 

This last estimate is not perfect, but its 
error has constant variance, i.e. 

E[(xq+ l( i ) -~q+ l(ili - 1))2]=constant. (61) 

Finally we note that we have assumed through- 
out that ~b is nonsingular, and in fact the basis for 
the predictable subspace actually involves q5 -~. 
But it is well known that in discrete time the state- 
transition matrix may be singular. It can be shown, 
[5], that in such case the system (28) can have a 
predictable direction only if there exists some n- 
vector a such that a'qS=h. However, in such case 
the system is not completely observable. The 
reader is referred to [5] for more details. 

4. TRANSFER FUNCTION ANALYSIS 

The concepts of degenerate and predictable 
directions, and the relation between these two 
concepts, become intuitively obvious when they 
are examined in the z-transform domain for single- 
input single-output (SISO) systems. In this section 
we examine the relation between the number of 
predictable and degenerate directions of a constant 
SISO system and the form of its transfer function 
and the power spectral density of its output. Next 
we shall show how the Kalman filter equations for 
the one-step prediction state estimates of a system 
with a degenerate but nonpredictable directions can 

hq~- 19 = - l b . -  1 (64) 
an 

hqS-29 = a,-1 b,-1----1 b,-2 (65) 
an an 

etc. The equivalence between (63) and (36) follows 
immediately. 

Lemma 1 shows that the number of predictable 
directions is the difference between the degrees of 
the denominator and the numerator polynomials 
of its transfer function, minus one. This number 
has been called the relative order of the transfer 
function (cf. Section 1). 

Lemma 2 
The SISO system (28) with transfer function (62) 

has a degenerate, or invariant, directions, q of them 
predictable, if and only if (14) holds and 

bo=bl  . . . .  =b~_2=O, b~_ 1 ~:0 (66) 

for s__.a- q > 1. 

Proof. The first part is true by Lemma 1. 
Furthermore, we know by Comment 4 of Section 3 
that the system (28) always has one degenerate but 
nonpredictable direction. Hence if s =  1, no further 
condition is needed. Let s>  1. By Proposition 1 
the system has e degenerate directions if and only if 

Ix=f2 . . . . .  /~_1=0 (67) 
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with lj defined by (13). Together with the con- 
ditions (36) for q predictable directions, (67) 
implies 

hg-~h~bg~ . . . . .  h¢~-2g~--0. (68) 

and in particular 

H ~ _ l ( z ) = b ~ - l + b ~ z - t +  . . .  + b , , _ l z - , , ~  (73) 
l + a l z - J +  . . .  + a , z - "  

This follows from the fact that 

These are the first s - 1  terms of" the impulse 
response and they are zero if and only if (66) holds 
as can be easily verified by obtaining the impulse 
response from (62) by "long division". 

If a system with transfer function (62) is driven 
by unit variance white noise, the power spectral 
density of its output has the form 

Sy(z) = H ( z ) H ( z -  ') 

= C O " { - C I ( Z d c - Z - I )  "~ , . . " d t - ( J n _ l ( Z n - 1 - } ' - Z  - n + l )  

d o + d 1 ( z + z - 1 ) + . . .  + d , ( z " + z - ' )  

(69) 

with d , = a ,  ~0 .  The parameters Ck are related to the 
parameters bk as follows 

c,_ 1 - -bob , -  1 

c , - 2 = b o b n - z + b l b n  I 

cn-3~-bob.-3 q-blb.-2 +b2b,,- 1 (70) 

etc. 

Theorem 7 
The number of  degenerate directions of any 

realization with power spectral density (69), or 
the relative order of  the signal y(.), is the difference 
between the degrees of the denominator and 
numerator polynomials. 

Pro@ The proof is obvious from Lemma 2 and 
the relations (70). 

Comment. Let a signal y(.) of  definite relative 
order ~ have power spectral density @(z), and let 
Ho(z) be a factorization of  Sr(z ) such that 

Ho(z) 

b~_l z-a+l + b , z - ' +  . . . + b n _ l z  - n + ~  

1 +axz  -1 + . . . + a , z - "  

(71) 

That is, y(.) is obtained by passing unit variance 
white noise through the transfer function Ho(z). 
But if Ho(z ) is a proper factorization of S~(z), so 
are the following 

Sr(z )=Ho(z)Ho(z-  l ) -~zkHo(z) 'z -kHo(z-  ~). (74) 

But notice from Lemma I that Ho(z ) has no 
predictable directions while the number of pre- 
dictable directions of the transfer function (72) is 
equal to the number of zeroes that is added to the 
transfer function Ho(z), i.e. the power of z by 
which Ho(z ) is multiplied. Stated otherwise, a 
transfer function with ~ degenerate and q pre- 
dictable directions ( q < 7 - 1 )  can be transformed 
into a transfer function with ~ - 1  predictable 
directions by removing a - q - 1  delays from the 
feedforward loops, without affecting the relative 
order of the output signal. 

These observations suggest a procedure to 
replace the Kalman filter equations of a S1SO 
system with ~ degenerate directions, q of them 
predictable, by a Kalman filter of a related system 
with ct-  1 predictable and one degenerate direction. 
Thus consider a SISO system with 7 degenerate 
directions, q of them predictable (q< :~ - I ) .  In 
terms of h, q5 and g the transfer function is 

H ( z ) = h [ l -  z -  I ¢] - 'g. (75) 

The maximum number of predictable directions 
( ~ - 1 )  is obtained by replacing H(z) by 

H*(z )=hz  ~-q- ~[I- z -  1(9]-Jg. (76) 

This can be achieved by replacing h by 

h * = h ~  ~-q -J, (77) 

which effectively removes c ~ - q -  l delays from the 
feedforward loops. The system h*, qS, g now has 

- 1 predictable directions, since by condition (68) 
of Lemma 2 and (77) we have 

h * ¢ -  lg =h¢~-q -2g  =0 

(78) 

h * ~p-~ + l g = hdp-q,q =O. 

Let 0 be defined as 

Hk(Z):zkHo(Z), 0<k_<c~- I, (72) O(i )=x( i -c~+q+ 1), i > 7 - q -  1 (79) 
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where x(.) is the state of the original system. Then, 
for i > ~ - q - 1 ,  the original system can be replaced 
by 

f O(i+l)=~pO(i)+gu(i-~+q+2) (80a) 

y(i) = h*O(i). (80b) 

The predicted estimates 0(i+ l li ) can be computed 
using the reduced order Kalman filter mentioned 
in Section 3 and for which et-1 components are 
known without error from past outputs. These 
predicted states are related to the predicted states 
~(i-I-lli ) of the system (28) as follows. 

Theorem 8 
Let the SISO system (28) have 0t degenerate and 

q predictable directions. If 0(.) is defined by (79) 
and if Po(i+ 1[i) is the error-covariance matrix for 
the Kalman filter estimates O(i+lli ) of 0(i+1), 
then 

~(i+ l[i)---~a~'-'t-xO(i+ 1[i) (81a) 

P(i + 11 i) = ~b ~ -q- 1Pn(i + 11 i)qb" -q-1 

~ - q - 2  
+ ~ dp~Og'(a 'j (81b) 

j=O 

where P(i+ 11i ) is the error-covariance matrix of 
the predicted estimates ~(i+ 1 [i). 

Proof. By Lemma 2 the relations (68) hold for 
the parameters h, t k, g of the original system (28). 
It follows easily that 

a(i-kli):o, k : 0 ,  1 . . . . .  ~ - q - 2 .  (82) 

By the state equation for x(.) we have 

x(i + 1) = ~b~-q- i x ( i -  ~ +q +2) 

~- -q-2  
+ ~ dflgu(i+l-j) .  (83) 

j = 0  

Conditioning on {y(0) . . . . .  y(i)} and taking the 
expected values gives, using (82) and (79), 

~(i+ l]i)=~b ~-~- tY~(i-ct+q+2]i) 

=~b~-qY~(i-~t+q+ lli ) (84a) 

----the-q- 10(i+ l[i)=q~-qO(ili) (84b) 

which proves (81a). Subtracting (84b) from (83), 
using (79), and taking the variance gives (81b). 

Comments. 
(1) It should be clear from the proof of Theorem 

8 that the predicted estimates 0 (i+ 11i) of 

(2) 

the transformed system (80) are the 
smoothed estimates of the original system. 
Thus, in a SISO system, the degenerate 
costates that are not predictable are costates 
for which a perfect smoothed estimate can 
be obtained. That the predicted estimates 
0~(i+1[i) are obtained by simply multi- 
plying the smoothed estimates ~ - q  steps 
earlier by ~b ~-~, as indicated in (84a), is a 
consequence of the relative order property 
that is responsible for the crucial relations 
(82). These imply that the outputs {y(i-ct 
+q+2) ,  . . . ,  y(i)} do not bring any infor- 
mation about the inputs {u(i-ct +q+ 2), 

, u ( i ) } .  

As for all procedures involving degenerate 
or predictable directions in discrete-time, 
the procedure suggested here can start only 
after a transient period, i.e. for i>_~-l .  
For i_<~-l ,  the full-dimension filter has 
to be used. Actually the Riccati equation 
for Po(i+ lli ) has to be started with initial 
condition 

P,(~ - 1[~ - 2 ) = P ( q [ ~ -  2) (85) 

where P(q[0t-2) is the error--covariance 
matrix for the smoothed estimate ~(ql~t-2). 
It is obtained from P(q]q-1) by setting 
equal to zero the projections of P(qlq-1) 
on h*q~ -1 . . . . .  h*~b -~+q+l. For more 
details the reader is referred to [5]. 

5. E X A M P L E  

Consider the SISO system 

x(i + 1) = 0 x(i) + u(i + 1), x(0) 

1 

=x  o (86a) 

y(i)=[0 0 1]x(i) (86b) 

where Xo and u(.) obey the usual assumptions. 
The system is minimal, and we have 

hc~-lg=hdp-2g=O, hc~-3g#O. (87) 

By Theorem 3 we know that the system has two 
predictable directions. By Comment 4 of Section 3 
we know that the third direction is degenerate. By 
Corollary 5 we have 

h~- lx( i )=xl ( i )=y( i -  1), i~  1 (88a) 
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hqS-Zx(i)=xZ(i)=y(i-2), i>2. (88b) 

Notice that the system is already in the canonical 
form of (51)-(52). The Kalman filter is, trivially 

y(i- 11 2( i l l - i )=  l y ( i - 2 )  , i>3.  (89) 

[ y ( i -  3 

The error-covariance matrix is 

I°1 P(iI i -1)=GG'= 0 , i a 3 .  (90) 

0 

Notice that the input-output  relation is of  the 
autoregressive form 

y(i)--y(i--3)=u(i), i> 3 (91) 

and 

1 
H ( z ) = ~  (92) 

l _ _ Z - 3 "  

The power spectral density of y(.) is 

S y ( z ) = H ( z ) H ( z _ l )  = 1 
2 - -  (Z3 -k-Z-3) " 

(93) 

An alternate realization for y(.) is with 

Z-2  
H ( z ) -  - -  (94) 

I - -Z - 3  

i.e. q~ and g are as in (86a) and 

h = [ 0  1 0]. (95) 

This realization has, of course, also three degener- 
ate directions, since this is a property of the power 
spectral density of y(.), but it has no predictable 
directions, i.e. ct=3, q=0 .  Notice that the first 
realization is obtained from the second by replacing 
/~ by ~2 ,  as expressed in (77). 

6. CONCLUSIONS 

We have used the results of Ref. [6] to show how 
the much discussed problems of  correlated noise 
filtering and invariant directions can be better 
understood in terms of  the relative order of the 
covariance of the output signal. Once the con- 
nection is established between this relative order 

and the number of degenerate directions, it becomes 
clear that the differencing techniques [1, 2] do no~ 
always lead to the lowest-order Riccati equation, 
Indeed the results of [6] show that the relative 
orders of a signal covariance and its realizations 
do not usually coincide in discrete-time, although 
they always coincide for innovations models. 

In Ref. [12] it has been shown that in certain 
problems the autoregressive moving average 
(ARMA) model is superior to the state-variable 
model. The results of the present paper reinforce 
this conclusion. Indeed the degenerate and pre- 
dictable costates artificially augment the dimension 
of the Riccati equation in the state-estimation 
problem. The computation of a predictable costate 
through the Riccati equation leads to ill- 
conditioning and is actually unnecessary whenever 
9(i]i- 1) rather than 2(ill-  1) is needed. It should 
be clear from Lemma 2, for example, that if an 
ARMA model with n autoregressive and rn moving 
average parameters (re<n) is transformed into 
state-variable form, the n-th order Riccati equation 
to be solved for P(il i-  1) will have a true dynamic 
rank of m, rather than n, it will be ill-conditioned 
whenever n>m. In particular the computation of 
~(ili- 1) in a pure n-th order autoregressive model, 
solved via a state-variable model, leads to a model 
that has n - 1  predictable directions and hence a 
Riccati matrix that has n - I  singularities; this 
follows directly from Lemma 1. A direct solution 
via the ARMA model, using the innovations 
methods of [12], is preferable in all such cases. 
The matrix to be inverted is Re(.), the covariance 
matrix of the innovations, and this will always be 
nonsingular if the signal y(.) has a positive definite 
covariance. 

Even though some more work needs to be done 
in the multivariable case, where we are now 
developing [13] the appropriate matrix polynomial 
transfer function specifications, we believe that the 
results of  this paper show conclusively that in the 
discrete-time filtering and prediction problems the 
properties of the signal covariance should dictate 
the choice of  the model that is best suited for the 
particular problem. The presence of degenerate 
or predictable directions and the fact that some 
degenerate directions may not be predictable merely 
reflect the fact that in discrete time all models do 
not inherit the properties of the signal. 
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R6snmf--Plusieurs articles ont 6tudi6 le fait que l '6quation de 
Riccati pour certains syst ~mes stochastiques lin6aires discrest 
peut atteindre une valeur constante dans certaines directions 
apr~s un nombre restreint d'it6rations. La pr6sence de ces 
directions constantes permet une rgduction de l 'ordre 
effectif de l '6quation de Riccati. Curieusement ces r6sultats 
n 'ont  pas d'analogues exacts en temps continu. Dans cet 
article nous prgsentons les raisons qui expliquent ce com- 
portement diff6rent. Pour ce faire nous introduisons le 
concept de directions prgdietibles. Ce sent des direc- 
tions dans lesquelles la solution de l '6quation de Riceati 
s 'annule au lieu de tendre vers une constante non nulle. En 
temps continu, les directions pr6dictibles et constantes 
coincident et leur nombre d6pend de l 'ordre relatif (une mes- 
ure de la continuit6) de la fonction de transfert du syst~me 
ou - ce qui est 6quivalent - de la covariance de sa sortie. Cette 
6quivalence n'existe pas en temps discret, ou nous montrons 
que le nombre de directions constantes est 6gal b. l 'ordre rel- 
atif de la covariance tandis que le nombre de directions pr6- 
dictibles est 6gal ~. l 'ordre relatif de la fonction de transfert. 
Notre approehe montre non seulement comment convertir 

des directions constantes endi rections pr6dictibles, mais 
elle montre aussi que le concept peut 6tre 6tendu b, 
des syst/:mes b. param6tres variables ie temps. 

Zusammenfassung--Mehrere frBhere Arbeiten befaBten 
sich mit dem Ph/inomen, daf~ die L6sung der Riccati-Gleich- 
ung fiir gewisse lineare stochastische Diskretzeitsysteme nach 
einer begrenzten Zahl von Iterationen in gewissen Richtung- 
en einen konstanten Wert erreichen kann und so eine Reduk- 
tion in der effektiven Ordnung der Riccati-Gleichung 
erm/)glicht. Seltsamerweise haben diese Ergebnisse keine 
exakten Analoga bei kontinuierlicher Zeit. In dieser Arbeit 
setzen wir die Griinde hierf/.ir auseinander, haupts~ichlich 
durch Einfiihrung des Konzepts vorhersagbarer Richtungen, 
l~ngs denen die L/Ssung eher zu Null als zu einer yon Null 
verschiedenen Konstanten geht. Bei kontinuierlicher Zeit 
fallen die vorhersagbaren und konstanten Richtungen zus- 
ammen und ihre Zahl hgngt v o n d e r  relativen Ordnung 
(einem Mag der Gl~ittung) der ¢dbertragungsfunktion des 
Systems oder ~quivalent yon seiner Ausgangskovarianz ab. 
Diese ,~quivalenz bricht in Diskretzeit ab, wo die Zahl der 
konstanten Richtungen die relative Ordnung der Kovarianz 
ist, w/ihrend die Zahl vorhersagbarer Richtungen die relative 
Ordnung der f3bertragungsfunktion ist. Die dutch unse~e 
N/iherung erlangte Einsicht zeigt nicht nur, wie die kon- 
stanten Richtungen in vorhersagbare Richtungen iiberge- 
fiihrt werden, sondern zeigt auch, wie das Konzept auf 
zeitvariante Systeme ausgedehnt werden ktinnte, wo die 
Bezeichnung degenerierte Richtungen mehr erl~utert als 
konstante Richtungen. 

Pe3~oMe--Pa~I nocae~nnx CTaTelYI nocBfltuen flB~eHknO, 
Kor/~a pemenne ypaBHeHn~ Pr~raTT~ ~na onpe~eneHHblX 
JlgHefinbix gHcKpeTHI, IX BO BpeMeHH CTOXaCTn'~eCKHX C}ICTeM 
MO)t(eT ~OCTHtlb IIOCTOItHttOFO 3nar-ieHl,l~l B onpe~e.rleHHblX 
nanpaBneHn~x nocae orpann,~ennoro qacaa nTepat~ni~, 
no3Bonm~ TeM CaMblM yMermmenne aqb~KTrmrtoro nopfl;tra 
ypaBnenn~ PrIraTT~ Kypbe3Ho, He aTH pe3ynbTaTbl He 
nMe~OT TO~IHOFO ana.rtora ~ln~ rlenpepbiBnbix cnyqaea. B 
IIanHo~ CTaTbe MbI O6qb~lCHfleM npH~lI.tI4y 3TOFO, FYlaBHbIM 
o6pa3oM BBe31eHHeM HOHflTHII npe~oca3yeMoro nanpaB~enI4~ 
B,/~OJIb KOTOpOro pemenne l{IleT K nyHlo, a He I( HeHyYleBOI~ 
I'IOCTOilHHOI~ B nenpepbIaHOM no apeMeHH cnyqae npe~cKa- 
3yeMoe n HOCTOflHHOe nanpaBaeaHa coBna/laIoT, a ttx qncao 
3aBHCHT OT OTHOCt'ITeJIbHOFO nopflaKa (Mepa rfla~rocTn) 
nepe./iaTOql-iO~l ~yHKLrHH CHCTeMbI l,l.q~I 3KBI~IBa.rleHTHOCTH ee 
BIalXO,/],HOFO paccor~acoBaHnfl ~)Ta 3KBHBa-rleHTHOCTb pa36- 
rtBaeTcrI Ha BpeMenHble rtHTepBaYlbI, rae ,~ricao FIOCTO~II-IHbIX 
HanpanneHr~fi COOTBeTCTByeT OTHOCHTeIIbHOMy nopfl/~Ky 
paccornacoBanr~fl B TO BpeMn KaK ~InCYiO npetIcKa3yeMblX 
~qanpaanena~ COOTBeTGTByeT OTHOCHTeJI~HOMy nopfl~Ky 
nepeflaTO~HO~ ~yHKIIttI,I. l"lOIlFIMah'q,Ie, 06ecneqnaaeMoe 
14aturiM no~xo)/OM He TOTtbI~OnOKa3b~a eT, Kar npeo6pa30BaTb 
nOCTOflnHble nanpaa~enn~ a npe~cKa3yeM~,~e, HO nora3bmaeT 
Tar)Ke KaK nozo~n rOHtlenRnro MO)KnO pacnpocTpaHnTb Ha 
/IrIcrpeTnb~e BO BpeMenvi CHCTeMbL r/le BbIpO)K,tla~otRnec~l 
HanlgamaeHro~ 60flee I, IH~OpMaTI4BHbI qeM nocToflnnble 


