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A D-Step Predictor in Lattice and Ladder 
Form 

MICHEL R.  GEVERS, MEMBER. 

Abstract -We use the orthogonalizing propem of the two-multiplier 
linear  prediction lattice filter to construct  a d-step ahead  predictor in 
lattice  form. The predictor  generates d-step forward  and backmrd residu- 
als in a  recursive way  and possesses most of the  interesting  properties of 
the  basic one-step prediction  lattice filter. An exact solution is presented 
first  assuming  a  stationary  observation  process,  using  orthogonal  projec- 
tions in  Hilbert  space.  Two  adaptive  implementations  are also proposed  for 
the case where  the statistics of the  signal  process are unhonm or time 
varying: a  gradient  method  and  a  recursive  least-squares  scheme. Finally, 
we  shorv  how to construct an adaptive d-step ahead  predictor by adding a 
ladder  part to the d-step lattice  structure. 

I. INTRODUCTION 

S INCE the publication of Itakura  and Saito’s  two-mul- 
tiplier lattice filter [I] ,  lattice filters have  been exten- 

sively studied and have  given  rise to a number of applica- 
tions in linear prediction, communication, signal  process- 
ing, and identification. The main feature of the lattice filter 
is that it  is an orthogonalizing device  which  replaces the 
original signal  process  by a sequence of orthogonal residu- 
als generating the  same  space.  As a result the adaptation of 
every stage of a lattice filter is  decoupled  from the previous 
stages and  convergence of the estimated reflection  coeffi- 
cients is faster than when  the  coefficients of autoregressive 
models are estimated using standard techniques.  Also, the 
stability of a lattice filter can  be  checked  by inspection 
and, in an adaptive implementation, the reflection  coeffi- 
cients can  always  be  computed in such a way that stability 
of the shaping filter is guaranteed. 

Because the lattice filter produces as its output one-step 
ahead  and one-step backward  residuals of the incoming 
observations, it  is straightforward to use  it as a one-step 
prediction filter and this  has  been one of its most  obvious 
applications. As  such  it  is nothing but a clever implementa- 
tion of the  Levinson algorithm [2],  [3].  We  show in this 
paper that the basic orthogonalizing property of the lattice 
filter also  allows one to produce d-step forward  and back- 
ward predictions of the observations with little extra  com- 
putation. The basic  idea  is to use the sequence of one-step 
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backward residuals as an orthogonal basis for the space of 
past observations, and to construct the d-step predicted 
estimates of the signal  process y (  t )  by projecting the future 
values of y ( t )  on this  basis.  Similarly,  backward d-step 
predicted estimates of y ( t )  are constructed by projecting 
past values of y ( t )  on the appropriate basis  formed  by 
orthogonalized one-step forward residuals.  As can be 
guessed, our presentation will  rely  heavily on projection 
arguments in Hilbert space. Using similar ideas, a d-step 
filter has  been  derived independently by Reddy et al. [20], 
but the properties of the d-step filter are not studied in that 
paper. 

The basic  two-multiplier lattice filter generating one-step 
forward  and backward residuals has given  rise to a number 
of adaptive implementations. 

A stochastic approximation scheme proposed by Grif- 
fiths [5]  has  been further developed and studied by Makhoul 
[9], Makhoul  and Viswanathan [lo], Griffiths and Medaugh 
[6], and Carter [8]. Goodwin  and Sin  [18]  have  suggested a 
gradient algorithm in  which  sensitivity lattice forms are 
added to the basic lattice filter for the computation of the 
gradient. Finally, Morf and his  co-workers [12]-[16], and 
Shensa [ 171 have  derived an “exact” recursive least-squares 
implementation, where the word “exact” means that, given 
the data { y ( o ) ,  . - y ( t  - l)}, the output j ( t l t  - 1;. - , t  - k)  
of the kth order adaptive lattice filter coincides  with the 
prediction j ( t )  obtained by fitting a kth order autoregres- 
sive  model  by least-squares to the same  set of data. Morf‘s 
solution requires  more  memory and more computations 
per step, but it has the  major advantage of a much faster 
convergence (in the stationary case), or a much faster 
tracking capability (in the case  where the statistics of the 
signal  change and where a forgetting factor is built into the 
algorithm). While the recursive least-squares lattice form 
has the convergence properties inherent to least-squares 
solutions for autoregressive  models,  convergence  has not 
been  proved for the other two  schemes. 

In  this paper we present  two adaptive implementations 
of the d-step lattice filter. First, a gradient algorithm is 
presented along the lines of those  developed in [5] and [9] 
for the one-step lattice filter. We also  present  an “exact” 
recursive least-squares implementation of our d-step lattice 
filter along the lines of the one-step recursive least-squares 
implementations of  Morf et al. [ 121-4  161. Each of these  two 
schemes can easily  be adjusted to account for time-varying 
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parameters by the introduction of exponential weighting 
(or fading memory) factors. 

The  paper is  organized  as  follows. In Section I1  we recall 
the basic  two-multiplier lattice structure of Itakura  and 
Saito together  with  some of its main orthogonality proper- 
ties. We use  the orthogonal sequences produced by this 
basic lattice filter to derive a d-step lattice-ladder filter in 
Section 111, and we show its similarity  with the one-step 
filter. The d-step filter also  obeys a number of interesting 
orthogonality properties. By the addition of a ladder part it 
can be transformed  into a d-step predictor for the observa- 
tion process. So far the lattice and ladder recursions  have 
been  derived  assuming that the observation process y ( t )  is 
(wide-sense) stationary with known covariances. In Sec- 
tions IV and V we  give  two adaptive implementations of 
the d-step filter (a gradient algorithm and a recursive 
least-squares scheme) for the case of unknown and/or 
time-varying statistics. Finally, in Section VI  we  show  how 
the adaptive lattice schemes  can be  transformed  into  adap- 
tive  d-step ahead predictors by the addition of a ladder 
part.  In the recursive least-squares algorithm we show that 
two  slightly different predictors can be defined, and we 
discuss the connection between  these  two  schemes. 

11. THE BASIC LATTICE STRUCTURE 

In this  section we first give the equations of the two-mul- 
tiplier lattice filter that was introduced by Itakura and 
Saito [l], and  has been further studied by a number of 
authors [4]-[20]. This lattice structure constitutes a whten- 
ing filter and provides  all-pole  models of increasing order 
for the signal  process. In addition, one-step ahead predic- 
tions of increasing order for the signal  process are obtained 
from this lattice form with  almost  no extra computations. 
A major advantage of the lattice formulation for the pre- 
diction or the modeling of signal  processes  is that the 
stabihty of the lattice filter can be  checked  by inspection. 
The material of this section is not new, but will be needed 
for the construction of the d-step prediction filter. 

We shall  consider a real  valued  (wide-sense) stationary 
vector random process y ( t ) ,  t E Z ,  y ( t )  E W P, and the 
Hilbert space H spanned by the components of the y( t ) ' s .  
We  shall denote by qt+k for k >, 0 the closed  linear sub- 
space of H spanned by the components of { y (  t ) ,  y ( t  + 
1); . . ,y( t + k ) } ;  TItk for k < 0 will denote the empty 
space.  Finally, for every  element y ( ~ )  in H ,  E( y (  T ) ~ Y ' - ~ )  
will denote the orthogonal projection of y(7)  onto v+k, 
1.e.* 

E { ( y ( ~ ) - - E ( y ( ~ ) I Y l ' + k } ) Y T ( j ) ) = O ~  
j = 1 , .  . . ,r + k .  

With  this  definition E ( y ( t ) l y ( s ) }  = E { y ( t ) y T ( s ) }  
E { ~ ( ~ ) y ~ ( s ) } - ' y ( s ) . ~  In the Gaussian case, E{y( t ) ly (s )}  is 
the conditional expectation of y ( t )  given y(s ) .  

'We assume that J is a full rank process, so that the inverse exists. 

~ ~ 

We  now introduce the following random processes asso- 
ciated with the process y(  t ) .  

f k ( t )  A r ( t>-E{y( t ) lx '_ - , ' )  (2.1a) 

g k ( t )  r(r - k ) - E { y ( t - k ) l y ' k + l }  t2-lb) 

f o ( ' )  = g o ( 4  = y t t ) .  (2.lc) 

The variables f k (  t ) and &( t ) are called the forward  and 
backward residuals of order k of the process y (  t ) .  It  can be 
shown that they can be computed by the following recur- 
sive formulas: 

f k + l ( r ) = f k ( t ) - K k b + l g k ( t - l )  (2.2a) 

g k + l ( t ) = g k ( t - l ) - K k f + l f k ( t )  (2.2b) 

f o t d  = g o o )  = A t )  (2.2c) 

where 

K , b + l = S k ( R ; ) - ' ,  Kkf+l=s;(Ri)-I (2.3) 

sk = E { f k ( t ) g l ( t  - l>> (2.4) 

R i = E { b k ( t ) g l ( t ) } ?  R i = E { f k ( t ) f T ( t ) } *  (2.5) 

The initial conditions are given  by (2.1~). Equations (2.2) 
can  be implemented as a lattice filter as shown in Fig.  1. 

Properties of the  Basic Lattice Filrer 

We list  here  some properties of the lattice filter which 
will  be  used later on. Properties 1-3 can be found, e.g., in 
[9] whle 4 is  easy to derive. 

1)  The reflection  coefficient matrices K,b+ I and Kkf+ are 
such that they  minimize trRf + I and t rRi -  respectively. 

2) In the scalar case K,b = Kkf = Kk, while R i  = Rf = R k .  
3) The forward and backward residuals satisfy the fol- 

lowing orthogonality properties: 

E { f k ( t f k ) J / T ( t + j ) } = R i G k ,  (2.6) 

E ( g k ( t ) g T ( t ) )  = R$sk,  (2.7) 

E { g , ( t ) y ' ( t - i ) } = O   O < i < k - 1  (2.8) 

E { f k ( t ) y T ( t - i ) } = O   l < i < k .  (2.9) 

Two alternative expressions  for Sk (and hence, for 
and K,b+ I )  can be  derived  from  (2.8)  and  (2.9) 

s k = E { y ( t ) g l ( t - 1 ) } = E ( f k ( t ) y 7 ( t - k - 1 ) } .  

(2.10) 

I t  also follows  easily  from (2.Q (2.7), and the def- 
initions (2.1) that both { g o ( t ) ,   g l ( r ) ; . . , g k - , ( t ) }  and 
{ f , ( r  - k + I), f , ( t  - k + 2);. * ,  f k - l ( t ) }  are orthogonal 
bases for q< + I .  

4) Using ( g O ( t ) ; .   . , g , -  l ( t ) }  as an orthogonal basis  for 
T l k  + I leads to the following  expression for E ( y ( t  + 1) 
I q f k +  1): 
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I 

Prediccion  ladder 

i i l c e r  

Equality (2.1 1)  follows from the definition of f i ( t  + 1) and 
the orthogonality property (2.8). 

The expression (2.12) for the one-step ahead predicted 
estimate of y ( t  + 1)  is interesting because  all the terms in 
the summation are readily available from  the lattice filter 
of Fig. 1.  Therefore, the lattice filter is not only a whitening 
filter and a modeling filter for the y ( t )  process;  with an 
additional summation (which  now constitutes a ladder 
filter) it also provides a one-step ahead predictor, for 
stationary processes  with  known  covariances, as shown in 
Fig. 1 .  A corresponding expression can be obtained for the 
one-step backward predictor, by projecting y( c - k )  on the 
orthogonal basis { f o ( r - k + 1 ) , f l ( t - k + 2 ) , . . . , f k  _ , ( t ) }  
and using (2.10) 

k 

E b ( t  - k ) I C k + J  = c E { Y ( t  - k)lfi-l(t  - k + i)> 
i = l  

k - 1  

= C E { y ( t  + d ) I g i ( t ) )  (3.1) 
i = O  

k - l  

= C Kdb,i+lgi(t) (3 4 
i = O  

where 

K : , ~ + ~  = E { y ( r  + d ) g : ( t ) > ( R b ) - l ~  sd,i(Rb)-i. 
(3.3) 

Notice that for d = 1 ,  we have 

K;,i+,=Kib,l, s1,j=si. (3 -4) 

f d , k ( t  + d )  = A t  + d ) -  E { Y ( t  + 4 l K L + l } .  (3.5) 

We  now define the d-step forward residual of order k 

Note that f l , k ( t )  = f k ( t ) .  With these d-step ahead residuals 
we can  now  derive an alternative expression for Sd, which 
will be  similar to (2.4) in the case of one-step ahead 
predictions. Using the orthogonality conditions (2.8) we 
have 

= 1 K{fi- ( t - k + i) . (2.13) Finally, we derive a recursive relation for fd, k (  t ), where the 
i = l  recursion is on k ,  the order of the predictor. From (3.5) 

and (3.2) we have 

111. THE D-STEP AHEAD PREDICTOR IN LATTICE f d , k + l ( d  = Y ( t ) - E ( Y ( ~ ) l y , ' Z - k >  
AND LADDER F O N  k 

= y ( t > -  C ~ d b , l +  l g i ( t  - d ) .  (3.8) 
The same idea that was  used in the last section to i = O  

construct a one-step ahead predictor for y ( t  + 1) from an Hence 
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Note the similarity  between  (3.9) and (2.2a);  for d = 1 these 
two equations become identical. The d-step ahead predic- 
tor in lattice and ladder form  is represented in Fig. 2. The 
basic lattice filter is used to generate the backward  residu- 
als. These are multiplied  by the coefficient  matrices Kj., to 
produce the d-step predictor for E { y ( t  + d)lY,t,+ ,} in the 
ladder part of the filter. Another part of the ladder filter, 
which is not strictly necessary if only predicted estimates of 
y are required and the K$*i are available, constructs the 
prediction error residuals of increasing order; this part 
does not require any additional multiplication. The coeffi- 
cient matrices K j , ,  are not provided by the lattice struc- 
ture, but have to be either known or constructed. Either of 
the expressions  (3.6) or (3.7),  together  with  (3.3): can be 
used  as a starting point to generate estimates of 
although some are preferable to others as we shall  argue  in 
Section IV, where we shall discuss adaptive implementa- 
tions of d-step predictors. 

D-step backward  residuals of order k can  be  defined 
similarly 

(3.13) 

with gd.o( r )  = y( f - d + 1). 

Kd/.,+1= - d - W ( t ) ) ( R f ) - l  

q d q i ( R { ) - I .  (3.14) 

Alternative expressions for Td.l are 

Finally, the d-step backward predictor for y (  t )  can now be 
written as 

k 

E{y( t -d -k+ l ) IY ,~k+I}=  K d f . r f , - l ( ~ - k + i ) .  
r = l  

(3.17) 
g , , , ( t ) ~ y ( t - d - k + l )  In this  last  expression, we  have  used { f o (  t - k + l), f , ( t  - k 

- E { y ( t - d - k + I ) ( Y , ‘ _ , + , }  (3.11) +2),...,f,_,(t)}asabasisfor Y,L,+,.Notethecomplete 



GEVERS AND WERTZ: D-S-rZP PREDICTOR 469 

symmetry  between  (3.9) and (3.12),  (3.8) and (3.13),  (3.6)- 
(3.7) and (3.15)-(3.16),  (3.2) and (3.17). Finally, note that, 
for d = 1, the expressions of Section I11 become identical to 
those of Section  I1  with f , ,k(t)=fk(t) ,   g, , , ( t)= gk(t), 

Expressions  (3.9) and (3.12)  provide  recursive relations 
for fd, k(t) and gd. k(t), where the recursion is on k ,  the 
order of the predictor. We  now establish a relation between 
(d + 1)-step  and d-step forward  and backward  residuals. 

SI, k = s k  = Tl:k K{* k = Kkf, and K t  k = KL. 

with 

The last equality follows  from  the fact that fd+l.k- ] ( t )  = 
y ( t ) -  E{y(t)lY,L-t--;+ ]}, and this  last  term  is orthogonal to 
fk- , ( r  - d). A symmetrical recursion can be  obtained for 
the backward  residuals 

with 

The recursive formulas (3.18) and (3.21)  allow the com- 
putation of (d  + 1)-step  residuals from d-step residuals or 
vice-versa.  However,  they require the computation of the 
additional correlation matrices Mi, k and Mj,  k ,  which are 
not available in the d-step predictor lattice and ladder 
filter. In contrast, the recursive formulas (3.9) and (3.12) 
(with a recursion on k )  use the coefficient  matrices Kd/.k 
and  Kj.k which are used  for  the computation of d-step 
predicted estimates of y.  Therefore, an alternative is to 
compute the fd, k ( t  ) and gd, k( t ) for  all d using the formulas 
(3.9) and (3.12) separately for each d. 

Properties of the d -Step Forward and Backward 
Prediction Filter 

The basic lattice filter has many interesting orthogonal- 
ity properties; they  have  been  listed  by Makhoul [9]. Simi- 

larly, we list here some orthogonality properties of the 
d-step lattice and ladder filter. 

We shall first define the covariances of the d-step for- 
ward  and  backward  residuals 

We prove  (3.30) as an example. f&(t + d )  is  given by 
(3.5),  while g,(t) = y ( t  - j ) -  E { y ( t  - j ) lYLj+ There- 
fore,f,,,(t + d )  is orthogonal to Yrf-k+l,  while gj(t) lies in 
KLj.  Hence,  these two quantities are orthogonal provided 
0 6 j G k - 1. All the other proofs follow  similar argu- 
ments. 

So far, we have presented the basic lattice filter and the 
d-step lattice-ladder prediction filter under the assump- 
tions of a stationary process and known correlation func- 
tions. In  most practical applications the correlation 
functions are not available and must  be  recursively esti- 
mated from the data. For the  basic lattice filter, a  number 
of adaptive schemes  have  been proposed  in the last few 
years for the recursive computation of the reflection  coeffi- 
cients Kkf and K t  from the data. These  schemes  can  be 
broadly classified into gradient algorithms (see  [5]-[lo]) 
and least-squares algorithms (see [ 121-[  171); each of these 
two  classes of schemes can  be adjusted to account for time 
varying parameters by the introduction of exponential 
weighting (or fading memory) factors. In the following  two 
sections, we shall  derive  two different adaptive algorithms 
for a d-step ladder filter. For simplicity of notations, we 
shall assume that the observation  process y ( t )  is scalar. 
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IV. ADAPTIVE IMPLEMENTATION OF A D-STEP 
PREDICTOR IN LATTICE-LADDER FORM: 

GRADIENT ALGORITHM 

The purpose of this  section  is to show that the d-step 
prediction  filter of Section I11 can be adaptively  imple- 
mented  using a gradient algorithm  similar to  that of 
Griffith [ 5 ]  and Makhoul [9] .  First, we describe the adap- 
tive  one-step lattice filter. Since y ( t )  is  assumed  scalar, 
Kkf = K l  = K,. The various  coefficients are then computed 
as follows.  Given f , ( ~ )  and g k ( T )  up  to  time t .  for k = 
1;. . ,n ,  

r 

2 c P 1 - r f k - l ( ~ ) g k - l ( T  - 1) 

where 
r 

R k - l ( t ) =  c Pr-'[fkz_1(~)+gk2-1(~--l)]. (4.2) 
r = r o i l  

Here P is a fading  memory factor: 0 P G 1, to = t; + n - 1, 
where 1; is the initial observation  time and n is the maxi- 
mal  order to be considered  for the predictor.  Using K k ( t ) ,  
new  residuals fk( t + 1) and g k ( t  + 1) can  be computed, for 
k = 1; . .,n, through 

fk(t + 1) = f k - l ( t  + 1)-Kk(t)gk-l(t)  (4.34 

+ 1) = gk-I(t)--Kk(t)f,-l(f + 1) (4.3b) 
f o ( t + l ) = g o ( t + l ) = y ( t + l ) .  (4.3c) 

With  these new residuals  evaluated at t + 1, one com- 
putes a new estimate of Kk(t + l), k = 1;. . ,n. With  this 
particular fading memory  algorithm, K k ( t )  can also be 
written as an update of Kk(t - 1): 

(4.4) 

where 

R,- l ( t )=PR,- l ( t -1)+f ,2_l( t )+gkZ-1(t-1) .  

(4.5) 

The reflection  coefficients K k ( t )  will  always  satisfy IK,(t)l 
<: 1, which  guarantees the stability of the lattice filter. 

We  now propose similar adaptive expressions  for K j , ,  
and K i , k  starting from the following  exact definitions for 
the scalar  case  [see  (3.6) and (3.15)]: 

K,h,,+1= E { f d . , ( t  + d ) g k ( r ) ) ( R ; ) - l  ( 4 4  

K L + I  = -%.,(t - l ) fk( t ) ) (Rf)- l .  (4.7) 

Notice that, even in the scalar  case, Kj, , * K i ,  ,. 
The reason for using the above expressions  for Kj.  ,+ 

and Kdf,k+ rather than the other definitions  involving y ( r )  

[see  (3.6),  (3.7),  (3.15),  (3.16)]  is that (4.6) and (4.7)  involve 
only  residuals,  which  converge to a white  noise  process as 
the order of the  model  increases.  Now it  is well  known 
from statistical  theory that the variance of the error on  the 
estimated  cross-correlation function between two processes 
is  smaller if each of these  processes  is a white  noise  process. 
The adaptive expressions are now as follows: 

where 

1 - d  

(4.9) 

R i - ( t - d ) and Kj, , ( ) can be computed recursively. 

R~-l(t-d)=PR~-l(t-d-l)+g~-I(t-d) (4.10) 

(4.1 1) 

Similarly, 

where 

Also 

Given K j ,  , ( t  - I), Ki ,  ,( t - I), and  the residuals up to time 
f, updated coefficients Kj , , ( t )  and Ki,,(r)  can be com- 
puted using  (4.1 1) and (4.15). With these new coefficients 
and the new observation y ( t  + l), one can then compute 
new residuals  using the recursive relations (4.3)  for the 
one-step residuals and  the following  recursions for the 
d-step  residuals  for k = 1,. . . ,n: 
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It might appear that three separate recursive equations 
are needed to compute the energies R i ( t ) ,  R i ( t ) ,  and the 
total energy Rk(r ) .  

Actually, R k (  t )  can  be expressed  as a function of R i  and 
R i ,  which  reduces  the number of computations 

where 

Ck- I is a constant term  which accounts for the fact that 
the first  term in R f - , ( t )  is / 3 - ‘ 0 - d f k 2 _ l ( t 0  + d), while the 
corresponding first  term  in R k - , ( t )  is P‘-‘~-’f~-~(t~ + 1). 
Notice that the last  term of (4.17)  is  only important during 
the initialization  phase. It can be dropped for all t such 
that t - to  - d + 1 > - 4/lH0 because then the term p‘Ck- 
< O.OIRf-,(t). The summations in (4.1),  (4.8)-(4.9), and 
(4.12)-(4.13)  have  been  written under the assumption that 
y ( to  - n + 1) is the first  available observation. Alterna- 
tively,  these summations can all be made to  start  at 7 = r l  
with t ,  > to + d. We describe the first  few steps of the 
adaptive algorithm in Appendix I  to demonstrate that all 
the computations can be handled causally and recursively 
from the available data. 

v. ADAPTIVE IMPLEMENTATION OF A D-S‘EP 
PREDICTOR IN LATTICE-LADDER FOILM: 

LEAST-SQUARES  ALGORITHM 

We  present  now the adaptive implementation of the 
filter of Section I11 using a recursive  least-squares  proce- 
dure. As it has been  said in the Introduction, this  proce- 
dure, although leading to more computations than the 
gradient algorithm of Section  IV, has the  major advantages 
of being an “exact” one and having a much faster conver- 
gence or tracking  capability. Our d-step  recursive  least- 
squares (RLS) filter is a generalization of ‘the one-step RLS 
filter  derived  by  Morf et ai. [ 121-[  161. 

Given the data { y (  j ) ,  o i j < t }  the one-step and d-step 
forward and backward  residuals of order k ,  defined in the 
previous  sections,  will  have the following  form: 

k 

f k ( f ) = Y ( f ) -  a k , i ( t ) y ( t - i )  
1 = 1  

= A k ( t ) T @ k ( t )  (5.1) 
k 

g k ( l )  = ~ ( t  C b k , i ( t ) y ( t  - k  + i) 
i = l  

= B k ( d T + k W  (5.2) 

where 

(5.10) 

and  the sample covariance matrix 

It will be assumed throughout that R k ( t )  is  nonsingular. 
The coefficient  vectors Ak(t), B k ( t ) ,  A d , k ( t ) ,  and Bd,k ( t )  
are defined at each  time as  the solutions of the follow- 
ing minimization  problems:  min A k ( t ) T R k ( t ) A k ( t ) ,  

min Bd.k(t)TRd+k-l(t)Bd,k(t). This amounts  to minimiz- 
ing the sum of the squares of the residuals from 0 to r ,  but 
all  evaluated  with the same coefficients A k ( t )  [resp. 
Bk(t), Ad ,k ( t ) ,  Bd,k(t)]. The minimization  yields the fol- 
lowing equations: 

min Bk(t>TRk(t)Bk(t), mh A d ,  k(t)TRd+k-l(t)Ad, k ( t ) ,  
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- -_- 
0 

0 

-k 

1 

(5.12) 

1 

I d - 1  
(5.13a) 

1 

ik 

(5.13b) 
1 

The last k equations on the left of (5.12) and of (5.13a) 
define A k ( t )  and A d . k (  t ) ,  while the first equation defines 
R { ( r )  and ~ f d , ~ ( t )  and similarly for Bk( t )  and ~ ~ , ~ ( t ) .  
R { ( r ) ,  ~ f d . , ( t ) ,  ~ i ( t ) ,  R:,k( t )  are the sample covariances 
of the optimal residuals. The remainder of the  section 
consists in finding recursive  expressions for the coefficient 
vectors A k ( f ) ,  B k ( t ) ,  A d . k ( t ) ,  B d . k ( t )  (recursions both  in 
the order k and  in the time t )  without having to invert the 
matrix R k ( t )  or R d - k - l ( t ) .  These recursions  will then lead 
to an implementation in lattice form. The recursive for- 
mulas are derived  from the following  recursions on R k ( t ) :  

R k ( t + 1 ) = R , ( f ) + @ , ( t + 1 ) @ , ( r + 1 ) 7  (5.14) 

(5.15) 

(5.16) 

where the X are submatrices of appropriate dimensions. 
We will also need  two  auxiliary quantities 

a (k + 1)-vector: 

c k ( t > = R k ( t ) - ' @ k ( t )  (5.17) 

a scalar: 

Note that 0 < yk( f ) 1. Order  and time update recursions 
for  the one  step  (but not the d-step) prediction filter have 
been  given  in  [13]-[ 171. The formulas in [ 161 basically  have 
the same  complexity as the gradient method. Closely  re- 
lated recursive formulas have also been  given in [21] in the 
context of Levinson  predictors. A tutorial and self-con- 
tained derivation of both the one-step and the d-step 
predictor formulas is  given in [19]. In order to keep this 
paper within reasonable limits, we  will directly give the 
final formulas for the d-step  filter.  (See  Appendix I1 for  the 
derivation of these  recursions.) 

Order  Update Recursions for the d - Step  Lattice  Filter 

r 0 1  

(5.19) 

(5.20) 

(5.22) 

(5.23) 

where 

S , , , ( f )  = [last row of R d + k ( f ) ] [  (5.25) 
0 

(5.26) 

(5.29) 
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Fig. 3. 

Equations (5.21) and (5.24) constitute the basic order re- 
cursions for the  d-step  forward and backward  residuals. 
The recursions start with fd, o( t )  = y( t )  and gd. ,,( t )  = y (  t - 
d + 1). Note that the recursion for fd,k(t) is obtained by 
adding a ladder part to the basic lattice filter, which is used 
to generate the one-step backward  residuals &(t)  (see  Fig. 
3). 

Time Update  Recursions  for  the d - Step Lattice Filter 

' @ d + k - l ( t  + l > T B d , k ( t ) -  (5.32) 

R b d . k ( t + l ) = R b d , k ( t ) + g d + k - I ( t + l )  

'$d+k-l(t+l)TBd.k(t). (5.33) 

s d , k ( r + l > = s d , k ( t ) + g d i k - l ( t )  

.@d+k- l ( r+ l )T~d,k( t ) .  (5*34) 

Sd*,k(t + 1) = G,k(d+fd+k-l( t  + 1) 

*@d+k-l(' +l)TBd,k(t). (5.35) 

The time update recursions for Ad,k(t), Bd, k(t), Sd, k ( t ) ,  
Si ,  k(t), together  with the order update recursions for 
A d .  k( t )  and Bd. k (  t )  and the recursions of the basic one-step 
prediction filter constitute a complete  set of recursions for 
the least squares computation of the d-step  residuals. Notice 
that the recursions on Rf,, k ( t )  and R:, k(t)  are only  needed 
if the sum of squares of these residuals is desired. 

VI. ADAPTIVE PREDICTION 

We have already shown in Sections  I1 and I11  how the 
basic lattice filter and the d-step lattice-ladder filter can 
also provide one-step and d-step ahead predictors in the 
case of known statistics for the process  [(2.12) and (3.2)]. 

When using a gradient type algorithm, the adaptive 

implementations of these predictors is straightforward. 
Given the data y ( ~ )  up to time t ,  one can compute 
fk(T), bk(7) ,  K k ( 7 )  up to time t ,  for k = 1 to n. Hence, the 
prediction of y ( t  + 1) given {y ( t ) , .  - . ,y(t  - k + 1))  will be 
given  by 

k 

?l ,k( '+ ' )= 1 Kb(t)gt-l( t)* (6.1) 
i = l  

Similarly, the prediction of y( t + d )  given { y( I ) ,  . . . ,y( t - 
k + 1))  will be given  by 

k 

?d,k( '  + d )  = 1 K ~ , i ( t ) g i - l ( f ) *  (6.2) 
i = l  

In the case of the recursive least-squares procedure of 
Section V, two  slightly different predictors can  be defined. 
Indeed, it  follows from the definition of fk(t  + 1) and  from 
the repeated application of the basic lattice recursion  with 
initial condition f,(t + 1) = y ( t  + 1) that 

k 

f k ( f + l ) = Y ( f + l ) -  1 a k , j ( t + I ) y ( f - i + l )  (6.3) 
i = l  

k 

= y( t  + 1)- Kb(t  + 1)gip1(t) .  (6.4) 
i = l  

Hence, 
k k 

ak , ; ( t+1 )y ( t - i+1)=   Kb( t+ l )g i - l ( t ) .  
i = l  i = l  

(6 .5 )  

Any one of the two  expressions in (6.5) could  be defined as 
the one-step ahead prediction of y ( t  + 1) given { y (  t ) ,  . - e ,  

v ( t  - k + I)}, except that the coefficients ak, ,( t  + 1) and 
KP( t + 1) depend  upon all observations up to time t + 1, 
which  would  make this predictor noncausal. This suggests 
that a truly causal  least-squares one step ahead predictor 
can be obtained by replacing the coefficients ak,;(t + 1) 
[resp. Kb(t + l)] in (6.5) by uk, ; ( t )  [resp. Kb(t)] .  

We shall define the one step ahead predictor as 
k 

y l , k ( t + l ) =  1 Kb(t)gi-l( t) .  (6.6) 
i = l  

It  turns out that this predictor is  slightly different from one 
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that would  have  been  defined as 
k 

l':,k(t + 1) = ak*; ( t )y( r  - i +  1). 
i = l  

If we define 

j k ( I + l ) = A k ( t ) j ' ~ k ( f + ] )  

g k ( r + l ) = B k ( t ) ~ ~ k ( t + l )  

then ,Y: t + 1) can be  expressed as 

y;*k(t + 1) = y(t  + l ) - j k ( t  + 1). 

Multiplying the order update recursion for Ak(t) by 
&(t + 1) leads to the following  recursion for jk ( t  + 1): 

j k - , ( r + l ) = j k ( t f l ) - K k b + I ( f ) g k ( t ) .  (6.11) 

From the repeated application of  (6.1 1)  with initial condi- 
tion fo( t + 1) = y (  t + 1)  it  follows that 

k 

j k + I ( t + l ) = Y ( t f l ) -  KP(t)gi-l(t) (6.12) 
i = l  

and 
k 

Y?,k ( t f l )=  Kb(t)k?-l(t)  (6.13) 
i = l  

in which the g,- ( 1 )  are actually estimates of gi- I( t ) 
obtained with  coefficients computed at time t - 1. [Com- 
pare (6.9) to (5.2).] 

Expression  (6.6)  has  been  chosen  because  it  uses the 
most  recent estimates of the coefficients KP(t )  and the 
backward  residuals gi-l(t). Notice  that in the stationary 
case  expressions  (6.6) and (6.7) converge to the same value 
as the number of observations increases,  since  the  coeffi- 
cient  vectors Bi- t )  converge to constant values. In the 
nonstationary case  however, or in the adaptation stages of 
the adaptive lattice filter, expression  (6.6)  is preferable. 

The predictor (6.6)  is a least-squares one step ahead 
predictor of order k .  The estimate appears to be  linear in 
{go( r ) , .  . *?gk-[(t)) or, equivalently, {y(f) ,- .   - ,y(t  - k + 
1)); however,  remember that the coefficients K b ( t )  are 
functions of the whole observation record (y(0); .,y( t ) }  
[the same  is also true for expression  (6.1)]. 

Similarly  two different d-step ahead predictors could be 
defined 

k 

j d , k ( t + d ) =  Kdb,i(t)gi-l(t) (6.14) 
i = l  

k 

yz ,k( t+d)=  ad .k . l ( f )Y(f - i+ l ) .  (6.15) 
i = l  

Again we choose  expression  (6.14)  because it uses the most 
recent information for the commtation of the coefficients. 

or 
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VII. CONCLUDING REMARKS 

We have constructed a d-step prediction filter in lattice 
and ladder form  using the orthogonalizing property of the 
basic  linear prediction lattice filter. This d-step prediction 
filter also has interesting orthogonality properties. 

The equations for the  d-step predictions and prediction 
errors assume known covariances. Two different adaptive 
implementations for the case of unknown  process statistics 
are also  given. In addition, we have  shown  how the d-step 
lattice-ladder filter can be used to generate d-step ahead 
predictions for the observation process. 

APPENDIX I 

Let to - n + 1 be the initial observation time and let t ,  be 

The  startup of the gradient procedure of Section IV is 
the initial computation time  with t ,  2 to + d .  

then as  follows: 

f o ( t J  = go(4) = 

f d . O ( t l ) = y ( t l ) r  gd,O(tl)=Y(tl-d+l) 
[I 

R&,) = p - y (  T )  

R i ( f I  - 1) = p I I - I - y ( 7 )  

Rb,(t, - d )  = p - d - y ( T )  

co= c P-TY2(d 

~ = t , + d  

f l  - 1 

T = to 

11 - d 

7 = 10 

r , + d - 1  

T = l o + l  

R o ( t , )  = R/o(tl)+Rb,(tl - l ) + p c o  
[ I  

2 1 p " - ' J ! ( T ) Y ( T -  1) 
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Now all the quantities are available that  are needed to 
compute K2(tl), K j , 2 ( t l ) ,  Kdf ,2( t l )  via  (4.1), ( 4 4 ,  and 
(4.12), and hence the residuals of order 2 via  (4.3) and 
(4.16). The time update of K l ( t l  + l), Kj,](r1 + l), Kdj,I(tl 
+ 1) is performed via  (4.4), ( 4 3 ,  (4.10),  (4.11),  (4.14), 
(4.15); hence the time update residuals of order 1 can also 
be computed via  (4.3) and (4.16). 

APPENDIX I1 

Equation (5.19) is derived as follows. We have by  (5.13) 

1 R f d , k + l ( t )  1 

Using (5.15) we also have 

R d + k - l ( t )  

x 

One can write 

r 

I d - 1  
. (A2.1) 

I I k + l  

g] [ 

(A2.2) 

0 1  
(A2.3) 

and the problem is then to find the value of a. In order to 
satisfy (A2.1), CY must be chosen  such that 

S,.,(t)+a[last row  of Rd+k(t)]  

(A2.4) 

but, by  (5.16) and (5.12), we have 

1 0 1  
= R i ( t  - d ) :  

Premultiplying (5.19)  by Rd+k(t) and using (A2.1) and 
(A2.2)  yields (5.20) and premultiplying (5.19)  by $ ~ : + ~ ( t )  
yields (5.21). Equations (5.22)-(5.24) are obtained simi- 
larly. By (5.13) and (5.14) 

(A2.7) 

Using  (5.13),  (A2.6), and (A2.7) and remembering that 
Ad,k(t + 1)  is defined by  the last k equations of (5.13), one 
gets (5.30). Premultiplying (5.30)  by Rd+k-l(t  + 1) and 
keeping only the first equation leads to 

R,,,,(t+1)=[firstrowofRd+,-,]Ad,,(t) 

0 
- [first row of Rd+& 1 +  ( t  I ) ]  [ 'd+k-2(')] 

. + ~ + k - l ( t + l ) T A d , k ( t ) .  (A2.8) 

The first term on the right-hand side of (A2.8)  yields,  using 
(5.14) and (A2.6), 

R f d . k ( t ) + Y ( t + l ) ~ d + k - l ( r + l ) T A d , k ( t ) .  (A2-9) 

The second term yields,  using  (5.12), (A2.1), and the time 
update recursion for Ck( t )  

[ - Y ( t + l ) + f d + k - l ( t + l ) l ~ ~ ' + k - l ( r ' l ) A d , , ( t ) .  

(A2.10) 

Combining these  two terms we get  (5.31). Equations (5.32) 
and (5.33) are obtained similarly. Finally, we derive the 
time update recursion (5.34). Using the definition of Sd,k(t 
+ 1)  and (5.30) we have 

Sd,k(t + 1 )  = [last row of Rd+k( t  + l)] 

(A2.5) 

and hence we obtain (5.19). 

(A2.11) 

The first term on the right-hand side yields,  using  (5.14) 
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and (A2.1), 

Sd,k(t)+yt-d-k+l~d+k-l(t+ l)TAd.k(f). (A2.12) 

The second  term  yields, using (5.15), (A2.1), and the order 
recursion for C k ( t )  

T - Yr-d-k+l@d+k-l(t + 1 )  A d , k ( f )  

+ gd+k-i(t)@d+k-l(t + l > T A d . k ( t ) .  (A2.13) 

Combining both terms yields (5.34). Again, (5.35) is ob- 
tained in a similar way. 
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