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Abstract— Results on experiment design for the identification
of nonlinear systems are extremely scarce. This paper examines
the identification and optimal input design for a very simple
nonlinear system: a Wiener system composed of a Finite
Impulse Response (FIR) system followed by a power nonlin-
earity: (.)n. We first show that an expanding power (n > 1)
increases the information about the estimated parameters, while
a compressing power (0 < n < 1) decreases the information. We
then formulate a simple optimal input design problem for the
considered class of Wiener systems and show that solutions can
be computed by restricting the class of considered input signals.
We provide a solution which offers some intuitive insights for
the case of a FIR(2) system with a square nonlinearity and
where the inputs are restricted to be Gaussian.

I. INTRODUCTION

Optimal experiment design for the identification of lin-
ear time-invariant systems is now a very mature field and
solutions abound for a range of design criteria. The first
developments date back to the 1970’s with the pioneering
work of Aoki and Staley, Mehra, Goodwin, Payne, Zarrop,
Ng and Söderström. An excellent survey of these early
results can be found in [5]. Most of the work of that
period focused on open loop identification, and the optimality
criteria that were minimized consisted in various functions
of the asymptotic per sample parameter covariance matrix.

The activity in optimal experiment design took a new turn
in the last decade, with the adoption of a wide range of
application-oriented optimality criteria and the solution of
such optimal design problems in both an open loop and a
closed loop identification setup. A survey of these recent
results can be found in [1].

Up until very recently, all results on optimal experiment
design for system identification have addressed the identifi-
cation of linear time-invariant systems. The first few results
on the identification of nonlinear systems that we are aware
of are [2], [7], [4], [3].

In [2] the authors explain that in the presence of nonlin-
earities the optimal inputs typically depend on the complete
distribution of the input sequence. However, they isolate a
number of simple situations where the optimal input only
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depends on a few higher order moments or where only
deterministic inputs are considered, in which case the optimal
design problem can often be reduced to the solution of a min-
imization problem involving polynomial matrix inequalities
for which relaxation methods have recently been developed.

In [7] an experiment design problem is considered for the
identification of the static nonlinearities of block structured
nonlinear systems made up of the interconnection of known
linear dynamic systems and unknown static nonlinearities.
The nonlinear blocks are estimated as pointwise functions,
and an input sequence is computed that minimizes an upper
bound on the variance of these pointwise estimates.

In [4] an experiment design for the closed-loop iden-
tification of a class of nonlinear systems is considered,
under a priori known bounds on the parameters and on
model uncertainties. The problem is reformulated as a time-
domain constrained optimal control problem over a finite
time interval, where the control objective is a trajectory
following problem. The optimal trajectory is itself obtained
as the solution of a worst case norm of the parameter
estimation error, where the parameter vector is computed by
Least Squares estimation.

The paper [3] considers optimal input design for nonlin-
ear FIR-type systems. It illustrates that the computational
complexity becomes untractable when the number of lags
in the nonlinear FIR model grows because the number
of optimization variables becomes very large. The authors
propose a suboptimal solution by restricting the inputs to
take only a finite number of levels; in particular they present
an example where the inputs are limited to three possible
levels.

The purpose of the present paper is to add insights into
the difficult and largely open field of optimal input design
for nonlinear systems. We focus on a special class of such
systems, namely a Wiener system whose linear dynamic part
is an FIR(m) system and whose static nonlinear part raises
the output of the FIR system to the power n. Our contribution
is twofold. First we examine the effect of the nonlinearity on
the information matrix, and hence the asymptotic parameter
covariance matrix. We show in particular that an expanding
nonlinearity, i.e. n > 1, actually improves the information
about the estimated parameters, even if the signal to noise
ratio at the output is kept constant as n varies. We then
discuss the difficulties associated with the construction of
optimal inputs for such Wiener systems, which were already
highlighted in [3]. We propose a suboptimal solution, differ-
ent from that adopted in [3], by restricting the inputs to be
Gaussian. We present a complete solution for this restricted
class of Gaussian inputs for the case of a FIR(2) system and



a square nonlinearity, and we discuss its possible extensions
to FIR systems of higher order than m = 2 and to powers
higher than n = 2.

The paper is organized as follows. We state the problem
in Section II. In Section III we establish the relation be-
tween the order m of the FIR(m) system, the power n of
the nonlinearity and the information matrix, and we show
that an expanding nonlinearity improves the information.
We illustrate these connections in Section IV for a static
system, i.e. FIR(1). In Section V we study the case of
an FIR(2) system followed by a square nonlinearity, and
in Section VI we provide a suboptimal solution for such
case by restricting to Gaussian inputs. Section VII presents
simulations which validate the results of Section VI, while
Section VIII discusses possible extensions to higher order
FIR systems or higher order powers.

II. STATEMENT OF THE PROBLEM

We shall consider a Wiener system composed of a Finite
Impulse Response (FIR) system of order m followed by a
static nonlinearity of the form xn: see Figure 1. The system
can thus be represented as

w(t) =

m∑
k=1

bku(t− k + 1) (1)

y0(t) = wn(t) (2)
y(t) = y0(t) + v(t) (3)

where v(t) is zero-mean white Gaussian noise with standard
deviation σv and where u(t) will be assumed to be a zero
mean strictly stationary signal with standard deviation σu.
The system can be rewritten as

y(t) =

[
m∑
k=1

bku(t− k + 1)

]n
+ v(t). (4)

The purpose of this paper is to examine the role of the

y0

v

yFIR(m)u w ( )n

Fig. 1. Block diagram of the Wiener system

power n and of the coefficients bk of the FIR model under
a variety of assumptions, and to compute optimal inputs in
view of the estimation of these parameters bk. To keep things
simple we shall adopt the most classical optimal input design
criteria used in identification, namely scalar measures of the
asymptotic covariance matrix.

III. AN EXPANDING NONLINEARITY HELPS

In this section we analyze the information matrix for the
system of Figure 1 and exhibit the role of the power n
of the nonlinear block in the expression of this informa-
tion matrix, and hence in the achievable precision of the
parameter estimates. We first derive the expression of the

information matrix without restricting the linear dynamic
block to be an FIR model: thus we momentarily assume that
w(t) = G(z, θ)u(t) where G(z, θ) is a rational stable transfer
function function and the vector θ contains the parameters
of the numerator and denominator polynomials of G(z, θ).

Since v is white noise, the one step ahead predictor of
y(t) is ŷ(t, θ) = G(z, θ)u(t) and its gradient is then

∂ŷ(t, θ)

∂θ
= nwn−1(t)

∂G(z, θ)

∂θ
u(t). (5)

Therefore the average per sample information matrix takes
the form

I(θ) =
1

σ2
v

E

[(
∂ŷ(t, θ)

∂θ

)(
∂ŷ(t, θ)

∂θ

)T]
(6)

=
1

σ2
v

E

[(
∂G(z, θ)

∂θ
u(t)

)(
∂G(z, θ)

∂θ
u(t)

)T
w2n−2(t)

]
where the expectation is with respect to the probability
density function of u. We already observe the effect of
the power nonlinearity: roughly speaking, the variance of
the output w(t) of the linear dynamic system, E[w2(t)],
amplifies the effect of the input signal on each element of
the information matrix with a power n− 1. When the linear
system is a Finite Impulse Response of order m, the per
sample information matrix becomes:

Iij(θ) =
n2

σ2
v

E
[
u(t− i+ 1)u(t− j + 1)w2n−2(t)

]
=

n2

σ2
v

E

[
u(t− i+ 1)u(t− j + 1)

(
∑m
k=1 bku(t− k + 1))2

w2n(t)

]
(7)

Expression (7) shows the effect of the power n of the
nonlinearity on the information matrix: each element is
multiplied by n2 times the power of the signal w(t) raised
to the power n−1. Thus, an expanding nonlinearity (n > 1)
greatly increases the information compared to a purely linear
system, while a contracting nonlinearity (n < 1) decreases
the information.

Suppose now that the variance of the noise-free output
signal is kept constant when the power n is varied, so that
the signal to noise ratio remains fixed:

E[w2n(t)] = E[

m∑
k=1

bku(t− k + 1)]2n = α (8)

for some fixed scalar α > 0. In view of (7) we expect
that, even in such case of constant output variance, the
elements of the information matrix will be approximately
proportional to the square of the power n, and that the
information per parameter decreases when the amplitude
of these parameters increases, since the parameter vector
appears with a square in the denominator. This is an expected
result of the normalization: given that the average per sample
covariance matrix is the inverse of the information matrix,
Pθ = I−1(θ), it implies that the relative uncertainty as
measured by Pθ/|θ|2 is independent of the norm of the
parameter.
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Fig. 2. I(1, 1) as a function of n2

To confirm this we have performed the following simula-
tions. We have taken the FIR(2) model

y(t) = [u(t) + u(t− 1)]n + v(t) = wn(t) + v(t), (9)

for powers n going from 1 to 7, where the input signal
u(t) was generated as a zero mean Gaussian white noise,
scaled as shown in (8), with α = 1 for each n. Given
the slow convergence of the higher order moments of u,
107 realizations of u have been generated to compute the
experimental estimates of the elements of the information
matrix (7) for each n. Figure 2 shows the (1, 1) element of
the experimental information matrices as a function of n2

that resulted from this simulation. It clearly confirms that
the elements of I(θ) are proportional to n2.

IV. CRAMER-RAO BOUND FOR A STATIC GAIN

To get some more insight into the role of the power n of
the nonlinearity and of the parameters of the FIR system,
we now specialize these expressions to the special case of a
FIR(1) system:

y(t) = [θu(t)]n + v(t) = wn(t) + v(t). (10)

Expression (7) becomes

I(θ) =
n2θ2n−2

σ2
v

E
[
u2n(t)

]
. (11)

The Cramér Rao bound for the estimation of θ, on the basis
of N data, is

PN (θ) ≈ σ2
v

n2θ2n−2NE [u2n(t)]
. (12)

We observe that the achievable precision is inversely pro-
portional to the amplitude of the parameter θ raised to the
power 2n− 2, in addition to being inversely proportional to
n2. This is of course because the nonlinear filter amplifies
(for n > 1) the power of the signal at the output. To make a
fair comparison with the linear case, we consider again that
the output variance is kept constant at a value α when n is
varied. Substituting E[θu(t)]2n = α in (11) now yields:

I(θ) =
αn2

σ2
vθ

2
, PN (θ) ≈ σ2

vθ
2

αn2N
. (13)

Thus the relative variance of an efficient estimator θ̂N will
tend for large N to:

V ar(θ̂N )

θ2
≈ 1

n2N

σ2
v

α
(14)

where σ2
v

α is the inverse of the signal to noise ratio. This
expression is quite enlightening: it shows that, in the case of
a constraint on the output variance, the achievable relative
precision in the parameter estimate is proportional to the sig-
nal to noise ratio and to the square of the power of the static
nonlinearity. It shows exactly how an expanding nonlinearity
helps in improving the precision of the parameter estimate.

For a contracting nonlinearity

y(t) = [θu(t)]
1
p + v(t), p > 1, (15)

the following expressions are obtained:

I(θ) =
α

p2σ2
vθ

2
,

V ar(θ̂N )

θ2
≈ p2

N

σ2
v

α
(16)

Hence a contracting nonlinearity increases the uncertainty in
the parameter estimate proportionately to the square of the
power of the contraction.

We perform Monte-Carlo simulations to validate the ex-
pressions (13) by taking a range of values for θ and n. The
white noise v has unit variance, while the variance of u(t)
is normalized so that the expected variance of the noiseless
output signal is equal to 1, i.e. E[θu(t)]n = 1 for all n. In
each simulation, we first generate a zero mean unit variance
Gaussian signal ε(t) and we subsequently divide ε(t) by the
2n-th root of the theoretical variance of y0(t) = [θε(t)]n.
For a Gaussian signal, we have

E[y0(t)]2 = θ2nE[ε2n(t)] = θ2nσ2n
ε (2n− 1)!! (17)

where the double factorial (2n−1)!! is defined as (2n−1)!! =
(2n−1)(2n−3) . . . 1. Thus, the input signal u(t) is obtained
from the unit variance white noise ε(t) as follows:

u(t) =
ε(t)

|θ| 2n
√

(2n− 1)!!
(18)

The parameter estimate is obtained by first estimating β by
Least Squares regression from the equations

y(t) = βx(t) + v(t) (19)

with x(t) = un(t), and then taking θ̂N =
n

√
β̂N .

Figure 3 presents the values of the experimental informa-
tion I(θ) obtained by Monte-Carlo simulations for 3 different
values of the parameter θ and for powers n ranging from 1
to 9, compared with the theoretical values obtained from
(13). For the sake of clarity, the information is presented in
a logarithmic scale, i.e. db(I(θ)). It can be shown that the
convergence of the experimental moments 1

N

∑N
k=1 u

n(k)
to their theoretical values E[un(t)] becomes extremely slow
when n increases; as a consequence, these simulations were
produced with large values of N = 10, 000.
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Fig. 3. Fisher information (in db) as a function of the nonlinearity and of
the parameter; theoretical (+) and simulated values (∗).

V. OPTIMAL INPUT DESIGN FOR AN FIR(2)
SYSTEM

Having established some interesting properties of the in-
formation matrix for the class of Wiener systems considered
in Figure 1, we now address the optimal input design prob-
lem for the same class of systems. To simplify matters, we
first analyze the case of a FIR(2) system followed by a static
nonlinearity that takes the square of its input; extensions to
FIR systems of higher order and to higher powers of the static
nonlinear block will be discussed in Section VIII. Thus, the
system can be represented as

y(t) = [b1u(t) + b2u(t− 1)]2 + v(t). (20)

Defining θ ∆
= [b1 b2]T yields

∂ŷ(t, θ)

∂θ
=

(
2[b1u(t) + b2u(t− 1)]u(t)

2[b1u(t) + b2u(t− 1]u(t− 1)

)
(21)

Therefore the elements Iij(θ) of the average per sample
information matrix can be written as

I11 =
4

σ2
v

(b21m
40
u + 2b1b2m

31
u + b22m

22
u )

I12 = I21 =
4

σ2
v

(b21m
31
u + 2b1b2m

22
u + b22m

13
u )

I22 =
4

σ2
v

(b21m
22
u + 2b1b2m

13
u + b22m

04
u ) (22)

where we have introduced the following notation for the
moments of u(t):

mij
u

∆
= E[ui(t)uj(t− 1)]. (23)

In the linear case (n = 1) the information matrix for an
FIR(2) system takes the form

I(θ) =
1

σ2
v

[
E[u2(t)] E[u(t)u(t− 1)]

E[u(t)u(t− 1)] E[u2(t)]

]
(24)

which depends only on the autocovariance function of the
input at lag zero and one. The optimal input is then entirely
set by the power spectrum of the input signal as is well

known from the literature. Whatever the optimal design cri-
terion, the optimization can then be performed with respect
to E[u2(t)] and E[u(t)u(t − 1)] subject to the constraint
that I(θ) ≥ 0 in (24), which guarantees that E[u2(t)] and
E[u(t)u(t − 1)] are the first two autocovariance elements
of a valid spectrum Φu. The optimal input design problem
is then solved in two steps. First the optimal criterion is
minimized with respect to E[u2(t)] and E[u(t)u(t − 1)]
subject to I(θ) ≥ 0 and other possible constraints imposed
by the designer; a large number of such problems can
be formulated as convex optimization problems subject to
Linear Matrix Inequality (LMI) constraints. The next step
consists in generating an input sequence whose spectrum
matches these first two autocovariance elements.

In the nonlinear Wiener system of this paper, we observe
that the information matrix depends on higher order moments
of the input signal. In the particular case studied in this
section, it depends on four parameters: m40

u ,m
31
u ,m

22
u ,m

13
u ,

observing that by the stationarity assumption we have m40
u =

m04
u . Thus, as observed in [2], it might be tempting to solve

the optimal input design problem with respect to these four
parameters. However, there are two constraints:
(i) they have to satisfy the constraint I(θ) ≥ 0 where I(θ)
depends on m40

u ,m
31
u ,m

22
u ,m

13
u through (22);

(ii) there must exist a valid probability distribution
p(u(t), u(t− 1)) that generates these moments.

Problem (i) is not too difficult to address since I(θ) ≥ 0
is an LMI in these unknown parameters, even if it depends
on the parameters of the unknown FIR system. This is
the traditional paradigm of optimal experiment design: the
optimal solution always depends on the unknown system.
As for problem (ii), to the best ot the authors’ knowledge,
this is still an open problem.

We observe that, given the assumption on strict stationarity
of the input u(t) that we have made throughout the paper, the
optimal solution of an input design problem is completely
characterized by the knowledge of the joint probability
density function p(u(t), u(t− 1)).

A suboptimal procedure for the design of optimal in-
puts for nonlinear systems, suggested in [2], would be to
parametrize the joint density p(u(t), u(t− 1)) as

p(u(t), u(t− 1)) =

l∑
k=1

γkpk(u(t), u(t− 1)) (25)

where the pk(u(t), u(t−1)) are preselected distributions and
the parameters γk are free variables subject to

∑l
k=1 γk = 1.

In such case, the moments mij
u appearing in the information

matrix (see (22) can be written as

mij
u =

l∑
k=1

γk

∫∫
ui(t)uj(t−1)pk(u(t), u(t−1))du(t)du(t−1)

(26)
The constraint I(θ) ≥ 0 now becomes an LMI in the
parameters γk, k = 1, . . . , l.

In this paper we examine another suboptimal solution
in which the class of inputs is restricted to be Gaussian.



Even though our analysis applies to different optimal design
criteria, for pedagogical reasons we consider that the goal
is to design an input that maximizes the determinant of the
information matrix I(θ).

VI. THE CASE OF GAUSSIAN INPUTS

Consider thus that we restrict the input to be a strictly
stationary zero-mean Gaussian signal u(t) with variance
σ2
u and covariance function E[u(t)u(t − τ)] = ρu(τ)σ2

u.
Denoting ρ ∆

= ρu(1), the moments mij
u tcan be written:

m40
u = 3σ4

u

m31
u = m13

u = 3ρσ4
u

m22
u = (1 + 2ρ2)σ4

u.

The information matrix can then be rewritten as

I11 =
4σ4

u

σ2
v

[3b21 + 6b1b2ρ+ b22(1 + 2ρ2)] (27)

I12 = I21 =
4σ4

u

σ2
v

[3b21ρ+ 2b1b2(1 + 2ρ2) + 3b22ρ]

I22 =
4σ4

u

σ2
v

[b21(1 + 2ρ2) + 6b1b2ρ+ 3b22]

The determinant of I(θ) then takes the following form:

detI(θ) = 48
σ8
u

σ4
v

[
−4b21b

2
2ρ

4 − 4b1b2(b21 + b22)ρ3 (28)

−(b21 − b22)2ρ2 + 4b1b2(b21 + b22)ρ+ (b21 + b22)2
]

The only design parameter for the maximization of the
determinant of I(θ) is the autocorrelation coefficient ρ, with
the constraint that |ρ| < 1. In order to find a maximizing
value, we set the derivative of detI(θ) with respect to ρ to
zero:

∂detI(θ)

∂ρ
= 48

σ8
u

σ4
v

[
−16b21b

2
2ρ

3 − 12b1b2(b21 + b22)ρ2

−2(b21 − b22)2ρ+ 4b1b2(b21 + b22)
]

= 0. (29)

The maximum of detI(θ) is obtained for those roots of (29),
if any, that are in (−1, 1) and for which ∂2detI(θ)

∂ρ2 < 0. We
have

∂2detI(θ)

∂ρ2
= 96

σ8
u

σ4
v

[
−24b21b

2
2ρ

2 − 12b1b2(b21 + b22)ρ

−(b21 − b22)2
]
. (30)

An optimal solution can always be generated as

u(t) = ρu(t− 1) + ε(t) (31)

where ε(t) is white Gaussian noise with mean zero and
variance σ2

ε . The variance of the input signal is then σ2
u =

σ2
ε

1−ρ2 .

VII. SIMULATIONS WITH GAUSSIAN INPUTS

To illustrate the optimal input design for the Wiener
process of Figure 1 we have taken the following system:

y(t) = [5u(t) + 2u(t− 1)]2 + v(t), (32)

with σ2
v = 0.25. The input is generated by (31) with ε(t)

being also zero mean white Gaussian noise whose variance
is taken such that the input signal u(t) has variance σ2

u = 1.
As stated above, the only design parameter for the maxi-

mization of the determinant of the information matrix is the
autocorrelation ρ. The maximization of the determinant of
the intormation matrix I(θ) given by (28) with respect to ρ
subject to the constraint σ2

u = 1, yields ρ = 0.4321.
In order to evaluate the behaviour of the determinant

of I(θ) as a function of ρ, we have plotted the value of
detI(θ) given by (28) with b1 = 5 and b2 = 2 as a
function of ρ. We have also computed the determinant of
I(θ) by simulations, using the expression (22), in which the
mij
u have been replaced by their experimental expressions

m̂ij
u = 1

N

∑N
t=1 u

i(t)uj(t− 1).
Figure 4 shows the determinant of the information matrix

as a function of the autocorrelation ρ: the black curve (+)
is based on the theoretical expression (28), the red curve
(∗) is based on the simulated information matrix computed
from 50000 data, while the cyan curve (-) is computed
in the same way as the red curve but with only 5000
data. The convergence of the expressions 1

N

∑N
t=1 u

4(t),
1
N

∑N
t=1 u

3(t)u(t− 1) and 1
N

∑N
t=1 u

2(t)u2(t− 1) to their
theoretical values 3σ4

u, 3ρσ4
u and (1 + 2ρ2)σ4

u, respectively,
is very slow, which explains the difference between the red
and cyan curves in Figure 4.
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Fig. 4. Determinant of the information matrix as a function of ρ. Black(+):
theoretical information matrix, red(∗): simulated with 50,000 data; cyan (-):
simulated with 5,000 data.

In order to validate these findings, we have performed
another Monte Carlo simulation in which we have estimated
the parameters b1 and b2 by nonlinear least squares (using the
Matlab function fminsearch) and computed their experimen-
tal covariance for inputs generated by (31) and with ρ ranging
in the interval (−1, 1). The estimation of the covariance was



based on 2000 Monte Carlo simulations, each using 2000
data. In order to be consistent with the results of Section VI,
the variance of ε in (31) was adjusted so that the variance
of u was independent of ρ. Figure 5 shows the determinant
of the experimental covariance as a function of ρ, which is
consistent with the results of Figure 4.
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Fig. 5. Determinant of the experimental covariance matrix as a function of
ρ. Black(+): theoretical information matrix, red(∗): simulated with 50,000
data; cyan (-): simulated with 5,000 data.

VIII. EXTENSIONS
In this section we examine the extension of our results

for FIR(2) systems followed by a square nonlinearity to the
cases of FIR(m) systems and higher powers of the nonlinear
block. We also consider alternative families of input signals.

We first observe that there are no theoretical difficulties
in extending the expressions for the information matrix
from (22) to corresponding expressions with more than two
parameters and higher powers of n than 2. However, we note
that the number of design parameters increases quickly with
m and n. For m = 2 and increasing powers of n, the solution
will only depend on higher order moments of the form mij

u

as defined in (23) involving powers of u(t) and u(t−1) only,
with i, j = 0, . . . , n and i+ j = n. This is still a reasonably
tractable problem. However, the complexity of the problem
increases rapidly for longer FIR models (i.e. m > 2), since
all moments of the form E[ui(t− k+ 1)uj(t− l+ 1)] must
be considered for i, j = 0, . . . , n with i + j = n, and for
k, l = 1, . . . ,m.

If the inputs are restricted to be Gaussian, these problems
are again very tractable, since these higher order moments
are simple functions of σu and the autocovariance function
of u up to lag m.

From the previous study it turned out that the optimal
input design depends on the higher order moments of the
joint probability density function. A full optimal design
should optimize over all these parameters, but as explained
before we cannot handle the full problem at this moment. A
simplified problem is to optimize both the power spectrum
and the amplitude distribution of the excitation. Even this
solution is not feasible yet in practice, because to the best

of the authors’ knowledge, there are no algorithms available
where the user can set independently the power spectrum
and the amplitude distribution of a random sequence (e.g.
generate a uniform distribution with a given power spec-
trum). Generating deterministic excitation signals offers an
intermediate solution to the problem. In [6] it is shown that it
is possible to generate periodic excitations (called multisines)
where the user has full control over the power spectrum.
The phases are selected such that the amplitude distribution
of the excitation approximates a user defined amplitude
distribution. This idea can be reused within the context of
solving the generalized optimal input design problem, but
more research is needed here to make hard claims.

IX. CONCLUSIONS

This work is a contribution to the emerging field of
experiment design for structured nonlinear systems. We have
examined the class of Wiener systems made up of a linear
FIR system followed by a nonlinear power function. We have
shown that nonlinearities can be beneficial to the estimation
of parameters in the case of expanding powers. As for the
experiment design aspects, we have illustrated, via a simple
FIR(2) system followed by a static square power function,
the kind of calculations that are required for the computation
of optimal inputs. Almost surely, one will only be able
to compute suboptimal solutions by restricting the class of
considered inputs. We have shown that, for Gaussian inputs,
reasonably simple expressions are obtained leading to simple
suboptimal solutions.
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